Loading...
HomeMy WebLinkAboutB10-0105 Structural CalculationsSTRUCTURAL CALCULATIONS TO BUILDING DEPARTMENT For: VAIL FIRE AND EMERGENCY SERVICES STATION #3 APPROVED . � Commu Gulldinnity Development De ��+Colorado I :-- �l Jule: \, ON 0 M &N #7938 See:: C �r a "one. r f p�rrrtit. Thai.:.,_. an c' - �-j cr of ' Prop: _ valid ,.... ) cf a f - =' othc7 com build;; . strue- this DATI PLANS txAM1NER: Town of Vail OFFI opy These drawings and calculations are the property of Monroe & Newell Engineers, Inc. Any use or reproductions of these calculations without the expressed written permission of Monroe & Newell Engineers, Inc. is strictly prohibited. * *P.E. stamp on sheet applies to the following calculation pages and indicates that have been reviewed. This includes��N -cmp all sheets attached to this cover. May 10, 2010 510' � I os?- � ` 1n ( (0 MAY 12 2010 10 TOWN OF VAIL Vail Fire and Emergency Services Station #3 M &N #7938 May 10, 2010 Structural Calculations Gravity Design Pages 0 Design Criteria /Loads G1 -G3 Roof Design G4 -G19 Upper Floor Design G25 -G48 Column Design G49 -G60 Stud Wall Design G61 -G66 CMU Wall Design G67 -G98 Foundation Design G99 -G119 Lateral Design 2.0 Wind Loads L1 -L18 Seismic Loads L18 -L38 CMU Shear Walls 1-39 -1-58 Stair Core and Hose Tower 1-59 -1-90 A- nn= &Newell fi , ac 1. 3mauM Eh ow= Newer W Lateral Loads: Wind: Basic wind speed: `D mph Exposure: d5-. Seismic zone: SIT C cASS C Soils report required by jurisdiction ?: Report #: _oq_o33 By= 1<nEL g t-&, tt C'opst) .T. Date: 3 q Minimum frost depth: Expansive soils ?: Other special requirements imposed by local jurisdiction: Questions for Architect at nroieet start-up: Roof system(s): • Typical eave & ridge details • Cold roof? • Beams flush or exposed • Desired beam types at exposed members: Arch G.L., R.S.,etc. • Plate heights • Attic storage trusses? Floor framing: • Finished floor elevations) • Gyp- crete/ flagstone/ heavy file or slate? • Special loads? • Maximum joist depth/ preferred joist type:(BCI, open web etc.) Foundations: • Slab on grade or crawlspace? • Minimum crawlspace depth? • Garage slabs sloped to interior drain or to exterior? N� h U,: 2.2 Gb F5F. �� �oap j . { zoai riwro uw l •tw coo• f Oa�VO 2 61 1 s� Ehed= Denver• Vag MONROE & NEWELL ENGINNERS, INC. RESIDENTIAL DESIGN CRITERIA Project Name: qn, , Mme t fmckC-, � aoic& STA A3 Date: Project #: 7 e, Physical Address: F,eo,c.,Yr9 —_ ,2 1) Lot: Block: Subdivision: City:( t V Agency /Jurisdiction: VA L-- Contact: Phone : Building Code Edition: !gG R) H Architect: 3�� � kjA a�Tr i u--, / VAQ ' Contact: N Wfl r�l t BLS Phone: 916 • 7 • cUZ0 / at a - ►atA3FI( fax E-mail: dm @ ywg.&( 7. coryl Ouestions for local Wrisdiction at proiect start -up: LIVE LOADS: Roof. •'lZ /DD p sf Jf /2 R . Decks/balconies: /� BD sf Floors: Within units: 40 _psf Exit corridors /stairs: l0 p sf Storage areas: 11 Z - - p sf (hI eel a P 1 . &-- lg - /. Reducible for pitch/duration ?: /" 4 Reducible for concurrent seismic loading ?: Appendix chapter 16 division 1 adopted ?_ Hot tub/ wood stacking? / - - /.2 / - /. /5 lDal •LATIMUM wN= wsoa or ca�oaAOo 6,7-- Job Title: Wvail Firestation Job No: 7938 Input Summary Dead Load, DL = 20 psf ALL = Live Load, LL = 120 psf A = Allowable Span Summary Size s =24" s =16" s =12" 2x6 DF #2 3.9 4.8 5.5 2x8 DF #2 5.2 6.3 7.3 2x10 DF #2 6.6 8.1 9.3 2x12 DF #2 8.0 9.8 11.3 11 -7/8 TJI 210 10.2 12.5 14.4 11 -7/8 TJ 1 360 12.2 15.7 17.3 11 -7/8 TJ 1 560 14.6 18.1 19.9 11 -7/8 LVL 14.2 16.2 17.9 11 -7/8 BCI 5000 1.7 9.5 11.6 13.4 11 -7/8 BCI 6000 1.7 10.2 12.5 14.5 11 -7/8 BCI 6500 1.8 10.5 13.9 16.0 11 -7/8 BCI 60 2.0 10.5 15.8 17.4 11 -7/8 BCI 90 2.0 13.9 18.1 20.0 11 -7/8 BCI VL 2.0 14.4 16.5 18.2 14 TJI 210 11.1 13.5 15.6 14 TJI 360 13.3 17.7 19.6 14 TJ 1 560 15.7 20.5 22.5 14 LVL 16.7 19.2 21.1 14 BCI 6000 1.7 11.1 13.7 15.8 14 BCI 6500 1.8 12.3 15.1 17.5 14 BCI 60 2.0 12.3 17.9 19.9 14 BCI 90 2.0 15.4 20.6 22.6 14 BCI VL 2.0 17.0 19.5 21.5 16 TJI 210 11.8 14.5 16.7 16 TJI 360 13.3 19.0 21.7 16 TJI 560 15.7 22.6 24.9 16 LVL 19.1 21.9 24.1 16 BCI 6500 1.8 13.2 16.1 18.6 16 BCI 60 2.0 14.1 19.1 22.0 16 BCI 90 2.0 16.8 22.8 25.1 16 BCI VL 2.0 19.5 22.3 24.5 2/4/2010 360 240 Page 1 G3 Monroe & Newell JOB Voi - 79 3e Engineers, Inc. SHEET NO. OF 341 110 CALCULATED BY DATE A CHECKED BY DATE 0 .......... ........... I cr 2 zx q� ............. ............... ............ ........ . . 7x/ (Sinale Sheets) 205-1 (Paddedl lft*m J1 X ,I- 4 MUNROE N,V7 Iiiilll W m 11 �I I� 1 U�O� ii RAN fl.--AB--ROOF M % i AT 2'-Ol INDICATt5 OLD-D6NN TYPE! ,T EGUAL 5PACI 0. , UT AT THE TOP kLENT • THE TH NAILING7 !. ID d) v RErrAB ROOF TRUq5 AT -2'-0" COLUMN PPNLY © f�■ ---- ;nw w � w� Ell Ina$! I 211iml m mlm . I Iii■ �� ;`- =. � . _ � � ," ;�- =; � � � _,_._._._._._._._. _._._._._ ►Ill�i�!l����M���!'�I, I LI ........... p ............. o © o © alp PREFABRICATED ROOF TRUSS NOTES:: 1 fROOF FfR)4t*'4 lib.. = 1' -0 ROOF FRAMING NOTES: 3131 �/o t')c ............... S C! .................. .............. 0 ........... .. L 17- Monroe & Newell JOB U04 ' Pt ' , q Engineers, Inc. SHEET NO. CALCULATED BY W 4 A CHECKED BY OF DATE DATE SCALE ............. . - .. ........ Monroe & Newell Engineers, Inc. JOB --tLo—j— 7 SHEET NO. OF CALCULATED BY Lla— DATE CHECKED BY DATE SCALE ........ .. Ingo= ............... .. . . ............. ........... I L 0 Te .................... 0 ........... ........... i d 0 . ........... C 11) 1 I M MWqh..kl M1 INHH.d� Monroe & Newell Engineers, Inc. JOB SHEET NO. CALCULATED BY CHECKED BY OF DATE DATE SCALE Monroe & Newell JOB I 1 Engineers, Inc. SHEET NO. OF CALCULATED BY DATE 3 CHECKED BY DATE SCALE .............. M- 1.1h. -I 1-i ic,dded, Monroe & Newell JOB Ua Engineers, Inc. SHEET NO. CALCULATED BY CHECKED BY 712 y OF DATE to DATE Monroe & Newell Engineers, Inc. JOB VOI f" — -- — -- 7934 SHEET NO. OF CALCULATED �" BY DATE CHECKED BY DATE SCALE jj .. D� LL m li 1� )4 -1 (Single Sheetsl 205- 1(Paddedl Monroe & Newell Engineers, Inc. JOB VW 71 SHEET NO CALCULATED BY LP-- OF DATE m I D Monroe & Newell Engineers, Inc. JOB VA i. F V'. ?1,3( SHEET OF CALCULATED BY L�L DATE l — 3 a s 1 0 CHECKED BY DATE Monroe & Newell JOB Engineers, Inc. SHEET NO. OF I u CALCULATED B DA CHECKED BY DATE SCALE Monroe & Newell JOB Engineers Inc. SHEET NO. OF CALCULATED BY DATE ' CHECKED BY DATE E, ssr ..................... so F SCALE a, t F ................ _ :..... _ .................. `f cy LL m .......... ........... .. ... .......... .. .....SCR L4 So 51 II L4 5 I t� Total t Slab Depth 0 .•0. eO �6 .arc off °on,scj.p Qo '.� 2" ---12" 5 • 24" or 36" (N =9) NORMAL WEIGHT CONCRETE (145 am Deck Design Weight 1p , /In Sp ' Sn Type Thick. PSF in /ft in /ft in /ft n 2VL122 0.0295 1.62 0.332 0.329 0.274 0.277 2VLI21 0.0329 1.81 0.378 0.375 0.317 0.321 2VL120 0.0358 1.97 0.418 0.415 0.355 0.360 2VL119 0.0418 2.30 0.493 0.492 0.435 0.443 2VL118 0.0474 2.61 0.557 0.557 0.512 0.518 2VL1 17 0.0538 2.96 0.633 0.633 0.589 0.589 2VL116 0.0598 3.29 0.704 0.704 0.653 0.653 Total SDI Max. Unshored Superimposed Live Load, PSF Slab Deck Clear S an Clear S an ft. -in. Depth Type 1 Span 2 Span 3 Span 5' -6 6' -0 6' -6 T -0 7' -6 8' -0 8' -6 9' -0 9' -6 10' -0 1 10' -6 11' -0 11' -6 12' -0 12' -6 2VL122 6' -6 8' -9 8' -10 274 239 211 164 145 129 115 104 94 85 78 71 65 59 54 4" 2VL121 7' -2 9' -5 9' -8 294 255 224 200 155 138 123 111 100 91 83 76 69 64 58 2VL120 T -8 9' -11 10' -3 310 269 236 ` 21.0'+ _ 188 146 130 117 106 96 87 80 73 67 62 (t =2 ") 2VLI19 8' -8 11' -0 11' -4 344 298 261 231 207 186 169 130 117 106 97 88 81 74 68 2VL118 9' -6 11' -10 12' -3 373 324 285 253 228 206 " 188 172 159 122 112 103 95 87 81 39 PSF 2VLI17 10' -4 12' -7 13' -0 400 351 308 273 245 221 201 184 170 157 120 111 102 94 87 2VL116 10' -11 13' -2 13' -5 400 376 330 292 261 235 214 195 180 166 154 118 109 100 93 2VL122 �6_2� 8' -4 8' -5 319 278 217 190 168 150 134 121 109 99 90 83 76 69 63 41/2" 2VL121 6' -9 8' -11 9' -3 341 297 261 204 180 - T1 1.60 144 129 117 106 97 88 81 74 68 2VCl20 T -3 9' -5 9' -9 36t l L313 ^ 275 244 190 69 152 136 123 112 102 93 85 78 72 (t= 21/2 ") 2VL119 8' -2 10' -5 10' -10 400 346 303 268 240 216 168 151 136 124 113 103 94 86 79 2VL118 9' -0 11' -3 11' -8 400 376 331 295 264 X239= 218 200 156 142 130 119 110 102 94 45 PSF 2VL117 9' -9 12' -0 12' -5 400 400 358 318 284 257 234 214 197 153 140 129 118 109 101 2VL116 10' -4 12' -7 13' -0 400 400 383 339 303 274 248 227 209 193 150 137 126 117 108 2VL122 5' -11 T -9 8' -0 364 285 247 217 192 171 153 138 125 113 103 94 86 79 72 5" 2VL121 6' -5 8' -6 8' -10 389 338- 266 233 206 183 1 64 147 133 121 110 101 92 84 78 2VL120 6' -11 9' -0 9' -4 400 , 356 313 1246 -- !2.17 193 173 156 141 128 116 106 97 89 82 (t =3 ") 2VLI19 T -9 10' -0 10' -4 400 394 345 306 273 214 192 172 156 141 128 117 107 99 91 2VL118 8' -7 10' -9 11' -2 " 400 400 377 336 301 273 249 195 178 162 148 136 126 116 107 51 PSF 2VL117 9' 3 11' -6 11' -10 400 400 400 362 324 293 266 244 192 175 160 147 135 125 116 2VL116 9' -10 12' -1 12' -5 400 400 400 386 346 312 283 259 238 187 171 157 144 133 123 2VL122 5' -8 T -2 7' -4 400 320 278 244 216 192 172 155 140 127 116 106 97 89 81 51/2" 2VL121 6-2 8' -2 8' -5 400 379 298 261 231 205. 184, 166 150 136 124 113 104 95 87 2VL120 6' -7 8' -8 8' -11 400 400 351 ( 276:,. 244 217 194' 175 158 143 131 119 109 100 92 (t= 31/2 ") 2VL119 T -5 9' -7 9' -11 400 400 388 -- 343' 271 241 215 193 175 159 144 132 121 111 102 2VL118 8' -2 10' -4 10' -8 400 400 400 377 ' 338 306 243 219 199 182 167 153 141 130 121 57 PSF 2VLI17 8' -10 11 -0 11' -5 400 400 400 400 364 329 299 237 215 196 180 165 152 140 130 2VL116 9' -4 11' -7 12' -0 400 400 400 400 388 350 318 290 230 1 210 192 176 162 150 138 2VL122 5' -5 6' -8 6' -10 400 355 308 270 239 213 191 172 156 141 129 118 108 99 90 6" 2VL121 5' -11 T -11 8' -1 400 381 331 290 256 228 204 184 166 151 137 126 115 105 97 2VL120 6' -4 8' -4 8' -7 400 400 350 306 271 241 215 194 175 159 145 132 121 111 102 (t =4 ") 2VLI19 7' -2 9' -3 9' -7 400 400 400 381 301 267 239 215 194 176 160 146 134 123 113 2VL118 T -10 10' -0 10' -4 400 400 400 400 375 299 269 243 221 202 185 170 157 145 134 63 PSF 2VL117 8' -6 10' -7 11' -0 400 400 400 400 400 364 331 263 239 218 199 183 169 156 144 2VL116 9' -0 11' -2 11' -6 400 400 400 400 400 388 352 322 255 233 213 195 180 166 154 2VL122 6 -1 6' -2 6' -4 400 390 339 297 263 234 210 189 171 155 ' 141 129 118 108 99 61/2" 2VL121 5' -9 T -6 T -6 400 400 363 318 281 250 224 202 183 166 151 138 126 116 1 106 2VL120 6' -1 8' -1 8' -4 400 400 385 337 297 264 237 213 193 175 159 145 133 122 112 (t= 41/2 ") 2VL119 6' -10 8' -11 9' -3 400 400 400 375 330 293 262 236 213 193 176 161 147 135 124 2VL118 T -7 9' -8 9' -11 400 400 400 400 400 329 296 268 243 222 203 187 172 159 147 69 PSF 2VL117 8' -2 10'-3 10' -7 400 400 400 400 400 400 320 289 262 239 219 201 185 171 158 2VL116 8' -8 10' -9 1 11' -2 1 400 400 1 400 400 1 400 400 1 387 309 280 256 234 215 198 183 169 NOTES: 1. Minimum exterior bearing length required is 2.0 inches. Minimum interior bearing length required is 4.0 inches. If these minimum lengths are not provided, web crippling must be checked. 2. Always contact Vulcraft when using loads in excess of 200 psf. Such loads often result from concentrated, dynamic, or long term load cases for which reductions due to bond breakage, concrete creep, etc. should be evaluated. 3. All fire rated assemblies are subject to an upper live load limit of 250 psf. 4. Inquire about material availability of 17, 19 & 21 gage. J A 46 C, vl- Wu L C PIL C� FT _j _r _r Y _r 16 0.6 C, CSV CONFORM r_ 30" or Ch 35" or 36" * or availability with plant MAXIMUM CONSTRIIr-T1r [_1 PA 12 QMAKic is m i r+oiT=.-%m... Total Superimposed Uniform Load sf) - 3 Span Condition NW Concrete Reinforcement LW Concrete Slab Deck Weight N =9 145 PCF Weight N =14 110 PCF Depth - Type PSF PSF 1 Span 2 S an 3 Span 1 Span 2 Span 3 Span 6X6- W1.4XW1.4 0.6C28 23 2-3 2-10 2-11 17 2-4 3-0 3-0 2" 0.6C26 23 2-8 3-5 3-5 18 2-9 3-6 3-7 (t =1 1/2 ") 0.6624 23 3-4 4-3 4-4 18 3-6 4-6 4-7 384 0.6C22 23 3-10 5-0 5-1 18 4-1 5-4 - 5-4 0.6C28 29 2-2 2-9 2-10 22 2-3 2-10 2-11 2 1/2" 0.6C26 29 2-6. 3-3 3-4 22 2-8 3-5 3-6 (t =2 ") 6C24 29 3-2 4-1 4-2 22 3-4 4-4 4-4 6X6- W2.9XW2.9 O. 6C22 29 3-8 4-9 4-10 23 3-11 5-1 5-2 134 0.6C28 35 2-1 2- 8•'- 2-8 27 2-2 2-10 2-10 3" 0.6C26 35 2-5 3 3-2 27 2-7 3-4 3-4 (t =2 1/2") 0.6C24 35 3-0 3-11 4-0 27 3-2 4-2 4-2 0.6C22 36 3-6 4-7 4-7 27 3-9 4-10 4-11 226 0.6C28 41 2-0 2-7 2-7 31 2-1 2-9 2-9 3 1/2" 0.6C26 41 2-4 3-0 3-1 31 2-6 3-3 3-3 (t =3 ") 0.6C24 41 2-10 3-9 3-10 32 3-1 4- O 4-1 211 0.6C22 42 3-4 4-5 4-5 - 2-7 32 3-7 4-8 4-9 400 , . 0.6C28 47 1- 11 2-6 36 2-1 2-8 2-8 4" 0.6C26 47 2-3 2-11 3-0 36 2-5 3-2 3-2 (t =3 1/2") 0.6C24 47 2-9 3-8 3-8 36 3-0 3-11 3-11 321 0.6C22 48 3-2 4-3 4 -3 36 3-5 4-6 4-7 400 0.6C28 (53} 1-10 2-5 � 2- 6) 40 _2_0 - 2-7 - 2 - 8 4 1/2" 0.6C26 53 2-2 2-10 2__11 40 2-4 3-1 3-1 (t =4 ") 0.6C24 53 2-8 3-6 3-7 41 2-10 3-9 3-10 400 0.6C22 54 3-1 4-1 4-2 - 2-5 41 3-4 1 4-5 4-5 400 0.6628 59 1-10 2-5 400 45 1- 11 2-6 2-7 5" 0.6C26 59 2-1 2-9 2-10 45 2-3 3-0 3-0 (t =4 1/2") 0.6C24 59 2-7 3-5 3-6 45 2- 10 3-8 3-9 406 0.6C22 60 3-0 3-11 4-0 46 3-3 4-3 4-4 REINFORCED CONCRETE SLOR Al I nWARi F I nnnc Total Superimposed Uniform Load sf) - 3 Span Condition Slab Reinforcement Clear Span ft. -in. Depth W.W.F. As 2-0 2-3 2-6 1 2-9 - 3-0 3-3 3-6 3-9 4-0 4-6 5-0 6X6- W1.4XW1.4 0.028* 194 153 124 103 86 74 63 2" 6X6- W2.1 XW2.1 0.042 285 225 183 151 127 108 93 t =1 1/2" 6X6- W2.9XW2.9 0.058 384 304 246 203 171 146 125 6X6- W1.4XW1.4 0.028* 268 212 172 142 119 102 88 76 67 53 21/2" 6X6- W2.1 XW2.1 0.042 396 313 254 210 176- 150 129 113 99 78 t =2" 6X6- W2.9XW2.9 0.058 400 400 344 284 _> 239:. - 204 176 153 134 106 6X6- W1.4XW1.4 0.028* 342 271 219 181 152 130 112 97 86 68 3" 6X6- W2.1XW2.1 0.042* 400 400 325 268 226 192 166 144 127 100 t =21/2" 6X6- W2.9XW2.9 0.058 400 400 400 366 307- 262 226 197 173 137 6X6- W2.1 XW2.1 0.042* 400 400 396 327 275' 234 202 176 155 2 6X6- W2.9XW2.9 0.058* 400 400 400 400 - 375 320 276 240 211 t =3" 4X4- W2.9XW2.9 0.087 400 400 400 400 = , 400 , . 400 400 353 310 6X&MAXW2.1 0.042* 400 400 400 384 `322 °' 275 237 206 181 4" 6X M2.9XW2.9 0.058* 400 400 400 400 400 372 321 280 246 t= 31/2 ") 4X4 -W2.9XW2.9 0.087 400 400 400 400 400. 400 400 400 358 6X6- W2.9XW2.9 0.058* 400 400 400 400' 400 400 359 '313 275 41/2" 4X4- W2.9XW2.9 0.087 400 400 400 400: 400 400 400 400 400 t =4" 4X4 -W4.0XW4.0 0.120 400 400 400 ,400 400 400 400 400 400 6X6- W2.9XW2.9 0.058* 400 400 400 400 400 400 396 345 303 5" 4X4 -W2.9XW2.9 0.087* 400 1 400 406 400 400 400 400 400 400 t= 41/2" 4X4 -W4.0XW4.0 0.120 400 400 400 400 400 400 400 400 400 I _.____ I I ­­1 I U.Ouee NOTES: 1. *As does not meet A.C.I. criterion for temperature and shrinkage. 2. Recommended conform types are based upon S.D.I. criteria and normal weight concrete. 3. Superimposed loads are based upon three span conditions and A.C.I. moment coefficients. 4. Load values for single span and double spans are to be reduced. 5. Superimposed load values in bold type require that mesh be draped. See page 19. 6. Vulcraft's painted or galvanized form deck can be considered as permanent support in most building applications. See page 19. If uncoated form deck is used, deduct the weight of the slab from the allowable superimposed uniform loads. I _J U L t A F 7 SECTION PROPERTIES Deck Design Weight Ip In Sp Sn Fy Type Thick. PSF in /ft in /ft I in /ft in /ft ksi 0.6C28 0.0149 0.76 0.012 0.012 0.035 0.036 60 0.6C26 0.0179 0.91 0.015 0.015 0.043 0.043 60 0.6C24 0.0239 1.21 0.019 0.019 0.057 0.057 60 0.6C22 0.0298 1.49 0.024 0.024 0.070 0.070 60 ALLOWABLE UNIFORM LOAD (PSF) Deck No. of Design Clear Span ft: in. 2-0 2-3 2-6 2-9 1 3-0 3-3 1 3-6 3.9 4.0 1 4-6 5-0 1 5.6 6-0 Tvipe I Spans Criteria Fb = 36,000 210 166 134 111 93 80 69 60 53 41 34 28 23 DEFL. =1/240 98 69 50 38 29 23 18 15 12 9 6 5 4 1 DEFL. =1/180 131 92 67 50 39 31 24 20 16 12 8 6 5 W1l 40 22 10 Fb = 36,000 216 171 138 114 96 82 71 61 54 43 35 29 24 DEFL. =1/240 216 166 121 91 70 55 44 36 30 21 15 11 9 0.6C28 2 DEFL. =17180 216 171 138 114 94 74 59 48 39 28 20 15 12 W1l 115 75 48 29 1 16 6 Fb = 36,000 270 213 173 143 120 102 88 77 68 53 43 36 30 DEFL. =1/240 186 130 95 71 55 43 35 28 23 16 12 9 7 3 DEFL.= V180 247 174 127 95 73 58 46 38 31 22 16 12 9 W1l 120 79 1 51 32 18 8 Fb = 36,000 258 204 165 136 115 98 84 73 65 51 41 34 29 DEFL.= U240 123 86 63 47 36 29 23 19 15 11 8 6 5 1 DEFL. =1/180 164 115 84 63 49 38 31 25 20 14 10 8 6 W1l 72 47 30 18 10 4 Fb = 36,000 258 204 165 136 115 98 84 73 65 51 41 34 29 DEFL. =1/240 258 204 152 114 88 69 55 45 37 26 19 14 11 0.6C26 2 DEFL. =1 /180 258 204 165 136 115 92 74 60 49 35 25 19 15 Wil 177 124 88 62 44 30 19 11 5 Fb = 36,000 323 255 206 171 143 122 105 92 81 64 52 43 36 DEFL. =1/240 232 163 119 89 69 54 43 35 29 20 15 11 9 3 DEFL. =1/180 309 217 158 119 92 72 58 47 39 27 20 15 11 W1l- 184 129 92 65 46 32 1 21 12 1 6 Fb = 36,000 342 270 219 181 152 130 112 97 86 68 55 45 38 DEFL. =1/240 156 109 80 60 46 36 29 24 19 14 10 7 6 1 DEFL. =1/180 208 146 106 80 62 48 39 31 26 18 13 10 8 W1l 128 91 66 48 35 25 17 12 7 Fb = 36,000 342 270 219 181 152 130 112 97 86 68 55 45 38 DEFL. =1/240 342 263 192 144 111 87 70 57 47 33 24 18 14 0.6C24 2 DEFL. =1/180 342 270 219 181 148 117 93 76 63 44 32 24 19 W1l 287 211 1 158. 120 92 71 55 42 32 17 8 Fb = 36,000 428 338 274 226 190 162 140 122 107 84 68 57 48 - DEFL. =1/240 294 206 150 113 87 68 55 45 37 26 19 14 11 3 DEFL. =1/180 392 275 201 151 116 91 73 59 49 34 25 19 15 W1l 295 217 163. 124 96 74 57 44 34 19 9 Fb = 36,000 420 332 269 222 187 159 137 119 105 83 67 56 47 DEFL. =1/240 197 138 101 76 58 46 37 30 25 17 13 9 7 1 D EFL. =1/180 262 184 134 101 78 61 49 40 33 23 17 13 10 W1l 180 132 1 99 75 58 1 44 34 1 26 20 11 5 Fb = 36,000 420 332 269 222 187 159 137 119 105 83 67 56 47 DEFL.= V240 420 332 243 182 140 110 88 72 59 42 30 23 18 0.6C22 2 DEFL. = V180 420 332 269 222 187 147 118 96 79 55 40 30 23 W1l 388 291 223 174 137 110 88 71 57 38 24 15 8 Fb = 36,000 525 415 336 278 233 199 171 149 131 104 84 69 58 DEFL. =1/240 371 261 190 143 110 86 69 56 46 33 24 18 14 3 DEFL. = Ill 80 495 348 253 190 147 115 92 75 62 43 32 24 18 W1l 399 299 230 179 142 113 91 74 60 39 26 16 9 I W1 is the maximum weight of concrete and deck (W1 in Figures 1 and 2 of the SDI Loading Diagrams). C', 4 21 l I r i SJi S� �y 'J STANDARD ASD LOAD TABLE OPEN WEB STEEL JOISTS, K- SERIES Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute November 4, 1985 Revised to November 10, 2003 - Effective March 01, 2005 The black figures in the following table give the TOTAL safe The approximate joist weights per linear foot shown in these uniformly distributed load- carrying capacities, in pounds per tables do not include accessories. linear foot, of ASD K- Series Steel Joists. The weight of The approximate moment of inertia of the joist, in inches is; DEAD loads, including the joists, must be deducted to determine the LIVE load- carrying capacities of the joists. I = 26.767(W where WLL= RED figure in the Sloped parallel -chord joists shall use span as defined by the Load Table and L = (Span - 0.33) in feet. length along the slope. ' For the proper handling of concentrated and /or varying loads, The figures shown in RED in this load table are the nominal see Section 6.1 in the Code of Standard Practice for Steel Joists LIVE loads per linear foot of joist which will produce an and Joist Girders. approximate deflection of 1/360 of the span. LIVE loads Where the joist span exceeds the unshaded area of the which will produce a deflection of 1/240 of the span may be Load Table, the row of bridging nearest the mid span shall obtained by multiplying the figures in RED by 1.5. In no be diagonal bridging with bolted connections at the chords case shall the TOTAL load capacity of the joists be exceeded. and intersections. ASD STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K- SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf) Desi ovation 8K1 I 10K1 12K1 I 12K3 12K5 I 14K1 14K3 14K4 14K6 I 16K2 I 16K3 16K4 I 16K5 I 16K6 16K7 16K9 Depth in. 8 10 11 12 12 1 12 14 1 14 1 14 1 14 11 16 1 16 1 16 16 16 1 16 16 A Wt 5.1 5.0 5.0 5.7 7.1 5.2 6.0 6.7 7.7 5.5 6.3 7.0 7.5 8.1 8.6 10.0 Spa, (ft.) 8 550 9 I I 550 � I I i I I1 I I I 10 480 550 11 I 532 I 377 542 12 I II 288 455 550 550 I 550 (I 13 I 225 363 I I 550 55 55 I L. 14 379 I 289 (l 400 I I I 463 469 550 550 550 I 550 15 I 1 0 0 0 145 234 I 344 428 434 I I 475 507 507 507 16 I 24 I I I 55 0 9 1 282 356 396 390 46 I 46 I 550 I 550 I 550 550 550 550 550 17 I 2 77 I I I II 59 234 2911 366 324 404 443 449 488 526 526 526 526 526 526 18 I I 234 297 I I 245 3�7 272 339 39� I 408 I 409 I 456 490 490 490 490 490 19 I 22 II 26 I II 16 207 269 230 287 336 383 3" 386 452 455 455 455 I 455 20 I I I 2 97 1 1 23 97 246 28 347 I 297 330 386 I 426 426 I 426 I 426 21 I 2 18 I 2 73 3 70 257 I I 23 53 170 212 248 299 255 285 333 37 405 ( 406 406 22 I 3 I 2 34 I 106 1 172 47 184 255 259 22 247 I 289 I 323 I 3511 385 385 23 1 1 i 227 I I 2 3 ( 2 0 93 116 1 0 0 128 160 88 226 94 216 I 252 282 307 339 369 24 I I II 16 208 I 2 2 2 95 2 81 32 1113 1 41 1 65 199 1 70 I 189 2211 248 269 298 j 346 25 I I I 2 26 I 2 72 3 34 2 34 I 3 13 100 24 45 75 50 16� I 95 259 I 238 263 I 314 26 I 1 1 88 I 366 I 2 2 40 1 129 33 48 I 1 194 I 211 233 276 27 I I 1 I 1 93 2135 28 2 23 3 29 439 98 9 1 32 11 I 1 88 208 28 I I I 1 80 I 203 224 I I 2 2 49 28 3 06 70 88 1 06 1 8 38 I 5 68 186 220 29 I I I I 1 I I 3 17 106 1 I 1 255 67 198 30 I I I I I I 1 1 80 2 44 86 6 96 112 2 137 26 5 178 31 I I 1 78 I 1 8 8 I 203 214 I I 224 137 1 1 32 I I I 1 71 2 1 79 1 92 2 14 03 11 I 224 347 f � t =J= G 25 UIL - "}'01 ^ JA— N S "T JS 0-ke STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K- SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf) Joist 18K3 18K4 18K5 18K6 18K7 18K9 18K10 20K3 20K4 20K5 20K6 20K7 20K9 20K10 22K4 22K5 22K6 22K7 22K9 22K10 22K11 Designation Depth In. 18 18 18 18 18 18 18 20 20 20 20 20 20 20 22 22 22 22 22 22 22 Approx. Wt. 6.6 7.2 7.7 8.5 9 10.2 11.7 6.7 7.6 8.2 8.9 9.3 10.8 12.2 8 8.8 9.2 9.7 11.3 12.6 13.8 Ibs. /ft. Span (ft.) 1 18 550 550 550 550 550 550 550 550 550 550 550 550 550 550 19 514 550 550 550 550 550 550 494 523 523 523 523 523 523 20 463 550 550 550 550 550 550 517 550 550 550 550 550 550 423 490 490 490 490 490 490 517 550 550 550 550 550 550 21 420 506 550 550 550 550 550 468 550 550 550 550 550 550 364 4 26 460 460 460 460 460 453 520 520 520 520 520 520 22 382 460 518 550 550 550 550 426 514 550 550 550 550 550 550 550 550 550 550 550 550 316 370 414 438 438 438 438 393 461 490 490 490 490 490 548 548 548 548 548 548 548 23 349 420 473 516 550 550 550 389 469 529 550 550 550 550 518 550 550 550 550 550 550 276 323 362 393 418 418 418 344 402 451 468 468 468 468 491 518 518 518 518 518 518 24 320 385 434 473 526 550 550 357 430 485 528 550 550 550 475 536 550 550 550 550 550 242 284 318 345 382 396 396 302 353 396 430 448 448 448 431 483 495 495 495 495 495 25 294 355 400 435 485 550 550 329 396 446 486 541 550 550 438 493 537 550 550 550 550 214 250 281 3 05 337 377 377 266 312 350 380 421 426 426 381 427 464 474 474 1 474 474 26 272 328 369 402 448 538 550 304 366 412 449 500 550 550 404 455 496 550 550 550 550 190 222 249 271 299 354 361 236 277 310 337 373 405 405 338 379 411 454 454 4 54 454 27 252 303 342 372 415 498 550 281 339 382 416 463 550 550 374 422 459 512 550 550 550 169 198 222 241 267 315 347 211 247 277 301 333 389 389 301 337 367 406 432 432 432 28 234 282 318 346 385 463 548 261 315 355 386 430 517 550 348 392 427 475 550 550 550 151 177 199 216 239 282 331 189 221 248 269 298 353 37 270 302 328 364 413 413 413 29 218 263 296 322 359 431 511 243 293 330 360 401 482 550 324 365 398 443 532 550 550 136 159 179 44 215 254 298 170 199 223 242 268 317 359 242 272 295 327 387 399 399 30 203 245 276 301 335 402 477 227 274 308 336 374 450 533 I 302 341 371 413 497 550 550 123 144 161 175 194 229 269 153 179 201 218 242 286 336 219 245 266 295 349 385 385 31 190 229 258 1 313 376 446 212 256 289 314 350 421 499 283 319 347 387 465 550 550 111 1 130 146 158 175 207 243 138 162 182 198 219 259 304 198 222 241 267 316 369 369 32 178 215 242 264 294 353 418 199 240 271 295 328 395 468 265 299 326 363 436 517 549 101 118 132 144 159 188 221 126 147 165 179 199 235 276 180 201 219 242 287 337 355 33 168 202 228 248 276 332 393 187 226 254 277 309 371 440 249 281 306 341 410 486 532 92 108 121 1 31 145 171 201 114 134 150 163 181 214 251 164 183 199 221 261 307 334 34 158 190 214 233 260 312 370 176 212 239 261 290 349 414 235 265 288 321 386 458 516 84 98 110 120 132 156 184 105 122 137 149 165 195 229 149 167 182 202 239 280 314 35 149 179 202 220 245 294 349 166 200 226 246 274 329 390 221 249 272 303 364 432 494 77 90 101 110 121 143 168 96 112 126 137 151 179 210 137 153 167 185 219 257 292 36 141 169 191 208 232 278 330 157 189 213 232 259 311 369 209 236 257 286 344 408 467 70 82 92 101 111 132 154 88 103 115 125 139 164 193 126 141 153 169 201 236 269 37 146 179 202 220 245 294 349 198 223 243 271 325 386 442 81 95 106 115 128 151 178 116 130 141 156 185 217 247 38 141 170 191 208 232 279 331 187 211 230 256 308 366 419 74 187 98 106 118 139 164 107 119 130 144 170 200 228 39 133 161 181 198 220 265 314 178 200 218 243 292 347 397 69 81 90 98 109 129 151 98 110 120 133 157 185 211 40 127 153 172 188 209 251 298 169 190 207 231 278 330 377 64 75 84 91 101 119 140 91 102 111 123 146 171 195 41 161 181 197 220 264 314 359 85 95 103 114 135 159 181 42 153 173 188 209 252 299 342 79 88 96 106 126 148 168 43 146 165 179 200 240 285 326 73 82 89 99 117 138 157 44 139 157 171 191 229 272 311 68 76 83 92 109 128 146 - "}'01 ^ JA— N S "T JS 0-ke Floor Map RAM Steel v13.0 Monroe & Newell Engineers DataBase: 7938d Building Code: IBC 05/07/10 07:55:42 Steel Code: ASD 9th Ed. Floor Type: upper G-2�- 2 4k d f N Y 16x31 r > N_ Y 32 K d 04 Y 88k Y T N_ Y Y cl r N_ ! Y W24x84 Y T N Y 48k Y O Y N X O 9k W12x16 9k 10k W16x57 Y 12k m x v > N 10k W12x16 10k 17k W16x57 17k Oc Y M O 10k W12x16 10k m 17k W16x57 17k Y c T 10k W12x16 10k 17k W16x57 17k 00 x N Cc 10k W12x16 10k 17k W16x57 17k Y N O N cc 10k W12x16 10k 17k W16x57 17k Y O O 40k V 4x68 40k 1 0k W12x16 10k - - - - -- - - - -- - -- _... -- ---------- - - ......