HomeMy WebLinkAboutDrainage ReportDrainage Report
for
West Vail Fire Station #3
Town of Vail, Colorado
r Ql ��tLb Cuildin ;`y Ccv e 1 oAment De
� 9 Safety and InspeCtie m
p P�7nt s
alldi±y ^� ,
onstrL_ --
prov;
A PC_
of
of cr,
:icial i
' .118rQ
aion.
PLk'J' , LXAMIWti,.
May 2010 0
0 R E
L
32492 5 '°
0 sq q q
Drainage Report
for
West Vail Fire Station #3
Town of Vail, Colorado
May 2010
Prepared for:
Town of Vail
Vail, CO 81658
Prepared By:
Marcin Engineering, LLC
P.O. Box 1062
101 Eagle Road, Ste. #5
Avon, Colorado 81620
Table of Contents
1. INTRODUCTION .......................................................
2. METHODOLOGY ....................... ...............................
3. EXISTING HYDROLOGY ............. ............................... 1
4. PROPOSED HYDROLOGY ........... ............................... 2
5. STORM SEWER, INLET, VALLEY PAN CAPACITY......... 2
6. CONCLUSION ........................... ............................... 3
7. REFERENCES ............................. ..............................4
FIGURES
APPENDIX A — RATIONAL METHOD — EXISTING CONDITIONS
APPENDIX B — RATIONAL METHOD — PROPOSED W/O CHAMONIX SITE
APPENDIX C — RATIONAL METHOD — PROPOSED W/ CHAMONIX SITE
APPENDIX D — STORMCEPTOR, STORM SEWER, PAN AND INLET CALCS
1. INTRODUCTION
This Drainage Report has been prepared for the Town of Vail and considers the existing and proposed
hydrology for the proposed "West Vail Fire Station #3" project site, along with the future "Chamonix"
site development, located in Town of Vail, Colorado. The site is bordered by Vail Das Schone
Subdivision Filing No.I Block B, Lot 11 & 12 to the West, Vail Das Schone Subdivision Tract B to the
East, Vail Das Schone Subdivision Parcel B, a re- subdivision of Tract D to the North, and the North
Frontage Road to the south. Figure 1 depicts the location of the proposed site, along with the future
"Chamonix" site development.
The intent of this report is to evaluate the pre - development and post - development discharge rates to the
existing 15" CPP(corrugated polyethylene pipe) storm outlet on the Southeast corner of the proposed
"West Vail Fire Station #3" property, shown at design point 2 -A on Figure 3. The 50 and 100 -year
rainfall storm events, along with anticipated snowmelt run -offs will be evaluated according to the Town
of Vail Code, to determine if the proposed storm system design can safely accommodate these discharge
rates, without causing damage to the surrounding infrastructure. We will also evaluate the 8' valley pans
connected with curb and gutter in the CDOT right -of -way to determine if street flooding will occur.
2. METHODOLOGY
Due to the urban nature and the small size of the individual sub - basins within the study area, it was
determined that the rainfall run -off would be analyzed using the Rational Method. Modifications as
recommended in the Urban Storm Discharge Criteria Manual published by the Urban Drainage and
Flood Control District, Denver, Colorado in June 2001 have also been adopted. At the time, no previous
drainage study was available to provide information about the existing hydrology study or soil type. It
was assumed according to the Natural Resource Conservation Service, that the soil type classification will
be Hydraulic Type -B. Runoff coefficients used for 50 and 100 -year storms calculations can be found in
Table 1 in Appendices A, B, and C. The storm data that was used for this analysis is from the Intensity -
Duration- Frequency Curve found in Figure 2, which was prepared by Inter - Mountain Engineering.
3. EXISTING HYDROLOGY
The existing site is approximately 1.72 acres (including R.O.W), and consists of approximately 46%
impervious area and a large steeply - sloped bank consisting of natural vegetation terrain to the West.
The drainage basins and discharge design points for the existing conditions are depicted in Figure 3.
Basin EX -1 is approximately 1.96 acres and consists of a steeply - sloped bank, which naturally drains to
an existing ditch along the West side of North Frontage Road to an existing 24" CMP, shown at design
point 1 -A. This existing pipe then discharges into an existing valley inlet on the east side of the existing
site entrance. The 50 -year storm discharge rate at design point 1 -A was calculated to be 2.75 cfs. It
should be noted that this off -site drainage basin was determined using GIS contours, as well as visual
onsite inspections, because topography was not provided in the existing conditions survey for this area.
Basin EX -2 is approximately 1.71 acres and consists of steep- sloped bank to the Northwest, which drains
to the existing site. The discharge is collected in the existing valley inlet, shown at design point 2 -A,
which then is discharged into an existing 15" storm pipe. The 50 -year storm discharge at design point 2-
A was calculated to be 5.36 cfs. All basin calculations, travel times (Tc), and the 50 and 100 -year storm
discharge rate calculations can be found in Table 2, SF -2 and SF -3 forms in Appendix A.
4. PROPOSED HYDROLOGY
After the proposed "West Vail Fire Station #3" site development is complete, the 1.72 acre (including
R.O.W) site will generally consist of an 8,656 square foot two -story fire station, concrete and asphalt
driveway, parking lot, and concrete sidewalks. The proposed site will increase the impervious area to
approximately 52 %, thereby increasing the storm water discharge rates to the common point of study. In
addition to analyzing the discharge rates from the "West Vail Fire Station #3" site , the proposed storm
system design was further analyzed to included the future "Chamonix" site development (preliminary
design provided by Alpine Engineering) and its effects on the discharge rates to design point 2 -A.
Figures 4 and 5 depict the modified sub - basins and design points for the proposed "West Vail Fire Station
#3" site development and future "Chamonix" site development. For the purpose of this report, runoff
from the roof structures of the proposed building will contribute to the nearest ground basin or inlet, and
the proposed foundation drain system discharge rates will not be included, due to the minimal impact it
will have on the storm system design. Snowmelt discharge rates were also calculated for the entire site
shown in Table 3 of the Appendices A, B, and C, but these flows were also disregarded for the calculated
discharge rates, due to the low probability of a 50 or 100 -year rainfall runoff event occurring at the same
time as snowmelt discharge.
The proposed storm system includes a connected network of roof drains, trench drains, 18" HDPE /RCP,
24" RCP, Type 13 and Type R inlets, and a new STC -4800 Stormceptor (See Appendix D for
Stormceptor Calcs). Each sub -basin was analyzed based on their individual time of concentration (Tc)
and travel times. All sub -basin calculations, travel times (Tc), and the 50 and 100 -year storm discharge
rate calculations can be found in Table 2, SF -2 and SF -3 forms in Appendix B and C. Ultimately, the
total calculated flow will be discharged into design point 2 -A, which is a proposed 5' Type -R inlet. The
50 -year storm discharge rate at design point 2 -A was calculated to be 8.22 cfs. Further analyzing our
storm system design to include the future "Chamonix" site development, we calculated an increased flow
to 13.63 cfs to our common point of study design point 2 -A shown on Figure 5. The increase in flow was
calculated based on the preliminary plan design concept from Alpine Engineering of the future
"Chamonix" site development, and we assumed that all storm water from sub -basin PR -6 will be piped
into design point 6 -A shown in Figure 5, with no on -site detention.
4. STORM SEWER, INLET, AND VALLEY PAN CAPACITY
The storm sewer design was analyzed for 50 and 100 -year storm events using "Hydraflow Storm
Sewers ". Each depicted inlet was assumed to collect 100% of the surface flow. The flow from the
"Chamonix" development was assumed to be piped to the inlet at design point 6 -A, shown in Figure 5 (or
inlet 3 in the provided output from "Hydraflow Storm Sewers" in Appendix D). The storm system was
sized to allow the 50 and 100 -year flows to stay in the pipe with the assumption of an outlet condition at
the proposed Stormceptor. It was not within the scope of this report to analyze how the existing
downstream storm system will function with these flows from the "West Vail Fire Station #3" and
" Chamonix" developments. All output calculations can be found on the storm sewer summary pages in
Appendix D.