_. O Y N Y N Y Y Y { O X 04 V d Wl 7A � N N N N_ > _ > N_ > k12 4k Y ------- le ----- - ------ _ _.._...._. M N N N N N 1 M1 W10x12 O 12 k r 2 0k AA 2x19 r 23 k — 2 3k r W12x3 21k G-2�- N '6 It W O Q O � l� O N O U a� un w bn W U M— M �m CD 04 a 0 0 w Z8 N E8 r �8 98 98 9L co 83 F2 L8 M Z6 w rn co co 0) rn m co 06 LO rn LO 4 4 G --Z -r CD I- vT rn rn ° 80 4 00 9L co 9L VL EL w 00 ZL rn 66 rn rn ° 80 4 00 Beam Summary RAM Steel v13.0 Monroe & Newell Engineers DataBase: 7938d Building Code: IBC 05/07/10 07:55:42 Steel Code: ASD 9th Ed. STEEL BEAM DESIGN SUMMARY: Floor Type: upper Bm # Length +M -M Seff Fy Beam Size Studs ft kip -ft kip -ft W ksi 49 3.50 0.1 0.0 13.3 50.0 W8X10 u 4 48 1.25 0.1 0.0 7.8 50.0 W8X10 u 12 10.00 43.5 0.0 14.9 50.0 W12X14 # *u 0 106 18.50 17.0 0.0 18.4 50.0 WIOX12 1, 2, 3 100 18.50 27.6 0.0 23.5 50.0 W12X14 1, 3, 3 11 18.00 161.6 0.0 38.4 50.0 W16X26 # *u 0, 0, 0 93 18.50 42.8 0.0 28.4 50.0 W12X16 8 94 18.50 42.8 0.0 28.4 50.0 W12X16 8 95 18.50 42.8 0.0 28.4 50.0 W12X16 8 111 11.00 60.0 0.0 23.0 50.0 WIOX12 5, 8, 1 96 18.50 42.8 0.0 28.4 50.0 W12X16 8 97 18.50 42.8 0.0 28.4 50.0 W12X16 8 113 7.00 21.5 0.0 13.8 50.0 W8X10 4,1 98 18.50 42.8 0.0 28.4 50.0 W12X16 8 112 12.50 80.8 0.0 37.2 50.0 W12X22 u 9 99 18.50 41.3 0.0 28.4 50.0 W12X16 8 103 13.50 48.4 0.0 18.0 50.0 WlOX12 9 78 17.00 127.3 0.0 65.3 50.0 W16X31 u 15 20 3.50 1.3 0.0 7.8 50.0 W8X10 u 0 19 1.25 0.0 0.0 7.8 50.0 W8X10 u 89 17.25 54.4 0.0 22.4 50.0 WIOX12 15 16 16.00 78.7 0.0 50.2 50.0 W12X30 u 4, 2, 3 107 3.00 0.1 0.0 13.4 50.0 W8X10 4 87 17.00 55.6 0.0 26.6 50.0 W12X14 14 108 3.00 0.1 0.0 13.4 50.0 W8X10 4 86 17.00 55.6 0.0 26.6 50.0 W12X14 14 17 2.50 0.1 0.0 7.8 50.0 W8X10 u 0 91 19.70 487.9 0.0 190.5 50.0 W24X68 u 26 88 15.75 96.5 0.0 36.0 50.0 W12X19 8, 5, 6 41 34.00 380.6 0.0 193.1 50.0 W24X68 u 22 40 34.00 144.3 0.0 123.4 50.0 W1 6X57 # u 24 90 1.50 0.0 -163.4 20.40 333.3 -163.4 154.0 50.0 W24X68 # u 0 1.50 0.0 -98.7 39 34.00 144.3 0.0 123.4 50.0 W16X57 # u 24 38 34.00 144.3 0.0 123.4 50.0 W16X57 # u 24 37 34.00 144.3 0.0 123.4 50.0 W16X57 # u 24 92 18.90 303.9 0.0 193.6 50.0 W24X68 a 18 36 34.00 144.3 0.0 123.4 50.0 W16X57 # u 24 28 34.00 85.3 0.0 92.2 50.0 W16X57 u 0 G2`I Fil RAM Steel v13.0 Monroe & Newell Er RAM DataBase:7938d INTERNATIONAL Building Code: IBC Bm # Length +M 1 1.50 0.0 34.00 440.6 15 14.50 62.4 85 17.00 55.6 72 14.30 40.4 73 14.30 40.4 84 17.00 55.6 44 2.50 7.1 18 2.50 0.1 74 14.30 40.4 43 15.75 97.4 14 15.75 73.7 83 17.00 55.6 75 14.30 40.4 82 17.00 55.6 76 14.30 40.4 62 7.50 0.4 igineers -M -49.7 -49.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Beam Seff 235.2 38.6 26.6 22.4 22.4 26.6 12.9 12.9 22.4 51.6 50.2 26.6 22.4 26.6 22.4 13.9 i Summary Stel Fy Beam Size 50.0 W24X84 # u 50.0 W12X30 u 50.0 W12X14 50.0 W12X14 u 50.0 W12X14 u 50.0 W12X14 50.0 W8X10 u 50.0 W8X10 u 50.0 W12X14 u 50.0 W12X30 u 50.0 W12X30 u 50.0 W12X14 50.0 W12X14 u 50.0 W12X14 50.0 W12X14 u 50.0 W8X10 u * after Size denotes beam failed stress /capacity criteria. # after Size denotes beam failed deflection criteria. u after Size denotes this size has been assigned by the User. Page 2/2 05/07/10 07:55:42 -1 Code: ASD 9th Ed. Studs 19 0, 0, 0 14 6 6 14 4 4 6 11 1, 3, 4 14 6 14 6 4 Gravity Beam Design RAM Steel v13.0 Monroe & Newell Engineers DataBase: 7938d Building Code: IBC 05/07/10 07:55:42 Steel Code: ASD 9th Ed. Floor Type: upper Beam Number = 37 SPAN INFORMATION (ft): I -End (18.50,37.60) J -End (52.50,37.60) Maximum Depth Limitation specified = 17.00 in Beam Size (User Selected) = W16X57 Fy = 50.0 ksi Total Beam Length (ft) = 34.00 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 4.00 4.00 Unit weight concrete (pcf) 145.00 145.00 f (ksi) 3.50 3.50 Decking Orientation perpendicular perpendicular Decking type VULCRAFT 2.OVL VULCRAFT 2.OVL beff (in) = 80.40 Y bar(in) = 16.65 Seff (in3) = 123.44 Str (in3) = 152.56 Ieff (in4) = 1680.04 Itr (in4) = 2539.56 Stud length (in) = 3.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 9.4 # of studs: Full = 68 Partial = 40 Actual = 24 Number of Stud Rows = 1 Percent of Full Composite Action = 26.78 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.673 0.506 0.268 - -- NonR 0.000 34.000 0.673 0.506 0.268 0.000 2 0.000 0.057 0.057 0.000 - -- NonR 0.000 34.000 0.057 0.057 0.000 0.000 SHEAR: Max V (DL +LL) =16.97 kips fv = 2.41 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 81.4 17.0 0.0 1.00 10.59 33.00 10.59 33.00 Max + 144.3 17.0 - -- - -- Mmax/Seff 14.03 33.00 - -- - -- Mconst/Sx +Mpost /Seff 16.71 45.00 - -- - -- Controlling 144.3 17.0 - -- - -- 14.03 33.00 - -- - -- fc (ksi) = 0.20 Fc = 1.58 REACTIONS (kips): Left Right Initial reaction 9.57 9.57 DL reaction 12.42 12.42 Max +LL reaction 4.56 4.56 Max +total reaction 16.97 16.97 Gravity Beam Design RAM Steel v13.0 Page 2/2 Monroe & Newell Engineers RAM DataBase: 7938d 05/07/10 07:55:42 INTERNATKSNAI Building Code: IBC Steel Code: ASD 9th Ed. DEFLECTIONS: Initial load (in) at 17.00 ft = -0.770 L/D = 530 Live load (in) at 17.00 ft = -0.165 L/D = 2467 Post Comp load (in) at 17.00 ft = -0.269 L/D = 1518 Net Total load (in) at 17.00 ft = -1.039 L/D = 393 Gravity Beam Design RAM Steel 03.0 Monroe & Newell Engineers DataBase: 7938d Building Code: IBC 05/07/10 07:55:42 Steel Code: ASD 9th Ed. Floor Type: upper Beam Number = 84 SPAN INFORMATION (ft): I -End (30.00,58.50) J -End (30.00,75.50) Beam Size (Optimum) = W12X14 Total Beam Length (ft) = 17.00 COMPOSITE PROPERTIES (Not Shored): Fy = 50.0 ksi Compr Flange f6 Fb 14.27 33.00 L/D = 569 L/D = 1186 pO Left Left Initial reaction Right Concrete thickness (in) DL reaction 3.00 5.44 3.00 Unit weight concrete (pcf) 7.65 145.00 13.09 145.00 f (ksi) 3.50 Initial load (in) 3.50 Decking Orientation Live load (in) perpendicular perpendicular Decking type VULCRAFT 2.OVL VULCRAFT 2.OVL beff (in) = 51.00 Y bar(in) = 13.62 Seff (in3) = 26.61 Str (in3) = 29.64 Ieff (in4) = 338.98 Itr (in4) = 403.80 Stud length (in) = 3.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 9.4 # of studs: Max = 17 Partial = 14 Actual = 14 Number of Stud Rows = 1 Percent of Full Composite Action = 63.10 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.626 0.476 0.900 - -- NonR 0.000 17.000 0.626 0.476 0.900 0.000 2 0.000 0.014 0.014 0.000 - -- NonR 0.000 17.000 0.014 0.014 0.000 0.000 SHEAR: Max V (DL +LL) =13.09 kips fv = 5.72 ksi Fv =18.76 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange kip -ft ft ft f b Fb Center PreCmp+ 17.7 8.5 0.0 1.00 14.27 33.00 Max + 55.6 8.5 - -- - -- Mmax/Seff 25.10 33.00 Mconst/Sx +Mpost /Seff 31.38 45.00 Controlling 55.6 8.5 - -- - -- 25.10 33.00 fc (ksi) = 0.43 Fc = 1.58 REACTIONS (kips): Compr Flange f6 Fb 14.27 33.00 L/D = 569 L/D = 1186 pO Left Right Initial reaction 4.17 4.17 DL reaction 5.44 5.44 Max +LL reaction 7.65 7.65 Max +total reaction 13.09 13.09 DEFLECTIONS: Initial load (in) at 8.50 ft = -0.359 Live load (in) at 8.50 ft = -0.172 Compr Flange f6 Fb 14.27 33.00 L/D = 569 L/D = 1186 pO Gravity Beam Design RAM Steel v13.0 Monroe & Newell Engineers `m DataBase:7938d ATKY,w Building Code: IBC Post Comp load (in) at Net Total load (in) at 8.50 ft = -0.201 8.50 ft = -0.559 Page 2/2 05/07/10 07:55:42 Steel Code: ASD 9th Ed. L/D = 1016 L/D = 365 Gravity Beam Design RAM Steel v13.0 Monroe & Newell Engineers DataBase: 7938d Building Code: IBC 05/07/10 07:55:42 Steel Code: ASD 9th Ed. Floor Type: upper Beam Number = 90 SPAN INFORMATION (ft): I -End (18.50,16.20) J -End (18.50,39.60) Beam Size (User Selected) = W24X68 Fy = 50.0 ksi Total Beam Length (ft) = 23.40 Cantilever on left (ft) = 1.50 Cantilever on right (ft) = 1.50 COMPOSITE PROPERTIES (Not Shored): Concrete thickness (in) Unit weight concrete (pcf) f c (ksi) Decking Orientation Decking type beff (in) _ Seff (in3) _ Ieff (in4) _ Stud length (in) _ Stud Capacity (kips) q = # of studs: Full = 102 Number of Stud Rows = 1 POINT LOADS (kips): Dist DL CDL 0.000 36.79 15.40 0.800 6.66 5.04 1.300 12.42 9.57 7.800 6.66 5.04 8.000 12.42 9.57 14.700 12.42 9.57 14.800 6.66 5.04 21.400 12.42 9.57 21.800 6.66 5.04 23.400 25.67 15.43 LINE LOADS (k/ft): Load Dist 1 21.900 0.00 23.400 2 1.500 0.0 21.900 3 0.000 0.00 1.500 4 0.000 0.0 1.500 5 1.500 0.00 21.900 Left 4.00 145.00 3.50 parallel VULCRAFT 2.OVL 0.00 Y bar(in) 154.00 Str (in3) 1830.00 Itr (in4) 3.50 Stud diam (in) 12.5 Right 4.00 145.00 3.50 parallel VULCRAFT 2.OVL 21.64 227.42 4921.40 0.75 Partial = 28 Actual = 0 Percent of Full Composite Action = 0.00 RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 0.00 0.0 62.69 0.00 0.0 0.00 Snow 0.00 0.00 0.0 2.59 0.00 0.0 0.00 Snow 0.00 0.00 0.0 4.56 0.00 0.0 0.00 Snow 0.00 0.00 0.0 2.59 0.00 0.0 0.00 Snow 0.00 0.00 0.0 4.56 0.00 0.0 0.00 Snow 0.00 0.00 0.0 4.56 0.00 0.0 0.00 Snow 0.00 0.00 0.0 2.59 0.00 0.0 0.00 Snow 0.00 0.00 0.0 4.56 0.00 0.0 0.00 Snow 0.00 0.00 0.0 2.59 0.00 0.0 0.00 Snow 0.00 0.00 0.0 37.21 0.00 0.0 0.00 Snow 0.00 DL CDL LL Red% Type CLL 0.610 0.000 3.180 - -- NonR 0.000 0.610 0.000 3.180 0.000 0.610 0.000 3.180 - -- NonR 0.000 0.610 0.000 3.180 0.000 0.610 0.000 3.180 - -- NonR 0.000 0.610 0.000 3.180 0.000 0.068 0.068 0.000 - -- NonR 0.000 0.068 0.068 0.000 0.000 0.068 0.068 0.000 - -- NonR 0.000 0.068 0.068 0.000 0.000 & i ;_ RAM Steel v13.0 Monroe & Newell Engineers RAM DataBase:7938d INTERNATKY,- Building Code: IBC Gravity Beam Design Page 2/3 05/07/10 07:55:42 Steel Code: ASD 9th Ed. Load Dist DL CDL LL Red% Type CLL 6 21.900 0.068 0.068 0.000 - -- NonR 0.000 23.400 0.068 0.068 0.000 0.000 SHEAR: Max V (DL +LL) = 131.48 kips fv =14.06 ksi Fv =19.79 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Left PreCmp- -28.6 1.5 0.2 1.00 2.23 33.00 2.23 33.00 Max - -163.4 1.5 0.2 1.00 12.73 33.00 12.73 33.00 Center PreCmp+ 82.4 14.7 0.0 1.00 6.42 33.00 6.42 33.00 PreCmp- -28.6 1.5 6.3 2.21 2.23 33.00 2.23 33.00 Max + 333.3 12.4 - -- - -- Mmax/Seff 25.97 33.00 - -- - -- Mconst/Sx+Mpost/Seff 25.97 45.00 - -- - -- Max - -163.4 1.5 6.3 1.84 12.73 33.00 12.73 33.00 Right PreCmp- -23.2 21.9 1.5 1.00 1.81 33.00 1.81 33.00 Max - -98.7 21.9 1.5 1.00 7.69 33.00 7.69 33.00 Controlling 333.3 12.4 - -- - -- 25.97 33.00 - -- - -- fc (ksi) = 0.00 Fc = 1.58 REACTIONS (kips): Left Right Initial reaction 46.47 44.40 DL reaction 85.07 69.57 Max +LL reaction 119.48 91.23 Max -LL reaction -2.91 -4.92 Max +total reaction 204.55 160.80 DEFLECTIONS: Left cantilever: Init load (in) = 0.021 L/D = 1690 Pos Live load (in) _ -0.046 L/D = 790 Neg Live load (in) = 0.072 L/D = 503 Pos Post Comp load (in) _ -0.040 L/D = 910 Neg Post Comp load (in) = 0.078 L/D = 464 Pos Total load (in) _ -0.018 L/D = 1973 Neg Total load (in) = 0.099 L/D = 364 Center span: Initial load (in) at 11.80 ft = -0.109 L/D = 2253 Live load (in) at 11.80 ft = -0.306 L/D = 801 Post Comp load (in) at 11.80 ft = -0.353 L/D = 694 Net Total load (in) at 11.80 ft = -0.461 L/D = 531 Right cantilever: Init load (in) = 0.022 L/D = 1601 Pos Live load (in) _ -0.038 L/D = 952 Neg Live load (in) = 0.072 L/D = 502 �3� RAM Steel v13.0 Monroe & Newell Engineers RAM DataBase:7938d INTERNATx)\AL Building Code: IBC Gravity Beam Design Page 3/3 05/07/10 07:55:42 Steel Code: ASD 9th Ed. Right cantilever: Pos Post Comp load (in) _ -0.028 L/D = 1275 Neg Post Comp load (in) = 0.081 L/D = 443 Pos Total load (in) _ -0.006 L/D = 6266 Neg Total load (in) = 0.104 L/D = 347 • L RAM Steel v13.0 Monroe & Newell Engineers DataBase:7938d Building Code: IBC Gravity Beam Design 05/07/10 07:55:42 Steel Code: ASD 9th Ed. Floor Type: upper Beam Number = 41 SPAN INFORMATION (ft): I -End (18.50,10.80) J -End (52.50,10.80) Maximum Depth Limitation specified = 25.00 in Beam Size (User Selected) = W24X68 Fy = 50.0 ksi Total Beam Length (ft) = 34.00 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 4.00 3.00 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 3.50 3.50 Decking Orientation perpendicular parallel Decking type VULCRAFT 2.OVL VULCRAFT 2.OVL beff (in) = 91.20 Y bar(in) = 22.22 Seff (in3) = 193.10 Str (in3) = 228.74 Ieff (in4) = 3531.30 Itr (in4) = 5082.36 Stud length (in) = 3.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 12.5 # of studs: Full = 82 Partial = 22 Actual = 22 Number of Stud Rows = 1 Percent of Full Composite Action = 27.36 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 5.667 6.44 2.67 0.00 0.0 4.86 0.00 0.0 0.00 Snow 0.00 11.333 6.44 2.67 0.00 0.0 4.86 0.00 0.0 0.00 Snow 0.00 17.000 6.44 2.67 0.00 0.0 4.86 0.00 0.0 0.00 Snow 0.00 22.667 6.44 2.67 0.00 0.0 4.86 0.00 0.0 0.00 Snow 0.00 28.333 6.44 2.67 0.00 0.0 4.86 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.100 0.000 0.000 - -- NonR 0.000 34.000 0.100 0.000 0.000 0.000 2 0.000 0.337 0.253 0.134 - -- NonR 0.000 34.000 0.337 0.253 0.134 0.000 3 0.000 0.068 0.068 0.000 - -- NonR 0.000 34.000 0.068 0.068 0.000 0.000 SHEAR: Max V (DL +LL) = 39.12 kips fv = 4.18 ksi Fv =19.79 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 114.6 17.0 0.0 1.00 8.93 33.00 8.93 33.00 Max + 380.6 17.0 - -- - -- Mmax/Seff 23.65 33.00 - -- - -- Mconst/Sx+Mpost/Seff 25.46 45.00 - -- - -- Controlling 380.6 17.0 - -- - -- 23.65 33.00 - -- --- (,5 Y Gravity Beam Design RAM Steel v13.0 Monroe & Newell Engineers DataBase: 7938d Building Code: IBC Page 2/2 05/07/10 07:55:42 Steel Code: ASD 9th Ed. fc (ksi) = 0.55 Fc = 1.58 REACTIONS (kips): Initial reaction DL reaction Max +LL reaction Max +total reaction DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Left Right 12.15 12.15 24.69 24.69 14.43 14.43 39.12 39.12 at 17.00 ft = -0.443 L/D = 920 at 17.00 ft = -0.286 L/D = 1428 at 17.00 ft = -0.530 L/D = 769 at 17.00 ft = -0.974 L/D = 419 �s'� Fil RAM Steel v13.0 Monroe & Newell Engineers RAM DataBase:7938d INTERNATKJNAL Building Code: IBC Gravity Beam Design 05/07/10 07:55:42 Steel Code: ASD 9th Ed. Floor Type: upper Beam Number =1 SPAN INFORMATION (ft): I -End (17.00,58.50) J -End (52.50,58.50) Maximum Depth Limitation specified = 25.00 in Beam Size (User Selected) = W24X84 Fy = 50.0 ksi Total Beam Length (ft) = 35.50 Cantilever on left (ft) = 1.50 COMPOSITE PROPERTIES (Not Shored): Concrete thickness (in) Unit weight concrete (pcf) Pc (ksi) Decking Orientation Decking type beff (in) _ Seff (in3) _ Ieff (in4) _ Stud length (in) _ Stud Capacity (kips) q = # of studs: Full = 62 Number of Stud Rows = 1 Right 4.00 145.00 3.50 perpendicular VULCRAFT 2.OVL 19.73 266.82 5265.00 0.75 12.5 Partial = 39 Actual = 19 Percent of Full Composite Action = 30.56 POINT LOADS (kips): Left 3.00 145.00 3.50 Dist parallel CDL RedLL Red% VULCRAFT 2.OVL 55.00 Y bar(in) 235.15 Str (in3) 3970.33 Itr (in4) 3.50 Stud diam (in) Right 4.00 145.00 3.50 perpendicular VULCRAFT 2.OVL 19.73 266.82 5265.00 0.75 12.5 Partial = 39 Actual = 19 Percent of Full Composite Action = 30.56 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 0.000 12.45 7.87 0.00 0.0 19.39 0.00 0.0 0.00 Snow 0.00 5.500 5.44 4.17 0.00 0.0 7.65 0.00 0.0 0.00 Snow 0.00 13.000 5.44 4.17 0.00 0.0 7.65 0.00 0.0 0.00 Snow 0.00 20.500 5.44 4.17 0.00 0.0 7.65 0.00 0.0 0.00 Snow 0.00 28.000 5.44 4.17 0.00 0.0 7.65 0.00 0.0 0.00 Snow 0.00 31.614 0.16 0.13 0.00 0.0 0.05 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.260 0.000 0.960 - -- NonR 0.000 1.500 0.260 0.000 0.960 0.000 2 1.500 0.260 0.000 0.960 - -- NonR 0.000 35.500 0.260 0.000 0.960 0.000 3 0.000 0.327 0.245 0.130 - -- NonR 0.000 1.500 0.327 0.245 0.130 0.000 4 1.500 0.033 0.025 0.013 - -- NonR 0.000 31.614 0.033 0.025 0.013 0.000 5 31.615 0.377 0.283 0.150 - -- NonR 0.000 35.500 0.377 0.283 0.150 0.000 6 0.000 0.084 0.084 0.000 - -- NonR 0.000 1.500 0.084 0.084 0.000 0.000 7 1.500 0.084 0.084 0.000 - -- NonR 0.000 35.500 0.084 0.084 0.000 0.000 6-4-0 Gravity Beam Design RAM Steel v13.0 Monroe & Newell Engineers DataBase: 7938d Building Code: IBC ft 1.5 1.5 20.5 1.5 20.5 SHEAR: Max V (DL +LL) = 53.44 kips fv = 4.72 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb kip -ft Left PreCmp- -12.2 Max - -49.7 Center PreCmp+ 92.5 PreCmp- -12.2 Max + 440.6 Mmax/Seff 652 Mconst /Sx +Mpost/Seff Max - -49.7 Controlling 440.6 fc (ksi) = 0.97 Fe = 1.58 REACTIONS (kips): Initial reaction DL reaction Max +LL reaction Max -LL reaction Max +total reaction DEFLECTIONS: Left cantilever: Init load (in) Pos Live load (in) Neg Live load (in) Neg Post Comp load (in) Neg Total load (in) Center span: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) 1.5 20.5 Left 19.84 32.55 55.37 0.00 87.92 = 0.036 -0.008 0.074 0.088 0.124 ft 1.5 1.00 1.5 1.00 0.0 1.00 4.0 2.18 Page 2/2 05/07/10 07:55:42 Steel Code: ASD 9th Ed. Tension Flange fb Fb 0.75 33.00 3.05 33.00 5.66 33.00 0.74 33.00 Compr Flange fb Fb 0.75 33.00 3.05 33.00 5.66 33.00 0.74 33.00 22.48 33.00 - -- - -- 23.43 45.00 - -- - -- 4.0 2.30 3.04 33.00 3.04 33.00 - -- - -- 22.48 33.00 - -- - -- Right 10.04 17.01 30.82 -0.89 47.83 L/D = 996 L/D = 4338 L/D = 489 L/D = 410 L/D = 290 at 18.84 ft = -0.271 L/D = 1506 at 18.50 ft = -0.519 L/D = 786 at 18.50 ft = -0.626 L/D = 652 at 18.50 ft = -0.897 L/D = 455 6q Monroe & Newell J OB UaJ . _ `79 y Engineers, Inc. SHEET NO. OF CALCULATED BY DATE 3I i A / ( O CHECKED BY DATE SCALE . ... 11 P !t €� G .v�v✓w► Dpi. ..... ......... s j- 2 ............ lac 44 ( _ � f� _ S 3 PsF._. ..... ...... S't� ........ t . �. r q S., DL �f L L f .. ......:..._...... ... ,.._. .._.... ............... 3S eS R ''...... _... ._.___... .. ....... ?y ry .. . �A.U'G/S .a �` ... ...... s: T7 . � LL TL q� W � L�L . 1" \.. 2 5 ....... ... ....... ........... .... L _l K vK. 1 .. Ply ...... G� Z-- ii C: HSS 4X4XI/4 COLUMN i I I I - ----------------------- i I � i ry COLUMN XI /4 4 54,1 3 I S 4X4XI/4 U ' ONLY I I 21 _ - -- - - - - - -- - - - - ___. n I 1 8166 AT H55 '37z5: _2' -6•. r1 m COLUMN OF �� •�• �a.�; B GMU J � .��' 9 p I 9i L I ELEVATO - Q R N Q •— P ON X4XI /4 ^ 12161 SAT 12 A • _G n In J ID o C COLUMN XI /4 0 - 4X-4x3/,5 C4 • 1 a H H SS • -- �O: ■ C • y_= _ i��ll� '' • 1 °-'=' �'II�IIIIIIIIIIIIIIl.� �• . ................ ......................111111111 PqA - — STUD R Lopq VQI F- L 54.1 IHSSI -4X-4XI/4 COLUMN r T I? 54. 11) •r 12 i i i I I - H55 4 X4XI/4 I COLUMN H55 4 p WLZXI4 12 i i i i i i i I H55 13 i i i 8" GMv STAIR _o 777 21 �� •�• �a.�; s..:, �� �� / lam' •� • I� •— I do Lu :•: • . — ' .■ do dp ' • Illip, III man ,.�� ►��►I► E� o C COLUMN XI /4 0 - 4X-4x3/,5 C4 • 1 a H H SS • -- �O: ■ C • y_= _ i��ll� '' • 1 °-'=' �'II�IIIIIIIIIIIIIIl.� �• . ................ ......................111111111 PqA - — STUD R Lopq VQI F- L 54.1 IHSSI -4X-4XI/4 COLUMN r T I? 54. 11) •r 12 i i i I I - H55 4 X4XI/4 I COLUMN H55 4 p WLZXI4 12 i i i i i i i I H55 13 i i i 8" GMv STAIR _o I � I I I I I I I I I I I I I I I I I I I COLUMN XI /4 i I I i I I i I I r 4 I I HSS 4 X 4 X1 k i I COLUMN /4 0/4 54,3' j I H55 4X?XI /4 it 4 COLUMN I 54.1 i� f EP3 3' -1" ::)P OF N AT J He EP3 2 A EP3 F CBXI I,g \2 iii l i m— M m WI.2XI4 L2 54,1 H55 4 X4XI/4 COLUMN 1 ' 5 1,5 GA META DECK /4 ry U ONLYXI /4 � I Q 541 I I I I I COLUMN X4XI /4 I I - O� I I I I I I I I 12 13 I I I I I I I I H55 4X4X1/4 GOL� I I /4 H55 t 'X 4 X1 /4 COLUM I i I I v I I I I I 8 " GMU I STAIR -- i I I I I I I I I 54.2 I �KI'AT 6 I� �' - " JONI GMU �J \ - EVATOR — Q Q X VO UP ON XI /4 IOIGI AT X1 -4 UP Q t H SS - "T' X�xl` P ONL Y Ar N3 LK AT ' -6 ., 54. � - H55 4X4X=�, 117 L �ik AN 91, - Il N i � k� uii W • ;; e I C OLUMN AT • • �� • . - • • 4 I OLUM�XI /4 AT ry I I SS 8X8X /4 LOlnl I I P ONLY ROOF CO CRETE SLAB 14 (t _4.,) j ; I " N -2",-20 GAGE ^ j META DECK WITH 54,1 10 W.F. (t =3 ") I v I' pN I6 Kq AT .' ,U f 117 L �ik AN 91, - Il N i � k� uii W • ;; e I C OLUMN AT • • �� • . - • • 4 I OLUM�XI /4 AT ry I I SS 8X8X /4 LOlnl I I P ONLY ROOF CO CRETE SLAB 14 (t _4.,) j ; I " N -2",-20 GAGE ^ j META DECK WITH 54,1 10 W.F. (t =3 ") I v I' j TYP, RE: -2/51 Xlj/g H55 4X4XI/4 i COLUMN I I I ' T OI GA, M I i E I �K WITH ygW .F, NOTE: I I I I ALL EXPANSION ANCHORS IN GMU SHALL BE INE, f ALLED IN I v 7 GROUTED CELLS I ND SHALL I BE A MINIMUM OF 3/8" FRO MI ANY VERTICAL M RTAR JOIN D 10 i 161 •� II= lift Hv M X3 /a - �3 rlr- N - 1\ . I Q L1 m J4.3 C8XI1. I_ VI (COLUMN )ry n I 0 I m �I 1.5" 18 GA METAL DE, COLU TYp, TYp, fv _ I 54.3 ry --- -_ - - -- -{ � �' - d' i I 6 1/ -2.. CONCRETE to I : AB ON O.6 ". Q -24 GE METAL DEG K rH w ' W F• s ry (t _4.,) � I V� ^ I 10 I v W16XIp0 30 , I6 Kq AT -2 I Q L1 m J4.3 C8XI1. I_ VI (COLUMN )ry n I 0 I m �I 1.5" 18 GA METAL DE, COLU TYp, TYp, fv _ I 54.3 ry --- -_ - - -- -{ � �' - d' i I 6 Monroe & Newell Engineers, Inc. 193 JOB SHEET NO. OF CALCULATED BY L DATE CHECKED BY DATE Monroe & Newell Engineers, Inc. JOB "o" q T SHEET NO. CALCULATED BYE OF DATE CHECKED BY DATE .ev, � ' SCALE p: ... ...... w._.... . _....... . �3 p� l' 4 /' i f `�'✓ e W 6 nom. _.... ..... l _ .. ...... ..._.� y 19 ... ..... - __.. ..... .... ._ .. ..__ '. q_ g ............ I� j ... . '� �`` "� z .._ .. 4a t _ ..... i �. - M . 2,C S' S fi i u d 1 / d + ` l .......... i� s �- _. q Monroe & Newell Engineers, Inc. JOB u f 79 3 $ SHEET NO. OF CALCULATED BY I_tL DATE I Q CHECKED BY DATE Monroe & Newell Engineers, Inc. JOB VeM.4' SHEET NO. OF CALCULATED BY L''Z DATE CHECKED BY t4 _ -f., DATE y 1- - -- --- IA IA 0 N J .0-,= o1) i I ..H -ELI it ii a 1n - I .b/I I D - 1 Z� m F - J Q I h h Q I 0 i Q .f p� ory t ' 1 N121V�9 ,.b-. Lb• N 3 3 Qw w O WN �W� C Z 3 � F- Z - a �Q m J h h Q I 0 i Q .f p� ory t ' 1 N121V�9 ,.b-. Lb• N 3 � p X 7 Qw w O WN �W� C Z 3 � aO4 Z oW a �Q m J p Q IIVM NI d A ..O-.I d 9Xt 1V SSlR11 • d0 9V�321d o �pl 7 � J Q V MIS 49- 1 +Q a Z 3 � w Z oW a J 0 J p Q x F 0 Z Y F In p w Q \� ; 2 A a a a J lu 3 N p J �pl 7 � J Q V MIS 49- 1 I J I I fG� Q a i i i r XJF oz N Q� NO +Q a Z 3 � J .ir I G \� X I 0 �1J LU -I 3 W XJ d) f qZ ; a Z ' x� b /I b -(tom 5� i i 0 0'0.1 Jf OZ - - - - IL i Qm Ln Y � Fn Nwj 'r S LEI> I N W I J I I fG� Q a i i i r XJF oz N Q� NO � WE § f ! %§) d§k�)E \�!`` |§ � [� � §� - § �'!� § § § §§§ ) ! , §| N ;t•% ! |�| WE ! � §� - �'!� § § § §§§ UP |) ! |�| \§ , > > > > > >��! |, \\ §}((\()} �" • (§b ` � ,j & Q„ �■ � ■. -§, ;.. WE Monroe & Newell Engineers, Inc. JOB SHEET NO. �7 OF CALCULATED BY DATE CHECKED BY DATE / lum ` SCALE U ► ......... _.. ¢4 P n�^ ? Lc b ..... ..._ _.. .. �. Cs . CAQ_. .C� Monroe & Newell Engineers, Inc. JOB SHEET NO. OF CALCULATED BY UL- DATE CHECKED BY DATE C-4 u 0 V1, SCALE .......... SS q ........... . ....... .. . ------------- Monroe & Newell JOB U4 Engineers, Inc. SHEET NO. OF .fir CALCULATED BY ✓' DATE !r CHECKED BY DATE SCALE >S� x 14,9 X 13 ...... ............................... li! p >S� x 14,9 X 13 ...... ............................... li! Title : Dsgnr: Description Scope : User: KW- 060365, Ver 5.6.1 Description neering Software HSS8x8 baseplate Steel Column Base Plate Job # Date: 9:57AM, 10 MAY 10 General Information Bearing Stress OK Calculations are designed to AISC 9th Edition ASD and 1997 UBC Requirements 1,051.0 psi Allow per ACI318 -95, A3.1 Steel Section HSS8x8x1 /2 Loads 2,100.0 psi Section Length 8.000 in Axial Load 206.00 k Section Width 8.000 in X -X Axis Moment 0.00 k -ft Flange Thickness 0.465 in Allowable 5.500 k Web Thickness 0.465 in Plate Dimensions Plate Length 14.000 in Allowable Stresses Plate Width 14.000 in Concrete f 3,000.0 psi 36.00 ksi Plate Thickness 1.313 in Base Plate Fy 1.000 Load Duration Factor Support Pier Size Anchor Bolt Data Pier Length 48.000 in Dist. from Plate Edge 1.500 in Pier Width 48.000 in Bolt Count per Side 2 Tension Capacity 5.500 k Bolt Area 0.442 in2 Baseplate OK Concrete Bearing Stress Bearing Stress OK Actual Bearing Stress 1,051.0 psi Allow per ACI318 -95, A3.1 = 0.3 * f'c * Sgrt(A2 /A1) * LDF 1,800.0 psi Allow per AISC J9 2,100.0 psi Plate Bending Stress Thickness OK Actual fb 26,430.2 psi Max Allow Plate Fb 27,000.0 psi Tension Bolt Force Bolt Tension OK Actual Tension 0.000 k Allowable 5.500 k Full Bearing : No Bolt Tension � 0 Title : Dsgnr: Description Scope: User: KW- 060365, Ver 5.6.1, 25 -Oct -2002 (c)1983 -2002 ENERCALC Engineering Software Description HSS8x8 baseplate Steel Column Base Plate Cal General Information 974.5 psi Calculations are designed to AISC 9th Edition ASD and 1997 UBC Requirements Loads = 0.3' f'c' Sgrt(A2 /A1) " LDF Steel Section HSS8x8x112 2,100.0 psi Plate Bending Stress fb > Fb : Thickness Section Length 8.000 in Axial Load 191.00 k Section Width 8.000 in X -X Axis Moment 0.00 k -ft Flange Thickness 0.465 in Web Thickness 0.465 in Plate Dimensions Plate Length 14.000 in Allowable Stresses Plate Width 14.000 in Concrete f 3,000.0 psi Plate Thickness 1.250 in Base Plate Fy 36.00 ksi Load Duration Factor 1.000 Support Pier Size Anchor Bolt Data Pier Length 48.000 in Dist. from Plate Edge 1.500 in Pier Width 48.000 in Bolt Count per Side 2 Tension Capacity 5.500 k Bolt Area 0.442 in2 Baseplate OK Concrete Bearing Stress Bearing Stress OK Actual Bearing Stress 974.5 psi Allow per ACI318 -95, A3.1 = 0.3' f'c' Sgrt(A2 /A1) " LDF 1,800.0 psi Allow per AISC J9 2,100.0 psi Plate Bending Stress fb > Fb : Thickness Actual fb 27,017.5 psi Max Allow Plate Fb 27,000.0 psi Tension Bolt Force Bolt Tension OK Actual Tension 0.000 k Allowable 5.500 k Full Bearing : No Bolt Tension Job # Date: 9:56AM, 10 MAY 10 62C Gravity Column Design RAM Steel v 13.0 Monroe & Newell Engineers DataBase: 7938d Building Code: IBC 05110110 09:32:10 Steel Code: ASD 9th Ed. Story level upper, Column Line 18.50ft- 58.50ft Fy (ksi) = 46.00 Column Size Orientation (degrees) = 90.0 INPUT DESIGN PARAMETERS: T „ (fh u Braced Against Joint Translation Column Eccentricity (in) Top Bottom CONTROLLING COLUMN LOADS - Load Case 1: X -Axis 18.00 1 Yes & we HSS8X8X1 /2 Y -Axis 18.00 1 Yes 0.00 0.00 INTERACTION EQUATION fa/Fa = 0.55 Eq H1 -1: 0.545 + 0.000 + 0.000 = 0.545 Eq H1 -2: 0.387 + 0.000 + 0.000 = 0.387 &5(e Dead Live Roof Axial (kips) 53.63 90.54 0.00 Moments Top Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 10.68 Fa (ksi) = 19.58 fbx (ksi) = 0.00 Fbx (ksi) = 30.36 fby (ksi) = 0.00 Fby (ksi) = 30.36 KL /Rx = 70.98 KL /Ry = 70.98 F'ex = 29.64 Fey = 29.64 Cmx = 0.00 Cray = 0.00 INTERACTION EQUATION fa/Fa = 0.55 Eq H1 -1: 0.545 + 0.000 + 0.000 = 0.545 Eq H1 -2: 0.387 + 0.000 + 0.000 = 0.387 &5(e Gravity Column Design Fil RAM Steel v13.0 Monroe & Newell Engineers RAM DataBase:7938d INTERNATIONAL Building Code: IBC 05110110 09:33:29 Steel Code: ASD 9th Ed. Story level upper, Column Line 18.50ft- 38.10ft Fy (ksi) = 46.00 Column Size Orientation (degrees) = 90.0 = HSS8X8X1 /2 INPUT DESIGN PARAMETERS: T.1 (ft) K Braced Against Joint Translation Column Eccentricity (in) Top Bottom X -Axis Y -Axis 18.00 18.00 1 1 Yes Yes 0.00 0.00 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: INTERACTION EQUATION fa/Fa = 0.61 EgHI -1: 0.612 +0.000 +0.000 =0.612 Eq 141 -2: 0.434 + 0.000 + 0.000 = 0.434 ffin Dead Live Roof Axial (kips) 70.55 91.23 0.00 Moments Top Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 11.98 Fa (ksi) = 19.58 fbx (ksi) = 0.00 Fbx (ksi) = 30.36 fby (ksi) = 0.00 Fby (ksi) = 30.36 KL /Rx = 70.98 KL /Ry = 70.98 F'ex = 29.64 Fey = 29.64 Cmx = 0.00 Cmy = 0.00 INTERACTION EQUATION fa/Fa = 0.61 EgHI -1: 0.612 +0.000 +0.000 =0.612 Eq 141 -2: 0.434 + 0.000 + 0.000 = 0.434 ffin Gravity Column Desk Fil RAM Steel v13.0 Monroe & Newell Engineers RAM DataBase:7938d INTERNATIONAL Building Code: IBC Story level upper, Column Line 18.50ft- 17.70ft Fy (ksi) = 46.00 Column Size Orientation (degrees) = 90.0 05110110 09:34:18 Steel Code: ASD 9th Ed. = HSS8X8X1 /2 INPUT DESIGN PARAMETERS: Lu (ft) K Braced Against Joint Translation Column Eccentricity (in) Top Bottom X -Axis Y -Axis 18.00 18.00 1 1 Yes Yes 0.00 0.00 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: INTERACTION EQUATION fa/Fa = 0.78 Eq H 1 -1: 0.777+0.000+0.000=0.777 Eq H1 -2: 0.552 + 0.000 + 0.000 = 0.552 G Dead Live Roof Axial (kips) 86.05 119.48 0.00 Moments Top Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 15.22 Fa (ksi) = 19.58 fbx (ksi) = 0.00 Fbx (ksi) = 30.36 fby (ksi) = 0.00 Fby (ksi) = 30.36 KL /Rx = 70.98 KL /Ry = 70.98 F'ex = 29.64 Fey = 29.64 Cmx = 0.00 Cmy = 0.00 INTERACTION EQUATION fa/Fa = 0.78 Eq H 1 -1: 0.777+0.000+0.000=0.777 Eq H1 -2: 0.552 + 0.000 + 0.000 = 0.552 G Title : Job # Dsgnr: Date: 10:29AM, 10 MAY 10 Description Scope: User: KW- 060365, Ver5.6.1, 25- Oct -2002 Steel Column Base Plate (c)1983 -2002 ENERCALC Engineering Software p:\ 7938\ ENGINEERING \Calcs\firestation.ecw:Cal Description HSS 4x4 baseplate General Information 480.0 psi Calculations are designed to AISC 9th Edition ASD and 1997 UBC Requirements Loads = 0.3 * f'c * Sgrt(A2 /A1) * LDF Steel Section HSS4x4x5 /16 Axial Load 48.00 k Section Length 4.000 in X -X Axis Moment 0.00 k -ft Section Width 4.000 in Actual Tension 0.000 k Flange Thickness 0.291 in Plate Dimensions Web Thickness 0.291 in Plate Length 10.000 in Allowable Stresses Plate Width 10.000 in Concrete f 3,000.0 psi Plate Thickness 0.813 in Base Plate Fy 36.00 ksi Load Duration Factor 1.000 Support Pier Size Pier Length 48.000 in Anchor Bolt Data Pier Width 48.000 in Dist. from Plate Edge 1.500 in Bolt Count per Side 2 Tension Capacity 5.500 k Bolt Area 0.442 in2 Baseplate OK Concrete Bearing Stress Bearing Stress OK Actual Bearing Stress 480.0 psi Allow per ACI318 -95, A3.1 Full Bearing : No Bolt Tension = 0.3 * f'c * Sgrt(A2 /A1) * LDF 1,800.0 psi Allow per AISC J9 2,100.0 psi Plate Bending Stress Thickness OK Actual fb 25,215.8 psi Max Allow Plate Fb 27,000.0 psi Tension Bolt Force Bolt Tension OK Actual Tension 0.000 k Allowable 5.500 k 651 Title : Dsgnr: Description Scope: Job # Date: 10:31 AM, 10 MAY 10 Rev: 560100 User: KW- 060365, Ver5.6.1, 25 -Oct -2002 Steel Column Base Plate (c)1983 -2002 ENERCALC Engineering Software p: \7938\ ENGINEERING \Calcs \firestation.ecw:Cal Description HSS 5x5 baseplate General Information 931.0 psi Calculations are designed to AISC 9th Edition ASD and 1997 UBC Requirements Loads = 0.3' f'c' Sgrt(A2 /A1) " LDF Steel Section HSS4x4x5 /16 Axial Load 93.10 k Section Length 4.000 in X -X Axis Moment 0.00 k -ft Section Width 4.000 in Actual Tension 0.000 k Flange Thickness 0.291 in Plate Dimensions Web Thickness 0.291 in Plate Length 10.000 in Allowable Stresses Plate Width 10.000 in Concrete f 3,000.0 psi Plate Thickness 1.125 in Base Plate Fy 36.00 ksi Load Duration Factor 1.000 Support Pier Size Pier Length 48.000 in Anchor Bolt Data Pier Width 48.000 in Dist. from Plate Edge 1.500 in Bolt Count per Side 2 Tension Capacity 5.500 k Bolt Area 0.442 in2 Baseplate OK Concrete Bearing Stress Bearing Stress OK Actual Bearing Stress 931.0 psi Allow per AC1318 -95, A3.1 = 0.3' f'c' Sgrt(A2 /A1) " LDF 1,800.0 psi Allow per AISC J9 2,100.0 psi Plate Bending Stress Thickness OK Actual fb 25,510.8 psi Max Allow Plate Fb 27,000.0 psi Tension Bolt Force Bolt Tension OK Actual Tension 0.000 k Allowable 5.500 k Full Bearing : No Bolt Tension JOB Monroe & Newell Engineers, Inc. SHEET NO. OF CALCULATED BY DATE CHECKED BY DATE Tit_ c . 3 .4 -4 (a S. a. M toad lb STUDWALL DESIGN: -2@ NDSUnit Definitions: p := 2 in GEOMETRIC CONDITIONS: 2X6 studs le = effective column length le := 10•ft dl = least stud width dl := 1.5-in kips := lb. 1000 psf := lb pl f lb ft ft d2 = largest stud width d2:= 5.5-in A:= dl•d2 A = 8.25 in dl•d2 3 Sx := Sx = 7.56 in Sy := d2•d12 Sy = 2.06 in 3 6 6 Slenderness ratios: le (Must not exceed 50) d := d2 d = 21.82 (Assumes weak axis braced by sheathing) STRUCTURAL PROPERTIES Species and grade: Doug Fir Stud Grade Fc = allowable compressive stress parallel to grain Fc := 850•psi Fb = allowable bending stress Fb := 700•psi E = modulus of elasticity E:= 1.4.10 LOADING Spacing sp := 12-in load Line Load (plf) load := 3640•plf fc := sp.— fc = 441.21 psi Wind Load (psf) wind := 5.0•psf (5psf min; A le fb := sp•wind 8-Sx fb = 99.17 psi MODIFICATION FACTORS CD = Load duration factor (does not apply to modulus of elasticity) CD := 1.0 CM = Wet service factor CM := 1.0 Ct = Temperature factor Ct := 1.0 CFc = Compression Size Factor CFc := 1.0 CFb = Bending Size Factor CFb := 1.0 Calculate Cp: Fcstar = Modified Fc used to calculate Cp Fcstar := Fc•CD•CM•Ct•CFc Fcstar = 850 psi Eprime = Modified E used to calculate Cp Eprime := E•CM•Ct E = 1.4 x 10 psi Ke (buckling coefficient) Ke := 1.0 c (0.8 for sawn lumber, 0.85 for round timber piles, 0.9 for glue laminated timber) c:= 0.8 Kce (0.3 for visually graded and machine evaluated lumber, 0.418 for COV< =0.11) Kce := 0.3 Kce• Eprime 2 Fce := Fce = 882.29 psi 1 + Fce l + Fce Fce le 2 CKe. _ Fcstar _ Fcstar _ Fcstar d Cp 2•c 2•c c p — 0.7 DESIGN VALUES Fcl := Fc•CD•CM•Ct•CFc•Cp Fbl := Fb•CD•CM•Ct•CFb•l.15 5 •sp•wind•le Deflection d l . d2 384•E 12 Fc1 = 598.16 psi Fbl = 805 psi Deflection = 0.04 in le = 3105.67 Deflection 2 fc + fb = 0.79 Fcl Fb1 •(1 _ fc 1 Fce 64'L- 3/31/2010 BY: STUDWALL DESIGN: NDSUnit Definitions: lb lb lb psi :_ 2 kips := lb• 1000 psf := 2 plf := ft in ft GEOMETRIC CONDITIONS: 2X6 studs le = effective column length le:= 9-ft dl = least stud width dl := 1.5-in d2 = largest stud width d2:= 5.5-in A:= dl•d2 A = 8.25 in dl•d2 3 Sx := 6 Sx = 7.56 in Sy := d2•d12 Sy = 2.06 in 3 6 Slenderness ratios: le (Must not exceed 50) d:= d2 _ 19.64 (Assumes weak axis braced by sheathing) STRUCTURAL PROPERTIES Species and grade: Doug Fir Stud Grade Fc = allowable compressive stress parallel to grain Fc := 850•psi Fb = allowable bending stress Fb := 700•psi E = modulus of elasticity E:= 1.4.10 psi LOADING Spacing sp := 12-in load Line Load (plf) load := 3990•plf fc := sp fc = 483.64 psi Wind Load (psf) wind := 5.0•psf (5psf min; A 2 le fb := sp•wind• fb = 80.33 psi 8•Sx MODIFICATION FACTORS CD = Load duration factor (does not apply to modulus of elasticity) CD := 1.0 CM = Wet service factor CM := 1.0 Ct = Temperature factor Ct := 1.0 CFc = Compression Size Factor CFc := 1.0 CFb = Bending Size Factor CFb := 1.0 Calculate Cp: Fcstar = Modified Fc used to calculate Cp Fcstar := Fc.CD•CM•Ct•CFc Fcstar = 850 psi Eprime = Modified E used to calculate Cp Eprime := E•CM•Ct E = 1.4 x 10 psi Ke (buckling coefficient) Ke := 1.0 c (0.8 for sawn lumber, 0.85 for round timber piles, 0.9 for glue laminated timber) c:= 0.8 Kce (0.3 for visually graded and machine evaluated lumber, 0.418 for COV< =0.11) Kce := 0.3 Kce•Eprime 2 Fce le 2 Fce = 1089.25 psi 1 + Fce 1 + Fce Fce C Ke•— Fcstar) Fcstar Fcstar d) Cp 2-c – 2-c – c P= 0.77 DESIGN VALUES Fcl := Fc•CD•CM•Ct•CFc•Cp Fbl := Fb•CD•CM•Ct•CFb• 1.15 4 Deflection 5•sp•wind•le :_ 384•E � dl-d2-l j 12 Fcl = 653.74 psi Fbl = 805 psi Deflection = 0.03 in le = 4260.17 Deflection 2 fc + = 0.73 Fcl) fc Fbl Fce 60 3/31/2010 Monroe & Newell SOB V 1 E � 79 3� Engineers Inc. SHEET NO. OF CALCULATED BY DATE I t CHECKED BY DATE Z 31 i, f v 1 `E 5Q Q-� / s 33 JUG ��h�) (4i�z x /Z =_. 2 - 3 ...... . Monroe & Newell SOB t 'ko F€ Engineers Inc. SHEET NO. y� CALCULATED BY CHECKED BY OF DATE 1 _ GATE ?'y I h SCALE ..... A ..... Monroe & Newell Engineers, Inc. JOB VuC14° F E r'-. -. f 1 9 6 SHEET NO. {� CALCULATED BY CHECKED BY OF DATE q _ t o DATF JOB ���il.� � � ��,., 7 X 13 P Monroe & Newell Engineers Inc. SHEET NO. t OF (� CALCULATED BY DATE CHECKED BY DATE Project: M &N # Engr: Date: Masonry Wall Axial & Bending Grid 6, base Properties fm, psi Fs, psi Es, psi Em, psi O,flexure,axial O,shear Wall Geometi Wall Depth, in As, inA2 d, in bw, in Loads V, kips M, k -ft P (axial), kips 1/3 stress increase for W or E? n =Es /Em p= As /bwd p n= k j =1 -k/3 fb, psi fs, psi SHEAR M/Vd Masonry takes all shear: ON, psi (DFv, max (controls) fv, psi if fv >Fv shear reinf is reqd BENDING (DFb =1 /3fm ( *1.33), psi Fs= 24000000 psi ( *1.33), psi AXIAL h, in As, inA2 An, in A2 p =As /An I, inA4 r =sqrt (I /A) h/r If h /r <99: Pa, kips If h/r >99, Pa= Pa, kips 0 Pa, kips Vail Firestation 7938 LJ R 5/6/2010 1500 24000 29000000 1350000 900fm 0.8 0.6 11.63 0.66 5.82 12 0 1.32 14.1 1 ACI 530, Sec 2.1.2.3 21.481481 0.0094502 0.2030037 0.4657398 1 k= 2fi- +(f-)2 —� 0.8447534 198.10008 fb = jk �2 4881.5564 �►� f Jd4 s #DIV /0! #DIV /0! If M/Vd <l, Fv= (1 /3)[4- (M/Vd)jsgrt(fm) #DIV /0! If M/Vd >1, Fv= sgrt(fm) < 35 psi 0 V #DIV /0! bdv 400 OK 24000 OK 156 0.66 139.56 0.0047291 .0025 <pn <.04 1573.0377 3.3572918 46.466023 55731.712 h lr <99: +O.65- ,F )-1 - �zJ l J 142139.38 70 Fh/r <99 :P = (O.25fm4 +O.65,4,F) *� h *� h J 46.466023 37.172819 �*'r Project: M &N # Engr: Date: Masonry Wall Axial & Bending Grid 6, upper level Properties fm, psi Fs, psi Es, psi Em, psi (1), flexure, axial O,shear Wall Geometi Wall Depth, in As, inA2 d, in bw, in Loads V, kips M, k -ft P (axial), kips 1/3 stress increase for W or E? n =Es /Em p= As /bwd pn= k j =1 -k/3 fb, psi fs, psi SHEAR MNd Masonry takes all shear: OFv, psi OFv, max (controls) fv, psi If fv >Fv shear reinf is reqd BENDING (VFb =1 /3fm (`1.33), psi Fs= 24000000 psi ('1.33), psi AXIAL h, in As, in A2 An, inA2 p =As /An I, inA4 r -sqrt (I /A) h/r If h /r <99: Pa, kips If h/r >99, Pa= Pa, kips 0 Pa, kips Vail Firestation 7938 LJR 5/6/2010 1500 24000 29000000 1350000 900fm 0.8 0.6 11.63 0.33 5.82 12 0 1.85 10.34 1 ACI 530, Sec 2.1.2.3 21.481481 0.0047251 0.1015018 0.3603491 1 k = 2m (/n) —Ext 0.8798836 344.51414 f = jk�2 w 13136.837 At f = jd 5 #DIV /0! #DIV /0! If MNd <1, Fv= (1 /3)[4- (MNd)]sgrt(fm) #DIV /0! If MNd >1, Fv= sqrt(fm) < 35 psi 0 V f #DIV /01 bd 400 OK 24000 OK 120 0.33 139.56 0.0023646 .0025 <pn <.04 1573.0377 3.3572918 35.743095 h/r <99: P = (0.25f na4, +0.654,F�1_ � l �2] 57451.776 220470.86 ( 70, [hlr <99:P =(025f m�, +0.65�F) * ) 57451.776 h 45961.421 &tP l Monroe & Newell J OB V `� �° 753g SHEET NO. OF Engineers, Inc. CALCULATED BY DATE CHECKED BY DATE I Monroe & Newell JOB Engineers, Inc. SHEET NO. OF CALCULATED B DATE A CHECKED BY DATE SCALE ....... ... .............. .............. .. ... .......... 3k� 3 A. x gr 0 J Monroe & Newell JOB b i` 0 F r - e. Engineers, Inc. SHEET NO. OF CALCULATED BY 1.O'1' DATE CHECKED BY DATE SCALE JOB y ,� - 7 5 � Monroe & Newell Engineers Inc. SHEET NO. OF CALCULATED BY P- DATE f CHECKED BY DATE .. 61`{ Monroe & Newell Engineers, Inc. �. & JOB V � SHEET NO. OF CALCULATED BY DATE ~ , CHECKED BY DATE SCALE f/- ... ........ .. m .. ad G: _ la-- Monroe & Newell SOB V - 753e Engineers, Inc. SHEET NO. 1 OF CALCULATED BY L12 DATE q —(0 CHECKED BY DATE SCALE 0 Monroe & Newell Engineers, Inc. JOB (fit' SHEET NO. CALCULATED BY " ICI t OF DATE ? t � / ( 0 Monroe & Newell JOB Engineers, Inc. SHEET NO. CALCULATED BY CHECKED BY— OF— DATE nATF SCALE ... . ...... A; .......... . Monroe & Newell JOB Engineers, Inc. SHEET NO. OF CALCULATED BY DATE CHECKED BY DATE Monroe & Newell JOB V A- -1 `7 1 33! Engineers, Inc. SHEET NO. OF CALCULATED BY DATE CHECKED BY DATE ...._ ......._ _..... _..., _..... __.. .. ... ......... ....... ..... .. coq J Project: Vail Firestation M &N # 7938 Engr: LJR Date: 3/23/2010 #3 0.11 #4 0.196 12" Masonry Lintel Capacity (2) #3 0.22 32" bond bm w/ (3)-#6 (2) #4 0.392 Flexure Shear fm, psi 1500 Fv= sgrt(fm) 38.73 psi Fs, psi 24000 Fv, max 50 psi Es, psi 29000000 Fv controlling 38.73 psi Em, psi 1350000 w/o shear reinforcement Lintel Depth, in 32 Vmax, kips 12.61 kips As, in ^2 1.32 d, in 28 bw, in 11.625 with shear reinforcement n =Es /Em 21.48148 Fv= 3*sgrt(fm 116.19 psi Fv,max 150 psi p= As /bwd 0.004055 Fv controlling 116.19 psi pn= 0.087114 Vmax, 37.82 kips k 0.339286 k= 2pr +(M) —M s 8 in j =1 -k/3 0.886905 #3 verts at s 2t1V1y Vall= masonry 9.24 kips Fb= .33fm, psi 500 __ fb � #4 verts at s My allow, K -ft 57.14 masonry Vail= 16.464 kips Fs, psi 24000 _ fb steel (2) #3 verts at 18.48 — Jd4, Vall= My, allow, k -ft 65.56 steel (2) #4 verts at 32.928 Val l= _ V f bd W AV _ V s Fd V _� 4 Project: Vail Firestation M &N # 7938 Engr: LJR Date: 3/23/2010 #3 0.11 #4 0.196 12" Masonry Lintel Capacity (2) #3 0.22 16" bond bm w/ (2)-#6 (2) #4 0.392 Flexure Shear fm, psi 1500 Fv= sgrt(fm) 38.73 psi Fs, psi 24000 Fv, max 50 psi Es, psi 29000000 Fv controlling 38.73 psi Em, psi 1350000 w/o shear reinforcement Lintel Depth, in 16 Vmax, kips 5.40 kips As, in ^2 0.88 d, in 12 bw, in 11.625 with shear reinforcement n =Es /Em 21.48148 Fv= 3`sgrt(fm 116.19 psi Fv,max 150 psi p= As /bwd 0.006308 Fv controlling 116.19 psi pn= 0.13551 Vmax, 16.21 kips k 0.402434 k 1 2M +(P7) _ s 8 in j =1 -k/3 0.865855 #3 verts at s 2 ' Vail= 3.96 kips Fb= .33fm, psi 500 __ fa masonry wc r #4 verts at s My allow, K -ft 12.15 masonry Vail= 7.056 kips Fs, psi 24000 At f steel (2) #3 verts at 7.92 __ J� Vall= My, allow, k -ft 18.29 steel (2)#4 verts at 14.112 Vail= _ y f bd w AV _ v S Fd 6�1 Project: Vail Firestation M &N # 7938 Engr: LJR Date: 3/23/2010 #3 0.11 #4 0.196 12" Masonry Lintel Capacity (2) #3 0.22 24" bond bm w/ (3)-#6 (2)#4 0.392 Flexure Shear fm, psi 1500 Fv= sgrt(fm) 38.73 psi Fs, psi 24000 Fv, max 50 psi Es, psi 29000000 Fv controlling 38.73 psi Em, psi 1350000 w/o shear reinforcement Lintel Depth, in 24 Vmax, kips 9.00 kips As, in 1 2 1.32 d, in 20 bw, in 11.625 with shear reinforcement n =Es /Em 21.48148 Fv= 3 *sgrt(fm 116.19 psi Fv,max 150 psi p= As /bwd 0.005677 Fv controlling 116.19 psi pn= 0.121959 Vmax, 27.01 kips k 0.386757 k = 2,m (,M)2 —At s 8 in j =1 -k/3 0.871081 #3 verts at s 2 ' Vail= 6.6 kips Fb= .33fm, psi 500 _ masonry jkb #4 verts at s My allow, K -ft 32.64 masonry Vail= 11.76 kips Fs, psi 24000 steel (2) #3 verts at 13.2 f jd� Vall= My, allow, k -ft 45.99 steel (2) #4 verts at 23.52 Vail= _ V f bd W Av _ V S Ed 613 Project: Vail Firestation M &N # 7938 Engr: LJR Date: 3/23/2010 #3 0.11 #4 0.196 8" Masonry Lintel Capacity 16" bond bm w/ (2)-#5 Flexure Shear fm, psi 1500 Fv= sgrt(fm) 38.73 psi Fs, psi 24000 Fv, max 50 psi Es, psi 29000000 Fv controlling 38.73 psi Em, psi 1350000 w/o shear reinforcement Lintel Depth, in 16 Vmax, kips 3.54 kips As, in ^2 0.62 d, in 12 bw, in 7.625 with shear reinforcement n =Es /Em 21.48148 Fv= 3 *sgrt(fm 116.19 psi Fv,max 150 psi p= As /bwd 0.006776 Fv controlling 116.19 psi pn= 0.145558 Vmax, 10.63 kips k 0.413282 k= 2M +(/71) —M s 8 in j =1 -k/3 0.862239 #3 verts at s 2ND Vall= 3.96 kips Fb= .33fm, psi 500 __ fb masonry jkb #4 verts at s My allow, K -ft 8.15 masonry Vall= 7.056 kips Fs, psi 24000 � steel My, allow, k -ft 12.83 steel _ V w s Fd G4 4 Project: Vail Firestation M &N # 7938 Engr: LJR Date: 3/23/2010 #3 0.11 #4 0.196 8" Masonry Lintel Capacity 16" bond bm w/ (2)-#6 Flexure Shear fm, psi 1500 Fv= sgrt(fm) 38.73 psi Fs, psi 24000 Fv, max 50 psi Es, psi 29000000 Fv controlling 38.73 psi Em, psi 1350000 w/o shear reinforcement Lintel Depth, in 16 Vmax, kips 3.54 kips As, in ^2 0.88 d, in 12 bw, in 7.625 with shear reinforcement n =Es /Em 21.48148 Fv= 3 *sgrt(fm 116.19 psi Fv,max 150 psi p= As /bwd 0.009617 Fv controlling 116.19 psi pn= 0.206598 Vmax, 10.63 kips k 0.46859 k= 2M+ (M)2 _M s 8 in j =1 -k/3 0.843803 #3 verts at s 2Ap Vall= 3.96 kips Fb= .33fm, psi 500 __ fb masonry �kb„d2 #4 verts at s My allow, K -ft 9.04 masonry Vall= 7.056 kips Fs, psi 24000 steel My, allow, k -ft 17.82 steel _ V f bd w Av _ V s Fd Project: Vail Firestation M &N # 7938 Engr: LJR Date: 3/23/2010 #3 0.11 #4 0.196 8" Masonry Lintel Capacity 8" bond bm w/ (2)-#5 Flexure Shear fm, psi 1500 Fv= sgrt(fm) 38.73 psi Fs, psi 24000 Fv, max 50 psi Es, psi 29000000 Fv controlling 38.73 psi Em, psi 1350000 w/o shear reinforcement Lintel Depth, in 8 Vmax, kips 1.18 kips As, in 1 2 0.62 d, in 4 bw, in 7.625 with shear reinforcement n =Es /Em 21.48148 Fv= 3"sgrt(fm 116.19 psi Fv,max 150 psi p= As /bwd 0.020328 Fv controlling 116.19 psi pn= 0.436673 Vmax, 3.54 kips k 0.594845 k= 2p-t +(M) —M s 8 in j =1 -k/3 0.801718 #3 vents at s 2ND Vail= 1.32 kips Fb= .33fm, psi 500 fb masonry ikbwd #4 verts at s My allow, K -ft 1.21 masonry Vail= 2.352 kips Fs, psi 24000 steel My, allow, k -ft 3.98 steel f = bd w Av _ V S Fd Project: Vail Firestation M &N # 7938 Engr: UR Date: 5/5/2010 #3 0.11 #4 0.196 8" Masonry Lintel Capacity (2) #3 0.22 24" bond bm w/ (2)-#5 (2)#4 0.392 Flexure Shear fm, psi 1500 Fv= sgrt(fm) 38.73 psi Fs, psi 24000 Fv, max 50 psi Es, psi 29000000 Fv controlling 38.73 psi Em, psi 1350000 w/o shear reinforcement Lintel Depth, in 24 Vmax, kips 9.00 kips As, inA2 0.62 d, in 20 bw, in 11.625 with shear reinforcement n =Es /Em 21.48148 Fv= 3"sgrt(fm 116.19 psi Fv,max 150 psi p= As /bwd 0.002667 Fv controlling 116.19 psi pn= 0.057284 Vmax, 27.01 kips k 0.286008 k= 2pn+(fTO — s 8 in j =1 -k/3 0.904664 #3 verts at s F 2114 Vall= masonry 6.6 kips Fb= .33fm, psi 500 _ b — jkb #4 verts at s My allow, K -ft 25.07 masonry Val[= 11.76 kips Fs, psi 24000 _ �A f _ steel (2) #3 verts at 13.2 �� Vall= My, allow, k -ft 22.44 steel (2) #4 verts at 23.52 Vall= _ V w s Fd W Project: Vail Firestation M &N # 7938 Engr: LJR Date: 5/5/2010 #3 0.11 #4 0.196 8" Masonry Lintel Capacity (2) #3 0.22 32" bond bm w/ (2)-#6 (2)#4 0.392 Flexure Shear fm, psi 1500 Fv= sgrt(fm) 38.73 psi Fs, psi 24000 Fv, max 50 psi Es, psi 29000000 Fv controlling 38.73 psi Em, psi 1350000 w/o shear reinforcement Lintel Depth, in 32 Vmax, kips 12.61 kips As, in ^2 0.88 d, in 28 bw, in 11.625 with shear reinforcement n =Es /Em 21.48148 Fv= 3 *sgrt(fm 116.19 psi Fv,max 150 psi p= As /bwd 0.002704 Fv controlling 116.19 psi pn= 0.058076 Vmax, 37.82 kips k 0.287647 k= 2M +(M) — s 8 in j =1 -k/3 0.904118 #3 verts at s Fb= psi 500 2Np Vail= 9.24 kips .33fm, {' ✓b masonry jkb #4 verts at s My allow, K -ft 49.38 masonry Vail= 16.464 kips Fs, psi 24000 f A' steel (2) #3 verts at 18.48 __ jd-� Vall= My, allow, k -ft 44.55 steel (2)#4 verts at 32.928 Vail= f = bdd w AV _ V S Fd (7-F -6 Monroe & Newell Engineers, Inc. JOB SHEET NO. OF CALCULATED BY L-A DATE CHECKED BY DATE A kt (7 7A.. L Z. ............. .......... SCALE J' 2 I Monroe & Newell JOB Engineers, Inc. SHEET NO. OF CALCULATED B DATE f CHECKED BY DATE Monroe & Newell JOB 793& Engineers, Inc. SHEET NO. OF CALCULATED BY ` DATE CHECKED BY DATE SCALE Monroe & Newell Engineers, Inc. JOB b 00 6 fI — SHEET NO. y9 OF CALCULATED BY CHECKED BY DATE crei M ......__ .......... _._ .. ....:........... .....