Inlet 5 is located at the west curb return of the east entrance to the "West Vail Fire Station #3" site . This
inlet is in the CDOT right -of -way and has been sized to provide a dry tire condition during the 50 -year
storm event. This inlet was analyzed using UD -Inlet and the 50 and 100 -year flows for the site. The total
spread into the street from the flowline is a maximum of 0.8 feet for the 50 -year storm and 1.3 feet for the
100 -year storm.
Each driveway is traversed by an 8' valley pan. The basin PR -2 shown in Figure 5 was divided into two
additional smaller basins to determine the amount of runoff which would be carried by these pans (see
basins PR -7 and PR -8 on the SF -3 tables in Appendix Q. The flow for a 50 -year storm for the west
valley pan was calculated at 1.0 cfs and the east valley pan was 0.42 cfs. Both pans are proposed to
maintain a 0.75% grade across the driveways. Using a depth of the pan of 0.16 feet and a total width of
8', the capacity of the pan is approximately 1.2 cfs (see pan calculations in Appendix D). These
calculations show that the 50 -year flows will be contained within each valley pan.
5. CONCLUSION
After analyzing the proposed storm system for the "West Vail Fire Station #3" site development and with
the future "Chamonix" site development, it was determined to replace the existing 15" storm pipe that
connects inlets from design point 2 -A to design point 7 -A with a 24" RCP. This pipe size was determined
using the 50 and 100 -year storm discharge rates at design point 2 -A shown on Figure 5, and using the
"Hydraflow Storm Sewer" software from Autodesk. The selection of the reinforced concrete pipe
material was determined based on CDOT guidelines within the right -of -way. We also recommend
replacing the existing inlet manhole at design point 7 -A shown on Figure 5 with an STC -4800 Model
Stormceptor combined with a slotted manhole cover, and also replacing the existing 18" storm pipe
connecting design point 7 -A to design point 8 -A with a 24" RCP connecting to the existing curb inlet.
Once the future "Chamonix" site is constructed, there should be an additional drainage study to analyze
the existing downstream storm system infrastructure to determine if it is adequately sized for these
increased flows.
6.
Reference criteria used for technical information used to support the conceptual design of the proposed
storm system.
1. Civil Engineering Reference Manual, Michael R. Lindeburg, PE, Professional Publications, Inc.,
Tenth Edition, 2006
2. Urban Drainage and Flood Control District Drainage Criteria Manual, Volume 1, June, 2001
4
FIGURES
4
1 AJW
� ate► � � "�_
D
m
n
0
i
oe
!t�
0
.�K
C)
-C u
A \
m +
0
R■
on
tE
■
E ■R ■1R ■M ■EE ■1 ■1w/ /■
iiUM1 AR■M r1
■
■
� ^z� lirwii►�ii� ■w�, ■i liisis =sio °siisiisssssissi ■i
C ■ R�Etd,��1r��!■N/■! t1�■ �rr lr■t■w■t■■rr■■■■r!r =/.r./si
s 2 , h *�N..Nrr ■ r ■ ■1\R1lw■ . ■ ■! ■ ■ ■t ■!t ■t ■ ■R ■ ■ ■ ■ ■■ R ■1 ■r ■ ■ ■ ■/i
RR1■ 1.\ ��►` M■ 1►\■/■ �R■ R■■■ t ■i ■E ■N1 ■R ■ ■11MR ■ ■R1 ■R■ ■tR!
w ■ ■ ■t ►t ■1�C ■■\\ tu• mt■ CuNU ■ ■ /t ■ ■ ■tll ■11 / ■tRt1 ■tr■■ ■�
--- - -- �+ \■■■L \E■E\ % ■ ■t
■ ■ 11ER /w■ ■!t ■w E■■R1tl1 ■f ■ ■1 /tt ■ ■ ■ ■! ■ ■t111
1 ■1�d ►`�iQ \Q ■ilfi\■dw� : ■ ■tt ■w / ■R /d1 ■ttR ■R ■Rt ■ ■I
i �R ■1 ■R ■A /1 ■ ►�EliYtt■ bm u■ ■Rd■■■ ■1B■ ■1!.111 ■d ■ ■ ■1 ■E ■ ■i1'
RE■ 1■ RRa/■ ■ ■ \ ■ ■R ■t \� ■■►. \RwE ■ ■E ■Rd ■ ■1R1 ■/111 ■ ■R ■1 ■ ■i ■11
r
Now 1111111 aiiii�iiiiiIIiiIIIIi1a :1
1•# rt �1 ■ w..1 *� /��r ■ ■. \Rtt.� ■ /tt ■R1 t a�■ ■RR ■x1E
}4 �t mttli \ maps . =t //t.7i1r■�t�i itRiRlasit�isselsssarms . mogmanumb
n y „ /d ■p 0R
Itzma ■'�R1�E1I1R� +d1R�► \1R1 c�4110E1wRw1 /w1■ 11
v. 1d /■ �111 • \RRwEg�Cp`-bG.1 ■11 ■�if•���111 �rC ■C ■ ■tEt ■ /t1t� ■■
t3�R6
11111011 /1RR► 11R w.i- XzwtII.�.Et MOM 13W
■E /1 ■■
■ro.1■ \h 1 ■r `CRCr�Swannm:�!WnuRHil= aitsomm i /n °o
xi 1�
t ■ ■1■Q��SHM "i- �_ I- Rrw �Rr��ldl�a7: =�■
r � R■■■■■■ 1/ RZ\ n euu/R■tR■ t/� ■•= `1�rtt.�rt�■ � oe■u■a!r
Ir■/uuu/■ �•`�\�N■w��1t1 ■._.RG R / ■x.10 ■ /R1 ■tr.+ :_ ir■ /■
■uu■s1■■ iii iiiiiiiii�asw:� +iciposi:~ i
1u■1t■RR■�i
won No
■■t1t■1Rt■wu tMRr�-■1� tax am /1w ■rw O ■�1�
�Y . /■■■■lRdlwrrr�..
■ ■■ ■1 ■■ ■ssR ■t1■ ■ ■t ■ wtt! ■ /bra ■RS 1 �
ig� ■ ■ ■R1 ■R ■■ !�� ■11R�R� ■ ■ ■tE ■t1Hlw! tY� + 11*Ami�■]
■ ■R ■1 ■t ■t� ■R■■■■■ M ■1 ■w1 ■ ■11 ■i11 !�M �R � w►�� --
,. ■ w■■ t■■! ■ ■R ■ ■1 ■t ■ / ■`d ■R■ /1■■■t■ ■ ■l• ::NO Rt ■!w /1■ ■tuft
K wxm tsiissuit ■siisssii
i�. ■■tr.r■wrrrrwr.trrr.■ r/ 1 ■tR /1 ■ ■ ■1.. ■w ■. ■ ■tr ■ ■ ■ ■ ■t..r.�
✓-
t � yq' ,� }�'�.� •.� _::,,ff !�� •� y > �.`. �
�-Fr. <� s � -v r > $tar Q r • a w"r rj
ft
�� I
\ \ � k �
0 <t
X N r r
\R' x \�V
kwM
i
� 9 mz
O y X O
ocnoil
0 = 1 --
umz
D � O
OK 0
_ Z
nOF
M�v
y Z D
=1OZ
ZNm
D
U)
z
0
We
;I
m
\'A'
gA
\4��������4� m
"
ty��� `�S
xg
°
O Loll XC7
to I cn
O
v c> Z z
C.) O
D�
6iM
m O '�
11 II m U)
O
OD M
OD m
0
(�
Pf'
8^
Vii'
0
D
0
v
D
0 W
z D
Z
m v
D
0
#m
x
## I
o Ln
c c
z z
O O
.-. 0
0 -„
v v
NQ 1 DATE
N
(
j
x
v\
D
m
o
v,
Z
q
i }
Z
D
S
9
r
i
D
D
m�
V)
-11
C)
z
z
m
`� q
S
o
o
t\
y
O
Z
0
REN9DNS
gy
EXISTING DRAINAGE BASIN MAP
MARCIN ENGINEERING LLC
P.O. BOX 1062
WEST VAIL FIRE STATION #3
AVON, COLORADO 81620
VAIL, COLORADO
970- 748 -0274
! R11
xX
No
I
:1 N M 4
O O X O
O I N 0
I
;u Z O
a C)z
° —inv v
In 1: 0
D ;u _
�m�0
m
O
II II m N
�
co°
iDNm�
w �
nm
N
�tmZ
o` —'rl
0 0= 1 "
�mZ
D�O
j:ZO
z°rr Ln
mNv
D Z D
O Z
ZNm
C"
D
N
Z
x
e O D rG)
8� rn
r
0
^3
c�
D N0. DALE F&MONS BY
D
PROPOSED DRAINAGE BASIN MAP MARGIN ENGINEERI
_ (ANALYZED W/O FUTURE CHAMONIX DEVELOPMENT)
P.O. BOX 1062
� C a WEST VAIL FIRE STATION # 3 AVON, COLORADO 81620
m VAIL, COLORADO 970- 748 -0274
0
�i1��-
Rfl"
111 \ 1 \ \ �0
rte/ - t
°O
vvvv�vv�v t
HWP\11� On
iz
O 0 0 X 0 0
° I N m
zz
° —inov
U) 2 0
D�
C)m�0
m
II II m
O
C
�inF-<
? W
0 X
N N
8* > m x zo
0
;umz
D 0
0ZO
z - 1
m
amino
D Z D
�
Z in C m )
co
D
U)
z
mill
0
a
n
r
m
c)
m
Z
0
rx
0
I
e
D
NO.
I DALE
REVISIONS
BY
PROPOSED DRAINAGE BASIN MAP
MARCIN ENGINEERING LLC
(ANALYZED W/ FUTURE CHAMONIX DEVELOPMENT)
0
P.O. BOX 1062
0i
X
\
WEST VAIL FIRE STATION #
AVON, COLORADO 81620
to
970- 748 -0274
VAIL, COLORADO
0
APPENDIX — A
Existing Drainage
Table 1
Runoff Coefficients, C (from Urban Drainage and Flood Control Dist Manual)
For Type B NRCS Hydrological Soils Only.
% IMPERVIOUS
C5
C25
C50
C100
0
0.08
0.25
0.30
0.35
5
0.10
0.28
0.33
0.38
10
0.14
0.31
0.36
0.40
15
0.17
0.33
0.38
0.42
20
0.20
0.35
0.40
0.44
25
0.22
0.37
0.41
0.46
30
0.25
0.39
0.43
0.47
35
0.27
0.41
0.44
0.48
40
0.30
0.42
0.46
0.50
45
0.32
0.44
0.48
0.51
50
0.35
0.46
0.49
0.52
55
0.38
0.48
0.51
0.54
60
0.41
0.51
0.54
0.56
65
0.45
0.54
0.57
0.59
70
0.49
0.58
0.60
0.62
75
0.54
0.62
0.64
0.66
80
0.59
0.66
0.68
0.70
85
0.66
0.72
0.73
0.75
90
0.73
0.78
0.80
0.81
95
0.81
0.85
0.87
0.88
100
0.90
0.94
0.95
0.96
Table 2
Sub Basin Data
West Vail Fire Station #3 - Existing Conditions
SUB -BASIN NO.
AREA (sqft)
AREA (acres)
IMPERV area (sqft)
% IMP
C5
C25
C50
C100
EX -1
85450
1.9617
11,590
13.56%
0.17
0.33
0.38
0.42
EX -2
149220
3.4256
51,600
34.58%
0.27
0.41
0.44
0.48
Table 3
Precipitation and Snow Melt Rates
West Vail Fire Station #3
Frequency
(years)
Snow Melt
(cfs /acre)
Total Acres
Flow (cfs)
2
0.040
3.67
0.147
5
0.048
3.67
0.176
6
0.060
3.67
0.220
10
0.062
3.67
0.226
25
0.067
3.67
0.246
50
0.072
3.67
0.264
100
0.0800
3.67
0.294
m - m = m <
< v O m m a
CL CD < a m <
m n Q W= 3
m y N (D N
N C m (D d Q 3
N (0 (D 0 0.
7 0 M N
2 C
CL N G 3 0_ N
m n m (D
O 3
co
m
(D
CL
U)
m
(D
N
ocn
0 0 0 0 0 0
O O O <
CD
CD
m
0
m
n
0
CD
0
m
3
(7
3
m
C
3
(D
CL
m
C.n
3
3
N
0
CL
CD
CD
O
(D
n
c
Q
m
3
0
v
v
(n
CD
m
3
c
v
n
m
2
c
CD
G
G
N
d �
M D
ch O z
Tv
S o�
zv
w n
m
X Z �
X 3
o O N
3 Z
CL
v
m
O
U)
N
A
m
N
0
0
v
X
X
+ N
Z
W
D
D
;
CID
- M
Z
Z
W
N
D
v
I
00.
C7D
N
J
W N
r
m
z
O
Ut
T
r
m
NI
A p
J =
[
0
m_
m
W
D �-�<
r'a
a)
Z
1v
O
�
a
-
�
3
m
N
W
ro
(T
O
N V
e
T _{
r
m
z
A
V
OD
ao
0) —
2
T
m
CD
<
O'
a
D
r v
v_
o�
W ,
m
o
Z
o
n
d
m
m
(
Z ,<
r
m
ocn:°
0
M
m
m
�0
M
(D
--
00
O
OD
' y
t0 ...
w
p
W
O
7
N
n
O
On
V
O
T
o
1
A
O
C
,Z1
W
D
Z
N
m
w
w
w
p
°i
o
Co
D
o
N
z
0
3
CT
cn
W 3
3
c
3
z
W
N
A C
D
r
(n
0,—
N
n
n
O
3
3
CD
ur
3
m
C
3
(D
CL
m
C.n
3
3
N
0
CL
CD
CD
O
(D
n
c
Q
m
3
0
v
v
(n
CD
m
3
c
v
n
m
2
c
CD
G
G
N
d �
M D
ch O z
Tv
S o�
zv
w n
m
X Z �
X 3
o O N
3 Z
CL
v
m
O
U)
N
A
m
N
0
0
000
x D D
m-4r
n m 0
v
ono v
00
C
3
m
m'
M
m
co
CD
ca
0
q;a
03�,
n
r z
m Z D
D
xmv
0Cc o
Om3
0 $ -n
ovw
c m
mQ
—z
= m�O
SNOW
�5C
- iz00
>$
r
v
m
x
z
�I
w
IESIGN POINT
AREA DESIGN
1111111
�
III
u
nnans�
lutput to Design Point
M
m
co
CD
ca
0
q;a
03�,
n
r z
m Z D
D
xmv
0Cc o
Om3
0 $ -n
ovw
c m
mQ
—z
= m�O
SNOW
�5C
- iz00
>$
r
v
m
x
z
�I
w
T
O
Q
0
O
o_
f/1
fl.
v
a
w
0
m
W
n
w
N
0
m
0
x
m
n
IT!
v
00
O
z
a
r
3
m
x
O
v
X
O
0
m
v
c
m
m
0
a
r
0
c
r
D
m
v
v
N
O
3
v
z
D
O
m
rn
m
3
v
m
a
z
N
a
z
v
D
v
m
0
3
t/t
n
w
XMm0
x(a0w
�6)
"IZ00
D-�1�
20
n;a
>3
r
v
m
x
z
D
D
' D ESIGN POINT
X
+
X
AREA DESIGN
X N
N
v
m
m
0
1
X
c
z
0
m
m
A REA (ACRES)
0
A
OD
m
A
m
t c (MINUTES)
k A
W
b I (INIHR)
w
Q (CFS)
c (MINUTES)
m
�
WA)
I
r
c
w
(INIHR)
z
O
A
Q (CFS) -n
m
m
MAX CAPACITY (CFS)
4 M -nnings No, n
4 S LOPE( %)
m
yr
P IPE SIZE(IN.)