__ Project: Vail Firestation M &N # 7938 Engr: LJR Date: 5/10/2010 Masonry Beam Pocket W12x19 beams at grid 3 Properties f'm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900fm 4),flexure,axial 0.8 (D,shear 0.6 Wall Geometry 98.07 must be less than 99 wall depth, t 7.63 in wall width, bw 8 in Bearing plate depth 7.63 in Bearing plate width 8 in Bearing plate area, A, 61.04 in ^2 A Z 244 i n "2 A sgrt(A /A 122.03999 in "2 2A, 122.08 in ^2 max effective bearing area 122.03999 in ^2 Bearing Sresses: Pa, max= 0.25fm 375 psi OPa 36.611998 kips Allowable Axial Load, bearing stresses Axial Stresses: Pier Geometry h 18 ft Ast 1.55 in "2 pier width 32 in pier area, An 244.16 in "2 Pier I, in ^4 1184.52 in ^4 r= sgrt(I /A) 2.20 h/r 98.07 must be less than 99 h /140r 0.70 Pa= (.025f'mAn + 0.65AstFs)*[1- (h/140r) ^2)] 58.95 kips OPa 47.16 kips Allowable Axial Load, axial stresses U" l Project: M &N # Engr: Date: Masonry Beam Pocket rid-3 kJ► 4 � �'Z �j,,r4i� C1l Properties f m, psi Fs, psi Es, psi Em, psi (Mlexure,axial 4),shear Wall Geometry wall depth, t wall width, bw Bearing plate depth Bearing plate width Bearing plate area, A, A A sgrt(A /A 2A, effective bearing area Bearing Sresses: Pa, max= 0.25fm OPa Axial Stresses: Pier Geometry h Ast pier width pier area, An Pier 1, in ^4 r= sgrt(I /A) h/r h/1 40r Pa= (.025f'mAn + 0.65AstFs)*[1- (h/140r) ^2)] OPa Vail Firestation 7938 LJR 5/10/2010 1500 24000 29000000 1350000 900f m 0.8 0.6 11.63 in 12 in 10 in 12 in 120 in ^2 400 in ^2 219.08902 in ^2 240 in ^2 max 219.08902 in ^2 375 psi 65.726707 kips Allowable Axial Load, bearing stresses 18 ft 2.64 in ^2 40 in 465.2 in ^2 5243.46 in "4 3.36 64.34 must be less than 99 0.46 170.09 kips 136.08 kips Allowable Axial Load, axial stresses an Project: Vail Firestation M &N # 7938 Engr: LJR Date: 5/10/2010 Masonry Beam Pocket W24x94 beam at grid 3 Properties fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 (D,flexu re, axial 0.8 0,shear 0.6 Wall Geomet wall depth, t 11.63 in wall width, bw 12 in Bearing plate depth 10 in Bearing plate width 16 in Bearing plate area, A, 160 in ^2 A 2 558.2 in ^2 A, *sgrt(A /A,) 298.85113 in ^2 2A, 320 in ^2 effective bearing area 298.85113 in "2 Bearing Sresses: Pa, max= 0.25f'm 375 psi OPa 89.65534 kips Axial Stresses: Pier Geometry h Ast pier width pier area, An Pier I, in ^4 r= sgrt(I /A) h/r h/1 40r Pa= (.025f'mAn + 0.65AstFs) *[1- (h/140r) ^2)] OPa 900fm max Allowable Axial Load, bearing stresses 18 ft 2.64 in ^2 48 in 558.24 in ^2 6292.15 in ^4 3.36 64.34 must be less than 99 0.46 197.62 kips 158.09 kips Allowable Axial Load, axial stresses Project: Vail Firestation M &N # 7938 Engr: LJR Date: 5/10/2010 Masonry Beam Pocket W12x30 at CMU piers Properties fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900fm (D,flexu re, axial 0.8 q),shear 0.6 Wall Geometry 81.72 must be less than 99 wall depth, t 7.63 in wall width, bw 8 in Bearing plate depth 7.63 in Bearing plate width 8 in Bearing plate area, A, 61.04 in ^2 A 2 274.5 in ^2 A /A 129.44296 in ^2 2A, 122.08 in ^2 max effective bearing area 122.08 in ^2 Bearing Sresses: Pa, max= 0.25f m 375 psi OPa 36.624 kips Allowable Axial Load, bearing stresses Axial Stresses: Pier Geometry h 15 ft Ast 0.62 in "2 pier width 36 in pier area, An 274.68 in ^2 Pier I, in ^4 1332.58 in "4 r= sgrt(I /A) 2.20 h/r 81.72 must be less than 99 h/1 40r 0.58 Pa= (.025fmAn + 0.65AstFs)*[1- (h/140r) ^ 2)] 74.28 kips OPa 59.43 kips Allowable Axial Load, axial stresses r ( Project: Vail Firestation M &N # 7938 Engr: LJR Date: 5/10/2010 Masonry Beam Pocket W12x22 beam at grid 3 Properties f m, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 4),flexure,axial 0.8 O,shear 0.6 Wall Geomet wall depth, t 7.63 in wall width, bw 32 in Bearing plate depth 7.63 in Bearing plate width 12 in Bearing plate area, A, 91.56 in ^2 A2 244.2 in "2 A *sgrt(A /A 149.5291 in ^2 2A, 183.12 in ^2 effective bearing area 149.5291 in ^2 Bearing Sresses: Pa, max= 0.25fm 375 psi OPa 44.85873 kips Axial Stresses: Pier Geometry h Ast pier width pier area, An Pier I, in ^4 r= sgrt(I /A) h/r h /140r Pa= (.025f'mAn + 0.65AstFs) *[1- (h/140r) ^2)] OPa 900f m max Allowable Axial Load, bearing stresses 18 ft 1.86 in ^2 32 in 244.16 in "2 1184.52 in ^4 2.20 98.07 must be less than 99 0.70 61.41 kips 49.13 kips Allowable Axial Load, axial stresses Project: Vail Firestation M &N # 7938 Engr: LJR Date: 5/10/2010 Masonry Beam Pocket W16x36 beam at grid 12 Properties fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 4),flexure,axial 0.8 0,shear 0.6 Wall Geomet wall depth, t 7.63 in wall width, bw 48 in Bearing plate depth 7.63 in Bearing plate width 12 in Bearing plate area, A, 91.56 in 1 2 A2 366.2 in 1 2 A *sgrt(A /A 183.11 in ^2 2A, 183.12 in ^2 effective bearing area 183.11 in ^2 Bearing Sresses: Pa, max= 0.25f'm 375 psi OPa 54.933 kips Axial Stresses: Pier Geometry h Ast pier width pier area, An Pier I, in ^4 r= sgrt(I /A) h/r h /140r Pa= (.025fmAn + 0.65AstFs) *[1- (h/140r) ^2)] OPa 900f m max Allowable Axial Load, bearing stresses 13 ft 0.93 in ^2 32 in 244.16 in ^2 1184.52 in ^4 2.20 70.83 must be less than 99 0.51 78.92 kips 63.14 kips Allowable Axial Load, axial stresses SOB U A I L F �'.�; - 7 Monroe & Newell Engineers Inc. SHEET NO. OF CALCULATED BY Lie DATE CHECKED BY DATE SCALE 2 3 ........................ ....... ........, may. .... ...... ......... MIA- .... <0 12 W ..._ . .. Z ..,F i. is l`F ..... ...... d _ �.. ... ... a i __ .. .... .......... ._. ,.. . r/ – ....,f Y ..,....f .,a,.. —e.� ...... ... .... ..... .... ' ............. _.. .i... i_. _. . -... .... ... 2 Monroe & Newell Engineers, Inc. JOB Vi^ �°� 1` B re- ���� SHEET NO. OF [[�� CALCULATED BY Lp (/ DATE CHECKED BY DATE SCALE Monroe & Newell Engineers, Inc. JOB. SHEET NO. CALCULATED BY CHECKED BY - 7 5'.3 Q OF DATE �3 ` DATE Title : Job # Dsgnr: Date: 3:03PM, 23 MAR 10 Description : Scope : Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 5000 User: KW-0606 38, n inDecgSo Ca ntilevered Retaining Wall Design Page 1 (c)1983 -2003 ENERCALC Engineering Software calcs.ecw:Calculations Description 14' -6" retaining wall Criteria 2,426 psf OK Retained Height = 14.50 ft Wall height above soil = 2.00 ft Slope Behind Wall = 0.00: 1 Height of Soil over Toe = 0.00 in Soil Density = 110.00 pcf Wind on Stem = 0.0 psf Design Summary Total Bearing Load = 17,931 Ibs ...resultant ecc. = 8.83 in Soil Pressure @ Toe = 2,426 psf OK Soil Pressure @ Heel = 990 psf OK Allowable = 2,500 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,939 psf ACI Factored @ Heel = 1,199 psf Footing Shear @ Toe = 20.1 psi OK Footing Shear @ Heel = 103.3 psi OK Allowable = 107.5 psi Wall Stability Ratios Ibs = Overturning = 2.92 OK Sliding = 0 ( Vertica Sliding Calcs (Vertical Component Used) Soil Data Allow Soil Bearing = 2,500.0 psf Equivalent Fluid Pressure Method Heel Active Pressure = 60.0 psf /ft Toe Active Pressure = 0.0 psf /ft Passive Pressure = 300.0 psf /ft Water height over heel = 0.0 ft FootingIlSoil Friction = 0.300 Soil height to ignore for passive pressure = 0.00 in Stem Construction 7,840.8 Ibs Design height ft= Wall Material Above "Ht" _ Thickness = Rebar Size = Rebar Spacing = Rebar Placed at = Design Data 12,479 0 ft-# fb /FB + fa /Fa = Total Force @ Section Ibs = Moment.... Actual ft-#= Moment..... Allowable = Shear..... Actual psi = Shear..... Allowable psi = ICo 0.924 10,722.8 51, 826.6 56, 065.5 77.3 93.1 Bar Develop ABOVE Ht. in = 37.38 Bar Lap /Hook BELOW Ht. in = 10.64 Lateral Sliding Force 7,840.8 Ibs less 100% Passive Force= - 416.7 Ibs less 100% Friction Force= - 5,379.3 Ibs Added Force Req'd = 2;044.8 I ....for 1.5 : 1 Stability = 6 . Footing Design Results psi= Toe Heel Factored Pressure = 2,939 1,199 psf Mu': Upward = 12,479 0 ft-# Mu': Downward = 1,575 77,785 ft-# Mu: Design = 10,904 77,785 ft-# Actual 1 -Way Shear = 20.14 103.34 psi Allow 1 -Way Shear = 107.52 107.52 psi Toe Reinforcing = # 6 @ 19.25 in Heel Reinforcing = # 7 @ 6.75 in Key Reinforcing = None Spec'd Wall Weight = 169.2 Rebar Depth 'd' in= 11.56 Masonry Data Heel Width = 7.50 fm psi= Footing Thickness = Fs psi = 12.00 in Solid Grouting = Key Distance from Toe = Special Inspection = Modular Ratio'n' _ Short Term Factor = Equiv. Solid Thick. _ Masonry Block Type = Normal Weight Concrete Data fc psi = 3,000.0 Fy psi = 60,000.0 Other Acceptable Sizes S Spacings Toe: #4@ 8.75 in, #5@ 13.50 in, #6@ 19.25 in, #7@ 26.00 in, #8@ 34.25 in, #9@ 43 Heel: #4@ 2.25 in, #5@ 3.50 in, #6@ 5.00 in, #7@ 6.75 in, #8@ 8.75 in, #9@ 11.00 Key: Not req'd, Mu < S * Fr )p Stem Stem OK 0.00 Concrete 14.00 # 7 6.00 Edge Footing Strengths & Dimensions fc = 4,000 psi Fy = 60,000 psi Min. As % = 0.0014 Toe Width = 3.00 ft Heel Width = 7.50 Total Footing Width Footing Thickness = 20.00 in Key Width = 12.00 in Key Depth = 0.00 in Key Distance from Toe = 1.33 ft Cover @ Top = 3.00 in @ Btm.= 3.00 in 6 (0L Title : Job # Dsgnr: Date: 3:03PM, 23 MAR 10 Description Scope : Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 Page 2 User: KW- 0606238, Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design (c)1983 -2003 ENERCALC Engineering Software calcs.ecw:Calculations Description 14' -6" retaining wall Summary of Overturninq & Resisting Forces & Moments .....OVERTURNING..... .....RESISTING..... Force Distance Moment Force Distance Moment Item Ibs ft ft-# Ibs ft ft-# Heel Active Pressure = 7,840.8 5.39 42,253.4 Soil Over Heel = 10,101.7 7.33 74,078.9 Toe Active Pressure = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = SeismicLoad = Total = 7,840.8 O.T.M. = 42,253.4 Resisting /Overturning Ratio = 2.92 Vertical Loads used for Soil Pressure = 17,931.1 Ibs Vertical component of active pressure used for soil pressure Sloped Soil Over Heel Surcharge Over Heel Adjacent Footing Load Axial Dead Load on Stem= 0.00 Soil Over Toe = Surcharge Over Toe = Stem Weight(s) = 2,791.3 3.58 Earth @ Stem Transitions= Footing Weight = 2,625.0 5.25 Key Weight = 1.83 Vert. Component = 2,413.2 10.50 Total = 17,931.1 Ibs R.M.= 10,002.0 13,781.2 25,338.4 123,200.4 Title : Job # Dsgnr: Date: 2:59PM, 23 MAR 10 Description Scope : Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 5000 � Rev, , : 580014 Page 1 U se KW- D606238, Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design )1 183 -2003 ENERC Engineering Software calcs. ecw: Calculations Description 11.5' retaining wall Criteria -� Retained Height = 11.50 ft Wall height above soil = 7.00 ft Slope Behind Wall = 0.00: 1 Height of Soil over Toe = 0.00 in Soil Density = 110.00 pcf Wind on Stem = 0.0 psf Design Summary Total Bearing Load = 11,889 Ibs ...resultant ecc. = 9.02 in Soil Pressure @ Toe = 2,324 psf OK Soil Pressure @ Heel = 649 psf OK Allowable = 2,500 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,848 psf ACI Factored @ Heel = 795 psf Footing Shear @ Toe = 22.0 psi OK Footing Shear @ Heel = 100.0 psi OK Allowable = 107.5 psi Wall Stability Ratios Total Force @ Section LSoil Data = Allow Soil Bearing = 2,500.0 psf Equivalent Fluid Pressure Method Heel Active Pressure = 60.0 psf /ft Toe Active Pressure = 0.0 psf /ft Passive Pressure = 300.0 psf /ft Water height over heel = 0.0 ft FootingIlSoil Friction = 0.300 Soil height to ignore for passive pressure = 0.00 in Stem Construction = Design height ft= Wall Material Above "Ht" _ Thickness = Rebar Size = Rebar Spacing = Rebar Placed at = Design Data Solid Grouting fb /FB + fa /Fa = Total Force @ Section Ibs = Moment.... Actual ft-#= Moment..... Allowable = Shear..... Actual psi = Shear Allowable psi = Overturning = 2.90 OK Sliding = 0.78 (Vertical Co Sliding Calcs (Vertical Component Used) Lateral Sliding Force = 4,813.3 Ibs less 100% Passive Force= - 204.2 Ibs less 100% Friction Force= - 3,566.7 Ibs Added Force Req'd = 1,042.5 Ibs NG ....for 1.5 : 1 Stability = 3,449.2 Ibs NG F Design Results Toe Heel Factored Pressure = 2,848 795 psf Mu': Upward = 5,353 0 ft-# Mu': Downward = 490 37,792 ft-# Mu: Design = 4,863 37,792 ft-# Actual 1 -Way Shear = 21.95 99.99 psi Allow 1 -Way Shear = 107.52 107.52 psi Toe Reinforcing = # 6 @ 30.00 in Heel Reinforcing = # 6 @ 6.25 in Key Reinforcing = None Spec'd 0.970 6,744.8 25,854.9 26,658.7 58.4 93.1 Bar Develop ABOVE Ht. in = 25.63 Bar Lap /Hook BELOW Ht. in = 9.64 Wall Weight = 145.0 Rebar Depth 'd' in= 9.63 Masonry Data Heel Width = 6.00 fm psi = Footing Thickness = Fs psi = 12.00 in Solid Grouting = Key Distance from Toe = Special Inspection = Modular Ratio'n' _ Short Term Factor = Equiv. Solid Thick. _ Masonry Block Type = Normal Weight Concrete Data fc psi = 3,000.0 Fy psi = 60,000.0 Other Acceptable Sizes & Spacings Toe: #4@ 13.75 in, #5@ 21.25 in, #6@ 30.00 in, #7@ 41.00 in, #8@ 48.25 in, #9@ 4 Heel: #4@ 3.00 in, #5@ 4.50 in, #6@ 6.25 in, #7@ 8.50 in, #8@ 11.25 in, #9@ 14.25 Key: Not req'd, Mu < S' Fr Footing Strengths & Dimensions fc = 4,000 psi Fy = 60,000 psi Min. As % = 0.0014 Toe Width = 2.00 ft Heel Width = 6.00 Total Footing Width = x.06 Footing Thickness = 14.00 in Key Width = 12.00 in Key Depth = 0.00 in Key Distance from Toe = 1.33 ft )p Stem Stem OK 0.00 Concrete 12.00 # 6 8.00 Edge Cover @ Top = 3.00 in @ Btm.= 3.00 in 0104 Title : Job # Dsgnr: Date: 2:59PM, 23 MAR 10 Description Scope : Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 Page 2 User: KW- 0606238, Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design g (c)1983 -2003 ENERCALC Engineering Software calcs.ecw:Calculations Description 11.5' retaining wall summary of overturning & Resisting Forces & Moments .....OVERTURNING..... .....RESISTING..... Force Distance Moment Force Distance Moment Item Ibs ft ft -# Ibs ft ft-# Heel Active Pressure = 4,813.3 4.22 20,323.0 Soil Over Heel = 6,325.0 5.50 34,787.5 Toe Active Pressure = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = SeismicLoad = Total = 4,813.3 O.T.M. = 20,323.0 Resisting /Overturning Ratio = 2.90 Vertical Loads used for Soil Pressure = 11,888.9 Ibs Vertical component of active pressure used for soil pressure Sloped Soil Over Heel = Surcharge Over Heel = Adjacent Footing Load = Axial Dead Load on Stem= Soil Over Toe = Surcharge Over Toe = Stem Weight(s) _ Earth @ Stem Transitions= Footing Weight = Key Weight = Vert. Component = Total = 0.00 2,682.5 2.50 6,706.3 1,400.0 4.00 5,600.0 1.83 1,481.4 8.00 11,851.2 11,888.9 Ibs R.M.= 58,944.9 I -1oa Title : Job # Dsgnr: Date: 11:01 AM, 10 MAY 10 Description Scope : Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 Page 1 User: KW- 0606238, Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design (c)1983 -2003 ENERCALC Engineer Software calcs.ecw:Calculations Description 2.5' retaining wall Criteria 423 psf OK Retained Height = 2.50 ft Wall height above soil = 0.00 ft Slope Behind Wall = 0.00: 1 Height of Soil over Toe = 0.00 in Soil Density = 110.00 pcf Wind on Stem = 0.0 psf Design Summary Total Bearing Load = 917 Ibs ...resultant ecc. = 0.77 in Soil Pressure @ Toe = 423 psf OK Soil Pressure @ Heel = 311 psf OK Allowable = 2,500 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 526 psf ACI Factored @ Heel = 386 psf Footing Shear @ Toe = 1.3 psi OK Footing Shear @ Heel = 10.6 psi OK Allowable = 107.5 psi Wall Stability Ratios Total Force @ Section LSoil Data T Allow Soil Bearing = 2,500.0 psf Equivalent Fluid Pressure Method Heel Active Pressure = 60.0 psf /ft Toe Active Pressure = 0.0 psf /ft Passive Pressure = 300.0 psf /ft Water height over heel = 0.0 ft FootingIlSoil Friction = 0.300 Soil height to ignore for passive pressure = 0.00 in Stem Construction T Design height ft= Wall Material Above "Ht" _ Thickness = Rebar Size = Rebar Spacing = Rebar Placed at = Design Data Solid Grouting fb /FB + fa /Fa = Total Force @ Section Ibs = Moment.... Actual ft-#= Moment..... Allowable = Shear..... Actual psi = Shear _Allowahle nsi = Overturning = 3.94 OK Sliding = 1.14 (Vertical Co Sliding Calcs (Vertical Component Used) Lateral Sliding Force = 333.3 Ibs less 100% Passive Force= - 104.2 Ibs less 100% Friction Force= - 275.2 Ibs Added Force Req'd = 0.0 Ibs OK ....for 1.5 : 1 Stability = 120.7 Ibs NG Footing Design Results Toe Heel Factored Pressure = 526 386 psf Mu': Upward = 177 0 ft-# Mu': Downward = 61 585 ft-# Mu: Design = 116 585 ft-# Actual 1 -Way Shear = 1.28 10.61 psi Allow 1 -Way Shear = 107.52 107.52 psi Toe Reinforcing = # 6 @ 14.00 in Heel Reinforcing = # 7 @ 6.75 in Key Reinforcing = None Spec'd 0.071 318.8 265.6 3,759.8 8.9 93.1 Bar Develop ABOVE Ht. in = 21 Bar Lap /Hook BELOW Ht. in = Wall Weight = Rebar Depth 'd' in= Masonry Data fm psi = Fs psi = Solid Grouting = Special Inspection = Modular Ratio'n' _ Short Term Factor = Equiv. Solid Thick. _ Masonry Block Type = Normal Weight Concrete Data fc psi = 3,0 Fy psi = 60,0 00.0 00.0 Other Acceptable Sizes & Spacings Toe: Not req'd, Mu < S * Fr Heel: Not req'd, Mu < S * Fr Key: Not req'd, Mu < S * Fr Footing Strengths & Dimensions fc = 4,000 psi Fy = 60,000 psi Min. As % = 0.0014 Toe Width = 0.83 ft Heel Width = 1.67 W Total Footing Width = _ Footing Thickness = 10.00 in Key Width = 12.00 in Key Depth = 0.00 in Key Distance from Toe = 5.50 ft Cover @ Top = 3.00 in @ Btm.= 3.00 in )p Stem Stem OK 0.00 Concrete 6.00 # 5 12.00 Center .36 6.00 72.5 3.00 &1 6� Title : Job # Dsgnr: Date: 11:01 AM, 10 MAY 10 Description Scope : Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 Page 2 User: KW- 0606238, Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design g (c)1983 -2003 ENERCALC Engineering Software calcs.ecw:Calculations Description 2.5' retaining wall Summary of Overturning & Resisting Forces & Moments .....OVERTURNING..... .....RESISTING..... Force Distance Moment Force Distance Moment Item Ibs ft ft-# Ibs ft ft-# Heel Active Pressure = Toe Active Pressure = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = Seismicl-oad = 333.3 1.11 370.4 Total = 333.3 O.T.M. = 370.4 Resisting /Overturning Ratio = 3.94 Vertical Loads used for Soil Pressure = 917.3 Ibs Vertical component of active pressure used for soil pressure Soil Over Heel = Sloped Soil Over Heel = Surcharge Over Heel = Adjacent Footing Load = Axial Dead Load on Stem= Soil Over Toe = Surcharge Over Toe = Stem Weight(s) _ Earth @ Stem Transitions= Footing Weight = Key Weight = Vert. Component = Total = 320.9 1.92 615.1 0.00 181.3 1.08 196.3 312.5 1.25 390.6 6.00 102.6 2.50 256.5 917.3 Ibs R.M.= 1,458.4 CI al- Title : Job # Dsgnr: Date: 11:01AM, 10 MAY 10 Description Scope : Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 User: KW- 0606238, Ver 5.8.0, 1- Dec -2003 Page 1 (c) 1983- 2003ENERCALC Engineering Software Cantilevered Retaining Wall Design calcs. ecw: Calculations Description 8' retaining wall Criteria 248 psf OK Retained Height = 8.00 ft Wall height above soil = 0.00 ft Slope Behind Wall = 0.00: 1 Height of Soil over Toe = 0.00 in Soil Density = 110.00 pcf Wind on Stem = 0.0 psf Design Summary Total Bearing Load = 6,604 Ibs ...resultant ecc. = 12.48 in Soil Pressure @ Toe = 248 psf OK Soil Pressure @ Heel = 1,073 psf OK Allowable = 2,500 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 305 psf ACI Factored @ Heel = 1,319 psf Footing Shear @ Toe = 9.1 psi OK Footing Shear @ Heel = 39.4 psi OK Allowable = 107.5 psi Wall Stability Ratios Total Force @ Section Overturning = 5.91 OK Sliding = 0,86 (Vertic Sliding Calcs (Vertical Component Used) Soil Data Allow Soil Bearing = 2,500.0 psf Equivalent Fluid Pressure Method Heel Active Pressure = 60.0 psf /ft Toe Active Pressure = 0.0 psf /ft Passive Pressure = 300.0 psf /ft Water height over heel = 0.0 ft FootingllSoil Friction = 0.300 Soil height to ignore for passive pressure = 0.00 in Stem Construction 2,613.3 Ibs Design height ft= Wall Material Above "Ht" _ Thickness = Rebar Size = Rebar Spacing = Rebar Placed at = Design Data 9,142 0 ft-# fb /FB + fa /Fa = Total Force @ Section Ibs = Moment.... Actual ft-# = Moment..... Allowable = Shear..... Actual psi = Rhaar Alinminhla -i = al Co Lateral Sliding Force 2,613.3 Ibs less 100% Passive Force= - 266.7 Ibs less 100% Friction Force= - 1,981.3 Ibs Added Force Req'd = 365.4 Ibs NG ....for 1.5 : 1 Stability = 1,672.0 Ibs NG Footing Design Results psi = Toe Heel Factored Pressure = 305 1,319 psf Mu': Upward = 9,142 0 ft-# Mu': Downward = 5,040 10,906 ft-# Mu: Design = 4,102 10,906 ft-# Actual 1 -Way Shear = 9.14 39.36 psi Allow 1 -Way Shear = 107.52 107.52 psi Toe Reinforcing = # 6 @ 30.00 in Heel Reinforcing = # 6 @ 6.25 in Key Reinforcing = None Spec'd 0.630 3,264.0 8,704.0 13,811.2 28.3 93.1 Bar Develop ABOVE Ht. in = 25.63 Bar Lap /Hook BELOW Ht. in = 6.20 Wall Weight = 145.0 Rebar Depth 'd' in = 9.63 Masonry Data Heel Width = 4.00 fm psi = Footing Thickness = Fs psi = 12.00 in Solid Grouting = Key Distance from Toe = Special Inspection = Modular Ratio 'n' _ Short Term Factor = Equiv. Solid Thick. _ Masonry Block Type = Normal Weight Concrete Data fc psi = 3,000.0 Fy psi = 60,000.0 Other Acceptable Sizes & Spacings Toe: Not req'd, Mu < S * Fr Heel: #4@ 9.25 in, #5@ 14.50 in, #6@ 20.25 in, #7@ 27.75 in, #8@ 36.50 in, #9@ 46 Key: Not req'd, Mu < S * Fr )p Stem Footing Strengths & Dimensions fc = 4,000 psi Fy = 60,000 psi Min. As % = 0.0014 Toe Width = 6.00 ft Heel Width = 4.00 Total Footing Width = ------- T0:w Footing Thickness = 16.00 in Key Width = 12.00 in Key Depth = 0.00 in Key Distance from Toe = 1.33 ft Cover @ Top = 3.00 in @ Btm.= 3.00 in Stem OK 0.00 Concrete 12.00 # 6 16.00 Edge o5 Title : Job # Dsgnr: Date: 11:01 AM, 10 MAY 10 Description Scope: Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 Page 2 User: KW- 0606238, Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design (c)1983 -2003 ENERCALC Engineering Software _. calcs.ecw:Calculations Description 8' retaining wall Summaa of Overturning & Resistin Forces &Moments .....OVERTURNING..... .....RESISTING..... Force Distance Moment Force Distance Moment 1"— u 44 * IKQ ff ft-* Heel Active Pressure = 2,613.3 3.11 8,130.4 Toe Active Pressure = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = SeismicLoad = Total = 2,613.3 O.T.M. = 8,130.4 Resisting /Overturning Ratio = 5.91 Vertical Loads used for Soil Pressure = 6,604.3 Ibs Vertical component of active pressure used for soil pressure Soil Over Heel = Sloped Soil Over Heel = Surcharge Over Heel = Adjacent Footing Load = Axial Dead Load on Stem = Soil Over Toe = Surcharge Over Toe = Stem Weight(s) _ Earth @ Stem Transitions= Footing Weight = Key Weight = Vert. Component = Total = 2,640.0 8.50 22,440.0 0.00 1,160.0 6.50 7,540.0 2,000.0 5.00 1.83 804.3 10.00 6,604.3 Ibs R.M.= 9,999.9 8.043.1 Title : Job # Dsgnr: Date: 11:01AM, 10 MAY 10 Description Scope: Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 User: KW- 0606238, Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design Page 1 (c)1983 -2003 ENERCALC Engineering Software calcs.ecw:Calculations Description 17' retaining wall Criteria 2,403 psf OK Retained Height = 17.00 ft Wall height above soil = 1.00 ft Slope Behind Wall = 0.00: 1 Height of Soil over Toe = 0.00 in Soil Density = 110.00 pcf Wind on Stem = 0.0 psf Design Summary Total Bearing Load = 23,203 Ibs ...resultant ecc. = 7.62 in Soil Pressure @ Toe = 2,403 psf OK Soil Pressure @ Heel = 1,286 psf OK Allowable = 2,500 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,881 psf ACI Factored @ Heel = 1,542 psf Footing Shear @ Toe = 26.2 psi OK Footing Shear @ Heel = 106.4 psi OK Allowable = 107.5 psi Wall Stability Ratios 23,302 107,370 ft -# Overturning = 2.91 OK Sliding = 0.70 (Vertic Sliding Calcs (Vertical Component Used) Soil Data Allow Soil Bearing = 2,500.0 psf Equivalent Fluid Pressure Method Heel Active Pressure = 60.0 psf /ft Toe Active Pressure = 0.0 psf /ft Passive Pressure = 300.0 psf /ft Water height over heel = 0.0 ft FootingIlSoil Friction = 0.300 Soil height to ignore for passive pressure = 0.00 in Stem Construction Design height ft= Wall Material Above "Ht" _ Thickness = Rebar Size = Rebar Spacing = Rebar Placed at = Design Data fb /FB + fa /Fa = Total Force @ Section Ibs = Moment.... Actual ft-# = Moment..... Allowable = Shear..... Actual psi = Shear..... Allowable psi = al Co Lateral Sliding Force = 10,830.0 Ibs less 100% Passive Force= - 600.0 Ibs less 100% Friction Force= - 6,961.0 Ibs Added Force Req'd = 3,269.0 Ibs NG ....for 1.5: 1 Stability = 8,684.0 Ibs NG Footing Design Results fm Toe Heel Factored Pressure = 2,881 1,542 psf Mu': Upward = 27,554 0 ft-# Mu': Downward = 4,253 107,370 ft-# Mu: Design = 23,302 107,370 ft -# Actual 1 -Way Shear = 26.24 106.35 psi Allow 1 -Way Shear = 107.52 107.52 psi Toe Reinforcing = # 6 @ 15.50 in Heel Reinforcing = # 8 @ 8.00 in Key Reinforcing = None Spec'd 0.983 14,739.0 83,521.0 84, 938.4 91.0 93.1 Bar Develop ABOVE Ht. in = 42.72 Bar Lap /Hook BELOW Ht. in = 13.02 Wall Weight = 193.3 Rebar Depth 'd' in= 13.50 Masonry Data Heel Width = 8.08 fm psi = Footing Thickness = Fs psi = 12.00 in Solid Grouting = Key Distance from Toe = Special Inspection = Modular Ratio'n' _ Short Term Factor = Equiv. Solid Thick. _ Masonry Block Type = Normal Weight Concrete Data fc psi = 3,000.0 Fy psi= 60,000.0 Other Acceptable Sizes & Spacings Toe: #4@ 7.00 in, #5@ 11.00 in, #6@ 15.50 in, #7@ 21.00 in, #8@ 27.75 in, #9@ 35 Heel: #4@ 2.00 in, #5@ 3.25 in, #6@ 4.50 in, #7@ 6.00 in, #8@ 8.00 in, #9@ 10.00 Key: Not req'd, Mu < S * Fr )p Stem Footing Strengths & Dimensions fc = 4,000 psi Fy = 60,000 psi Min. As % = 0.0014 Toe Width = 4.50 ft Heel Width = 8.08 Total Footing Width = �2.W Footing Thickness = 24.00 in Key Width = 12.00 in Key Depth = 0.00 in Key Distance from Toe = 5.50 ft Cover @ Top = 3.00 in @ Btm.