d
m3
m
L ENGTH(FT)
p
z
m
x
�' X VELOCTTY(FPS
- I
v
0
t(MINUTES)
z
cn
X
ENGTH (FT)
v D
3
�v
x
S LOPE ( %)
m D N
ONVEYANCE COEFF
CA
0'
N
X YELOCM (FPS)
O
c
t (MINU MS)
Z
v
m
m
3
D
X
utput to Design Point
0
x
m
n
IT!
v
00
O
z
a
r
3
m
x
O
v
X
O
0
m
v
c
m
m
0
a
r
0
c
r
D
m
v
v
N
O
3
v
z
D
O
m
rn
m
3
v
m
a
z
N
a
z
v
D
v
m
0
3
t/t
n
w
XMm0
x(a0w
�6)
"IZ00
D-�1�
20
n;a
>3
r
v
m
x
z
APPENDIX - B
Proposed Drainage
(Fire Station Only)
Table 1
Runoff Coefficients, C (from Urban Drainage and Flood Control Dist Manual)
For Type B NRCS Hydrological Soils Only.
% IMPERVIOUS
C5
C25
C50
C100
0
0.08
0.25
0.30
0.35
5
0.10
0.28
0.33
0.38
10
0.14
0.31
0.36
0.40
15
0.17
0.33
0.38
0.42
20
0.20
0.35
0.40
0.44
25
0.22
0.37
0.41
0.46
30
0.25
0.39
0.43
0.47
35
0.27
0.41
0.44
0.48
40
0.30
0.42
0.46
0.50
45
0.32
0.44
0.48
0.51
50
0.35
0.46
0.49
0.52
55
0.38
0.48
0.51
0.54
60
0.41
0.51
0.54
0.56
65
0.45
0.54
0.57
0.59
70
0.49
0.58
0.60
0.62
75
0.54
0.62
0.64
0.66
80
0.59
0.66
0.68
0.70
85
0.66
0.72
0.73
0.75
90
0.73
0.78
0.80
0.81
95
0.81
0.85
0.87
0.88
100
0.90
0.94
0.95
0.96
Table 2
Sub Basin Data
West Vail Fire Station #3 - Proposed Conditions w/o Chamonix Development
SUB -BASIN NO.
AREA (sqft)
AREA (acres)
IMPERV area (sqft)
% IMP
C5
C25
C50
C100
PR -1
65660
1.5073
10,740
16.36%
0.17
0.33
0.38
0.42
PR -2
69890
1.6045
22,040
31.54%
0.25
0.39
0.43
0.47
PR -3
33185
0.7618
10,275
30.96%
0.25
0.39
0.43
0.47
PR -4
26665
0.6121
9,625
36.10%
0.27
0.41
0.44
0.48
PR -5
8800
0.2020
6,985
79.38%
0.59
0.66
0.68
0.70
PR -6
28290
0.6494
1,540
5.44%
0.10
0.28
0.33
0.38
Table 3
Precipitation and Snow Melt Rates
West Vail Fire Station #3
Frequency
(years)
Snow Melt
(cfslacre)
Total Acres
Flow (cfs)
2
0.040
5.33
0.213
5
0.048
5.33
0.256
6
0.060
5.33
0.320
10
0.062
5.33
0.328
25
0.067
5.33
0.357
50
0.072
5.33
0.384
100
0.0800
5.33
0.426
ID v l 10 v o n1 < a ID
D a Q N M 3
(D N y CO N
N p�j (D C a (D 111 3
�' C p cn m o a
j O N y
C
< O a v
� a N n
v o
o
N
CD
CL
N
CD
N
N J (T N (7
o noCD 0ino
0 0 0 0 0 0
O 00 <
CS
tU
(
n
CD
m
7
L7
(n
y
N
n —
Cl T
n
m cn
(D Cl
a =°
' O
7
m m D
ino OZ
o - v
CL O M
o zv
O n T
a Z O
O --I
f --I T
O O 0 N
°1 n Z
m �
3
0
3
X
v
(D
A <
(D
�O o
N �
o 3
o (D
v
v
T
T
v
v
m
T
T
T
�u
�u
CT
CT
A
W
N
--+
G
Z
W
03
0
M
0
N
0
O
0
J
0
Cn
D
jV ;u
D
cn
A
CD
o
N
N
m
N
0
A
0--
J
D
z
v
D
0
0
0
0
0
0
n
D
N
r
m
z
(
A
(T
N
D)
(
A
O
O
Cn
O
(T
T
1
r
A Z
—
n1
N
oAOC
xx
0
m
r
0
X
<
m
m
m
�
v
o
v
�
-
cn
3
m
W
1 '
W
W
CT
N
co
0)
N
A
r
O
N T
„
--
o
0
0
o
m
0
T
D
� NCna
rno6
N
r
m
z
OA
(n
CD
c,
G7
J
(T
O
N
T
1
m
J
A
A
N
N^
CD
f
Cn
Cn
Cn
Cn
..
O
D
� v
v
0
W
Cn
Cn
A
J
W
o
0D m
0
0
0
o
0
0
z
o
D
1
D
o
N
N
N
N�
G fD 7
-�
Cn
O
O
00
Cn
....
(D
O
m
N 0
O
(D
<
N
A
A
W
ul
N
^
Cl,
W
O
(D
—
cn
—
0
0
0
0—
CD
W
(P
W
Cn
—
-42
3
y
N
W
W
Cn
J
00
m
A
CD
0
0
n
C
A
cu
D
0
Z
II
C
N
m
+
D
o
N
Z
(D
W
J
D)
Cn
W 7
C
3
3
-
O
00
J
J
D
(7
O
CD
CD
7
(n
(n
y
N
n —
Cl T
n
m cn
(D Cl
a =°
' O
7
m m D
ino OZ
o - v
CL O M
o zv
O n T
a Z O
O --I
f --I T
O O 0 N
°1 n Z
m �
3
0
3
X
v
(D
A <
(D
�O o
N �
o 3
o (D
1..0....0...000 00000000000000000000000000*0••
0
a
0
3
0
m
0
2 D D
M -I r
0 m n
C
v
a) m
v
v
DO
O to
r D z
zv
D
2 m v
O O
-- 4
O T
0
C m
rnZ
2 m � O
S(1)OD1
4) L. Z
'aZO 0
D -
20
n X
r�
r
v
m
v
2
z
(D
U)
v
cu
to
m
0
W
DESIGN POINT
D
D
D
>
D >
D D
D D
N
W
'+
+
X
+
AREA DESIGN
+
+
A
+
+
Z7
.ZI
T7
cn
a�
m
n
X
c
z
O
T
0 N
m �-4
REA (ACRES)
cno�rn
0 0
W O
W m
0 0
A
A w W
0
O
W V
° o °o
C(MINUTES)
w Cl
cl
N
+ -A
W A
i'4 N
0 W
A A
a o
I (INIHR)
0 0
a°
U,
(CFS)
w
N
ca
o
c(MINUTES)
co
1
w
0
-1
N
O
o
0
O
N
(0
o°
o
U (C -A)
D
r
w
-4
w
-4
w
co
a
a
( IN/HR )
c
N
A
t0
�
z
Z
O
-n
m
N
N
w
cn
Cn
W
O
J
N
m
W
(CFS)
T
AX CAPACITY (CFS)
Mannings No, n
0
0
Cn
0
Cl
N
0
(DI
N
0
N
--1
c
�„
c
LOPE 1 %)
+
D
0)
0
0
0
<
v
m
r
m
PIPE SIZE(IN.)