= 3.00 in Stem OK 0.00 Concrete 16.00 # 8 6.00 Edge 6-[ I b Title : Job # Dsgnr: Date: 11:01AM, 10 MAY 10 Description Scope: Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 500 Rev: 580014 User: KW- 0606238, Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design Page 2 (c)1983 -2003 ENERCALC Engineering Software calcs.ecw:Calculations Description 17' retaining wall Summaa of Overturning & Resisting Forces & Moments .....OVERTURNING..... .....RESISTING..... Force Distance Moment Force Distance Moment Item Ibs ft ft-# Ibs ft ft-# Meet Active Nressure = 10,830.0 6.33 68,590.0 Toe Active Pressure = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = SeismicLoad = Total = 10,830.0 O.T.M. = 68,590.0 Resisting /Overturning Ratio = 2.91 Vertical Loads used for Soil Pressure = 23,203.4 Ibs Vertical component of active pressure used for soil pressure Soil Over Heel = Sloped Soil Over Heel = Surcharge Over Heel = Adjacent Footing Load = Axial Dead Load on Stem = Soil Over Toe = Surcharge Over Toe = Stem Weight(s) _ Earth @ Stem Transitions= Footing Weight = Key Weight = Vert. Component = Total = 12,616.3 9.21 116,153.8 0.00 3,480.0 5.17 17,980.0 3,774.0 6.29 23,738.3 6.00 3,333.2 12.58 41,931.1 23,203.4 Ibs R.M.= 199,803.2 Title : Job # Dsgnr: Date: 11:01AM, 10 MAY 10 Description Scope : Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 5000 User: KW- 0606238, Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design Page 1 ' (c)1983 -2003 ENERCALC Engineering Software calcs.ecw:Calculations Description 17' retaining wall Criteria 2,472 psf OK Retained Height = 14.00 ft Wall height above soil = 1.00 ft Slope Behind Wall = 0.00: 1 Height of Soil over Toe = 0.00 in Soil Density = 110.00 pcf Wind on Stem = 0.0 psf Design Summary Total Bearing Load = 14,701 Ibs ...resultant ecc. = 10.62 in Soil Pressure @ Toe = 2,472 psf OK Soil Pressure @ Heel = 679 psf OK Allowable = 2,500 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,939 psf ACI Factored @ Heel = 807 psf Footing Shear @ Toe = 24.9 psi OK Footing Shear @ Heel = 97.4 psi OK Allowable = 107.5 psi Wall Stability Ratios = Overturning = 2.49 OK Sliding = 0.66 (Vertical Sliding Calcs (Vertical Component Used) Soil Data Allow Soil Bearing = 2,500.0 psf Equivalent Fluid Pressure Method Heel Active Pressure = 60.0 psf /ft Toe Active Pressure = 0.0 psf /ft Passive Pressure = 300.0 psf /ft Water height over heel = 0.0 ft FootingIlSoil Friction = 0.300 Soil height to ignore for passive pressure = 0.00 in Stem Construction = 7,207.5 Ibs Design height ft= Wall Material Above "Ht" _ Thickness = Rebar Size = Rebar Spacing = Rebar Placed at = Design Data 12,197 0 ft-# Mu': Downward = fb /FB + fa /Fa = Total Force @ Section Ibs = Moment.... Actual ft-# = Moment..... Allowable = Shear..... Actual psi = Rhaar Allmmnhla -i = ICo Lateral Sliding Force = 7,207.5 Ibs less 100% Passive Force= - 337.5 Ibs less 100% Friction Force= - 4,410.2 Ibs Added Force Req'd = 2,459.8 Ibs NG ....for 1.5 : 1 Stability = 6,063.5 Ibs NG Footing Design Results psi = Toe Heel Factored Pressure = 2,939 807 psf Mu': Upward = 12,197 0 ft-# Mu': Downward = 1,418 55,199 ft-# Mu: Design = 10,779 55,199 ft-# Actual 1 -Way Shear = 24.91 97.36 psi Allow 1 -Way Shear = 107.52 107.52 psi Toe Reinforcing = # 6 @ 15.50 in Heel Reinforcing = # 8 @ 8.00 in Key Reinforcing = None Spec'd 0.826 9,996.0 46,648.0 56,498.4 87.7 93.1 Bar Develop ABOVE Ht. in = 42.72 Bar Lap /Hook BELOW Ht. in = 10.54 Wall Weight = 145.0 Rebar Depth 'd' in= 9.50 Masonry Data Heel Width = 6.33 fm psi = Footing Thickness = Fs psi = 12.00 in Solid Grouting = Key Distance from Toe = Special Inspection = Modular Ratio 'n' _ Short Term Factor = Equiv. Solid Thick. _ Masonry Block Type = Normal Weight Concrete Data fc psi = 3,000.0 Fy psi = 60,000.0 Other Acceptable Sizes & Spacings Toe: #4@ 10.00 in, #5@ 15.50 in, #6@ 21.75 in, #7@ 29.75 in, #8@ 39.00 in, #9@ 4 Heel: #4@ 2.75 in, #5@ 4.25 in, #6@ 6.00 in, #7@ 8.25 in, #8@ 10.75 in, #9@ 13.75 Key: Not req'd, Mu < S " Fr )p Stem Footing Strengths & Dimensions fc = 4,000 psi Fy = 60,000 psi Min. As % = 0.0014 Toe Width = 3.00 ft Heel Width = 6.33 Total Footing Width Footing Thickness = 18.00 in Key Width = 12.00 in Key Depth = 0.00 in Key Distance from Toe = 0.00 ft Cover @ Top = 3.00 in @ Btm.= 3.00 in Stem OK 0.00 Concrete 12.00 # 8 6.00 Edge G1(7- Title : Job # Dsgnr: Date: 11:01AM, 10 MAY 10 Description Scope : Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 500 Rev: 580014 User: KW- 0606238, Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design Page 2 (c)1983 -2003 ENERCALC Engineering Software calcs.ecw:Calculations Description 17' retaining wall Summaa of Overturning & Resisting Forces & Moments .....OVERTURNING..... .....RESISTING..... Force Distance Moment Force Distance Moment Item Ibs ft ft-# Ibs ft ft-# Heel Active Fressure = 7,207.5 5.17 37,238.8 Toe Active Pressure = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = SeismicLoad = Total = 7,207.5 O.T.M. = 37,238.8 Resisting /Overturning Ratio = 2.49 Vertical Loads used for Soil Pressure = 14,700.7 Ibs Vertical component of active pressure used for soil pressure Soil Over Heel = Sloped Soil Over Heel = Surcharge Over Heel = Adjacent Footing Load = Axial Dead Load on Stem = Soil Over Toe = Surcharge Over Toe = Stem Weight(s) _ Earth @ Stem Transitions= Footing Weight = Key Weight = Vert. Component = Total = 8,208.2 6.67 54,707.7 0.00 2,175.0 3.50 7,612.5 2,099.2 4.67 0.50 2,218.3 9.33 14,700.7 Ibs R.M.= 9,792.9 ?n Est; 4 . 7 Title : Job # Dsgnr: Date: 11:02AM, 10 MAY 10 Description Scope : Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 5000 User: KW-0606238, Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design Page 1 (c)1983 -2003 ENERCALC Engineering Software calcs.ecw:Calculations Description 4' ret wall at elevator pit Criteria 1,214 psf OK Retained Height = 4.00 ft Wall height above soil = 0.00 ft Slope Behind Wall = 0.00: 1 Height of Soil over Toe = 0.00 in Soil Density = 110.00 pcf Wind on Stem = 0.0 psf Design Summary Total Bearing Load = 1,433 Ibs ...resultant ecc. = 5.56 in Soil Pressure @ Toe = 1,214 psf OK Soil Pressure @ Heel = 0 psf OK Allowable = 2,500 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 1,426 psf ACI Factored @ Heel = 0 psf Footing Shear @ Toe = 1.4 psi OK Footing Shear @ Heel = 11.9 psi OK Allowable = 107.5 psi Wall Stability Ratios = Overturning = 1.90 OK Sliding = 0,77 (Vertic Sliding Calcs (Vertical Component Used) Soil Data ---------------- - - - - -- Allow Soil Bearing = 2,500.0 psf Equivalent Fluid Pressure Method Heel Active Pressure = 60.0 psf /ft Toe Active Pressure = 0.0 psf /ft Passive Pressure = 300.0 psf /ft Water height over heel = 0.0 ft FootingIlSoil Friction = 0.300 Soil height to ignore for passive pressure = 0.00 in Stem Construction = 750.0 Ibs Design height ft= Wall Material Above "Ht" _ Thickness = Rebar Size = Rebar Spacing = Rebar Placed at = Design Data 436 0 ft-# Mu': Downward = fb /FB + fa /Fa = Total Force @ Section Ibs = Moment.... Actual ft-#= Moment..... Allowable = Shear..... Actual psi = Shear..... Allowable psi = al Co Lateral Sliding Force = 750.0 Ibs less 100% Passive Force= - 150.0 Ibs less 100% Friction Force= - 429.8 Ibs Added Force Req'd = 170.2 Ibs NG ....for 1.5 : 1 Stability = 545.2 Ibs NG Footing Design Results psi = Toe Heel Factored Pressure = 1,426 0 psf Mu': Upward = 436 0 ft-# Mu': Downward = 73 806 ft-# Mu: Design = 364 806 ft-# Actual 1 -Way Shear = 1.44 11.95 psi Allow 1 -Way Shear = 107.52 107.52 psi Toe Reinforcing = # 5 @ 18.00 in Heel Reinforcing = # 5 @ 18.00 in Key Reinforcing = None Spec'd 0.211 816.0 1,088.0 5,154.8 17.0 93.1 Bar Develop ABOVE Ht. in = 21.36 Bar Lap /Hook BELOW Ht. in = 6.00 Wall Weight = 96.7 Rebar Depth 'd' in = 4.00 Masonry Data fm psi = Fs psi = Solid Grouting = Special Inspection = Modular Ratio'n' _ Short Term Factor = Equiv. Solid Thick. _ Masonry Block Type = Normal Weight Concrete Data fc psi = 3,000.0 Fy psi = 60,000.0 Other Acceptable Sizes & Spacings Toe: Not req'd, Mu < S * Fr Heel: Not req'd, Mu < S * Fr Key: Not req'd, Mu < S * Fr )p Stem Footing Strengths & Dimensions fc = 4,000 psi Fy = 60,000 psi Min. As % = 0.0014 Toe Width = 0.83 ft Heel Width = 1.67 Total Footing Width = ----- - tf Footing Thickness = 12.00 in Key Width = 12.00 in Key Depth = 0.00 in Key Distance from Toe = 5.50 ft Cover @ Top = 3.00 in @ Btm.= 3.00 in Stem OK 0.00 Concrete 8.00 # 5 12.00 Center 014 Title : Job # Dsgnr: Date: 11:02AM, 10 MAY 10 Description Scope : Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580014 User: KW- 0606238, Ver5.8.0, 1- Dec -2003 Cantilevered Retaining Wall Design Page 2 (c)1983 -2003 ENERCALC Engineering Software g g n ...... , ,,, ,;__ Description 4' ret wall at elevator pit Summary of overturnin & Resisting Forces & Moments .....OVERTURNING..... .....RESISTING..... Force Distance Moment Force Distance Moment Item Ibs ft ft-# Ibs ft ft-# Heel Active Pressure = 750.0 1.67 1,250.0 Soil Over Heel = 440.1 2.00 880.2 Toe Active Pressure = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = Seismicl-oad = Total = 750.0 Resisting /Overturning Ratio Vertical Loads used for Soil Pressure = O.T.M. = 1,250.0 1.90 1,432.6 Ibs Vertical component of active pressure used for soil pressure Sloped Soil Over Heel Surcharge Over Heel Adjacent Footing Load Axial Dead Load on Stem= 0.00 Soil Over Toe = Surcharge Over Toe = Stem Weight(s) = 386.7 1.17 451.0 Earth @ Stem Transitions= Footing Weight = 375.0 1.25 468.7 Key Weight = 6.00 Vert. Component = 230.8 2.50 577.1 Total = 1,432.6 Ibs R.M.= 2,377.0 G -III Monroe & Newell Engineers, Inc. PRODUCT 204.1 (Single Sheets) 205-1 (Padded) JOB (1 Gt l {0 E — 7 9 J6 SHEET NO. OF CALCULATED BY V43— DATE ( 4 - 1 - 10 CHECKED BY DATE Monroe & Newell JOB VAAJ ` 7�3k Engineers Inc. SHEET NO. OF CALCULATED BY L DATE — 4 ` T _r b CHECKED BY DATE crni F Monroe & Newell Engineers, Inc. JOB bu, SHEET NO. CALCULATED BY bfb CHECKED BY SCALE OF DATE .......... 9 (Im 49 2- ... . ....... 1 ISinale Sheets) 205-1 (Padded) Monroe & Newell Engineers, Inc. JOB SHEET. NO. �y OF CALCULATED BY � DATE CHECKED BY DATE W UAICIoseci Buildings es Walls & Ro O f SlmPlified Design Wind Pressure S P$30 (PSf) (Exposure B at h _ I - 30 ft., K:r = 1. 0, with t = 1 I II Basic Wind Roof m O) S p e ed Angle a Zones Horizontal Pressures (mph) (degrees) ° A B Vertical Pressures I � 0 to 51 D D E F Overhangs 1 11.5 6 G I 10° 1 12.9 -5.4 . 3.5 -13.8 -7.8 --9.6 H E.3 G � I j p 15° 1 14.4 4.8 8.6 -3.1 -13.8 -8.4 -9.6 6.5 19.3 -15.1 85 20° 1 9.6 -2.7 -13.8 90 19.3 -15.1 25° 1 14.4 15.9 4.2 10.6 -2.3 -13.8 - .9.6 9.6 6.5 -6.9 -19.3 -15.1 I 2.3 10.4 2.4 -9.6 -7.3 -19.3 II 2 -- - - -- 8 -6.4 -8.7 4.6 15.1 I i 30 to 45 1 12.9 - -- -2.4 4.7 -7.0 -11.9 -10.1 I 2 12.9 .8 10.2 7.0 1.0 -0.7 -3.0 --- I 0to5° 1 10.2 7.0 5.0 1 2.8 3.9 4.3 6.7 4.5 5.2 10° 6.7 8.5 -4.0 -2.8 -4.5 -5.2 1 14. -6.0 15.4 -8.8 10.7 21 16.9 90 P0° 1 16.1 -5.4 10.7 -3.0 15.4 . -9.4 -10.7 -7.2 21.6 -16.9 17.8 -10.1 I II I 25° 2 16.1 2.6 11.7 2.7 7.2 9.87 -10.7 -8.1 21.6 16.9 30 to 45 1 14.4 -5.2 -7.8 -13.3 11.4 2 14.4 9.9 11.5 0.7 -3.4 -2.7 -5.3 - _ 0 to 5° 1 15.9 9.9 11.5 7.9 5.6 _q 3 0.4 7.5 5.1 -5.8 10° 1 17.9 -4.3 -8.2 10.5 .4.9 -19.1 -10.8 4.8 3.1 5.1 5.8 15° 1 19.9 -6.6 11.9 -19.1 11.6 13.3 8.4 26.7 20.9. 100 20° 13.3 3.8 19.1 8.9 26.7 20.9 250 1 22.0 -5.8 14.6 -3.2 -19.1 -12.4 13.3 9.5 -26.7 -20.9 19.9 3.2 14.4 13.3 13.3 10.1 2 - -- -- . 3.3 -8.8 -12.0 -6.4 16.5 -20.9 30 to 45 1 178 14. 6.6 9.7 16.5 -14.0 2 17 I; 3.4 _ 12.2 14.2 -0.9 -4.2 - -- -- -- 0 to 5° 1 17.5 12.2 14.2 9.8 6.9 .g 38 0.5 -9.3 -6.3 -7.2 9.0 11.6 5.9 3.8 10° -6.3 1 19.7 -5.4 -21.1 _11.9 -7.2 -8.2 13.1 -4.7 14.7 -9.3 -29.4 150 1 21.9 2 21.1 12.8 23.0 105 200 8.4 14.7 -4. 14.7 29.4 -21.1 -9 - 1 24.3 -13.7 23.0 -14.7 25° 1 21.9 16.1 3.5 -21.1 -14.7 11.1 29.4 23.0 2 - ---- 3.5 15.9 3.5 -9.7 14.7 11.1 -29.4 -23.0 -13.2 . 1 -71 -0.7 18 30 to 45 .2 1 19.6 ____ - -- -- -3.7 -7.3 -15.4 2 19.6 13.5 15.7 10.8 1.5 11.9 -1.0 -4.6 --- - - --- O10 ° 5° 1 19.2 -10.0 12 7 5 9 7.6 -5.8 6.5 -4.23 6.9 -7.9 15° 1 24.6 .9.0 14.4 -5.2 23.1 14.1 -16.0 -10.1 -32.3 -25.3 110 21 ° 1 26.6 _82 17.7 -4.6 23.1 -15.1 -16.0 -10.8 32.3 25.3 1 24.1 3.9 _23.1 11.5 -32.3 -25.3 3.9 17.4 -16.0 -16.0 -12.2 4.0 -10.7 -14.6 -32.3 -25.3 - - -'--� -11.7 30 to 45 1 - -- -4.1 -19.9 -17.0 2 21.6 21.6 14.8 17.2 11.8 1 ' 1 5.1 -7.9 0 to 5° 1 22.8 14.8 17.2 11.8 8.3 6 0.6 11.3 7.6 -8.7 1 o -11.9 15.1 7.0 27.4 7.2 -4.6 -7.6 8.7 1 25.8 -10.7 17.1 -15.6 -19.1 150 1 28.7 -6.2 -27.4 16.8 -12.1 -38.4 -30.1 120 20° 1 31.6 -9.5 19.1 -5.4 -27.4 19.1 12.9 38.4 25° 1 28.6 4 6 21.1 -4.6 -27.4 -19.1 30.1 -19.1 13.7 38.4 30.1 20.7 q 7 -14.5 -38.4 30.1 2 - --- - -- 12.7 17.3 9.2 1 -3.9 23.7 30 to 45 - \. 1 25.7 17.6 20.4 14.0 -4.8 -9.4 -1.3 -6.0 ---- --- -20.2 2 25.7 17.6 20.4 14. 2.0 -15.6 0.7 -6.0 9.9 -7.7 8.6 -9.0 -10.3 -5.5 -9.0 10.3 Unit Conversions -1.0 ft = 0.3048 m; 1.0 psf = 0,04 79 kN /m 2 ASCE 7 -05 LI Main Wind Force Resisting System — Method 1 Figure 6 -2 1 Design Wind Pressures Enclosed Buildings 6, h:5 60 ft. Walls & Roofs Notes: I. Pressures shown are applied to the horizontal and vertical projections, for exposure B, at h =30 ft (9.1m), I =1.0, and K = 1.0. Adjust to ' other conditions using Equation 6 -1. 2. The load patterns shown shall be applied to each comer of the building in turn as the reference corner. (See Figure 6 -10) ''$3. For the design of the longitudinal MWFRS use 0 = 0 °, and locate the zone E /F, G/H boundary at the mid - length of the building. 4. Load cases 1 and 2 must be checked for 25° < B S 45 °. Load case 2 at 25° is provided only for interpolation between 25° to 30 °. ' 5 Plus and minus signs signify pressures acting toward and away from the projected surfaces, respectively. 6. For roof slopes other than those shown, linear interpolation is permitted. 7 - The total horizontal load shall not be less than that determined by assuming p = 0 in zones B & D. 8 = The zone pressures represent the following: Horizontal pressure zones — Sum of the windward and leeward net (sum of internal and external) pressures on vertical projection of: A - End zone of wall C - Interior zone of wall B - End zone of roof D - Interior zone of roof Vertical pressure zones Net (sum of internal and external) pressures on horizontal projection of: E - End zone of windward roof G - Interior zone of windward roof F - End zone of leeward roof H - Interior zone of leeward roof Where zone . E or G falls on a roof overhang on the windward side of the building, use EoH and GoH for the pressure on the horizontal projection of the overhang. Overhangs on the leeward and side edges shall have the basic zone pressure applied. 10 percent of least horizontal dimension or 0.4h, whichever is smaller, but not less than either 4% of least horizontal dimension or 3 ft (0.9 m). Mean roof height, in feet (meters), except that cave height shall be used for roof angles <10 °. Angle of plane of roof from horizontal, in degrees. ds for Buildings and Other Structures 37 �2 Project: Vail Firestation M &N #: 7938 Engr: LJR Date: 3/16/2010 ASCE 7 -05 Fig 6 -2 2.5:12 Roof (11.8 degrees) Ps30 Horizontal Pressures Ps30 Horizontal Pressures Roof Angle Load Case A B C D 10 1 14.5 -6 9.6 -3.5 15 1 16.1 -5.4 10.7 -3 11.8 1 15.1 -5.8 10.0 -3.3 For 6:12, use values for 25 degrees: Mean Roof Ht Exp. B y Iw 25 1 16.1 2.6 11.7 2.7 Lq Ps30 Horizontal Pressures A B C D 2.5:12 Roof end wall end roof int. wall int. roof Mean Roof Ht Exp. B y Iw 15.1 -5.8 10 -3.3 15 1.00 1.15 17.37 -6.67 11.50 -3.80 20 1.00 1.15 17.37 -6.67 11.50 -3.80 25 1.00 1.15 17.37 -6.67 11.50 -3.80 30 1.00 1.15 17.37 -6.67 11.50 -3.80 35 1.05 1.15 18.23 -7.00 12.08 -3.98 40 1.09 1.15 18.93 -7.27 12.54 -4.1 Lq Ps30 Horizontal Pressures A B C D 6:12 Roof end wall end roof int. wall int. roof Mean Roof Ht Exp. B y Iw 16.1 2.6 11.7 2.7 15 1.00 1.15 18.52 2.99 13.46 3.11 20 1.00 1.15 18.52 2.99 13.46 3.11 25 1.00 1.15 18.52 2.99 13.46 3.11 30 1.00 1.15 L18.52 2.99 ,13.46] 3.11 35 1.05 1.15 19.44 3.14 14.13 3.26 40 1.09 1.15 20.18 3.26 14.67 3.38 Lq " Monroe & Newell Engineers, Inc. PRnn1IfT PG4 -1 1.gm1a. RhW,) q ;-1 fpndd Al JOB V Fk/'k . - , -79 -3 SHEET NO. OF // CALCULATED BY L( DATE 3 f � ! / 0 CHECKED BY nATF Monroe & Newell JOB tf Engineers Inc. SHEET NO. OF F CALCULATED BY �'"r� DATE 3/ 1 40 [.� f:HFf;KF:n RV —1. Monroe &Newell J OB - Uwi i�esl� "v 7q3 Engineers Inc. SHEET NO. OF CALCULATED BY DATE 3 CHECKED BY nnTF Monroe & Newell Engineers, Inc. f JOB C1 �- -c4V- - 9.3,K SHEET NO. / CALCULATED BY (:HF(:KFfI av OF DATE 3 Z / (" � / 0 Monroe & Newell Engineers, Inc. JOB UG 1 fre—, -� 13 Q SHEET NO. CALCULATED BY L rl-- OF DATE ' 1 CHECKED BY ner. Pt v uk an I "wv dp I t:i ks 10 im I ilia 7 l i nt yn Om "-2" CONCRETE _AB ^eE -2-4 dp I q ' i METAL 4. TH pq-KF. ( 0:1 Fir, iv 0 AT H55, COLUMN /-4 I vol dp dp dp U O O� 6 Z � N' ✓ �' a� � w 1 r 1 1 d ,� =�s r ,� „ —_ �� � 1 'd = d y� 4 _� N s a o w -.9 T" W c a r- �o iv I 'Ft ' -79 Monroe & Newell JOB UAJ f P- Engineers, Inc. SHEET NO. OF CALCULATED BY Lf2— DATE A CHECKED BY DATE P 'C� � "I (S SCALE .......... ... .. . .... LAU i P, p - 7.;) a I 21 iv Monroe & Newell Engineers, Inc. JOB U'A' l - 7q SHEET NO. CALCULATED BY Lr L- CHECKED BY OF DATE DATE Monroe & Newell Engineers, Inc. JOB V !j ►"Q n SHEET NO. CALCULATED BY L42 CHECKED BY am OF DATE 3 Z L// 0 nATF .'.... , . . f .- r?U 621 ............. U 3_ S ......... . . ..... vil . . .. ........ ...... ..... . ... ......... ..... ... ........ . M-1-1. ............ - . .. .. ........ wd y� ��ISxI) . ......... . . ..... �a �a .... . ............ try _. ,. Monroe & Newell Engineers, Inc. ` OF � DATE :;� j : d f ':) �L ( } CHECKED BY DATE �"'� SCALE 6AA D _ ,. g, _ ... _. ..... !�' ( -,► .... �- DI : JOB -Vk 1 +,.r SHEET NO. CALCULATED BY. Monroe & Newell Engineers, Inc. JOB SHEET NO. I OF CALCULATED BY 'J2G DATE i '• ~' CHECKED BY DATE PRODUCT 204-1 (Single Sheets) 205 -1 (Padded) JOB Vim' s ,.tdrs4$- - 7 3d� Monroe & Newell Engineers Inc. SHEET NO. OF CALCULATED BY DATE Ito l it.) CHECKED BY DATE Monroe & Newell Engineers, Inc. JOB V !`g6S °`lam SHEET NO. OF 9 CALCULATED BY DATE // f�I i t o CHECKED BY DATE erns c pq �tAu 230 LIZ 2 __ a 3 1 ................... �• 5 n Monroe & Newell JOB (/ rte e t - , j— -7q3 f/ Engineers, Inc. SHEET NO. OF CALCULATED BY L-P- DATE A0 0 CHECKED BY DATE SGALF 771 L:s P N Qq A U N D n m N Sh M. p =0m irk y j gp Z _ $>> i-Di n r"� �aaaN �� 0 m 20, �a D m l��TI r N A lV Z t A J D A r r pr €r N[rn OAm vDDO °A 23 AZ _ 0 ZN 0� NZ N NN MO y x iii flfiiilll 77JJ ° � � 11 a $� r � N D P N Z ° 0 0 iN 1 AZ ' < ° 3 x N T > y A to �� z T ❑�❑ @� A 1n I � �e 0 Z 1 P p�� T r Iz G ° -9 1/4" VL 1 ==� rren i� �,��_v� i r .;lwq .�yy I � ,� c C� ' Ir � i� I•rAh .1 zz zz tl � yy Zx rte,^, C zZ A y ° al A � y N T 1 1 A p n T� Ar n ?J r' I �i M I Project: Vail Firestation M &N #: 7938 Engr: LJR Date: 3/16/2010 Seismic Weight - Upper Roof Roof Dead Loac 20 Roof Live Load (0.2Pf), psf >4:12 = 80 psf 16 <4:12 = 100 psf 20 Roof Section Roof Area ft ^2 DL psf LL psf Y *wt DL (kips) LL (kips) TL X, ft 1 1160 20 16 23.2 18.56 41.76 2 900 20 16 18 14.4 32.4 3 435 20 16 8.7 6.96 15.66 4 2040 20 20 40.8 40.8 81.6 5 3808 20 20 76.16 76.16 152.32 Total Area 8343 166.86 156.88 323.74 Roof DL, k 166.86 Roof LL, k 156.88 Total Load, k 323.74 Roof center of mass X 74.36881448 Y 43.81417187 Y, ft X *wt Y *wt 119 42 4969.44 1753.92 116 84 3758.4 2721.6 104 60 1628.64 939.6 86 44 7017.6 3590.4 44 34 6702.08 5178.88 24076.16 14184.4 (n A 3 0 -' 0 d p G -� fA 0 C) W N 0 N M 3 °O d �`? N_ A_ N_ N N 4� C �� 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o 0 0 0 0 0 O R1 C n C y m C C - ? 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H; Z �. o m ?. ° m m >>> c c c m m 3 3 a° d p1 N 4Z N O d (f d N d >>> o Jo m o d co d J O � d d y 0 ( O A N = C V 00 W w 0 W N A W A N (T W (n N N A A A A A y A A A A W W W W W W W W m O w 0 V 0 O O � D 0 � N d 10 10 V V O W N fD N W (D ji� w W (D N W N N W A OOO(nN A W O0 NNN A N N0 ON MOO (T r W 000 CT NNNNNNNN (P !r (n Uf N O N (P V (P O 00 O O N O (P W W NW W N-�- -� N W W 000000 dw N N (P Ot (T A O O (n O O O O O O O O O 0 0 0 0 (P Ut (T O (P N N O A A 0 0 0 0 0 W W r r J. v m N N 0 0 N N 0 0 N N 0 0 N N 0 0 N 0 0 N 0 0 0 0 0 0 0 0 m N A JJ O A 01 W f0 b A N V W+ IV A O N A f0 f0 V Gf . O W O W m V O 1 A V A T OD j 0 0 O A A A 0 N 1D 0 v N A N W N N N N O) A N N V 00 01 T N " O CO A A !b V N N W J N 0 0 t0 D) W O) N 0 0 N N W N (P N N 0 O W 0 (n 0 A (T r r N WO U 0 V � � s 0� 0 V � y O0 00 0000000 O O OOO O 00 OO O O O OOOO N O O) N� W �I c AIJ mA OOOOOAOOOOOO N N V W jo m OOF A UI V 0 0 W N 0 IV w V W O) (J N (P V (D (O pN 8 A V : A M O W . 1 0 0 0 v y P (n W N (A (O O� N A N t0 W N fp W N V 0 0 A W O N A 0 0 A W V V 0 0 Ot N 0 fD j 0 O N W 0 0 N W V Vf --� (n A N W N O (T 0 0 -+ W O J N Ul UJ UJ x m A W 0 0 V V ON 00 N N O A V W m V 0 0 N W 1D W (n O j r N ON W 00 (n 0 A 000 -� NN NO 0 W (0-�fO jjo N 0 0 N -U- N O 0 W 0 0 10 Z A N A 0 0 j O A W (0 O V N N 0 O A r (A 0 1 t ( 0 W O N W W �A W V W T NN0 WA (0 0 O (0 V V A A A A 0O y � A O A v � V AN00 (TN m N O0 (n �A 00 N V 0Ut N O0 V V 0 00 O (li V (T0 N(n Om000 ( U -�O(P O( ON O A00 f W N A W A m W N 00 �tJ �( mD) � ( OJ mIV mAA P W .P 0 A W -0 i (p ]3; W W 0N J- O j -+ N O N 0 0 V N V V Ot 0 (A O N N N W V O NO N 0 0 0 IU O 0 0 0 0 N O N N 0 0 W N N N 0 0 (P O N N 0 (T 0 N N 0 N 0 A 0 0 (n 1 � � - & § &§ | 2� !' � §\ >- d ®# \f $ k�7 }) < �z� � ���) ( 22� § $| ;k , 0 7 / � / § � k T ( 6 � W J r � � 0 � � � `�z �7% #q ) k 9 !` §�§ / 2� \§ ;§ §§ -0 / \J §B \) §J \ y q 2 � 7 ,m !» 