—1
m
m
N
w
LENGTH(FT)
O
z
m
X
w
o
N
PX. VELOCITY(FPS)
�
a
O
o
ii
w
o
t (MINUTES)
Z
X
D
LENGTH (FT)
4
3
n
v
2
IS LOPE ( %)
D
y
2
-
ONVEYANCE COEFF
N
N
PX. VELOCITY (FPS)
x i
O
c
t(MINUTES)
z
v
m
3
D
A
co
utput to Design Point
D
D
D
D
D
D D
0
2 D D
M -I r
0 m n
C
v
a) m
v
v
DO
O to
r D z
zv
D
2 m v
O O
-- 4
O T
0
C m
rnZ
2 m � O
S(1)OD1
4) L. Z
'aZO 0
D -
20
n X
r�
r
v
m
v
2
z
(D
U)
v
cu
to
m
0
W
O
- o
0
3
N
cn
m
000
2 D D
m gr
0 m 0
;K c
IT! D
v �
< m
0
W
to
��
D O
1;0
0
r D Z
IT! Z D
D
=m
0 0
O T
ovw
C IT!
mD
—z
= m m O
m to 0 00
aO c' Z
Z Om O
D -
20
n PO
r 3
r
v
m
2
z
MAX CAPACITY (CFS)
Mannings No, n
0 0
0 0
(T N
0
6
N
C.
N
m o
o
o
LOPE
D
- 0
m
r
IPE SIZE(IN.)
�0
Z!
m
3
rn
N
< w
ENGTH(FT)
O
Z
m
x
PX. VELOCITY(FPS)
0
O
w
w
o
t(MINUTES)
Z
cn
O N
OD
D
LENGTH (FT)
0
I
0
LOPE ( %)
D
N
;u-4
ONVEYANCE COEFF
0
to
PX. VELOCITY (FPS) �
0
C
ITI
I I
I I
IT_
I I
t(MINUTES)
Z
0
000
2 D D
m gr
0 m 0
;K c
IT! D
v �
< m
0
W
to
��
D O
1;0
0
r D Z
IT! Z D
D
=m
0 0
O T
ovw
C IT!
mD
—z
= m m O
m to 0 00
aO c' Z
Z Om O
D -
20
n PO
r 3
r
v
m
2
z
APPENDIX — C
Proposed Drainage
(Fire Station and Chamonix)
Table 1
Runoff Coefficients, C (from Urban Drainage and Flood Control Dist Manual)
For Type B NRCS Hydrological Soils Only.
% IMPERVIOUS
C5
C25
C60
C100
0
0.08
0.25
0.30
0.35
5
0.10
0.28
0.33
0.38
10
0.14
0.31
0.36
0.40
15
0.17
0.33
0.38
0.42
20
0.20
0.35
0.40
0.44
25
0.22
0.37
0.41
0.46
30
0.25
0.39
0.43
0.47
35
0.27
0.41
0.44
0.48
40
0.30
0.42
0.46
0.50
45
0.32
0.44
0.48
0.51
50
0.35
0.46
0.49
0.52
55
0.38
0.48
0.51
0.54
60
0.41
0.51
0.54
0.56
65
0.45
0.54
0.57
0.59
70
0.49
0.58
0.60
0.62
75
0.54
0.62
0.64
0.66
80
0.59
0.66
0.68
0.70
85
0.66
0.72
0.73
0.75
90
0.73
0.78
0.80
0.81
95
0.81
0.85
0.87
0.88
100
0.90
0.94
0.95
0.96
Table 2
Sub Basin Data
Xw1 ...+6 Al H c:. s c+� +inn +f4 - Prnnncarl rnnditinns w /Chamonix Development
SUB -BASIN NO.
PRA
AREA (sqft)
65660
AREA (acres)
1.5073
- I -
IMPERV area (sqft)
10,740
% IMP
16.36%
C5
0.17
-
C25
0.33
C50
0.38
C100
0.42
PR -2
69890
1.6045
22,040
31.54%
0.25
0.39
0.43
0.47
PR -3
33185
0.7618
10,275
30.96%
0.25
0.39
0.43
0.47
PR -4
18575
0.4264
9,625
51.82%
0.35
0.46
0.49
0.52
PR -5
8800
0.2020
6,985
79.38%
0.59
0.66
0.68
0.70
PR -6
139765
3.2086
87,940
62.92%
0.45
0.54
0.57
0.59
Table 3
Precipitation and Snow Melt Rates
West Vail Fire Station #3
Frequency
(years)
Snow Melt
(cfs /acre)
Total Acres
Flow (cfs)
2
0.040
7.71
0.308
5
0.048
7.71
0.370
6
0.060
7.71
0.463
10
0.062
7.71
0.474
25
0.067
7.71
0.517
50
0.072
7.71
0.555
100
0.0800
7.71
0.617
m m � m'< 0
my° <m 3
a ID
D1 f1 fJ 0 = 1 CD
d rn m . .3 r cn
(n y (D C �- d d n C
O N
w 9(9 m o o r
C 7 (D cl
(n `G O O " N A CD
m n m tu cn
o y 3
O 7
v n Cn
N CD O ZL
Cn (� CD
M CD
O
N -� CD
a °•
(D c
� Q
O rr
d
N N
N
0
3 C
_ d
N V Cr N 0
O Ut 0 0 0 (n O
0 0 0 0 0 0
CD
su
CD
CD
O
CD
0
CD
n
0 0 0 0 0 o °-° m 0
z
e �
Cl
d � m
a� r
N N N N N CD O 1
00000cn.., m
� o
�o --
Ft
A A A W CT N aD M
CO CA co Cn s V 7
N
n n
On
N W Cr CJ7 A :a 3 m
�I A cn ' O n
O C
,Z1
W
2
A N N j v
A O A W W W12 O W
i D
O CO)
z
-•1
n
3
c
3
3 '-
N CO N V CA z' 7 D
X(D 0000= r
N �
C1
0
O
3
3
CD
3
CD
o < d m >,
� . n O Z
o�
o zv
o T
m
W z�
f Z
CO)
s --1 7 1
D 0hj
D 7 Z
x
v
v o
o
In
m
W CJ1 A
A W
W N
N S
S G
G) C
Z W
W
w o
o 0
0 0
0 >
m a
al N
> N
( N
N C
CA N
N A
A- D
D Z
v
I
0 0
0 o
o O
O o
o o
o n
n D
la U
Ut W
W N
N N
N— W
V "
W N
r
m
O A
A O
O l
ll L
L, `••' _
_
T
r
m
cn Z
O
oAO(N.Icl,Lrl =
=D
J =
0
m m
O A
r-
A O
A� J
J D
DN1 �< z
•o _
_
3
to m
CT o
o (
W (
(n A
A N
N ,
,•,� O d
0 0
0 o
o o
o o
o o
o m
m
a
O N
N C
CT A
A W
W 3
T � �
Oo c
co V
V V
V W
W D
D
r
m
��_ C
0 (
C)
Ul V
V 0
(n O
O N
N `
_ c
n
m
V A
A A
A N
N N
N <
CD
O (
(T C
CC.n A
A U
Ut c
cn v
v
0
0
° D
Cl)
O
CA 0
0 U
Ul O
A V
V W
W
CD
o < d m >,
� . n O Z
o�
o zv
o T
m
W z�
f Z
CO)
s --1 7 1
D 0hj
D 7 Z
x
0
xaa
m -1 r
0 m n
A C
v
< 0
0
3
m
y
O
�0
03y
D
r�z
m
�x G
a < 0
��
v �3
c
M m
C CO
X Q
z
xrn3
SNOW
'oaIz
�z00
CO) -4
> 3
r
v
m
-o
s
z
O
N
T
N
N
O
7
W
nnnmunn
�
CAN'll. fat=
IIIRII�iiii
�0
03y
D
r�z
m
�x G
a < 0
��
v �3
c
M m
C CO
X Q
z
xrn3
SNOW
'oaIz
�z00
CO) -4
> 3
r
v
m
-o
s
z
O
N
T
N
N
O
7
W
000
xDD
0M0
7 c
v 5
ca m
C)
00
v
d
CD
v
CL
0
0
CL
0
0
S
0
m
V)
0
IIIIIIIIIII
�llll
MI N I MUM, '
I��IIIII�I
1119E
&IIIIIIEIE
.