6 � W J r � � 0 � � � `�z Title : Dsgnr: Description Scope: Job # Date: 10:19AM, 7 APR 10 User: KW- 0606238, Ver5.8.0, 1- Dec -2003 Rigid Diaphragm Torsional Analysis Page 1 (c)1983 -2003 ENERCALC Engineering Software Y calcs.ecw:Calculations Description Main Level Diaphragm (0.7E), w/o hose tower General Information Y -Y Axis Shear 0.00 k Min. X Axis Ecc 5.00 % X Axis Center of Mass 60.50 ft X -X Axis Shear 156.90 k Min. Y Axis Ecc 5.00 % Y Axis Center of Mass 39.90 ft ...Shears are applied on each axis separately Max X Dimension 137.00ft Max Y Dimension 96.00 ft Wall Data Wall Ycg ft Wall Angle deg CCW Wall End Fixity 1.000 18.300 Label Thickness Fix -Fix Length 18.300 25.500 in Fix -Fix ft 9.000 15.500 1 8.000 1.000 12.500 74.000 90.0 2 8.000 70.500 18.000 90.0 Fix -Fix 3 12.000 45.500 18.000 Fix -Fix 1.000 7 12.000 90.0 8.000 1.000 70.500 8 12.000 Fix -Fix 5.500 70.500 12.000 9 12.000 1.000 15.500 64.500 83.0 10 12.000 127.000 2.000 173.0 Fix -Fix 11 12.000 59.000 3.500 Fix -Fix 1.000 12 12.000 173.0 12.000 1.000 135.000 13 8.000 Fix -Fix 10.500 19.000 77.000 14 8.000 18.000 15 8.000 12.500 16 8.000 2.000 17 8.000 10.500 18 12.000 24.000 Calculated Wall Forces Label Load Location for Maximum Forces X ft Y 1 0.000 -6.237 2 0.000 -6.237 3 0.000 - 15.837 7 0.000 - 15.837 8 0.000 - 15.837 9 0.000 - 15.837 10 0.000 - 15.837 11 0.000 - 15.837 12 0.000 - 15.837 13 0.000 -6.237 14 0.000 -6.237 15 0.000 -6.237 16 0.000 -6.237 17 0.000 -6.237 18 0.000 -6.237 A Distance to Center of Rigidity Y Distance to Center of Rigidity X Accidental Eccentricity Y Accidental Eccentricity Height ft Wall Xcg ft Wall Ycg ft Wall Angle deg CCW Wall End Fixity 1.000 18.300 70.500 90.0 Fix -Fix 1.000 18.300 25.500 90.0 Fix -Fix 1.000 9.000 15.500 0.0 Fix -Fix 1.000 70.500 74.000 90.0 Fix -Fix 1.000 70.500 64.000 90.0 Fix -Fix 1.000 70.500 45.500 90.0 Fix -Fix 1.000 70.500 32.000 90.0 Fix -Fix 1.000 70.500 25.500 90.0 Fix -Fix 1.000 70.500 12.000 90.0 Fix -Fix 1.000 118.000 64.500 83.0 Fix -Fix 1.000 127.000 68.000 173.0 Fix -Fix 1.000 126.000 59.000 175.0 Fix -Fix 1.000 134.000 57.000 173.0 Fix -Fix 1.000 135.000 63.000 83.0 Fix -Fix 1.000 19.000 77.000 0.0 Fix -Fix Direct Shears k Length Thick 0.026 -6.100 0.038 -8.784 - 24.377 0.041 0.025 -7.867 0.017 -5.409 0.049 - 15.243 0.006 -1.967 0.011 -3.442 0.038 - 11.801 - 42.584 4.481 16.260 0.889 11.274 0.436 1.654 0.080 - 42.584 4.481 - 32.520 0.055 Torsional Shears k 7.548 ft Length Thick Xcm - (Min % *MaxX) - X -cr = -1.167 0.298 -1.683 -0.558 -5.474 -5.698 0.731 1.150 0.499 0.448 1.422 -0.525 0.168 -0.236 0.312 -0.555 1.100 -2.912 0.816 11.341 -0.845 -1.464 -0.301 -1.009 -0.040 -0.183 0.474 14.595 2.115 -2.403 59.802 ft Controlling Eccentricities & Forces from Applied Y -Y Shear 50.937 ft Xcm + (Min % *MaxX) - X -cr = 7.548 ft Torsion = Xcm - (Min % *MaxX) - X -cr = -6.152 ft Torsion = 6.850 ft Controlling Eccentricities & Forces from Applied X -X Shear 4.800 ft Ycm + (Min% *MaxY) - Y -cr = -6.237 ft Torsion = Ycm - (Min% *MaxY) - Y -cr = - 15.837 ft Torsion = C 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Final Max. Wall Shear -1.167 -1.683 ('29.852 1.150 0.516 1.471 -0.236 -0.555 -2.912 - 42.584 j1 26 60� ` %11_274, 1.654 - 42.584 32.520 0.00 k -ft 0.00 k -ft - 978.55 k -ft - 2,484.79 k -ft LU Title : Dsgnr: Description Wall Ycg ft 70.500 25.500 15.500 74.000 64.000 45.500 32.000 25.500 12.000 64.500 68.000 59.000 57.000 63.000 77.000 Scope Rev: 580002 User: 3-2-0,Ver5.8Dec (c)1983 -2003 3 ENE ENERCALC Enn ginineering g Software Rigid Diaphragm Torsional Analysis Page 1 o calcs.ecw:Calculations Description Main Level Diaphragm (0.7E), w/o hose tower General Information Y -Y Axis Shear 156.90 k Min. X Axis Ecc 5.00 % X Axis Center of Mass 60.50 ft X -X Axis Shear 0.00 k Min. Y Axis Ecc 5.00 % Y Axis Center of Mass 39.90 ft ...Shears are applied on each axis separately Max X Dimension 137.00 ft Max Y Dimension 96.00 ft Wall Data 1.000 18.300 1.000 18.300 Label Thickness Length 70.500 1.000 in ft 70.500 1.000 70.500 1.000 70.500 1.000 1 8.000 12.500 1.000 127.000 2 8.000 18.000 134.000 1.000 3 12.000 18.000 22.298 2.420 7 12.000 8.000 4.498 8 12.000 5.500 15.856 9 12.000 15.500 L 78.188 10 12.000 2.000 4145 11 12.000 3.500 -1.221 12 12.000 12.000 -0,221 13 8.000 10.500 y2•L 14.398 -' 14 8.000 18.000 2.371 15 8.000 12.500 16 8.000 2.000 17 8.000 10.500 18 12.000 24.000 Calculated Wall Forces Label Load Location for Maximum Forces X ft Y 1 -6.152 0.000 2 -6.152 0.000 3 7.548 0.000 7 7.548 0.000 8 7.548 0.000 9 7.548 0.000 10 7.548 0.000 11 7.548 0.000 12 7.548 0.000 13 -6.152 0.000 14 7.548 0.000 15 7.548 0.000 16 7.548 0.000 17 -6.152 0.000 18 -6.152 0.000 X Distance to Center of Rigidity Y Distance to Center of Rigidity X Accidental Eccentricity Y Accidental Eccentricity Height ft Wall Xcg ft 1.000 18.300 1.000 18.300 1.000 9.000 1.000 70.500 1.000 70.500 1.000 70.500 1.000 70.500 1.000 70.500 1.000 70.500 1.000 118.000 1.000 127.000 1.000 126.000 1.000 134.000 1.000 135.000 1.000 19.000 Direct Shears k -0.294 Length Thick 10.649 -0.014 15.354 -0.020 -0.057 16.723 10.188 -0.018 6.958 -0.013 19.824 -0.035 2.340 -0.005 4.349 -0.008 15.332 -0.027 -4.163 72.837 -0.822 -8.465 -0.400 -5.821 -0.074 -0.938 -4.163 72.837 -0.075 22.298 1.152 -0.294 Torsion = 11.801 2Uv,�j 1.660 0.550 4.800 ft Ycm + (Min % *MaxY) - Y -cr = 17.01 Torsion = -2.609 -2.716 Torsion = -2.716 0.348 0.548 10.536 0.238 0.213 7.196 0.678 -0.250 20.502 0.080 -0.112 2.420 (0 0.149 -0.264 4.498 0.524 1.388 15.856 -0.805 - 11.188 L 78.188 -1.023 -1.772 4145 -0.365 -1.221 -1.221 -0.049 -0.221 -0,221 -0.468 - 14.398 y2•L 14.398 -' -2.087 2.371 2.371 59.802 ft Controlling Eccentricities & Forces from Applied Y -Y Shear 50.937 ft Xcm + (Min % *MaxX) - X -cr = 7.548 ft Torsion = Xcm - (Min % *MaxX) - X -cr = -6.152 ft Torsion = 6.850 ft Controlling Eccentricities & Forces from Applied X -X Shear 4.800 ft Ycm + (Min % *MaxY) - Y -cr = -6.237 ft Torsion = Ycm - (Min % *MaxY) - Y -cr = - 15.837 ft Torsion = Wall Angle deg CCW 90.0 90.0 0.0 90.0 90.0 90.0 90.0 90.0 90.0 83.0 173.0 175.0 173.0 83.0 0.0 Job # Date: 10:19AM, 7 APR 10 Wall End Fixity Fix -Fix Fix -Fix Fix -Fix Fix -Fix Fix -Fix Fix -Fix Fix -Fix Fix -Fix Fix -Fix Fix -Fix Fix -Fix Fix -Fix Fix -Fix Fix -Fix Fix -Fix E 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Torsional Shears k Final Max. Length Thick Wall k hear 1,184.24 k -ft - 965.29 k -ft 0.00 k -ft 0.00 k -ft J �� Monroe & Newell Engineers Inc. SHEET NO. OF A- CALCULATED BY DATE 3 Z3 0 CHECKED BY DATE Svc U SCALE J Y..� ....,... ..... . ;.........�� -. ..:........... . ��.. �� l� / 1 ` 7 Y ..._ _ .. 1 ..... 3 ... . ...... ......... _... o ��i.. 1' . t ;.g S ` 19i p ur�P� 1,c 12 l,, ...... fc rrte? ` �� JOB - Monroe �� ^��rr�^u Engineers, Inc. SHEET wu__--_______ CALCULATED e,L y y CHECKED o,_-_-__----- xc^/P OF DATE DATE va fL CIPAI L) Monroe & Newell Engineers, Inc. crni F JOB �1�"o t —I !e, 74� SHEET NO. OF CALCULATED BY DATE CHECKED BY DATE Monroe & Newell Engineers, Inc. JOB V AJ F�tr SHEET NO. CALCULATED B 1-2- CHECKED BY T� OF DATE 3 2 1 b DATE 0(31 riucoR RESEARCH AND DEVELOPMENT %`_ _ June 24, 2003 L-1 M w r M r r M r Overview of Code Changes for Steel Deck Diaphragm Design The has been a significant change to Building Codes in recent years involving steel decks used as diaphragms. Stress increases (or load reductions), in general, are no longer permitted for diaphragm design by the Building Codes. Load tables in the Steel Deck Institute Diaphragm Design Manual, Second Edition (DDMO2) were developed with the stress increase directly incorporated into the load table values. A complete treatment of the SDI safety factors is found in the Steel Deck Institute Diaphragm Design Manual, First Edition. If the Designer simply reduces the DDMO2 load table values (Part V or Part VI of DDMO2) by 25 %, the resulting design will be unduly conservative. The reason for this is that the factors of safety that are to be used in the design of the steel deck diaphragm have been redefined. Many Building Codes mandate the strength of a steel deck diaphragm be obtained using the American Iron and Steel Institute "Specification for the Design of Cold- Formed Steel Structural Members, 1996" (AISI). AISI offers the following on the design of steel deck diaphragms: D5 Floor, Roof, or Wall Steel Diaphragm Construction The in -plane diaphragm nominal shear strength, S,,, shall be established by calculation or test. Od = As specified in Table D5 (ASD) C �d = As specified in Table D5 (LRFD) TABLE D5 r__i_ -....r C.,4., +., -gin 4 Rccicfnnra Far_tnrs fnr nianhraomS Od 1'd rauwis ui vcuc Diaphragm Condition For diaphragms for which the failure mode is that of buckling, 2.65 0.60 otherwise; For diaphragms welded to the structure subjected to earthquake loads, 3.0 0.50 or subjected to load combinations which include earthquake loads. For diaphragms welded to the structure subjected to wind loads, or 2.35 0.55 subjected to load combinations which include wind loads. For diaphragms mechanically connected to the structure subjected to 2.5 0.60 earthquake loads, or subjected to load combinations which include earthquake loads. For diaphragms mechanically connected to the structure subjected to 2.0 0.65 wind loads, or subjected to load combinations which include wind loads. For diaphragms connected to the structure by either mechanical 2.45 0.65 fastening or welding subjected to load combinations not involving wind or earthquake loads. The nominal strength of the steel deck diaphragm can be calculated from the principles outlined in the DDMO2 and then incorporate the appropriate factor of safety to obtain the allowable diaphragm shear strength. 1601 W. OMAHA AVENUE PO BOX 867 NORFOLK, NEBRASKA 68702 -0867 PHONE 402 644 -8545 FAX 402 644 -8551 VWVW.NUCOR- RD.COM 1 ` v iG r4U CC3M RESEARCH AND DEVELOPMENT Alternatively, the nominal strength can be calculated from the DDMO2 Part V and Part VI. Designating the nominal strength of the diaphragm as W WSDI as the allowable strength of the diaphragm obtained from Part V or VI of DDMO2, and the safety factor used in calculating the particular load table as OSDI, the nominal diaphragm shear strength is w = WSDI * OSDI• OSDI from DDMO2 is simply 2.75 for welded diaphragms or 2.35 for mechanically connected diaphragms. Further, W r SDI wAISI = = wSDII f HAISI Incorporating all of this together: 1. For diaphragms welded to the structure subjected to earthquake loads, or subjected to load combinations which include earthquake loads: w K2SD1 ( 2.75 1 wAISI =� = wSDI(C2AISI I =w SDI I 3 0 ) 0 . 92 wSDl AISI J 2. For diaphragms welded to the structure subjected to wind loads, or subjected to load combinations which include wind loads: wn (�iAJSJ OSDI 2.75 wAISI =wSDl = wsDl�2.35)- 1.17wsDl nAISI 3. For diaphragms mechanically connected to the structure subjected to earthquake loads, or subjected to load combinations which include earthquake loads: r SDI wAISI W =W SDl =WSDl( 0.94w f 4. For diaphragms mechanically connected to the structure subjected to wind loads, or subjected to load combinations which include wind loads: v✓n (nAISI QSDI ( 2.35 ) =1.18w wAISI = = WSDl WSDI SDI QAISI 2.00 In summary, the allowable diaphragm shear strength calculated using the AISI safety factors are about 8% less than DDMO2 values for a diaphragm subjected to earthquake loading and about 17% greater than DDMO2 values for diaphragms subjected to wind loading. I G L� 1601 W. OMAHA AVENUE PO BOX 867 NORFOLK, NEBRASKA 68702 -0867 PHONE 402 644 -8545 FAX 402 644 -8551 WWW.NUCOR- RD.COM .a J L 0.6C, 1.00, & 1.3C DECK WITH NORMAL WEIGHT CONCRETE 0 1835 1754 1705 1672 ` ALLOWABLE DIAPHRAGM SHEAR STRENGTH (PLF) (FT. -IN.) 1618 1607. 0.768 SUPPORT FASTENERS: Welds with welding washers Wconc = 145 PCF f c = 3000 Psi 3' -0 ' SIDELAP FASTENERS: #10 TEK screws 4' -0 t =2.5" (min.) 5' -0 Factor of safety = 3.25 Fastener SPAN (FT. -IN.) Type 28 0 1782 1713 1673 Layout 1' -6 2' -0 2' -6 3' -0 3' -6 4' -0 4' -6 5' -0 5' -6 6-0 Ki Type 28 0 1873 1782 1728 1691 1665 1646 1630 1618 1763 1712 0.620 '- 1 1939 1832 1767 1724 1693 1670 1652 1638 1626 1617 0.433 2 2005 1881 1806 1757 1721 1695 1674 1658 1644 1633 0.333 30/4 for 0.6C 3 2070 1930 1846 1790 1750 1720 1696 1677 1662 1649 0.271 33/4 for 1.00 4 2136 1979 1885 1822 1778 1744 1718 1697 1680 1666 0.228 5 2202 2028 1925 1855 1806 1769 1740 1717 1698 1682 0.197 I K2 = 440 1910 1830 K3 = 2380 1738 1710 1687 Type 26 0 1981 1863 1792 1745 1711 1686 1666 1651 - 5 0.681 I 1 2060 1922 1839 1784 1745 1716 1693 1674 1659 1647 0.476 30/4 for 0.6C 2 2139 1981 1887 1824 1779 1745 1719 1698 1681 1666 0.365 33/4 for 1.00 3 2218 2040 1934 1863 1813 1775 1745 1722 1702 1686 0.297 I 32/4 for 1.3C 4 2297 2100 1982 1903 1847 1804 1772 1745 1724 1706 0.250 5 2376 2159 2029 1942 1880 1834 1798 1769 1745 1726 0.216 I K2 = 530 K3 = 2380 Type 24 0 2225 2046 1938 1867 1816 1777 1748 1724 0.783 1 2330 2125 2002 1920 1861 1817 1783 1755 1733 1714 0.548 I 3014 for 0.6C 2 2436 2204 2065 1972 1906 1856 1818 1787 1762 1741 0.421 33/4 for 1.00 3 2541 2283 2128 2025 1951 1896 1853 1819 1790 1767 0.342 I 32/4 for 1.3C 4 2646 2362 2192 2078 1997 1936 1888 1850 1819 1793 0.288 5 2752 2441 2255 2130 2042 1975 1923 1882 1848 1820 0.249 K2 =700 I K3 =2380 0.6C, 1.00, & 1.3C DECK WITH NORMAL WEIGHT CONCRETE ALLOWABLE DIAPHRAGM SHEAR STRENGTH ( PLF) SUPPORT FASTENERS: #12 TEK screws Wconc = 145 PCF f'c = 3000 PSI SIDELAP FASTENERS: #10 TEK screws t =2.5" (min.) Factor of safety = 3.25 Fastener 0 1835 1754 1705 1672 SPAN (FT. -IN.) 1618 1607. 0.768 Layout 1 1' -6 2' -0 2' -6 3' -0 3' -6 4' -0 4' -6 5' -0 5' -6 6' -0 K1 Type 28 0 1782 1713 1673 1645 1626 1611 1600 1591 1641 1630 0.705 33/4 for 1.0C 1 1847 1763 1712 1678 1654 1636 1622 1610 1601 1594 0.474 32/4 for 1.3C 2 1913 1812 1751 1711 1682 1660 1644 1630 1619 1610 0.357 30/4 for 0.6C 3 1979 1861 1791 1744 1710 1685 1666 1650 1637 1626 0.286 33/4 for 1.0C 4 2044 1910 1830 1777 1738 1710 1687 1670 1655 1643 0.239 - 5 2110 1960 1870 1809 1767 1734 1709 1689 1673 1659 0.205 K2 =440 K3 =2380 Type 26 0 1835 1754 1705 1672 1649 1631 1618 1607. 0.768 1 1914 1813 1752 1712 1683 1661 1644 1631 1620 1610 0.517 30/4 for 0.6C 2 1993 1872 1800 1751 1717 1691 1670 1654 1641 1630 0.389 33/4 for 1.0C 3 2072 1932 1847 1791 1750 1720 1697 1678 1663 1650 0.312 32/4 for 1.3C 4 2151 1991 1894 1830 1784 1750 1723 1702 1684 1670 0.261 5 2230 2050 1942 1870 1818 1779 1749 1725 1706 1689 0.224 K2 =530 K3 =2380 Type 24 0 1945 1836 1771 1727 1696 1672 1654 1640 0.888 1 2050 1915 1834 1780 1741 1712 1689 1671 1657 1644 0.597 30/4 for 0.6C 2 2156 1994 1897 1832 1786 1752 1725 1703 1685 1671 0.450 33/4 for 1.0C 3 2261 2073 1960 1885 1831 1791 1760 1735 1714 1697 0.361 32/4 for 1.3C 4 2367 2152 2024 1938 1877 1831 1795 1766 1743 1723 0.301 5 2472 2231 2087 1991 1922 1870 1830 1798 1772 1750 0.259 K2 =700 K3 =2380 K2 G' _ + K3, Kips /inch 3.20 + 3'K1' SPAN SPAN is in feet L31 85 ' Type 18 0 1.5, 2, & 3 COMPOSITE DECK WITH NORMAL WEIGHT CONCRETE 1686 1663 1646 1633 1621 J ALLOWABLE DIAPHRAGM SHEAR STRENGTH (PLF) 1591 0.926 1 1819 SUPPORT FASTENERS: 5/8" puddle welds Wconc = 145 PCF f'c = 3000 PSI 1864 1820 1785 0.300 3 2028 1954 SIDELAP FASTENERS: Welded 1855 1820 1792 t =2.5" (min.) Factor of safety = 3.25 4 2132 2043 1976 1924 1883 1849 1820 1797 1776 1758 ® Fastener 2236 2132 SPAN (FT. -IN.) 1994 1945 1906 1873 1845 1821 Layout * 6-0 T -0 8' -0 9' -0 10' -0 11' -0 12' -0 13' -0 14' -0 15' -0 K1 1893 Type 22 0 1641 1622 1608 1597 1588 1581 1575 1570 1566 1562 0.729 ® 1 1708 1910 1883 0.111 ' 8 2549 2400 2289 2202 0.359 2076 2 1775 .. 1737:.. 1708 1686 ... 1925 - 9 2653 2490 2367 0.238 ® 3 1842 1794 1759 1731 1709 1691 1675 10 2757 2579 0.178 2341 4 1909 1852 1809 1775 1749 1727 1769 1693 1680 1669 0.142 K2 = 1398 36/4 5 1976 1909 1859 1820 1789 1763 1742 1724 1709 1696 0.118 ' 6 2042 1966 1 1909 1865 1829 1800 1776 1755 1738 1722 0.101 7 2109 2024 1959 1909 1869 1836 1809 1786 1166 1749 0.089 8 2176 2081 2009 1954 1909 1873 1843 1817 1795 1776 0.079 ' 9 2243 2138 2059 1998 1949 1909 1876 1848 1824 1803 0.071 10 2310 2195 2110 2043 1990 1946 1909 1879 1852 1829 0.064 K2 = 870 K3 = 2380 Type 20 0 1668 1645 1628 1615 1604 1596 1588 1582 1577 1572 0.805 1 1748 0.395 2 1828 1783 1748 1722 no 1 3 1909 1852 1809 1775 1749 1727 1709 0.195 ' 4 19'9 1920 1869 1829 1797 1771 1749 1731 1715 1701 0.156 36/4 5 2069 1989 1929 1882 1845 1815 1789 1768 1749 1733 0.130 6 2150 2058 1989 1936 1893 1858 1829 1805 1784 1765 a.111 7 2230 2127 2050 1990 1941 1902 1869 1842 1818 1797 0.097 8 2310 2196 2110 2043 1990 1946 1910 1879 1852 1829 0.086 9 2390 2265 2170 2097 2038 1990 1950 1916 1887 1862 0.078 10 2471 2333 2230 2150 2086 2034 1990 1953 1921 1894 0.071 K2 = 1056 K3 = 2380 ' Type 18 0 1715 1686 1663 1646 1633 1621 1612 1604 1597 1591 0.926 1 1819 0.453 2 1923 1864 1820 1785 0.300 3 2028 1954 1898 1855 1820 1792 1768 0.224 4 2132 2043 1976 1924 1883 1849 1820 1797 1776 1758 0.179 36/4 5 2236 2132 2054 1994 1945 1906 1873 1845 1821 1800 0.149 6 2340 2222 2133 2063 20Q8 1963 1925 1893 1865 1842 0.127 7 2445 2311 2211 2133 , 1 6070 2019 1977 1941 1910 1883 0.111 ' 8 2549 2400 2289 2202 - 2 31 3 2076 2029 1989 1955 1925 0.099 9 2653 2490 2367 2272 2196 2133 2081 2037 1999 1967 0.089 10 2757 2579 2445 2341 2258 2190 2133 2085 2044 2008 0.081 K2 = 1398 K3 = 2380 Type 16 0 1763 1727 1700 1679 1662 1648 1636 1626 1618 1611 1.036 1 1892 0.509 2 2021 1948 1893 1850 0.337 3 2149 2058 1989 1936 1893 1858 1829 0.252 4 2278 2168 2086 2022 1970 1929 1894 1864 1839 1817 0.201 36/4 5 2407 2979 2182 2108 2048 1999 1958 1923 1894 1868 0.168 6 2536 2389 2279 2193 2125 2069 2022 1983 1949 1920 0.144 7 2664 2499 2375 2279 2202 2139 2087 2042 2004 1971 0.126 8 2793 2610 2472 2365 2279 2209 2151 2102 2059 2023 0.112 9 2922 2720 2569 2451 2357 2280 2215 2161 2114 2074 0.100 10 3050 2830 2665 2537 2434 2350 2280 2220 2170 2126 0.091 K2 = 1764 K3 = 2380 * = number of sidelap fasteners per span 1 The shaded values do not comply with the minimum spacing requirements for sidelap connections and shall not be used except with properly spaced button punched sidelaps with 1.5VLI, 2VLl and 3VLI. K2 e lk - G' _ + K3, Kips /inch 3.50 + 3 *K1 * SPAN SPAN is in feet 91 Monroe & Newell Engineers, Inc. JOB VAI L SHEET NO. CALCULATED BY ✓L CHECKED BY crai F "79 31r OF DATE DATE is z Monroe & Newell Engineers, Inc. Woll't LDa-,d,�- �1"r JOB VW-� 1p , F "C 77`x,' SHEET NO. CALCULATED BY ` OF DATE t o CHECKED BY nnTF Monroe & Newell JOB (-kA j ¢rte Z 9 3Y Engineers, Inc. SHEET NO. OF CALCULATED BY Uz DATE U CHECKED BY DATE Project: Vail Firestation M &N # 7938 Engr: UR Date: 4/16/2010 Masonry Wall Shear Design (Allowable Stress ACI 530) grid 3, wall 1 27071.077 Prooerties AXIAL fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900fm O,flexure,axial 0.8 0,shear 0.6 Wall Geometry Wall Depth, in 156 As, inA2 0.31 d, in 152 bw, in 7.63 Loads If fv >Fv shear reinf is reqd V, kips 11.8 M, k -ft 102.7 P (axial), kips (per foot) 1.74 1/3 stress increase for W or E? 1.33 ACI 530, Sec 2.1.2.3 n =Es /Em 21.481481 p= As /bwd 0.0002673 pn= 0.0057419 k 0.1015746 k= 2p2 +(p,) —m j =1 -k/3 0.9661418 (DFb =1 /3fm ( *1.33), psi 532 OK fb, psi 142.47681 f n fs, psi 27071.077 AXIAL h, in SHEAR As, in A2 MNd 8.7033898 Masonry takes all shear: 91.56 OFv, psi 30.906407 If MNd <1, Fv= (1 /3)[4- (MNd)]sgrt(fm) ON, max (controls) 30.906407 If MNd >1, Fv= sqrt(fm) < 35 psi fv, psi 9.9136338 f = V If fv >Fv shear reinf is reqd OK b', BENDING (DFb =1 /3fm ( *1.33), psi 532 OK Fs= 24000000 psi ( *1.33), psi 31920 OK AXIAL h, in 104.4 As, in A2 0.233 An, inA2 91.56 p =As /An 0.0025448 .0025 <pn <.04 I, inA4 444.19495 r =sqrt (I /A) 2.2025913 h/r 47.398717 l If h /r <99: h/r <99: P = (0.25f mt +0.65 - 4,F�1 — Cl )2] Pa, kips 33617.534 J If h/r >99, Pa= 82813.516 r70-) h/ r <99: P = (025f m�j, +0 F) 65� * — J Pa, kips 47.398717 h 0 Pa, kips 37.918973 uqv Project: Vail Firestation M &N # 7938 Engr: LJR Date: 4/16/2010 Masonry Wall Shear Design (Allowable Stress ACI 530) grid 3, wall 2 Properties SHEAR fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900fm O,flexure,axial 0.8 O,shear 0.6 Wall Geometry If MNd >1, Fv= sqrt(fm) < 35 psi Wall Depth, in 198 As, inA2 0.31 d, in 194 bw, in 7.63 Loads If h /r <99: V, kips 17.01 M, k -ft 147.9 P (axial), kips (per foot) 4.36 1/3 stress increase for W or E? 1.33 ACI 530, Sec 2.1.2.3 n =Es /Em 21.481481 p= As /bwd 0.0002094 p n= 0.0044988 k 0.0904638 1 k = 2pt +(p,) — p, j =1 -k/3 0.9698454 BENDING 2Mj fb, psi 140.88803 f b — jkbd z fs, psi 30428.706 Al AXIAL f = SHEAR 104.4 jd4 s MNd 8.6948854 Masonry takes all shear: 91.56 OFv, psi 30.906407 If MNd <1, Fv= (1 /3)[4- (MNd)]sgrt(fm) (PFv, max (controls) 30.906407 If MNd >1, Fv= sqrt(fm) < 35 psi fv, psi 11.259383 V f If fv >Fv shear reinf is reqd OK h;, BENDING OFb =1 /3fm ( *1.33), psi 532 OK Fs= 24000000 psi ( *1.33), psi 31920 OK AXIAL h, in 104.4 As, inA2 0.233 An, inA2 91.56 p =As /An 0.0025448 .0025 <pn <.04 I, inA4 444.19495 r =sqrt (I /A) 2.2025913 h/r 47.398717 If h /r <99: h/r <99: P = (0.25f m4 +0.654,F�1 —r Pa, kips 33617.534 tam If h/r >99, Pa= 82813.516 .��, z h /r <99: = (0.25f +0.65A,F) *� Pa, kips 47.398717 h J J 0 Pa, kips 37.918973 L 5- Monroe & Newell Engineers, Inc. JOB �3X SHEET NO. OF CALCULATED BY IA DATE t CHECKED BY DATE Project: Vail Firestation M &N # 7938 Engr: LJR Date: 4/23/2010 Masonry Wall Shear Design (Allowable Stress ACI 530) grid 3 lower, pier a 18008.512 Properties AXIAL fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900fm 0, flexure, axial 0.8 m,shear 0.6 Wall Geometry Wall Depth, in 52 As, inA2 0.31 d, in 48 bw, in 7.63 Loads If fv >Fv shear reinf is reqd V, kips 2.63 M, k -ft 21.04 P (axial), kips (per foot) 6.19 1/3 stress increase for W or E? 1.33 ACI 530, Sec 2.1.2.3 n =Es /Em 21.481481 p= As /bwd 0.0008464 pn= 0.0181828 k 0.1733796 k = 2Ext +(Fn) —p, j =1 -k/3 0.9422068 0Fb =1 /3fm ('1.33), psi 2AP fb, psi 175.83512 fl -- 2 jkb d fs, psi 18008.512 A4' AXIAL f h, in s SHEAR As, inA2 MNd 8 Masonry takes all shear: 91.56 OFv, psi 30.906407 If MNd <1, Fv= (1 /3)[4- (MNd)]sgrt(fm) mFv, max (controls) 30.906407 If MNd >1, Fv= sqrt(fm) < 35 psi fv, psi 6.6286924 f, = V If fv >Fv shear reinf is reqd OK bdy BENDING 0Fb =1 /3fm ('1.33), psi 532 OK Fs= 24000000 psi ('1.33), psi 31920 OK AXIAL h, in 96 As, inA2 0.233 An, inA2 91.56 p =As /An 0.0025448 .0025 <pn <.04 I, inA4 444.19495 r =sqrt (I /A) 2.2025913 h/r 43.585027 If h /r<99: h/r <99: P = (O.25f m4, +O.654,F�1 — �2J Pa, kips 34289.723 l J If h/r >99, Pa= 97939.922 /7 � h /r <99: = (0-25j'- +0.65 ,F) ) 2 I I \ Pa, kips 43.585027 h 0 Pa, kips 34.868021 LO Project: Vail Firestation M &N # 7938 Engr: LJR Date: 4/23/2010 Masonry Wall Shear Design (Allowable Stress ACI 530) grid 3 lower, pier b 17416.888 Properties AXIAL fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900fm O,flexu re, axial 0.8 ,shear 0.6 Wall Geometry Wall Depth, in 80 As, inA2 0.62 d, in 76 bw, in 7.63 Loads V, kips 8 M, k -ft 64 P (axial), kips (per foot) 6.19 1/3 stress increase for W or E? 1.33 ACI 530, Sec 2.1.2.3 n =Es /Em 21.481481 p= As /bwd 0.0010692 pn= 0.0229677 k 0.1925849 1 k= 2M +(pf —pt j =1 -k/3 0.935805 mFb =1 /3fm (`1.33), psi 532 OK fb, psi 193.38902 f fs, psi 17416.888 A AXIAL h, in SHEAR As, inA2 MNd 8 Masonry takes all shear: 91.56 OFv, psi 30.906407 If MNd <l, Fv= (1 /3)[4- (MNd)]sgrt(fm) ON, max (controls) 30.906407 If MNd >l, Fv= sqrt(fm) < 35 psi fv, psi 13.10616 f — V If fv >Fv shear reinf is reqd OK BENDING mFb =1 /3fm (`1.33), psi 532 OK Fs= 24000000 psi ("1.33), psi 31920 OK AXIAL h, in 96 As, inA2 0.233 An, inA2 91.56 p =As /An 0.0025448 .0025 <pn <.04 I, inA4 444.19495 r =sqrt (I /A) 2.2025913 h/r 43.585027 If h /r <99: h/r <99: P = (0.25f m4, +0.65A Pa, kips 34289.723 If h/r >99, Pa= 97939.922 /,. )z 70 h/r <99: P =(025f * m9, +0.654,F) I J Pa, kips 43.585027 h m Pa, kips 34.868021 Lq9 Project: Vail Firestation M &N # 7938 Engr: LJR Date: 4/23/2010 Masonry Wall Shear Design (Allowable Stress ACI 530) grid 3 lower, pier c Properties SHEAR fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900fm O,flexure,axial 0.8 ,shear 0.6 Wall Geometry If MNd >1, Fv= sqrt(fm) < 35 psi Wall Depth, in 56 As, inA2 0.31 d, in 52 bw. in 7.63 Loads V, kips 3.33 M, k -ft 26.64 P (axial), kips (per foot) 6.19 1/3 stress increase for W or E? 1.33 ACI 530, Sec 2.1.2.3 n =Es /Em 21.481481 p= As /bwd 0.0007813 p n= 0.0167841 k 0.1671993 1 k= 12M +(p,) —Fn j =1 -k/3 0.9442669 BENDING 2AP fb, psi 196.28401 f — b jkb fs, psi 21001.759 A- AXIAL f I SHEAR 96 Jd4 s MNd 8 Masonry takes all shear: 91.56 (ON, psi 30.906407 If MNd <1, Fv= (1 /3)[4- (MNd)]sgrt(fm) ON, max (controls) 30.906407 If MNd >1, Fv= sqrt(fm) < 35 psi fv, psi 7.7934844 f — V If fv >Fv shear reinf is reqd OK bd BENDING (DFb =1 /3fm ('1.33), psi 532 OK Fs= 24000000 psi ( *1.33), psi 31920 OK AXIAL h, in 96 As, inA2 0.233 An, inA2 91.56 p =As /An 0.0025448 .0025 <pn <.04 I, inA4 444.19495 r =sqrt (I /A) 2.2025913 h/r 43.585027 h If h /r <99: h/r <99: P = (0.25f m4, +0.654,F�1 — )z J Pa, kips 34289.723 l J If h/r >99, Pa= 97939.922 /70- h /r <99: P = (O.25f m4, +O65A,R, J Pa, kips 43.585027 h m Pa, kips 34.868021 L-49 Project: Vail Firestation M &N # 7938 Engr: UR Date: 4/23/2010 Masonry Wall Shear Design (Allowable Stress ACI 530) grid 3 lower, pier d -f 16249.464 Properties AXIAL fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900fm O,flexure,axial 0.8 O,shear 0.6 Wall Geometry Wall Depth, in 48 As, inA2 0.31 d, in 44 bw, in 7.63 Loads If fv >Fv shear reinf is reqd V, kips 2.17 M, k -ft 17.36 P (axial), kips (per foot) 6.19 1/3 stress increase for W or E? 1.33 ACI 530, Sec 2.1.2.3 n =Es /Em 21.481481 p= As /bwd 0.0009234 p n= 0.0198358 k 0.1803266 1 k 2pz +(pz) —M j =1 -k/3 0.9398911 (DFb =1 /3fm ('1.33), psi 2A z fb, psi 166.41549 f = jk1; d fs, psi 16249.464 A AXIAL h, in 96 SHEAR As, inA2 MNd 8 Masonry takes all shear: 91.56 OFv, psi 30.906407 If MNd <1, Fv= (1 /3)[4- (MNd)]sgrt(fm) (DFv, max (controls) 30.906407 If MNd >1, Fv= sgrt(fm) < 35 psi fv, psi 5.9250765 V If fv >Fv shear reinf is reqd OK BENDING (DFb =1 /3fm ('1.33), psi 532 OK Fs= 24000000 psi ('1.33), psi 31920 OK AXIAL h, in 96 As, inA2 0.233 An, inA2 91.56 p =As /An 0.0025448 .0025 <pn <.04 I, inA4 444.19495 r =sqrt (I /A) 2.2025913 h/r 43.585027 If h /r <99: h/r <99: P = (O.25f m4, +O.654,F�i — Pa, kips 34289.723 l /z] J If h/r >99, Pa= 97939.922 h/r <99: P Q *�70"lz = (O.2Sf m4, + 0.65 r F) Pa, kips 43.585027 h J m Pa, kips 34.868021 L5O Project: Vail Firestation M &N # 7938 Engr: UR Date: 3/30/2010 Masonry Wall Shear Design (Allowable Stress ACI 530) Grid 6, wall 1 20394.493 Properties AXIAL fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900fm m,flexure,axial 0.8 O,shear 0.6 Wall Geometry Wall Depth, in 135.6 As, inA2 0.62 d, in 131.6 bw, in 11.63 Loads If fv >Fv shear reinf is regd V, kips 16.62 M, k -ft 132.96 P (axial), kips 0 1/3 stress increase for W or E? 1.33 ACI 530, Sec 2.1.2.3 n =Es /Em 21.481481 p= As /bwd 0.0004051 p n= 0.008702 k 0.1235091 1 k= 2pt +(pa) — j =1 -k/3 0.9588303 (DFb =1 /3fm ( *1.33), psi 2A4, fb, psi 133.78275 A =— jkb ,d fs, psi 20394.493 AXIAL f h, in s SHEAR As, inA2 MNd 8 Masonry takes all shear: 139.56 cDFv, psi 30.906407 If MNd <1, Fv= (1 /3)[4- (MNd)]sgrt(fm) OFv, max (controls) 30.906407 If MNd >1, Fv= sqrt(fm) < 35 psi fv, psi 10.538811 V f If fv >Fv shear reinf is regd OK BENDING (DFb =1 /3fm ( *1.33), psi 532 OK Fs= 24000000 psi ( *1.33), psi 31920 OK AXIAL h, in 96 As, inA2 0.23 An, inA2 139.56 p =As /An 0.001648 .0025 <pn <.04 I, inA4 1573.0377 r =sqrt (I /A) 3.3572918 h/r 28.594476 l 2 If h /r <99: h/r <99: P = (0.25f nq +0.65A F � 1 — (1 ) Pa, kips 53590.086 Ifh /r >99, Pa= 335136.91 h/r <99: P * /701 2 =(025f m 4 +0.65A Il J Pa, kips 28.594476 h 0 Pa, kips 22.875581 I �-2' Project: Vail Firestation M &N # 7938 Engr: LJR Date: 3/30/2010 Masonry Wall Shear Design (Allowable Stress ACI 530) Grid 6, wall 2 21783.995 Properties h, in fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900fm O,flexure,axial 0.8 O,shear 0.6 Wall Geometry If MNd <1, Fv= (1 /3)[4- (MNd))sgrt(fm) Wall Depth, in 186 As, inA2 0.62 d, in 182 bw, in 11.63 Loads If h /r <99: V, kips 24.7 M, k -ft 197.6 P (axial), kips 0 1/3 stress increase for W or E? 1.33 ACI 530, Sec 2.1.2.3 n =Es /Em 21.481481 p= As /bwd 0.0002929 p n= 0.0062922 k 0.1060646 1 k= 2M +(p,) —M j =1 -k/3 0.9646451 BENDING fb, psi 120.31995 f = 2AP2 Fs= 24000000 psi ( *1.33), psi 31920 OK w fs, psi 21783.995 A4, h, in 96 SHEAR 0.23 MNd 8 Masonry takes all shear: 0.001648 .0025 <pn <.04 (I)Fv, psi 30.906407 If MNd <1, Fv= (1 /3)[4- (MNd))sgrt(fm) (PFv, max (controls) 30.906407 If MNd >1, Fv= sgrt(fm) < 35 psi fv, psi 11.418375 V f If fv >Fv shear reinf is reqd OK hd, BENDING (DFb =1 /3fm ( *1.33), psi 532 OK Fs= 24000000 psi ( *1.33), psi 31920 OK AXIAL h, in 96 As, inA2 0.23 An, inA2 139.56 p =As /An 0.001648 .0025 <pn <.04 I, inA4 1573.0377 r =sqrt (I /A) 3.3572918 h/r 28.594476 2 h h If h /r <99: hl <99: P = (0.25f m4 +0.654rF 1 J . ) Pa, kips 53590.086 \\ J J If h/r >99, Pa= 335136.91 h/ r <99: P C 70- = (O.25f rn�, +O.65A * — Pa, kips 28.594476 h 0 Pa, kips 22.875581 Project: Vail Firestation M &N # 7938 Engr: LJR Date: 3/30/2010 Masonry Wall Shear Design (Allowable Stress ACI 530) Grid 6, wall 3 28691.21 Properties h, in fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900fm (P,flexu re, axial 0.8 O,shear 0.6 Wall Geometry If MNd <1, Fv= (1 /3)[4- (MNd)]sgrt(fm) Wall Depth, in 63.96 As, inA2 0.31 d, in 60 bw, in 11.63 Loads If h /r <99: V, kips 5.32 M, k -ft 42.56 P (axial), kips 0 1/3 stress increase for W or E? 1.33 ACI 530, Sec 2.1.2.3 n =Es /Em 21.481481 p= As /bwd 0.0004443 pn= 0.0095432 k 0.1289397 k= 2M (p,)2 —Fn j =1 -k/3 0.9570201 BENDING Zvi fb, psi 197.70743 f = b – Fs= 24000000 psi ( *1.33), psi 31920 OK ik d fs, psi 28691.21 A4, h, in 96 SHEAR 0.23 .f l� s MNd 8 Masonry takes all shear: 0.001648 .0025 <pn <.04 (VFv, psi 30.906407 If MNd <1, Fv= (1 /3)[4- (MNd)]sgrt(fm) OFv, max (controls) 30.906407 If MNd >1, Fv= sqrt(fm) < 35 psi fv, psi 7.1519334 V f If fv >Fv shear reinf is reqd OK bd,, BENDING (PFb =1 /3fm ( *1.33), psi 532 OK Fs= 24000000 psi ( *1.33), psi 31920 OK AXIAL h, in 96 As, inA2 0.23 An, inA2 139.56 p =As /An 0.001648 .0025 <pn <.04 I, inA4 1573.0377 r -sqrt (I /A) 3.3572918 h/r 28.594476 h 2 l If h /r <99: h/r <99: P = (O.25f m�, +O.654 1 –I Pa, kips 53590.086 1 J If h/r >99, Pa= 335136.91 h/r <99: P C70- = (O.25f — 4, +0- 65A — Pa, kips 28.594476 h 0 Pa, kips 22.875581 L5� Project: Vail Firestation M &N # 7938 Engr: LJR Date: 3/30/2010 Masonry Wall Shear Design (Allowable Stress ACI 530) Grid 6, wall 4 A Properties 96 fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900fm O,flexure,axial 0.8 O,shear 0.6 Wall Geometry fv, psi Wall Depth, in 84 As, inA2 0.62 d, in 80 bw, in 11.63 Loads V, kips 8.56 M, k -ft 68.48 P (axial), kips 0 1/3 stress increase for W or E? 1.33 ACI 530, Sec 2.1.2.3 n =Es /Em 21.481481 p= As /bwd 0.0006664 pn= 0.0143148 k 0.1554926 k= 2p,,(MY —err j =1 -k/3 0.9481691 BENDING 211 fb, psi 149.76822 f — a jkb,,d2 fs, psi 17473.404 AXIAL A SHEAR 96 Jd s MNd 8 Masonry takes all shear: 139.56 cPFv, psi 30.906407 If MNd <1, Fv= (1 /3)[4- (MNd)]sgrt(fm) OFv, max (controls) 30.906407 If MNd >1, Fv= sgrt(fm) < 35 psi fv, psi 8.7622323 V f If fv >Fv shear reinf is reqd OK BENDING (DFb =1 /3fm ( *1.33), psi 532 OK Fs= 24000000 psi ( *1.33), psi 31920 OK AXIAL h, in 96 As, inA2 0.23 An, inA2 139.56 p =As /An 0.001648 .0025 <pn <.04 I, inA4 1573.0377 r =sqrt (I /A) 3.3572918 h/r 28.594476 h If h /r <99: hl <99: P = (0.25f mA„ +0.654 1z Pa, kips 53590.086 140j J J If h/r >99, Pa= 335136.91 / ,� 0- P =(025f m�, +065 rF x� hl <99: 4 ) Pa, kips 28.594476 \— h 0 Pa, kips 22.875581 L5� Monroe & Newell J OB u a4 I f Engineers Inc. SHEET NO. CALCULATED BY t CHECKED BY OF DATE DATE } M is ..... __ ....... .. ............ - N3 � Project: Vail Firestation M &N # 7938 Engr: LJR Date: 4126/2010 Masonry Wall Shear Design (Allowable Stress ACI 530) wall 18 Properties SHEAR fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900fm O,flexure,axial 0.8 cD,shear 0.6 Wall Geometry If MNd >1, Fv= sqrt(fm) < 35 psi Wall Depth, in 156 As, inA2 0.62 d, in 152 bw, in 7.63 Loads If h /r <99: V, kips 15.1 M, k -ft 238 P (axial), kips (per foot) 6 1/3 stress increase for W or E? 1.33 ACI 530, Sec 2.1.2.3 n =Es /Em 21.481481 p= As /bwd 0.0005346 p n= 0.0114839 k 0.1405016 k= 2pz +(py —pz j =1 -k/3 0.9531661 BENDING fb, psi 241.95047 f =�k ,2 fs, psi 31794.671 AXIAL SHEAR 189 MNd 15.761589 Masonry takes all shear: 91.56 OFv, psi 30.906407 If MNd <1, Fv= (1 13)[4- (M/Vd)]sgrt(fm) OFv, max (controls) 30.906407 If MNd >1, Fv= sqrt(fm) < 35 psi fv, psi 12.686091 — f =V If fv >Fv shear reinf is reqd OK b' BENDING (DFb =1 /3fm ("*1.33), psi 532 OK Fs= 24000000 psi (`1.33), psi 31920 OK AXIAL h, in 189 As, inA2 0.233 An, inA2 91.56 p =As /An 0.0025448 .0025 <pn <.04 I, inA4 444.19495 r =sqrt (I /A) 2.2025913 h/r 85.808022 2 If h /r <99: h/r <99: P = (0.25f m4 +0.65A,,F Pa, kips 23705.909 140, J If h/r >99, Pa= 25268.45 7Q" 12 = (0.25f mA„ +0.65 -t* h/r <99: P F) - C Pa, kips 85.808022 h 0 Pa, kips 68.646417 LO- Project: Vail Firestation M &N # 7938 Engr: LJR Date: 4/30/2010 Masonry Wall Shear Design (Allowable Stress ACI 530) wall 14 19022.434 Properties h, in fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900f O,flexure,axial 0.8 ,shear 0.6 Wall Geometry Wall Depth, in 216 As, inA2 0.62 d, in 212 bw, in 7.63 Loads If fv >Fv shear reinf is reqd V, kips 16.3 M, k -ft 200 P (axial), kips (per foot) 6 1/3 stress increase for W or E? 1.33 ACI 530, Sec 2.1.2.3 n =Es /Em 21.481481 p= As /bwd 0.0003833 pn= 0.0082337 k 0.1203556 1 k— j =1 -k/3 0.9598815 OFb =1 /3fm ( *1.33), psi 532 OK fb, psi 121.1605 f = � fs, psi 19022.434 h, in 189 As, in A2 0.233 SHEAR 91.56 MNd 12.269939 Masonry takes all shear: 444.19495 OFv, psi 30.906407 If MNd <1, Fv= (1 /3)[4- (MNd)]sgrt(fm) OFv, max (controls) 30.906407 If MNd >1, Fv= sqrt(fm) < 35 psi fv, psi 9.8902966 f — V If fv >Fv shear reinf is reqd OK bd�, BENDING OFb =1 /3fm ( *1.33), psi 532 OK Fs= 24000000 psi ( *1.33), psi 31920 OK AXIAL h, in 189 As, in A2 0.233 An, inA2 91.56 p =As /An 0.0025448 .0025 <pn <.04 I, inA4 444.19495 r =sqrt (I /A) 2.2025913 h/r 85.808022 2 If h /r <99: h /r <99:P = (0.25f nL4� +0.654,F�1— (140r) Pa, kips 23705.909 If h /r >99, Pa= 25268.45 (7Q,.. \ h/r <99: P =(025f m�, +0.654,F) * J Pa, kips 85.808022 h 0 Pa, kips 68.646417 LAY Monroe & Newell Engineers, Inc. JOB V64-pc 7� W-' - 7 i 2 SHEET NO. OF CALCULATED BY t� DATE 3 • t 0 CHECKED BY DATE Title : Dsgnr: Description Scope : Job # Date: 10:40AM, 26 MAR 10 Rev: 580005 Page 1 User: KW- 0606238, Ver5.8.0, 1- Dec -2003 Built -Up Sect ion Properties calcs.ecw:Calculations (c)1983 -2003 ENERCALC Engineering Softw Description Stair Tower General Information 14,333,269.333 in4 Total lyy 32,828,757.333 in4 X cg Dist. 108.0000 in Edge Distances from CG... Y cg Dist. 64.0000 in +X Type... -X - 108.0000 in +Y 64.0000 in X cg Y cg #1 Rectangular Height 8.0000 in Width 216.0000 in 108.0000 in 124.0000 in #2 Rectangular Height 8.0000 in Width 216.0000 in 108.0000 in 4.0000 in #3 Rectangular Height 112.0000 in Width 8.0000 in 4.0000 in 64.0000 in #4 Rectangular Height 112.0000 in Width 8.0000 in 212.0000 in 64.0000 in Area 5,248.0000 in2 box 14,333,269.333 in4 Total lyy 32,828,757.333 in4 X cg Dist. 108.0000 in Edge Distances from CG... Y cg Dist. 64.0000 in +X 108.0000 in -X - 108.0000 in +Y 64.0000 in -Y - 64.0000 in r xx 52.2608 in r yy 79.0916 in S left 303,969.9753 in3 �I71 , S right 303,969.9753 in3 S top 223,957.3333 in3 ' S bottom 223,957.3333 in3 ( a ,(off L (p Title : Dsgnr: Description Scope : User: KW- 0606238, Ver 5.8.0, 1- Dec -2003 (c)1983 -2003 ENERCALC Engineering Software Description Hose Tower Built -Up Section Properties Job # Date: 10:40AM, 26 MAR 10 Page 1 calcs. ecw:Calculations General Information 78.2517 in r yy Total Area 7,992.0000 in2 Ili a y Ixx lyy Type... X cg Dist. 92.3784 in Edge Distances from CG... X cg Y cg #1 Rectangular Height 12.0000 in Width 216.0000 in 108.0000 in 186.0000 in #2 Rectangular Height 12.0000 in Width 216.0000 in 108.0000 in 6.0000 in #3 Rectangular Height 168.0000 in Width 12.0000 in 6.0000 in 96.0000 in #4 Rectangular Height 66.0000 in Width 12.0000 in 210.0000 in 45.0000 in nIIa► y 78.2517 in r yy Total Area 7,992.0000 in2 Ili a y Ixx lyy 48,937,584.649 in4 47,453,191.784 in4 X cg Dist. 92.3784 in Edge Distances from CG... Y cg Dist. 90.9459 in +X 123.6216 in 484,271.3645 in3 -X - 92.3784 in 538,095.2844 in3 +Y 101.0541 in -Y - 90.9459 in r xx 78.2517 in r yy 77.0557 in S left 513,682.8836 in3 ?ate S right 383,858.3507 in3 7�? S top 484,271.3645 in3 T2 S bottom 538,095.2844 in3 Sal LW Monroe & Newell J OB VA-t L- Fi " 71 3S Engineers Inc. SHEET NO. OF CALCULATED BY �� R DATE 3 1 / l L) CHECKED BY DATE . S .... ....... - ............ . ly L4 L/ .. aIS...... ... ............ .._� . ...... , I3� ... _ _ . . I I3� 13 S Ll 3..Q2 L ...`... S _. ...... . Monroe & Newell wu Engineers, Inc. SHEET NO. Liz CALCULATED BY CHECKED BY_ - 7 9 -3 OF DATE DATE Monroe & Newell Engineers Inc. SHEET NO. CALCULATED BY t,(2- CHECKED BY 113-5 Do�-o I S - 79 3 & OF DATE / 2-1 ' I ' DATE Project: Vail Fire Station M &N# 7938 Engr: LJR Date: 3/29/2010 Description: Stair Core E -W direction Core Area (ft ^2) 36.44 LL *e Core Height (ft) 17.5 Core Weight DL (k) 95.655 Vertical Loads on Core Location Desc. Pi core P2 P3 P4 P5 P6 DL (k) LL (k) SL (k) 95.655 0 0 7.75 3.73 0 15.63 0 5.64 2.18 1.05 0 23.8 7.28 36.14 20.26 0 0 Sum eDL 1.24 eLL -2.20 eSL 2.51 165.275 12.06 41.78 204.81 - 26.5875 104.97 bb (P DL *e LL *e SL *e 0 0 0 0 -9 -69.75 -33.57 0 9 140.67 0 50.76 -3.75 -8.175 - 3.9375 0 1.5 35.7 10.92 54.21 5.25 106.365 0 0 204.81 - 26.5875 104.97 bb (P Project: Vail Fire Station M &N# 7938 Engr: LJR Date: 3/29/2010 Description: Stair Core N -S direction Core Area (ft ^2) 36.44 Core Height (ft) 17.5 Core Weight DL (k) 95.655 Vertical Loads on Core Location Desc. DL (k) LL (k) SL (k) e (ft) DL *e LL *e SL*e P1 core 95.655 0 0 0 0 0 0 P2 22.9 3.73 4.48 0 0 0 0 P3 21.18 3.89 14.34 5.34 113.1012 20.7726 76.5756 P4 25.1 4.45 21.8 -5.34 - 134.034 - 23.763 - 116.412 P5 0.48 0 1.16 -3.59 - 1.7232 0 - 4.1644 P6 0 0 0 0 0 0 0 Sum eDL -0.14 eLL -0.25 eSL -1.05 165.315 12.07 41.78 - 22.656 - 2.9904 - 44.0008 bv-� Project: Vail Fire M &N# 7938 Engr: LJR Date: 3/29/2010 Stair Direction: N -S Applied Lateral Loads: 165.32 ftq dimensions earthquake load, E (k) 74.70 b (ft) 24 soil load, H (k) 0.00 h (ft) 16.67 wind load, W (k) 0.00 t (ft) 1.667 applied ht above slab (ft) 13.50 area (ft ^2) 400.08 MoE (k -ft) 1008.45 Sx (ft ^3) 1111.556 MoH(k -ft) 0.00 weight (k) 124.94 MOW (k -ft) 0.00 P/A (ksf) 0.312288 MoE /S (ksf) 0.91 1 0 MoH /S (ksf) 0.00 SUA (ksf) 0.10 MoW /S (ksf) 0.00 1.05 MSUS (ksf) Total Vertical Loads on Ft Dl-core (k) 165.32 DUA (ksf) 1.14 0 eDL (ft) 0.14 MDUS (ksf) 0.02 1 MoDL (k -ft) 23.14 1 1 0 DL core +ftg (k) 290.26 1 0 0 LL (k) 12.07 LUA (ksf) 0.03 0 eLL (ft) 0.25 MLL /S (ksf) 0.00 1 MOLL (k -ft) 3.02 0.75 1 0 SL (k) 41.78 SUA (ksf) 0.10 1 eSL (ft) 1.05 MSUS (ksf) 0.04 0.2 MoSL (k -ft) 43.87 0 0.9 0 ASCE Allowable Stress Load Combinations on Fta D L 1.6 1 D 0 1 0 1 2 D +H +L MrA /Mo 1 0 3 D +H +S 1 0 4 D +H +0.75L +0.75S 1 0.75 2.14 5 D +H +0.7E 1 0 D 6 D +H +W S 1 0 W 7 D +H +0.75(0.7E) +0.75L +0.75S 1 0.75 0 8 D +H +0.75W +0.75L +0.75S 0 1 0.75 0.5 9 0.6D +W +H 0 0.6 0 0 10 0.6D +0.7E +H 1.6 0.6 0 Overturning Mo (k -ft) MrA MrB MrA/Mo MrB /Mo .6D +W +H 0.00 1437.70 1465.48 #DIV /01 #DIV /01 .6D +.7E +H 705.92 1437.70 1465.48 2.04 2.08 ASCE Strenath Load Combinations on Ft 1 1.4D 2 1.2D +1.6L +0.5S 3 1.2D +1.6H +0.5S 4 1.2D +1.6S +L 5 1.2D +1.6S +0.8W 6 1.2D +1.6W +L +0.5S 7 1.2D +E +L +0.2S 8 0.9D +1.6W +1.6H 9 0.9D +E +1.6H Overturning Mo (k-ft) MrA MrB 0.91D+1.6W +1.6t 20.83 2156.56 2198.22 0.9D +E +1.6H 1029.28 2156.56 2198.22 ASCE Strength Core Pressures 1 1.4D 2 1.2D +1.6L +0.5S 3 1.2D +1.6H +0.5S 4 1.2D +1.6S +L 5 1.2D +1.6S +O.BW 6 1.2D +1.6W +L +0.5S 7 1.2D +E +L +0.2S 8 0.9D +1.6W +1.6H 9 0.9D +E +1.6H ASCE Allowable Stress Core Pressures 1D 2 D +H +L 3 D +H +S 4 D +H +0.75L +0.75S 5 D +H +0.7E 6 D +H +W 7 D +H +0.75(0.7E) +0.75L +0.755 8 D +H +0.75W +0.75L +0.755 9 0.6D +W +H 10 0.6D +0.7E +H core dimensions area (ft ^2) 36.44 Sx (ft ^3) 129.6 Core: MoE /S 7.78125 MoH /S 0 MOW /S 0 Total Vert Loads on Core DUA (ksf) 4.54 MDUS (ks 0.18 LUA (ksf) 0.33 MLUS (ksf 0.02 SUA (ksf) 1.15 MSUS (ksi 0.34 S H E W 0 0 0 0 0 1 0 0 1 1 0 0 0.75 1 0 0 0 1 0.7 0 0 1 0 1 0.75 1 0.525 0 0.75 1 0 0.75 0 1 0 1 0 1 0.7 0 D L S H E W 1.4 0 0 0 0 0 1.2 1.6 0.5 0 0 0 1.2 0 0.5 1.6 0 0 1.2 1 1.6 0 0 0 1.2. 0 1.6 0 0 0.8 1.2 1 0.5 0 0 1.6 1.2 1 0.2 0 1 0 0.9 0 0 1.6 0 1.6 0.9 0 0 1.6 1 0 MrA /Mo MrB /Mo 103.53 105.53 2.10 2.14 D L S H E W 1.4 0 0 0 0 0 1.2 1.6 0.5 0 0 0 1.2 0 0.5 1.6 0 0 1.2 1 1.6 0 0 0 1.2 0 1.6 0 0 0.8 1.2 1 0.5 0 0 1.6 1.2 1 0.2 0 1 0 0.9 0 0 1.6 0 1.6 0.9 0 0 1.6 1 0 D L S H E W 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0.75 0.75 1 0 0 1 0 0 1 0.7 0 1 0 0 1 0 1 1 0.75 0.75 1 0.525 0 1 0.75 0.75 1 0 0.75 0.6 0 0 1 0 1 0.6 0 0 1 0.7 0 Project: Vail Fire M &N# 7938 Engr: LJR Date: 3/29/2010 Stair Direction: N -S Applied Lateral Loads: ftq dimensions core dimensions earthquake load, E (k) 74.70 b (ft) 24 area (ft ^2) 36.44 soil load, H (k) 0.00 h (ft) 16.67 Sx (ft ^3) 129.6 wind load, W (k) 0.00 t (ft) 1.667 applied ht above slab (ft) 13.50 area (ft ^2) 400.08 MoE (k -ft) 1008.45 Sx (ft ^3) 1111.556 MoH(k -ft) 0.00 weight (k) 124.94 MoW (k -ft) 0.00 P/A (ksf) 0.312288 Core: MoE /S (ksf) 0.91 MoE/S 7.78125 MoH /S (ksf) 0.00 MoH /S 0 MoW /S (ksf) 0.00 MoW /S 0 Total Vertical Loads on Ftq Total Vert Loads on Core Dl-core (k) 165.32 DUA (ksf) 1.14 DUA (ksf) 4.54 eDL (ft) 0.14 MDUS (ksf) 0.02 MDUS (ks 0.18 MoDL (k -ft) 23.14 DL core +ftg (k) 290.26 LL (k) 12.07 LUA (ksf) 0.03 LUA (ksf) 0.33 eLL (ft) 025 MLL /S (ksf) 0.00 MLUS (ksf 0.02 MoLL (k -ft) 3.02 SL (k) 41.78 SUA (ksf) 0.10 SUA (ksf) 1.15 eSL (ft) 1.05 MSUS (ksf) 0.04 MSUS (ksf 0.34 MoSL (k -ft) 43.87 sum P/A sum M/S Qmax (ksf) Qmin (ksf) (ksf) (ksf) P /A +M /S P /A -M /S ASCE Allowable Stress Load Combinations on Ftq D L S H E _W 1 D 1 0 0 0 0 0 1.14 0.02 1.16 1.12 2 D +H +L 1 0 0 1 0 0 1.14 0.02 1.16 1.12 3 D +H +S 1 0 1 1 0 0 1.24 0.06 1.30 1.18 4 D +H +0.75L +0.755 1 0.75 0.75 1 0 0 1.24 0.05 1.29 1.19 5 D +H +0.7E 1 0 0 1 0.7 0 1.14 0.66 1.79 0.48 6 D +H +W 1 0 0 1 0 1 1.14 0.02 1.16 1.12 7 D +H +0.75(0.7E) +0.75L +0.75S 1 0.75 0.75 1 0.525 0 1.24 0.53 1.77 0.71 8 D +H +0.75W +0.75L +0.755 1 0.75 0.75 1 0 0.75 1.24 0.05 1.29 1.19 9 0.6D +W +H 0.6 0 0 1 0 1 0.68 0.01 0.70 0.67 10 0.6D +0.7E +H 0.6 0 0 1 0.7 0 0.68 0.65 1.33 0.04 Overturning Mo (k -ft) MrA MrB MrA /Mo MrB /Mo .6D +W +H 0.00 1437.70 1465.48 #DIV /0! #DIV /0! .6D +.7E +H 705.92 1437.70 1465.48 2.04 2.08 ASCE Strength Load Combinations on Ftq D L S H E W 1 1.4D 1.4 0 0 0 0 0 1.59 0.03 1.62 1.57 21.2D +1.6L+0.5S 1.2 1.6 0.5 0 0 0 1.47 0.05 1.52 1.42 31.2D +1.6H +0.5S 1.2 0 0.5 1.6 0 0 1.42 0.04 1.46 1.37 41.2D +1.6S +L 1.2 1 1.6 0 0 0 1.56 0.09 1.65 1.47 51.2D +1.6S +0.8W 1.2 0 1.6 0 0 0.8 1.53 0.09 1.62 1.45 61.2D +1.6W +L +0.5S 1.2 1 0.5 0 0 1.6 1.45 0.05 1.50 1.40 7 1.2D +E +L +0.2S 1.2 1 0.2 0 1 0 1.42 0.94 2.36 0. 4_7 8 0.9D +1.6W +1.6H 0.9 0 0 1.6 0 1.6 1.02 0.02 _ 1.04 9 0.9D +E +1.6H 0.9 0 0 1.6 1 0 1.02 0.93 1.95 0.10 Overturning Mo (00 MrA MrB MrA /Mo MrB /Mo 0.9D +1.6W +1.61 20.83 2156.56 2198.22 103.53 105.53 0.90 +E +1.6H 1029.28 2156.56 2198.22 2.10 2.14 ASCE Strength Core Pressures D L S H E W 1 1.41) 1.4 0 0 0 0 0 6.35 0.25 6.60 6.10 21.2D +1.6L +0.5S 1.2 1.6 0.5 0 0 0 6.55 0.42 6.97 6.13 31.2D +1.6H +0.5S 1.2 0 0.5 1.6 0 0 6.02 0.38 6.40 5.63 41.2D +1.6S +L 1.2 1 1.6 0 0 0 7.61 0.78 8.39 6.83 51.2D +1.6S +O.SW 1.2 0 1.6 0 0 0.8 7.28 0.76 8.03 6.52 61.2D +1.6W +L +0.5S 1.2 1 0.5 0 0 1.6 6.35 0.41 6.76 5.94 71.2D +E +L +0.2S 1.2 1 0.2 0 1 0 6.00 8.09 14.09 -2.08 8 0.9D +1.6W +1.6H 0.9 0 0 1.6 0 1.6 4.08 0.16 4.24 3.92 9 0.9D +E +1.6H 0.9 0 0 1.6 1 0 4.08 7.94 12.03 -3.86 ASCE Allowable Stress Core Pressures D L S H E W 1 D 1 0 0 0 0 0 4.54 0.18 4.72 4.36 2 D +H +L 1 0 0 1 0 0 4.54 0.18 4.72 4.36 3 D +H +S 1 0 1 1 0 0 5.68 0.52 6.20 5.17 4 D +H +0.75L +0.75S 1 0.75 0.75 1 0 0 5.65 0.45 6.10 5.20 5 D +H +0.7E 1 0 0 1 0.7 0 4.54 5.63 10.16 -1.09 6 D +H +W 1 0 0 1 0 1 4.54' 0.18 4.72 4.36 7 D +H +0.75(0.7E) +0.75L +0.755 1 0.75 0.75 1 0.525 0 5.65 4.54 10.18 1.11 8 D +H +0.75W +0.75L +0.75S 1 0.75 0.75 1 0 0.75 5.65 0.45 6.10 5.20 9 0.6D +W +H 0.6 0 0 1 0 1 2.72 0.11 2.83 2.61 10 0.6D +0.7E +H 0.6 0 0 1 0.7 0 2.72 5.55 8.28 -2.83 L�8 Project: Vail Fire M &N# 7938 Engr: LJR Date: 3/29/2010 Stair Direction: N -S Qmax (ksf) Qmin (ksf) Applied Lateral Loads: ftg dimensions earthquake load, E (k) -74.70 b (ft) 24 soil load, H (k) 0.00 h (ft) 16.67 wind load, W (k) 0.00 t (ft) 1.667 applied ht above slab (ft) 13.50 area (ft ^2) 400.08 MoE (k -ft) - 1008.45 Sx (ft ^3) 1111.556 MoH(k -ft) 0.00 weight (k) 124.94 MoW (k -ft) 0.00 P/A (ksf) 0.312288 MoE /S (ksf) -0.91 1.12 1 MoH /S (ksf) 0.00 0 1.24 MoW /S (ksf) 0.00 1.18 0.75 Total Vertical Loads on Ftg 0 0 DLcore (k) 165.32 DUA (ksf) 1.14 1.19 eDL (ft) 0.14 MDUS (ksf) 0.02 0 MoDL (k -ft) 23.14 1.75 0.52 DL core +ftg (k) 290.26 0 1 LL (k) 12.07 LUA (ksf) 0.03 1.12 eLL (ft) 0.25 MLUS (ksf) 0.00 0 MoLL (k -ft) 3.02 1.66 0.82 SL (k) 41.78 SUA (ksf) 0.10 0.75 eSL (ft) 1.05 MSUS (ksf) 0.04 1.19 MoSL (k -ft) 43.87 0 1 ASCE Allowable Stress Load Combinations on Ftg D L 0.67 1 D 1 0 0 2 D +H +L 1 0 0.06 3 D +H +S 1 0 W 4 D +H +0.75L +0.755 1 0.75 5 D +H +0.7E 1 0 0 6 D +H +W 1 0 1.57 7 D +H +0.75(0.7E) +0.75L +0.75S 1 0.75 0 8 D +H +0.75W +0.75L +0.75S 1 0.75 1.42 9 0.6D +W +H 0.6 0 0 10 0.6D +0.7E +H 0.6 0 Overturning Mo (k-ft ) MrA MrB MrA /Mo MrB /Mo .6D +W +H 0.00 143770 1465.48 #DIV /0! #DIV /0! .6D +.7E +H - 705.92 1437.70 1465.48 -2.04 -2.08 ASCE Strength Load Combinations on Ftg D L 1.62 1 1AD 1.4 0 0 2 1.2D +1.6L +0.5S 1.2 1.6 1.50 31.2D +1.6H +0.5S 1.2 0 1 4 1.2D +1.6S +L 1.2 1 2.29 51.2D +1.6S +0.8W 1.2 0 0 6 1.2D +1.6W +L +0.5S 1.2 1 1.04 7 1.2D +E +L +0.2S 1.2 1 1 8 0.9D +1.6W +1.6H 0.9 0 1.91 9 0.9D +E +1.6H 0.9 0 Overturning Mo (k -ft) MrA MrB MrA/MO MrB /Mo 0.9D +1.6W +1.6h 20.83 2156.56 2198.22 103.53 105.53 0.9D +E +1.6H - 987.62 2156.56 2198.22 -2.18 -2.23 ASCE Strength Core Pressures D L 0 1 1.4D 1.4 0 0.42 2 1.2D +1.6L +0.5S 1.2 1.6 1.6 3 1.2D +1.6H +0.5S 12 0 0.38 4 1.2D +1.6S +L 1.2 1 0 51.21D+1.6S +0.8W 1.2 0 0.78 6 1.2D +1.6W +L +0.5S 1.2 1 0 7 1.2D +E +L +0.2S 1.2 1 0.76 8 0.9D +1.6W +1.6H 0.9 0 0 9 0.9D +E +1.6H 0.9 0 ASCE Allowable Stress Core Pressures D L 0.2 1 D 1 0 6.00 2 D +H +L 1 0 0 3 D +H +S 1 0 4.08 4 D +H +0.75L +0.75S 1 0.75 0 5 D +H +0.7E 1 0 4.08 6 D +H +W 1 0 S 7 D +H +0.75(0.7E) +0.75L +0.75S 1 0.75 8 D +H +0.75W +0.75L +0.75S 1 0.75 0 9 0.6D +W +H 0.6 0 4.54 10 0.6D +0.7E +H 0.6 0 core dimensions area (ft ^2) 36.44 Sx (ft ^3) 129.6 Core: MoE /S - 7.78125 MoH /S 0 MOW /S 0 Total Vert Loads on Core DUA (ksf) 4.54 MDUS (ks 0.18 LUA (ksf) 0.33 MLUS (ksf 0.02 SUA (ksf) 1.15 MSUS (ksl 0.34 sum P/A sum M/S Qmax (ksf) Qmin (ksf) (ksf) (ksf) P /A +M /S P /A -M /S S H E W 0 0 0 0 1.14 0.02 1.16 1.12 0 1 0 0 1.14 0.02 1.16 1.12 1 1 0 0 1.24 0.06 1.30 1.18 0.75 1 0 0 1.24 0.05 1.29 1.19 0 1 0.7 0 1.14 -0.61 1.75 0.52 0 1 0 1 1.14 0.02 1.16 1.12 0.75 1 0.525 0 1.24 -0.42 1.66 0.82 0.75 1 0 0.75 1.24 0.05 1.29 1.19 0 1 0 1 0.68 0.01 0.70 0.67 0 1 0.7 0 0.68 -0.62 1.31 0.06 S H E W 0 0 0 0 1.59 0.03 1.62 1.57 0.5 0 0 0 1.47 0.05 1.52 1.42 0.5 1.6 0 0 1.42 0.04 1.46 1.37 1.6 0 0 0 1.56 0.09 1.65 1.47 1.6 0 0 0.8 1.53 0.09 1.62 1.45 0.5 0 0 1.6 1.45 0.05 1.50 1.40 0.2 0 1 0 1.42 -0.87 2.29 0.55 0 1.6 0 1.6 1.02 0.02 1.04 1.01 0 1.6 1 0 1.02 -0.89 1.91 0.14 S H E W 0 0 0 0 6.35 0.25 6.60 6.10 0.5 0 0 0 6.55 0.42 6.97 6.13 0.5 1.6 0 0 6.02 0.38 6.40 5.63 1.6 0 0 0 7.61 0.78 8.39 6.83 1.6 0 0 0.8 7.28 0.76 8.03 6.52 0.5 0 0 1.6 6.35 0.41 6.76 5.94 0.2 0 1 0 6.00 -7.48 13.48 -1.47 0 1.6 0 1.6 4.08 0.16 4.24 3.92 0 1.6 1 0 4.08 -7.62 11.70 -3.54 S H E W 0 0 0 0 4.54 0.18 4.72 4.36 0 1 0 0 4.54 0.18 4.72 4.36 1 1 0 0 5.68 0.52 6.20 5.17 0.75 1 0 0 5.65 0.45 6.10 5.20 0 1 0.7 0 4.54 -5.27 9.81 -0.73 0 1 0 1 4.54 0.18 4.72 4.36 0.75 1 0.525 0 5.65 -3.64 9.28 2.01 0.75 1 0 0.75 5.65 0.45 6.10 5.20 0 1 0 1 2.72 0.11 2.83 2.61 0 1 0.7 0 2.72 -5.34 8.06 -2.62 Project: Vail Fire 1.15 M &N# 7938 Engr. LJR 0.60 Date: 3/29/2010 Stair Direction: E -W sum M/S Qmax (ksf) Qmin (ksf) Applied Lateral Loads: ftg dimensions earthquake load, E (k) 135.80 (ksf) b (ft) 16.67 soil load, H (k) 0.00 S h (ft) 24 wind load, W (k) 0.00 t (ft) 1.667 applied ht above slab (ft) 13.50 0 area (ft ^2) 400.0E MoE (k -ft) 1833.30 1.14 Sx (ftA3) 1600.32 MoH(k -ft) 0.00 0 weight (k) 124.94 MoW (k -ft) 0.00 1.14 P/A (ksf) 0.31228E MoE /S (ksf) 1.15 1 1 0 MoH /S (ksf) 0.00 1.24 0.19 1.44 MoW /S (ksf) 0.00 0.75 1 0 Total Vertical Loads on Ftg 1.24 0.16 1.40 Dl-core (k) 165.32 DUA (ksf) 1.14 0.7 eDL (ft) 1.24 MDUS (ksf) 0.13 2.07 MoDL (k -ft) 205.00 0 1 0 DL core +ftg (k) 290.26 1.14 0.13 1.27 LL (k) 12.07 LUA (ksf) 0.03 0.525 eLL (ft) -2.20 MLUS (ksf) -0.02 2.01 MOLL (k -ft) -26.55 0.75 1 0 SL (k) 41.78 SUA (ksf) 0.10 1.40 eSL (ft) 2.51 MSUS (ksf) 0.07 0 MoSL (k -ft) 104.87 0.68 0.08 0.76 ASCE Allowable Stress Load Combinations on Ftg D L 1 D 0 1 0 2 D +H +L -0.20 1 0 3 D +H +S W 1 0 4 D +H +0.75L +0.75S 1 0.75 5 D +H +0.7E 0 1 0 6 D +H +W 1.41 1 0 7 D +H +0.75(0.7E) +0.75L +0.75S 1 0.75 8 D +H +0.75W +0.75L +0.75S 1.63 1 0.75 9 0.6D +W +H 0 0.6 0 10 0.6D +0.7E +H 1.61 0.6 0 Overturning Mo (k -ft) MrA MrB MrA/Mo MrB /Mo .6D +W +H 0.00 1966.87 2212.87 #DIV /01 #DIV /0! .6D +.7E +H 1283.31 1966.87 2212.87 1.53 1.72 ASCE Strength Load Combinations on Ftg 1.79 D L 1 1.4D 0 1.4 0 2 1.2D +1.6L +0.5S 1.62 1.2 1.6 31.2D +1.6H +0.5S 1 1.2 0 4 1.2D +1.6S +L 2.71 1.2 1 51.2D +1.6S +0.8W 0 1.2 0 6 1.2D +1.6W +L +0.5S 1.14 1.2 1 7 1.2D +E +L +0.2S 1 1.2 1 8 0.9D +1.6W +1.6H 2.29 0.9 0 9 0.9D +E +1.6H E 0.9 0 Overturning Mo (k -ft) MrA MrB MrA /Mo MrB /Mo 0.9D +1.6W +1.6H 184.50 2950.31 3319.31 15.99 17.99 0.9D +E +1.6H 2017.80 2950.31 3319.31 1.46 1.65 ASCE Strength Core Pressures 0 D L 1 1.4D 8.00 1.4 0 2 1.2D +1.6L +0.5S 0 1.2 1.6 3 1.2D +1.6H +0.5S 7.71 1.2 0 4 1.2D +1.6S +L 0 1.2 1 51.2D +1.6S +0.8W 9.81 1.2 0 6 1.2D +1.6W +L +0.5S 0 1.2 1 7 1.2D +E +L +0.2S 9.63 1.2 1 8 0.9D +1.6W +1.6H 0 0.9 0 9 0.9D +E +1.6H 7.89 0.9 0 ASCE Allowable Stress Core Pressures 1 D L 1 D 17.79 1 0 2 D +H +L 0 1 0 3 D +H +S 5.13 1 0 4 D +H +0.75L +0.75S 1 1 0.75 5 D +H +0.7E 15.55 1 0 6 D +H +W E 1 0 7 D +H +0.75(0.7E) +0.75L +0.75S 1 0.75 8 D +H +0.75W +0.75L +0.75S 0 1 0.75 9 0.6D +W +H 1.17 0.6 0 10 0.6D +0.7E +H 1 0.6 0 core dimensions area (ft ^2) 36.44 Sx (ft ^3) 175.9 Core: MoE /S 10.4224 MoH /S 0 MOWS 0 Total Vert Loads on Core DUA (ksf) 4.54 MDUS (ks 1.17 LL /A (ksf) 0.33 MLUS (ksf -0.15 SUA (ksf) 1.15 MSUS (ksl 0.60 sum P/A sum M/S Qmax (ksf) Qmin (ksf) (ksf) (ksf) P /A +M /S P /A -M /S S H E W 0 0 0 0 1.14 0.13 1.27 1.01 0 1 0 0 1.14 0.13 1.27 1.01 1 1 0 0 1.24 0.19 1.44 1.05 0.75 1 0 0 1.24 0.16 1.40 1.07 0 1 0.7 0 1.14 0.93 2.07 0.21 0 1 0 1 1.14 0.13 1.27 1.01 0.75 1 0.525 0 1.24 0.77 2.01 0.47 0.75 1 0 0.75 1.24 0.16 1.40 1.07 0 1 0 1 0.68 0.08 0.76 0.61 0 1 0.7 0 0.68 0.88 1.56 -0.20 S H E W 0 0 0 0 1.59 0.18 1.77 1.41 0.5 0 0 0 1.47 0.16 1.63 1.31 0.5 1.6 0 0 1.42 0.19 1.61 1.23 1.6 0 0 0 1.56 0.24 1.81 1.32 1.6 0 0 0.8 1.53 0.26 1.79 1.27 0.5 0 0 1.6 1.45 0.17 1.62 1.28 0.2 0 1 0 1.42 1.30 2.71 0.12 0 1.6 0 1.6 1.02 0.12 1.14 0.91 0 1.6 1 0 1.02 1.26 2.29 -0.24 S H E W 0 0 0 0 6.35 1.63 7.98 4.72 0.5 0 0 0 6.55 1.46 8.00 5.09 0.5 1.6 0 0 6.02 1.70 7.71 4.32 1.6 0 0 0 7.61 2.20 9.81 5.41 1.6 0 0 0.8 7.28 2.35 9.63 4.93 0.5 0 0 1.6 6.35 1.55 7.89 4.80 0.2 0 1 