III&�EIIIIII�I�
mdnwnn
amnmmi
.� dl
�O
O3y
D
�
m
D
xmv
0 0
nay
ovw
c m
M G)
-- z
=OIo
my Ow
a O C- z
T 1 Z m 0
C
y D
r
r
v
m
x
z
APPENDIX — D
Stormceptor Analysis
Storm Sewer Analysis
Inlet Calculations
Cross Pan Calculation
U ma
' 111L Mb
Stormceptor'
Stormceptor Sizing Detailed Report
PCSWMM for Stormceptor
Project Information
Date 14/28/2010
Project Name West Vail Fire Station #3
Project Number N/A
Location Vail, CO
Stormwater Quality Objective
This report outlines how Stormceptor System can achieve a defined water quality objective through the
removal of total suspended solids (TSS). Attached to this report is the Stormceptor Sizing Summary.
Stormceptor System Recommendation
The Stormceptor System model STC 4800 achieves the water quality objective removing 82% TSS for a
NJDEP (clay, silt, sand) particle size distribution and 99% runoff volume.
The Stormceptor System
The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants
through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal
for all rainfall events, including large storms. Significant levels of pollutants such as heavy metals, free
oils and nutrients are prevented from entering natural water resources and the re- suspension of
previously captured sediment (scour) does not occur.
Stormceptor provides a high level of TSS removal for small frequent storm events that represent the
majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent
events, however, such events have little impact on the average annual TSS removal as they represent a
small percentage of the total runoff volume and pollutant load.
Stormceptor is the only oil and sediment separator on the market sized to remove TSS for a wide range
of particle sizes, including fine sediments (clays and silts), that are often overlooked in the design of other
stormwater treatment devices.
MATERIALS ""
Stormceptor'
all storms dominate hydrologic activity, US EPA reports
"Early efforts in stormwater management focused on flood events ranging from the 2 -yr
to the 100 -yr storm. Increasingly stormwater professionals have come to realize that
small storms (i.e. < 1 in. rainfall) dominate watershed hydrologic parameters typically
associated with water quality management issues and BMP design. These small storms
are responsible for most annual urban runoff and groundwater recharge. Likewise, with
the exception of eroded sediment, they are responsible for most pollutant washoff from
urban surfaces. Therefore, the small storms are of most concern for the stormwater
management objectives of ground water recharge, water quality resource protection and
thermal impacts control."
"Most rainfall events are much smaller than design storms used for urban drainage
models. In any given area, most frequently recurrent rainfall events are small (less than
1 in. of daily rainfall)."
"Continuous simulation offers possibilities for designing and managing BMPs on an
individual site -by -site basis that are not provided by other widely used simpler analysis
methods. Therefore its application and use should be encouraged."
— US EPA Stormwater Best Management Practice Design Guide, Volume 1 — General
Considerations, 2004
Design Methodology
Each Stormceptor system is sized using PCSWMM for Stormceptor, a continuous simulation model
based on US EPA SWMM. The program calculates hydrology from up -to -date local historical rainfall data
and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to
achieve a defined water quality objective.
The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load.
Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by
analyzing (summary of analysis presented in Appendix 2):
• Site parameters
• Continuous historical rainfall, including duration, distribution, peaks (Figure 1)
• Interevent periods
• Particle size distribution
• Particle settling velocities (Stokes Law, corrected for drag)
• TSS load (Figure 2)
• Detention time of the system
The Stormceptor System maintains continuous positive TSS removal for all influent flow rates. Figure 3
illustrates the continuous treatment by Stormceptor throughout the full range of storm events analyzed. It
is clear that large events do not significantly impact the average annual TSS removal. There is no decline
in cumulative TSS removal, indicating scour does not occur as the flow rate increases.
2 ■
MATERIALS'"
Stormceptor°
I --
i
30 '
r I
�
j
E
j
� F
c 15 .
3
10-
5.'
i
Flow (cfs)
Figure 1. Runoff Volume by Flow Rate for EAGLE FAA AIRPORT — CO 2454, 1984 to 1993 for 7.7
ac, 44% impervious. Small frequent storm events represent the majority of annual rainfall volume. Large
infrequent events have little impact on the average annual TSS removal, as they represent a small
percentage of the total annual volume of runoff.
_.. - _. - -- - _- _ - -- -- - - - - -- - -- __ - - - - -- - - - - -- . _..__ .
50!
4
„Q 40 _
a
o 35-
0
0. 5..
H
15..
J
10...1
t
t
5f
0 0 c. o p — 1 pp pp cn o+ pp p a p .i a cn pp p a N w tA "p ie
Flow (cfs)
Figure 2. Long Term Pollutant Load by Flow Rate for EAGLE FAA AIRPORT — 2454, 1984 to 1993
for 7.7 ac, 44% impervious. The majority of the annual pollutant load is transported by small frequent
storm events. Conversely, large infrequent events carry an insignificant percentage of the total annual
pollutant load.
3 R j M
a-"
ATERIALS""
u
Stormceptor°
U
H
N
is
>
t
a�
N
H
m
E
3
U
Flow (Cfs)
Stormceptor Model STC 4800 Drainage Area (ac) 7.7
TSS Removal ( %) 82 Impervious ( %) 44
Figure 3. Cumulative TSS Removal by Flow Rate for EAGLE FAA AIRPORT — 2454, 1984 to 1993.
Stormceptor continuously removes TSS throughout the full range of storm events analyzed. Note that
large events do not significantly impact the average annual TSS removal. Therefore no decline in
cumulative TSS removal indicates scour does not occur as the flow rate increases.
4
Uff IA
u
Stormceptor'
Appendix 1
Stormceptor Design Summary
Project Information
Date
4/28/2010
Project Name
West Vail Fire Station #3
Project Number
N/A
Location
Vail, CO
Designer Information
Company
Marcin Engineering
Contact
Brad Stempihar
Rainfall
Name
EAGLE FAA AIRPORT
State
CO
ID
2454
Years of Records
1984 to 1993
Latitude
39 °23'24 "N
Longitude
106 °33'0 "W
Notes
N/A
Drainage Area
Total Area (ac) 7.7
Imperviousness ( %) 44
The Stormceptor System model STC 4800 achieves
the water quality objective removing 82% TSS for a
NJDEP (clay, silt, sand) particle size distribution and
99% runoff volume.
Stormceptor Sizing Summary
Water Quality Objective
TSS Removal ( %) 80
Runoff Volume ( %) 90
Upstream Storage
Storage Discharge
(ac -ft) (cfs)
0 0
Stormceptor Model
TSS Removal
Runoff Volume
STC 450i
60
80
STC 900
71
94
STC 1200
71
94
STC 1800
72
94
STC 2400
77
97
STC 3600
78
97
STC :00
82
99
STC 6000
83
99
STC 7200
86
100
STC 11000
89
100
STC 13000
90
100
STC 16000
92
100
0
MATERIALS""
RL
Stormceptor*
Particle Size Distribution
Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy
metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the
particle size distribution used to define the annual TSS removal.
NJDEP (clay, silt, sand
Particle Size
Distribution
Specific
Settling
Particle Size
Distribution
Specific
Settling
Gravity
Velocity
Gravity
Velocity
m
%
ft/s
Prn
%
ft/s
1
5
2.65
0.0012
4
15
2.65
0.0012
29
25
2.65
0.0025
75
15
2.65
0.0133
175
30
2.65
0.0619
375
5
2.65
0.1953
750
5
2.65
0.4266
Stormceptor Design Notes
• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
• Design estimates listed are only representative of specific project requirements based on total suspended
solids (TSS) removal.
• Only the STC 4501 is adaptable to function with a catch basin inlet and /or inline pipes.
• Only the Stormceptor models STC 4501 to STC 7200 may accommodate multiple inlet pipes.
• Inlet and outlet invert elevation differences are as follows:
Inlet and Outlet Pipe Invert Elevations Differences
Inlet Pipe Configuration STC 4501 STC 900 to STC STC 11000 to
7200 STC 16000
Single inlet pipe 3 in. 1 in. 3 in.
Multiple inlet pipes 3 in. 3 in. Only one inlet
pipe.
Design estimates are based on stable site conditions only, after construction is completed.
Design estimates assume that the storm drain is not submerged during zero flows. For submerged
applications, please contact your local Stormceptor representative.
Design estimates may be modified for specific spills controls. Please contact your local Stormceptor
representative for further assistance.
For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909 -7763
www.rinkerstormceptor.com
6 N ---
MATERIALS""
U %14b
Stormceptor°
Appendix 2
Summary of Design Assumptions
Site Drainage Area
Total Area (ac) 7.7 Imperviousness ( %) 44
Surface Characteristics
Width (ft)
1158
Slope ( %)
2
Impervious Depression Storage (in.)
0.02
Pervious Depression Storage (in.)
0.2
Impervious Manning's n
0.015
Pervious Manning's n
0.25
Maintenance Frequency
Infiltration Parameters
Norton's equation is used to estimate infiltration
Max. Infiltration Rate (in /hr) 2.44
Min. Infiltration Rate (in /hr) 0.4
Decay Rate (0) 0.00055
Regeneration Rate (s 0.01
Evaporation
Daily Evaporation Rate (inches /day) 0.1
Sediment build -up reduces the storage volume for
sedimentation. Frequency of maintenance is
assumed for TSS removal calculations.
Maintenance Frequency (months) 1 12
Upstream Attenuation
Dry Weather Flow
Dry Weather Flow (cfs) No
Winter Months
Winter Infiltration False
Stage- storage and stage- discharge relationship used to model attenuation upstream of the Stormceptor System is
identified in the table below.
Storage
ac -ft
Discharge
cfs
0
0
7 RWI"
I-.- MATERIALS""
U%
Stormceptor®
Particle Size Distribution
Removing fine particles from runoff ensures the majority of pollutants, such as heavy metals, hydrocarbons, free oils
and nutrients are not discharged into natural water resources. The table below identifies the particle size distribution
elected to define TSS removal for the design of the Stormceptor System.
NJDEP clay, silt, sand
Particle Size
Distribution
Specific
Settling
Particle Size
Distribution
Specific
Settling
Gravity
Velocity
Gravity
Velocity
P m
%
ft/s
PM
%
ft/s
1
5
2.65
0.0012
4
15
2.65
0.0012
29
25
2.65
0.0025
75
15
2.65
0.0133
175
30
2.65
0.0619
375
5
2.65
0.1953
750
5
2.65
0.4266
PCSWMM for Stormceptor
Grain Size Distributions
100
90 - - - - - -- - - -- -- - - -------------- -- - - - --
80
70 _ -- -
___ GRAVEL
U. C
60 CLAY SILT SAND COBBLES'
0 50 _ _ _ _ _ _ __ _ ---- i- -
ci 40
30
20 - - -- - - - --
i
i
10
I
0
1 10 100 1000 10000
Grain Size (um)
- + -NJDFP -Fine Distribution OK -110 - *-F -95 Sand -*- Coarse Distribution
Figure 1. PCSWMM for Stormceptor standard design grain size distributions.
8
R
MATERIALS""
l u g
Stormceptor°
TSS Loading Parameters
TSS Loading Function I Buildup / Washoff
Buildup/Washoff Parameters
Target Event Mean Concentration 125
(EMC) (mg /L)
Exponential Buildup Power 0.4
Exponential Washoff Exponential 0.2
]ROLOGY ANA
TSS Availability Parameters
Availability = A + BiC
Availability Constant A 0.057
Availability Factor B 0.04
Availability Exponent C 1.1
Min. Particle Size Affected by 400
Availability (pm)
PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical
rainfall data. Performance calculations of the Stormceptor System are based on the average annual removal of TSS
for the selected site parameters. The Stormceptor System is engineered to capture fine particles (silts and sands) by
focusing on average annual runoff volume ensuring positive removal efficiency is maintained during all rainfall
events, while preventing the opportunity for negative removal efficiency (scour).
Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in
the historical rainfall data analyses presented in this section.
Rainfall Station
Rainfall Station
Rainfall File Name
Latitude
Longitude
Elevation (ft)
Rainfall Period of Record (y)
Total Rainfall Period (y)
EAGLE FAA AIRPORT
CO2454.NDC
Total Number of Events
710
39 °23'24 "N
Total Rainfall (in.)
79.5
106 0 33'0 "W
Average Annual Rainfall (in.)
7.2
6497
Total Evaporation (in.)
6.4
10
Total Infiltration (in.)
44.5
10
Percentage of Rainfall that is
36.3
Runoff ( %)
R 0
�MATERIALS-
U
Stormceptor®
Rainfall Event Analysis
Rainfall Depth
in.
No. of Events
Percentage of
Total Events
%
Total Volume
in.
Percentage of
Annual Volume
%
0.25
635
89.4
44
55.4
0.50
48
6.8
16
20.5
0.75
18
2.5
11
13.9
1.00
8
1.1
7
8.9
1.25
1
0.1
1
1.4
1.50
0
0.0
0
0.0
1.75
0
0.0
0
0.0
2.00
0
0.0
0
0.0
2.25
0
0.0
0
0.0
2.50
0
0.0
0
0.0
2.75
0
0.0
0
0.0
3.00
0
0.0
0
0.0
3.25
0
0.0
0
0.0
3.50
0
0.0
0
0.0
3.75
0
0.0
0
0.0
4.00
0
0.0
0
0.0
4.25
0
0.0
0
0.0
4.50
0
0.0
0
0.0
4.75
0
0.0
0
0.0
5.00
0
0.0
0
0.0
5.25
0
0.0
0
0.0
5.50
0
0.0
0
0.0
5.75
0
0.0
0
0.0
6.00
0
0.0
0
0.0
6.25
0
0.0
0
0.0
6.50
0
0.0
0
0.0
6.75
0
0.0
0
0.0
7.00
0
0.0
0
0.0
7.25
0
0.0
0
0.0
7.50
0
0.0
0
0.0
7.75
0
0.0
0
0.0
8.00
0
0.0
0
0.0
8.25
0
0.0
0
0.0
>8.25
0
1 0.0
1 0
0.0
F requency of Occurence by Rainfall Depths
100 -.... ___._. ___
70 4
.;
C
Q 50 ..i
O �
00-1
C
C
`1
LL
10 j j.
� N ,
N lA N N U N� U N U Ut N U N U U U N N
Rainfall Depth (in.)