0 6.00 11.79 17.79 -5.78 0 1.6 0 1.6 4.08 1.05 5.13 3.03 0 1.6 1 0 4.08 11.47 15.55 -7.39 S H E W 0 0 0 0 4.54 1.17 5.70 3.37 0 1 0 0 4.54 1.17 5.70 3.37 1 1 0 0 5.68 1.76 7.44 3.92 0.75 1 0 0 5.65 1.50 7.14 4.15 0 1 0.7 0 4.54 8.46 C1 ENO> -3.92 0 1 0 1 4.54 1.17 5.70 3.37 0.75 1 0.525 0 5.65 6.97 12.62 -1.33 0.75 1 0 0.75 5.65 1.50 7.14 4.15 0 1 0 1 2.72 0.70 3.42 2.02 0 1 0.7 0 2.72 7.99 10.72 -5.27 L� Project: Vail Fire 1.15 M &N# 7938 Engr: LJR MSUS (ksl Date: 3/29/2010 Stair Direction: E -W Applied Lateral Loads: ftq dimensions earthquake load, E (k) - 135.80 In (ft) 16.67 soil load, H (k) 0.00 h (ft) 24 wind load, W (k) 0.00 t (ft) 1.667 applied ht above slab (ft) 13.50 area (ft ^2) 400.08 MoE (k -ft) - 1833.30 Sx (ft ^3) 1600.32 MoH(k -ft) 0.00 weight (k) 124.94 MoW (k -ft) 0.00 P/A (ksf) 0.312288 MoE /S (ksf) -1.15 0 0 MoH /S (ksf) 0.00 0.13 1.27 MoW /S (ksf) 0.00 0 1 Total Vertical Loads on Ftq 0 1.14 Dl-core (k) 165.32 DUA (ksf) 1.14 1.01 eDL (ft) 1.24 MDUS (ksf) 0.13 0 MoDL (k -ft) 205.00 1.24 0.19 DL core +ftg (k) 290.26 1.05 0.75 LL (k) 12.07 LUA (ksf) 0.03 0 eLL (ft) -2.20 MLL /S (ksf) -0.02 1.40 MOLL (k -ft) -26.55 0 1 SL (k) 41.78 SUA (ksf) 0.10 1.14 eSL (ft) 2.51 MSUS (ksf) 0.07 0.46 MoSL (k -ft) 104.87 1 0 ASCE Allowable Stress Load Combinations on Ftq D L 1 D 1 0 2 D +H +L 1 0 3 D +H +S 1 0 4 D +H +0.75L +0.755 1 0.75 5 D +H +0.7E 1 0 6 D +H +W 1 0 7 D +H +0.75(0.7E) +0.75L +0.755 1 0.75 8 D +H +0.75W +0.75L +0.755 1 0.75 9 0.6D +W +H 0.6 0 10 0.6D +0.7E +H 0.6 0 Overturning Mo (k -ft) MrA MrB MrA /Mo MrB /Mo .6D +W +H 0.00 1966.87 2212.87 #DIV /01 #DIV /0! .6D +.7E +H - 1283.31 1966.87 2212.87 -1.53 -1.72 ASCE Strength Load Combinations on Ft g D L 1 1.4D 1.4 0 2 1.2D +1.6L +0.5S 1.2 1.6 31.2D +1.6H +0.5S 1.2 0 4 1.2D +1.6S +L 1.2 1 51.2D +1.6S +0.8W 1.2 0 6 1.2D +1.6W +L +0.5S 1.2 1 7 1.2D +E +L +0.2S 1.2 1 8 0.9D +1.6W +1.6H 0.9 0 9 0.9D +E +1.6H 0.9 0 Overtuminq Mo (k -ft) MrA MrS MrA/Mo MrB /Mo 0.913+1.6W +1.61-1 184.50 2950.31 3319.31 15.99 17.99 0.9D +E +1.6H - 1648.80 2950.31 3319.31 -1.79 -2.01 ASCE Strength Core Pressures D L 1 1.4D 1.4 0 2 1.2D +1.6L +0.5S 1.2 1.6 31.2D +1.6H +0.5S 1.2 0 4 1.2D +1.6S +L 1.2 1 51.2D +1.6S +0.8W 1.2 0 6 1.2D +1.6W +L +0.5S 1.2 1 7 1.2D +E +L +0.2S 1.2 1 8 0.9D +1.6W +1.6H 0.9 0 9 0.9D +E +1.6H 0.9 0 ASCE Allowable Stress Core Pressures D L 1 D 1 0 2 D +H +L 1 0 3 D +H +S 1 0 4 D +H +0.75L +0.75S 1 0.75 5 D +H +0.7E 1 0 6 D +H +W 1 0 7 D +H +0.75(0.7E) +0.75L +0.75S 1 0.75 8 D +H +0.75W +0.75L +0.75S 1 0.75 9 0.6D +W +H 0.6 0 10 0.6D +0.7E +H 0.6 0 core dimensions area (ft ^2) 36.44 Sx (ft ^3) 175.9 Core: MoE /S - 10.4224 MoH /S 0 MOWS 0 Total Vert Loads on Core DUA (ksf) 4.54 MDUS (ks 1.17 LUA (ksf) 0.33 MLUS (ksf -0.15 SUA (ksf) 1.15 MSUS (ksl 0.60 sum PIA sum M/S Qmax (ksf) Qmin (ksf) (ksf) (ksf) P /A +M /S P /A -M /S S H E W 0 0 0 0 1.14 0.13 1.27 1.01 0 1 0 0 1.14 0.13 1.27 1.01 1 1 0 0 1.24 0.19 1.44 1.05 0.75 1 0 0 1.24 0.16 1.40 1.07 0 1 0.7 0 1.14 -0.67 1.81 0.46 0 1 0 1 1.14 0.13 1.27 1.01 0.75 1 0.525 0 1.24 -0.44 1.68 0.80 0.75 1 0 0.75 1.24 0.16 1.40 1.07 0 1 0 1 0.68 0.08 0.76 0.61 0 1 0.7 0 0.68 -0.73 1.41 -0.04 S H E W 0 0 0 0 1.59 0.18 1.77 1.41 0.5 0 0 0 1.47 0.16 1.63 1.31 0.5 1.6 0 0 1.42 0.19 1.61 1.23 1.6 0 0 0 1.56 0.24 1.81 1.32 1.6 0 0 0.8 1.53 0.26 1.79 1.27 0.5 0 0 1.6 1.45 0.17 1.62 1.28 0.2 0 1 0 1.42 -1.00 2.41 0.42 0 1.6 0 1.6 1.02 0.12 1.14 0.91 0 1.6 1 0 1.02 -1.03 2.06 -0.01 S H E W 0 0 0 0 6.35 1.63 7.98 4.72 0.5 0 0 0 6.55 1.46 8.00 5.09 0.5 1.6 0 0 6.02 1.70 7.71 4.32 1.6 0 0 0 7.61 2.20 9.81 5.41 1.6 0 0 0.8 7.28 2.35 9.63 4.93 0.5 0 0 1.6 6.35 1.55 7.89 4.60 0.2 0 1 0 6.00 -9.06 15.06 -3.05 0 1.6 0 1.6 4.08 1.05 5.13 3.03 0 1.6 1 0 4.08 -9.37 13.46 -5.29 S H E W 0 0 0 0 4.54 1.17 5.70 3.37 0 1 0 0 4.54 1.17 5.70 3.37 1 1 0 0 5.68 1.76 7.44 3.92 0.75 1 0 0 5.65 1.50 7.14 4.15 0 1 0.7 0 4.54 -6.13 10.67 -1.59 0 1 0 1 4.54 1.17 5.70 3.37 0.75 1 0.525 0 5.65 -3.97 9.62 1.67 0.75 1 0 0.75 5.65 1.50 7.14 4.15 0 1 0 1 2.72 0.70 3.42 2.02 0 1 0.7 0 2.72 -6.60 9.32 -3.87 LITI Monroe & Newell Engineers, Inc. >TPn a-- JOB " a F1 SHEET NO. OF CALCULATED BY '� // DATE 4 CHECKED BY SCALP_ DATE Project: Vail Firestation M &N # 7938 Engr: LJR Date: 3/23/2010 Masonry Wall Shear Design (Allowable Stress ACI 530) Properties 31069.817 fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900fm O,flexure,axial 0.8 m,shear 0.6 Wall Geometry Masonry takes all shear: Wall Depth, in 128 As, inA2 1.24 d, in 120 bw, in 7.63 Loads 27.133847 V, kips 26.5 M, k -ft 357.8 P (axial), kips 6.78 1/3 stress increase for W or E? 1.33 ACI 530, Sec 2.1.2.3 n =Es /Em 21.481481 p= As /bwd 0.0013543 p n= 0.0290924 k 0.213871 k= 2m +(f.) —fit j =1 -k/3 0.9287097 BENDING fb, psi 393.48902 f = Fs= 24000000 psi ( *1.33), psi 31920 OK Jk2*2 fs, psi 31069.817 h, in 162 f = As, inA2 0.155 J� SHEAR 91.56 5 MNd 13.501887 Masonry takes all shear: 444.19495 OFv, psi 30.906407 If MNd <1, Fv= (1 /3)[4- (MNd)]sgrt(fm) OFv, max (controls) 30.906407 If MNd >1, Fv= sqrt(fm) < 35 psi fv, psi 27.133847 f — V If fv >Fv shear reinf is reqd OK (0.25f n4 +0.65A,,F�1 —I J Z J BENDING cDFb =1 /3fm ( *1.33), psi 532 OK Fs= 24000000 psi ( *1.33), psi 31920 OK AXIAL h, in 162 As, inA2 0.155 An, inA2 91.56 p =As /An 0.0016929 .0025 <pn <.04 I, inA4 444.19495 r =sqrt (I /A) 2.2025913 h/r 73.549733 r l l If h /r <99: h/r <99: P� = (0.25f n4 +0.65A,,F�1 —I J Z J Pa, kips 26609.241 1 Ifh /r >99, Pa= 33290.987 (70r1Z h/r <99: P = (0.25f'mA„ +0.65ASrF)* Pa, kips 73.549733 h J 0 Pa, kips 58.839786 E -72) Project: Vail Firestation M &N # 7938 Engr: LJR Date: 3/23/2010 Masonry Wall Shear Design (Allowable Stress ACI 530) Properties fm, psi 1500 Fs, psi 24000 Es, psi 29000000 Em, psi 1350000 900fm (l),flexu re, axial 0.8 ,shear 0.6 Wall Geometry 30.906407 Wall Depth, in 216 As, inA2 1.24 d, in 208 bw. in 7.63 Loads V, kips 47.5 M, k -ft 641.3 P (axial), kips 6.49 1/3 stress increase for W or E? 1.33 ACI 530, Sec 2.1.2.3 n =Es /Em 21.481481 p= As/bwd 0.0007813 p n= 0.0167841 k 0.1671993 1 k= 12M - +(pe) —pz STC'n (L tj A X A4 Lo M-A-- j =1 -k/3 0.9442669 BENDING 24 fb, psi 295.31939 f = G jkb „,d' fs, psi 31598.226 Ap AXIAL SHEAR 162 MNd 13.501053 Masonry takes all shear: 91.56 cDFv, psi 30.906407 If MNd <1, Fv= (1 /3)[4- (MNd)]sgrt(fm) OFv, max (controls) 30.906407 If MNd >1, Fv= sgrt(fm) < 35 psi fv, psi 28.821416 V f _— If fv >Fv shear reinf is reqd OK bd,, BENDING q)Fb =1 /3fm ( *1.33), psi 532 OK Fs= 24000000 psi ( *1.33), psi 31920 OK AXIAL h, in 162 As, inA2 0.23 An, inA2 91.56 p =As /An 0.002512 .0025 <pn <.04 I, inA4 444.19495 r =sqrt (I /A) 2.2025913 h/r 73.549733 z If h /r<99: hl X99: P = (0.25f m4� +0.65A F Pa, kips 27456.323 1 Ifh /r >99, Pa= 34350.777 hlr <99: = (0.25f'mA„ +0.65A P C 70r12 — Pa, kips 73.549733 h 0 Pa, kips 58.839786 b-�l Monroe & Newell Engineers, Inc. JOB " """ [ F � 5 3 SHEET NO. CALCULATED BY CHECKED BY OF DATE o nATF Monroe & Newell Engineers, Inc. JOB U SHEET NO. OF CALCULATED BY l �� DATE CHECKED BY DATE Monroe & Newell JOB 1:h`5E 'FDVAFV 79 .E Engineers Inc. SHEET NO. OF 3 CALCULATED BY - - Q DATE Z� Q CHECKED BY DATE r, q, SCALE Pti P. .. .. . i ' ....... .......... ...... ....... .. .m 111 t 6...3ln 0 2-. __ 1 P. I 2 39 9� g' ..... .' t D;... .. _ 4. r d..33� D �{���► S . -v q -� S � � :..____... .. [;� ...L� . i..�. f .... :......... ..... !....... _ -�.... ............. .... 1 ... . .. 1 � . . - ... ... ' .:.. ....... 11 32 C ...... lo . . ... ....... .......... d 4. �. L3� ?�• _ .. °t �.3 . ...... .... .......... . ........ ....... Monroe & Newell Engineers, Inc. JOB VA I L L t" t 1- 7 el— , IR SHEET NO. OF CALCULATED BY ✓ DATE � b 0 - CHECKED BY nnTF Monroe & Newell Engineers, Inc. Lf- OF DATE 3 It O JOB ._ ". `° - ?cY 3�' SHEET NO. CALCULATED BY CHECKED BY DATE I }� ! ILL SCALE �...__. ..... ...._.. ............... _. .... ........... !......... _....._. ........... 3 3 a w _. .......... . ...v_ . .. ..... .. . .......... ... .. ..... _. ............... ............. el- 2. f __ - _. � �g3z `f.q� s _ 32.D ! Vic. 3g ply �f ....... ... D. .... . .......... .......... . . .... ..__ .......... .. ...... . .... L�l JOB ._ ". `° - ?cY 3�' SHEET NO. CALCULATED BY Project: Vail Fire Station M &N# 7938 Engr: LJR Date: 3/29/2010 Description: Hose Tower N -S direction Core Area (ft " 2) 55.5 SL (k) Core Height (ft) 4 Core Weight DL (k) 33.3 Vertical Loads on Core Location Desc. P1 core P2 P3 P4 P5 P6 P7 P8 P9 DL (k) LL (k) DL *e SL (k) 33.3 0 0 119.71 6.36 39.96 110.1 2.68 39.96 92.96 3.2 0 0.832 0 4.99 4 1.52 0 1.9 0 11.4 32.4 0 0 44.48 0 0 Sum eDL 0.06 eLL 2.03 eSL 0.12 439.682 13.76 96.31 26.516 27.92 11.745 L,� Z° DL *e LL *e SL *e 0 0 0 0 8 957.68 50.88 319.68 -8 -880.8 -21.44 - 319.68 0 0 0 0 -4.5 -3.744 0 - 22.455 -1 -4 -1.52 0 3 5.7 0 34.2 4 129.6 0 0 -4 - 177.92 0 0 26.516 27.92 11.745 L,� Z° Project: Vail Fire Station M &N# 7938 Engr: LJR Date: 3/29/2010 Description: Hose Tower E -W direction Core Area (ft ^2) 55.5 Core Height (ft) 4 Core Weight DL (k) 33.3 Vertical Loads on Core Location Desc. P1 core P2 P3 P4 P5 P6 DL k LL (k) SL k eft 33.3 0 0 213.52 0 79.92 90.96 1.6 0 95.32 6.8 16.39 3.36 2.68 0 3.36 2.68 0 Sum eDL 0.09 eLL 3.40 eSL 1.53 439.82 13.76 96.31 DL *e LL* 0 0 0 0 -9 - 818.64 9 857.88 -4 -13.44 4 13.44 0 0 0 39.24 e SL *e 0 0 0 0 -14.4 0 61.2 147.51 -10.72 0 10.72 0 0 0 0 0 0 0 46.8 147.51 Lk 46.8 147.51 Lk Monroe & Newell J OB VA- It- Engineers Inc. SHEET NO. CALCULATED BY CHECKED BY OF DATE 3 L { DATE � - v A Project: Vail Fire 1.74 M &N# 7938 Engr: LJR 0.05 Date: 3/29/2010 Hose Tower Direction: N -S sum M/S Qmax (ksf) Qmin (ksf) Applied Lateral Loads: ftg dimensions earthquake load, E (k) 44.63 (ksf) b (ft) 24 soil load, H (k) 0.00 S h (ft) 22 wind load, W (k) 0.00 t (ft) 1.667 applied ht above slab (ft) 18.10 0 area (ft ^2) 528 MoE (k -ft) 807.80 1.96 Sx (ft ^3) 1936 MoH(k -ft) 0.00 0 weight (k) 156.9264 MoW (k -ft) 0.00 1.96 P/A (ksf) 0.297209 MoE /S (ksf) 0.42 1 1 0 MoH /S (ksf) 0.00 2.15 0.02 2.16 MoW /S (ksf) 0.00 0.75 1 0 Total Vertical Loads on Fig 2.12 0.03 2.15 DI-core (k) 439.68 DUA (ksf) 1.96 0.7 eDL (ft) 0.06 MDUS (ksf) 0.01 2.27 MoDL (k -ft) 26.38 0 1 0 DL core +ftg (k) 596.61 1.96 0.01 1.98 LL (k) 13.73 LUA (ksf) 0.03 0.525 eLL (ft) 2.03 MLL /S (kst) 0.01 2.37 MoLL (k -ft) 27.87 0.75 1 0 SL (k) 96.31 SUA (ksf) 0.18 2.15 eSL (ft) 0.12 MSUS (ksf) 0.01 0 MoSL (k -ft) 11.56 1.18 0.01 1.19 ASCE Allowable Stress Load Combinations on Ft g D L 1 D 0 1 0 2 D +H +L 0.88 1 0 3 D +H +S W 1 0 4 D +H +0.75L +0.75S 1 0.75 5 D +H +0,7E 0 1 0 6 D +H +W 2.73 1 0 7 D +H +0.75(0.7E) +0.75L +0.75S 1 0.75 8 D +H +0,75W +0.75L +0.75S 2.53 1 0.75 9 0.6D +W +H 0 0.6 0 10 0.6D +0.7E +H 2.47 0.6 0 Overturning Mo (k -ft) MrA MrB MrA /Mo MrB /Mo .6D +W +H 0.00 3921.77 3953.43 #DIV /0! #DIV /0! .6D +.7E +H 565.46 3921.77 3953.43 6.94 6.99 ASCE Strength Load Combinations on Flo 2.67 D L 1 1.4D 0 1.4 0 2 1.2D +1.6L +0.5S 2.51 1.2 1.6 31.2D +1.6H +0.5S 1 1.2 0 4 1.2D +1.6S +L 2.87 1.2 1 51.2D +1.6S +0.8W 0 1.2 0 6 1.2D +1.6W +L +0.5S 1.78 1.2 1 7 1.2D +E +L +0.2S 1 1.2 1 8 0.9D +1.6W +1.6H 2.20 0.9 0 9 0.9D +E +1.6H E 0.9 0 Overturning Mo (k-ft) MrA MrB MrA /MO MrB /Mo 0.9D +1.6W +1.61 23.74 5882.66 5930.15 247.77 249.77 0.9D +E +1.6H 831.55 5882.66 5930.15 7.07 7.13 ASCE Strength Core Pressures 0 D L 1 1.4D 11.14 1.4 0 2 1.2D +1.6L +0.5S 0 1.2 1.6 31.2D +1.6H +0.5S 10.54 1.2 0 4 1.2D +1.6S +L 0 1.2 1 51.2D +1.6S +0.8W 12.88 1.2 0 6 1.2D +1.6W +L +0.5S 0 1.2 1 7 1.2D +E +L +0.2S 12.51 1.2 1 8 0.9D +1.6W +1.6H 0 0.9 0 9 0.9D +E +1.6H 10.92 0.9 0 ASCE Allowable Stress Core Pressures 1 D L 1D 14.01 1 0 2 D +H +L 0 1 0 3 D +H +S 7.24 1 0 4 D +H +0.75L +0.75S 1 1 0.75 5 D +H +0.7E 10.87 1 0 6 D +H +W E 1 0 7 D +H +0.75(0.7E) +0.75L +0.75S 1 0.75 8 D +H +0.75W +0.75L +0.75S 0 1 0.75 9 0.6D +W +H 0.12 0.6 0 10 0.6D +0.7E +H 1 0.6 0 core dimensions area (ftA2) 55.5 Sx (ft ^3) 222.4 Core: MoE /S 3.632208 MoH /S 0 MOW /S 0 Total Vert Loads on Core DUA (ksf) 7.92 MDUS (ks 0.12 LUA (ksf) 0.25 MLUS (ksf 0.13 SUA (ksf) 1.74 MSL /S (ksf 0.05 sum P/A sum M/S Qmax (ksf) Qmin (ksf) (ksf) (ksf) P /A +M /S P /A -M /S S H E W 0 0 0 0 1.96 0.01 1.98 1.95 0 1 0 0 1.96 0.01 1.98 1.95 1 1 0 0 2.15 0.02 2.16 2.13 0.75 1 0 0 2.12 0.03 2.15 2.09 0 1 0.7 0 1.96 0.31 2.27 1.66 0 1 0 1 1.96 0.01 1.98 1.95 0.75 1 0.525 0 2.12 0.25 2.37 1.87 0.75 1 0 0.75 2.12 0.03 2.15 2.09 0 1 0 1 1.18 0.01 1.19 1.17 0 1 0.7 0 1.18 0.30 1.48 0.88 S H E W 0 0 0 0 2.75 0.02 2.77 2.73 0.5 0 0 0 2.49 0.04 2.53 2.45 0.5 1.6 0 0 2.45 0.02 2.47 2.43 1.6 0 0 0 2.67 0.04 2.71 2.63 1.6 0 0 0.8 2.65 0.03 2.67 2.62 0.5 0 0 1.6 2.47 0.03 2.51 2.44 0.2 0 1 0 2.42 0.45 2.87 1.97 0 1.6 0 1.6 1.77 0.01 1.78 1.75 0 1.6 1 0 1.77 0.43 2.20 1.34 S H E W 0 0 0 0 11.09 0.17 11.26 10.92 0.5 0 0 0 10.77 0.37 11.14 10.40 0.5 1.6 0 0 10.37 0.17 10.54 10.21 1.6 0 0 0 12.53 0.35 12.88 12.18 1.6 0 0 0.8 12.28 0.23 12.51 12.06 0.5 0 0 1.6 10.62 0.29 10.92 10.33 0.2 0 1 0 10.10 3.91 14.01 6.19 0 1.6 0 1.6 7.13 0.11 7.24 7.02 0 1.6 1 0 7.13 3.74 10.87 3.39 S H E W 0 0 0 0 7.92 0.12 8.04 7.80 0 1 0 0 7.92 0.12 8.04 7.80 1 1 0 0 9.66 0.17 9.83 9.49 0.75 1 0 0 9.41 0.25 9.66 9.16 0 1 0.7 0 7.92 2.66 10.58 5.26 0 1 0 1 7.92 0.12 8.04 7.80 0.75 1 0.525 0 9.41 2.16 11.57 7.25 0.75 1 0 0.75 9.41 0.25 9.66 9.16 0 1 0 1 4.75 0.07 4.82 4.68 0 1 0.7 0 4.75 2.61 7.37 2.14 L,v5 Project: Vail Fire 1.74 E W M &N# 7938 MSUS (ksi Engr: LJR 0 0 0 Date: 3/29/2010 0.02 2.77 2.73 Hose Tower 0 sum PIA sum M/S Direction: N -S 0.04 2.53 2.45 Applied Lateral Loads: (ksf) fta dimensions earthquake load, E (k) -44.63 S b (ft) 24 soil load, H (k) 0.00 1.6 h (ft) 22 wind load, W (k) 0.00 0 t (ft) 1.667 applied ht above slab (ft) 18.10 0.01 area (ft ^2) 52E MoE (k -ft) - 807.80 0 Sx (ft ^3) 193E MoH(k -ft) 0.00 1.98 1.95 weight (k) 156.9264 MoW (k -ft) 0.00 0 P/A (ksf) 0.297209 MoE /S (ksf) -0.42 0.75 1 0 MoH /S (ksf) 0.00 2.12 0.03 2.15 2.09 MoW /S (ksf) 0.00 1 0.7 0 Total Vertical Loads on Ftg -0.28 2.24 1.68 0 Di-core (k) 439.68 DUA (ksf) 1.96 1.96 eDL (ft) 0.06 MDUS (ksf) 0.01 1 MoDL (k -ft) 26.38 0 2.12 -0.19 DL core +ftg (k) 596.61 0.75 1 0 LL (k) 13.73 LUA (ksf) 0.03 2.15 2.09 eLL (ft) 2.03 MLL /S (ksf) 0.01 1 MoLL (k -ft) 27.87 0.01 1.19 1.17 0 SL (k) 96.31 SUA (ksf) 0.18 1.18 eSL (ft) 0.12 MSUS (ksf) 0.01 0 MoSL (k -ft) 11.56 10.37 0.17 10.54 ASCE Allowable Stress Load Combinations on Ft o D L 1 D 0 1 0 2 D +H +L 12.18 1 0 3 D +H +S 0.8 1 0 4 D +H +0.75L +0.755 12.06 1 0.75 5 D +H +0.7E 1.6 1 0 6 D +H +W 10.33 1 0 7 D +H +0.75(0.7E) +0.75L +0.75S 1 0.75 8 D +H +0.75W +0.75L +0.75S 13.46 1 0.75 9 0.6D +W +H 0 0.6 0 10 0.6D +0.7E +H 7.24 0.6 0 Overturning Mo (k -ft) MrA MrB MrA/Mo MrB /Mo .6D +W +H 0.00 3921.77 3953.43 #DIV /0! #DIV /0! .6D +.7E +H - 565.46 3921.77 3953.43 -6.94 -6.99 ASCE Strength Load Combinations on Ftg D L 1 1.4D 0 1.4 0 2 1.2D +1.6L +0.5S 8.04 1.2 1.6 31.2D +1.6H +0.5S 0 1.2 0 4 1.2D +1.6S +L 8.04 1.2 1 51.2D +1.6S +0.8W 0 1.2 0 6 1.2D +1.6W +L +0.5S 9.83 1.2 1 7 1.2D +E +L +0.2S 0 1.2 1 8 0.9D +1.6W +1.6H 9.66 0.9 0 9 0.9D +E +1.6H 0.7 0.9 0 Overturning Mo (k -ft) MrA MrB MrA /MO MrB /Mo 0.91D+1.6W +1.6F 23.74 5882.66 5930.15 247.77 249.77 0.9D +E +1.6H - 784.06 5882.66 5930.15 -7.50 -7.56 ASCE Strength Core Pressures 0.525 D L 1 1.4D 11.06 1.4 0 2 1.2D +1.6L +0.5S 0 1.2 1.6 31.2D +1.6H +0.5S 9.66 1.2 0 4 1.2D +1.6S +L 0 1.2 1 5 1.2D +1.6S +O.BW 4.82 1.2 0 6 1.2D +1.6W +L +0.5S 0.7 1.2 1 7 1.2D +E +L +0.2S 7.22 1.2 1 8 0.9D +1.6W +1.6H 0.9 0 9 0.9D +E +1.6H 0.9 0 ASCE Allowable Stress Core Pressures D L 1 D 1 0 2 D +H +L 1 0 3 D +H +S 1 0 4 D +H +0.75L +0.75S 1 0.75 5 D +H +0.7E 1 0 6 D +H +W 1 0 7 D +H +0.75(0.7E) +0.75L +0.75S 1 0.75 8 D +H +0.75W +0.75L +0.75S 1 0.75 9 0.6D +W +H 0.6 0 10 0.6D +0.7E +H 0.6 0 core dimensions area (ft ^2) 55.5 Sx (ft ^3) 222.4 Core: MoE /S - 3.632208 MoH /S 0 MOWS 0 Total Vert Loads on Core DUA (ksf) 7.92 MDUS (ks 0.12 LUA (ksf) 0.25 MLUS (ksf 0.13 SUA (ksf) 1.74 E W MSUS (ksi 0.05 0 0 0 2.75 0.02 2.77 2.73 0.5 0 sum PIA sum M/S Qmax (ksf) Qmin (ksf) 0.04 2.53 2.45 0.5 (ksf) (ksf) P /A +M /S P /A -M /S S H E W 1.6 0 0 0 0 0 0 1.96 0.01 1.98 1.95 0 1 0 0 1.96 0.01 1.98 1.95 1 1 0 0 2.15 0.02 2.16 2.13 0.75 1 0 0 2.12 0.03 2.15 2.09 0 1 0.7 0 1.96 -0.28 2.24 1.68 0 1 0 1 1.96 0.01 1.98 1.95 0.75 1 0.525 0 2.12 -0.19 2.31 1.93 0.75 1 0 0.75 2.12 0.03 2.15 2.09 0 1 0 1 1.18 0.01 1.19 1.17 0 1 0.7 0 1.18 -0.28 1.46 0.89 S H E W 0 0 0 0 2.75 0.02 2.77 2.73 0.5 0 0 0 2.49 0.04 2.53 2.45 0.5 1.6 0 0 2.45 0.02 2.47 2.43 1.6 0 0 0 2.67 0.04 2.71 2.63 1.6 0 0 0.8 2.65 0.03 2.67 2.62 0.5 0 0 1.6 2.47 0.03 2.51 2.44 0.2 0 1 0 2.42 -0.39 2.80 2.03 0 1.6 0 1.6 1.77 0.01 1.78 1.75 0 1.6 1 0 1.77 -0.40 2.17 1.36 S H E W 0 0 0 0 11.09 0.17 11.26 10.92 0.5 0 0 0 10.77 0.37 11.14 10.40 0.5 1.6 0 0 10.37 0.17 10.54 10.21 1.6 0 0 0 12.53 0.35 12.88 12.18 1.6 0 0 0.8 12.28 0.23 12.51 12.06 0.5 0 0 1.6 10.62 0.29 10.92 10.33 0.2 0 1 0 10.10 -3.35 13.46 6.75 0 1.6 0 1.6 7.13 0.11 7.24 7.02 0 1.6 1 0 7.13 -3.53 10.66 3.60 S H E W 0 0 0 0 7.92 0.12 8.04 7.80 0 1 0 0 7.92 0.12 8.04 7.80 1 1 0 0 9.66 0.17 9.83 9.49 0.75 1 0 0 9.41 0.25 9.66 9.16 0 1 0.7 0 7.92 -2.42 10.35 5.50 0 1 0 1 7.92 0.12 8.04 7.80 0.75 1 0.525 0 9.41 -1.66 11.06 7.75 0.75 1 0 0.75 9.41 0.25 9.66 9.16 0 1 0 1 4.75 0.07 4.82 4.68 0 1 0.7 0 4.75 -2.47 7.22 2.28 L. (O Project: Vail Fire M &N# 7938 Engr: LJR Date: 3/29/2010 Hose Tower Direction: E -W Applied Lateral Loads: ftg dimensions core dimensions earthquake load, E (k) 53.73 b (ft) 22 area (ft ^2) 55.5 soil load, H (k) 23.52 h (ft) 24 Sx (ft ^3) 280.25 wind load, W (k) 0.00 t (ft) 1.333 applied ht above slab (ft) 18.10 area (ft ^2) 528 MoE (k -ft) 1000.40 Sx (ft ^3) 2112 MoH(k -ft) 54.88 weight (k) 130.4736 MoW (k -ft) 0.00 P/A (ksf) 0.247109 Core: MoE /S (ksf) 0.47 MoE /S 3.56967 MOH /S (ksf) 0.03 MoH /S 0.195825 MoW /S (ksf) 0.00 MOWS 0 Total Vertical Loads on Ftq Total Vert Loads on Core Dl-core (k) 439.68 DUA (ksf) 1.91 DUA (ksf) 7.92 eDL (ft) 0.09 MDUS (ksf) 0.02 MDUS (ks 0.14 MoDL (k -ft) 39.57 DL core +ftg (k) 570.15 LL (k) 13.73 LUA (ksf) 0.03 LUA (ksf) 0.25 eLL (ft) 3.40 MLUS (ksf) 0.02 MLUS (ksf 0.17 MoLL (k -ft) 46.68 SL (k) 96.31 SUA (ksf) 0.18 SUA (ksf) 1.74 eSL (ft) 1.53 MSUS (ksf) 0.07 MSUS (ksi 0.53 MoSL (k -ft) 147.35 sum PIA sum M/S Qmax (ksf) Qmin (ksf) (ksf) (ksf) P /A +M /S PIA-M /S ASCE Allowable Stress Load Combinations on Ftq D L S H E W 1 D 1 0 0 0 0 0 1.91 0.02 1.93 1.89 2 D +H +L 1 0 0 1 0 0 1.91 0.04 1.96 1.87 3 D +H +S 1 0 1 1 0 0 2.09 0.11 2.21 1.98 4 D +H +0.75L +0.755 1 0.75 0.75 1 0 0 2.07 0.11 2.18 1.96 5 D +H +0.7E 1 0 0 1 0.7 0 1.91 0.38 2.29 1.54 6 D +H +W 1 0 0 1 0 1 1.91 0.04 1.96 1.87 7 D +H +0,75(0.7E) +0.75L +0.75S 1 0.75 0.75 1 0.525 0 2.07 0.36 2.43 1.71 8 D +H +0.75W +0.75L +0.75S 1 0.75 0.75 1 0 0.75 2.07 0.11 2.18 1.96 9 0.6D +W +H 0.6 0 0 1 0 1 1.15 0.04 1.18 1.11 10 0.6D +0,7E +H 0.6 0 0 1 0.7 0 1.15 0.37 1.52 0.78 Overtuming Mo (k -ft) MrA MrB MrA /Mo MrB /Mo .6D +W +H 54.88 4081.36 4128.85 74.37 75.23 .6D +.7E +H 755.16 4081.36 4128.85 5.40 5.47 ASCE Strength Load Combinations on Ftq D L S H E W 1 1.4D 1.4 0 0 0 0 0 2.68 0.03 2.70 2.65 21.2D +1.6L +0.5S 1.2 1.6 0.5 0 0 0 2.43 0.09 2.52 2.34 31.21D+1.61-1+0.5S 1.2 0 0.5 1.6 0 0 2.39 0.10 2.49 2.29 41.2D +1.6S +L 1.2 1 1.6 0 0 0 2.61 0.16 2.77 2.46 51.2D +1.6S +0.8W 1.2 0 1.6 0 0 0.8 2.59 0.13 2.72 2.45 61.2D +1.6W +L +0.5S 1.2 1 0.5 0 0 1.6 2.41 0.08 2.49 2.33 71.2D +E +L +0.2S 1.2 1 0.2 0 1 0 2.36 0.53 2.89 1.83 8 0.9D +1.6W +1.6H 0.9 0 0 1.6 0 1.6 1.72 0.06 1.78 1.66 9 0.9D +E +1.6H 0.9 0 0 1.6 1 0 1.72 0.53 2.25 1.19 Overtuming Mo (k -ft) MrA MrB MrA /Mo MrB /Mo 0.9D +1.6W +1.6F 123.42 6122.04 6193.27 49.60 50.18 0.9D +E +1.6H 1123.82 6122.04 6193.27 5.45 5.51 ASCE Strength Core Pressures D L S H E W 1 1.413 1.4 0 0 0 0 0 11.09 0.20 11.29 10.89 2 1.2D +1.6L +0.5S 1.2 1.6 0.5 0 0 0 10.77 0.70 11.47 10.07 31.2D +1.6H +0.5S 1.2 0 0.5 1.6 0 0 10.37 0.75 11.12 9.63 41.2D +1.6S +L 1.2 1 1.6 0 0 0 12.53 1.18 13.71 11.35 51.2D+1.6S +0.8W 1.2 0 1.6 0 0 0.8 12.28 1.01 13.29 11.27 61.2D +1.6W +L +0.5S 1.2 1 0.5 0 0 1.6 10.62 0.60 11.22 10.02 7 1.2D +E +L +0.2S 1.2 1 0.2 0 1 0 10.10 4.01 14.11 6.09 8 0.9D +1.6W +1.6H 0.9 0 0 1.6 0 1.6 7.13 0.44 7.57 6.69 9 0.9D +E +1.6H 0.9 0 0 1.6 1 0 7.13 4.01 11.14 3.12 ASCE Allowable Stress Core Pressures D L S H E W 1 D 1 0 0 0 0 0 7.92 0.14 8.06 7.78 2 D +H +L 1 0 0 1 0 0 7.92 0.34 8.26 7.59 3 D +H +S 1 0 1 1 0 0 9.66 0.86 10.52 8.79 4 D +H +0.75L +0.75S 1 0.75 0.75 1 0 0 9.41 0.86 10.27 8.55 5 D +H +0.7E 1 0 0 1 0.7 0 7.92 2.84 10.76 5.09 6 D +H +W 1 0 0 1 0 1 7.92 0.34 8.26 7.59 7 D +H +0.75(0.7E) +0.75L +0.755 1 0.75 0.75 1 0.525 0 9.41 2.73 12.14 6.68 8 D +H +0.75W +0.75L +0.75S 1 0.75 0.75 1 0 0.75 9.41 0.86 10.27 8.55 9 O.6D+W +H 0.6 0 0 1 0 1 4.75 0.28 5.03 4.47 10 0.6D +0.7E +H 0.6 0 0 1 0.7 0 4.75 2.78 7.53 1.97 Project: Vail Fire M &N# 7938 Engr: LJR Date: 3/29/2010 Hose Tower Direction: E -W Applied Lateral Loads: ftq dimensions core dimensions earthquake load, E (k) -53.73 b (ft) 22 area (ft ^2) 55.5 soil load, H (k) 23.52 h (ft) 24 Sx (ft ^3) 280.25 wind load, W (k) 0.00 t (ft) 1.333 applied ht above slab (ft) 18.10 area (ft ^2) 528 MoE (k -ft) 1000.40 Sx (ftA3) 2112 MoH(k -ft) 54.88 weight (k) 130.4736 MoW (k -ft) 0.00 P/A (ksf) 0.247109 Core: MoE /S (ksf) 0.47 MoE /S 3.56967 MoH /S (ksf) 0.03 MoH /S 0.195825 MoW /S (ksf) 0.00 Mow /S 0 Total Vertical Loads on Flo Total Vert Loads on Core DI-core (k) 439.68 DUA (ksf) 1.91 DUA (ksf) 7.92 eDL (ft) 0.09 MDUS (ksf) 0.02 MDUS (ks 0.14 MoDL (k -ft) 39.57 DL core +ftg (k) 570.15 LL (k) 13.73 LUA (ksf) 0.03 LUA (ksf) 0.25 eLL (ft) 3.40 MLUS (ksf) 0.02 MLUS (ksf 0.17 MOLL (k -ft) 46.68 SL (k) 96.31 SUA (ksf) 0.18 SUA (ksf) 1.74 eSL (ft) 1.53 MSUS (ksf) 0.07 MSUS (ksi 0.53 MoSL (k -ft) 147.35 sum P/A sum M/S Qmax (ksf) Qmin (ksf) (ksf) (ksf) P /A +M /S P /A -M /S ASCE Allowable Stress Load Combinations on Ftq D L S H E W 1 D 1 0 0 0 0 0 1.91 0.02 1.93 1.89 2 D +H +L 1 0 0 1 0 0 1.91 0.04 1.96 1.87 3 D +H +S 1 0 1 1 0 0 2.09 0.11 2.21 1.98 4 D +H +0.75L +0.75S 1 0.75 0.75 1 0 0 2.07 0.11 2.18 1.96 5 D +H +0.7E 1 0 0 1 0.7 0 1.91 0.38 2.29 1.54 6 D +H +W 1 0 0 1 0 1 1.91 0.04 1.96 1.87 7 D +H +0.75(0.7E) +0.75L +0.75S 1 0.75 0.75 1 0.525 0 2.07 0.36 2.43 1.71 8 D +H +0.75W +0.75L +0.755 1 0.75 0.75 1 0 0.75 2.07 0.11 2.18 1.96 9 0.6D +W +H 0.6 0 0 1 0 1 1.15 0.04 1.18 1.11 10 0.6D +0.7E +H 0.6 0 0 1 0.7 0 1.15 0.37 1.52 0.78 Overturning Mo (k -ft) MrA MrB MrA /Mo MrB /Mo .6D +W +H 54.88 4081.36 4128.85 74.37 75.23 .6D +.7E +H 755.16 4081.36 4128.85 5.40 5.47 ASCE Strength Load Combinations on Ftq D L S H E _W 1 1.4D 1.4 0 0 0 0 0 2.68 0.03 2.70 2.65 21.2D +1.6L +0.5S 1.2 1.6 0.5 0 0 0 2.43 0.09 2.52 2.34 31.2D +1.6H +0.5S 1.2 0 0.5 1.6 0 0 2.39 0.10 2.49 2.29 41.2D +1.6S +L 1.2 1 1.6 0 0 0 2.61 0.16 2.77 2.46 51.2D +1.6S +0.8W 1.2 0 1.6 0 0 0.8 2.59 0.13 2.72 2.45 61.2D +1.6W +L +0.5S 1.2 1 0.5 0 0 1.6 2.41 0.08 2.49 2.33 71.2D +E +L +0.2S 1.2 1 0.2 0 1 0 2.36 0.53 2.89 1.83 8 0.9D +1.6W +1.6H 0.9 0 0 1.6 0 1.6 1.72 0.06 1.78 1.66 9 0.9D +E +1.6H 0.9 0 0 1.6 1 0 1.72 0.53 2.25 1.19 Overturninq Mo (k -ft) MrA MrB MrA /Mo MrB /Mo 0.9D +1.6W +1.6F 123.42 6122.04 6193.27 49.60 50.18 0.9D +E +1.6H 1123.82 6122.04 6193.27 5.45 5.51 ASCE Strength Core Pressures D L S H E W 1 1.4D 1.4 0 0 0 0 0 11.09 0.20 11.29 10.89 2 1.2D +1.6L +0.5S 1.2 1.6 0.5 0 0 0 10.77 0.70 11.47 10.07 31.2D +1.6H +0.5S 1.2 0 0.5 1.6 0 0 10.37 0.75 11.12 9.63 41.2D +1.6S +L 1.2 1 1.6 0 0 0 12.53 1.18 13.71 11.35 51.2D +1.6S +0.8W 1.2 0 1.6 0 0 0.8 12.28 1.01 13.29 11.27 61.2D +1.6W +L +0.5S 1.2 1 0.5 0 0 1.6 10.62 0.60 11.22 10.02 7 1.2D +E +L +0.2S 1.2 1 0.2 0 1 0 10.10 4.01 14.11 6.09 8 0.9D +1.6W +1.6H 0.9 0 0 1.6 0 1.6 7.13 0.44 7.57 6.69 9 0.9D +E +1.6H 0.9 0 0 1.6 1 0 7.13 4.01 11.14 3.12 ASCE Allowable Stress Core Pressures D L S H E W 1 D 1 0 0 0 0 0 7.92 0.14 8.06 7.78 2 D +H +L 1 0 0 1 0 0 7.92 0.34 8.26 7.59 3 D +H +S 1 0 1 1 0 0 9.66 0.86 10.52 8.79 4 D +H +0.75L +0.755 1 0.75 0.75 1 0 0 9.41 0.86 10.27 8.55 5 D +H +0.7E 1 0 0 1 0.7 0 7.92 2.84 10.76 5.09 6 D +H +W 1 0 0 1 0 1 7.92 0.34 8.26 7.59 7 D +H +0.75(0.7E) +0.75L +0.75S 1 0.75 0.75 1 0.525 0 9.41 2.73 12.14 6.68 B D +H +0.75W+0.75L +0.75S 1 0.75 0.75 1 0 0.75 9.41 0.86 10.27 8.55 9 0.6D +W +H 0.6 0 0 1 0 1 4.75 0.28 5.03 4.47 10 0.60 +0.7E +H 0.6 0 0 1 0.7 0 4.75 2.78 7.53 1.97 Ulf � -( JOB " �--P t F�, -4e Monroe &Newell Engineers Inc. SHEET NO. OF !� CALCULATED B)' DA CHECKED BY DATE Monroe & Newell JOB ``' -7131 Engineers, Inc. SHEET NO. OF CALCULATED BY DATE t CHECKED BY DATE SCALE