10 M r&er
1-0 MATERIALS'"
US
Stormceptor'
Pollutograph
Flow Rate
cfs
Influent Mass
ton
Effluent Mass
ton
Total Mass
ton
Cumulative Mass
%
0.035
1.8216
1.8601
3.6817
49.5
0.141
2.8897
0.7931
3.6817
78.5
0.318
3.3913
0.2915
3.6817
92.1
0.565
3.5607
0.121
3.6817
96.7
0.883
3.6223
0.0605
3.6817
98.4
1.271
3.6509
0.0319
3.6817
99.1
1.73
3.6674
0.0143
3.6817
99.6
2.26
3.6773
0.0055
3.6817
99.9
2.86
3.6817
0
3.6817
100.0
3.531
3.6817
0
3.6817
100.0
4.273
3.6817
0
3.6817
100.0
5.085
3.6817
0
3.6817
100.0
5.968
3.6817
0
3.6817
100.0
6.922
3.6817
0
3.6817
100.0
7.946
16817
0
3.6817
100.0
9.041
3.6817
0
3.6817
100.0
10.206
3.6817
0
3.6817
100.0
11.442
3.6817
0
3.6817
100.0
12.749
3.6817
0
3.6817
100.0
14.126
3.6817
0
3.6817
100.0
15.574
3.6817
0
3.6817
100.0
17.092
3.6817
0
3.6817
100.0
18.681
3.6817
0
3.6817
100.0
20.341
3.6817
0
3.6817
100.0
22.072
3.6817
0
3.6817
100.0
23.873
3.6817
0
3.6817
100.0
25.744
3.6817
0
3.6817
100.0
27.687
3.6817
0
3.6817
100.0
29.7
3.6817
0
3.6817
100.0
31.783
3.6817
0
3.6817
1 100.0
Cumulative Mass Transported by Flow Rate
100
For area: 7.7 (ac), imperviousness: 44%, rainfall station: EAGLE FAA AIRPORT
90
80
0
70-i : -
r
60 .
c
50 -'
40
'c 30
Q 20
10
0.0 0.2 0.4 0,6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Flow (cfs)
11
12Z O VA
MATERIALS "
U 3
S -
Stormceptor°
Cumulative Runoff Volume by Runoff Rate
Runoff Rate
cfs
Runoff Volume
ft 3
Volume
Overflowed
ft 3
Cumulative
Runoff Volume
%
0.035
196772
608865
24.4
0.141
482878
322756
59.9
0.318
667825
137811
82.9
0.565
746198
59436
92.6
0.883
774896
30740
96.2
1.271
788452
17183
97.9
1.73
796960
8675
98.9
2.26
802045
3590
99.6
2.86
805096
538
99.9
3.531
805528
105
100.0
4.273
805634
0
100.0
5.085
805634
0
100.0
5.968
805634
0
100.0
6.922
805634
0
100.0
7.946
805634
0
100.0
9.041
805634
0
100.0
10.206
805634
0
100.0
11.442
805634
0
100.0
12.749
805634
0
100.0
14.126
805634
0
100.0
15.574
805634
0
100.0
17.092
805634
0
100.0
18.681
805634
0
100.0
20.341
805634
0
100.0
22.072
805634
0
100.0
23.873
805634
0
100.0
25.744
805634
0
100.0
27.687
805634
0
100.0
29.7
805634
0
100.0
31.783
805634
0
100.0
Cumulative Volume of Runoff by Runoff Rate
For area: 7.7 (ac). imperviousness: 44 %, rainfall station: EAGLE FAA AIRPORT
F
d
E
3
0
o`
d
p
m
3
E
7
U
Flow (cfs)
12 WW"
MATERIALS""
a
0
CD
N
0
M
U
O
0
a
U
O
Q
L
O
O
.
X
W
N
L
3
a�
cn
E
L
O
-W
v I
3
_O
L
E
N
O
If1
I
3
m
E
`o
N
N
LL
0
a`
d
m
a
/ O / �
Li
E
E
3
co
L
w
co
E
L-
0
' -+
V/
C
C
C
C
C
C
p
o
0
•�
0
0
0
M
16
c a
C
C
C
C
C
=
E
E
E
E
E
U
U
U
U
U
O
0
N
O
V
C ,C O
W
N
M
7
y
GJZ
C
W
N
N
r
O
FN
W
3
J C.1
In
OO
O
O
a2
C c o " )
0)
m
C N
m
V
m
-
m
C
C
O
O
2
O
C
N
W
N
n
m
W
M
J
117
O
N
N
N
co
In
_
m
m
m
m
c
0
N
O
N
M
�
W
C
IA
f2
C2
O
N
O
N
IA
E
V' O^
m
m
CF>
m
Z
SC�
IT
I i
V
IA
UI
C O^
O
N
O
O
J N
LO
M
U
7
N
t: a
v
o)
N
N
co
m
m
m
m
m
O
W ...
N
N
U
O�
M
N
t . C
It
In
t`
O
O
N
d 0
D J
m
O
O
O
O
rl-
O
n
C W
=
(0
I
Iq
N
M
C>
c
U
U
U
U
U
U
J N
N
O
O
O
O
O
CD w
C N C
a
v
T
V
O
lA
Orl-�
I!')
N
L
C
C w
LL .
O
V
M
N
N
.�
C
U
N
C
E
N
J
T
ui
10
}
l0
N
3
II
0
_e
�
o
a
y
�
•-
N
M
V
N
f0
GI
�
d'
LL
U
D
W
u
O
CD
n
z
C O
N
M
V
f0
JZ
0
N
O
c
u�3
U)
E
0
'm
-`o
T-
C
O
N
C
N
W
N
N
N
Cl)
O
N
3
O
N
U
x
0
111
r
O
o
0
o
O=
O
0)
M
CY)
M
N
co
O
#np Lti'OZ6L '13 ' ^ul
O
M
o
v
I
I
I I
ul 0£'OZ6L '13 ' ^ul
j
�I!lll
I
I
I
! 1
u OL'6L6L �13'nul
-
i
O
c
II
I
I
I
I I I ! I
I
I
I
° o
�
I
Cl)
I
I
I
O
M L
N U
I
co
N
I
I
ul 99'L l6L 'I3 'nuI
s
II II I
I I �
, I I I
o
N
OZ'V161 '1� 'nul
�^ N
I
O
ul 9Z�946G'13 �nul
� I
1
�
#
' I I
'I
I
I
I
O J
W
I
I
I
T I
I
I I
!
I
I
x
I
to
ul
IIF
O
O
o
o
O
O
r
M
O
M
co
(O
N
O)
O
r �
r
r
�
r
W
C
O
N
C
N
W
N
N
N
Cl)
O
N
3
O
N
U
x
OZ'V161 '1� 'nul
I
O
N
3
O
N
U
x
_
a
O
O
N
M
CU
O
0
a
U
O
a
L
O
O
.
_
X
W
N
L
3
a�
cn
E
L
O
/ -W
V I
3
_O
m
L
E
N
0
0
�I
3 1
m
E
0
N
'o
a
d
CL
^ O
CL
m
E
E
co c I
L
3
cn
E
L
O
' -+
V /
C
p
C
o
C
0
C
0
C
0
C
0
t5
0
ai
C p
C
C
C
C
C
=
E
E
E
E
E
w
U
U
U
U
U
O CL
O
O
N
O
a
c
C ,C O
S
W
N
M
't
�
ui
CJz
m
O
w
p _
m
0
0
c
7
�
J tl
co
OO
O
O
W
C
N N N
0) 0) 0)
m
m
O
C H
(d
N
N
07
16
r L
C
C
C
C
O
C
J
N
00
O
N
O
N
O
N
00
N
S
r
P
r
m
0
r
c
O
U
M
M
O
n
C
IA
(O
00
O
N
O
N
(O
E
C7 0^
m
m
m
z
= D �
ifi
rn
d
r
LO
r
O
N
O
O
J N
C>
1�
M
R
N
a
v
fl-
of
0
0
00
rn
rn
rn
0)
0)
0)
>
C IN
Or
N
N
U0
M
N
7
lA
O
I2
CD 0
O
m
0)
O
0)
O
>
C W
L
O
O
O
N
00
N
M
O
d
O
0
r
M
M
N
41
U
U
U
U
U
U
c
m m
J
0
00
!
0
00
N
C N C
E
f
J q
:3
U
t
M
CA
I-
N
V
N
N
0
N
ti
N
O
.2
C
U
N
C
J
�
O
c
3
0
.�
EI
a
`o
N
c
:3
r
N
M
7
N
(O
ai
�
LL
U
W
O
CD
a
z
C O
�-
N
M
V
(f)
(D
Jz
0
N
O
c
T
E
`o
N
3
- o
x
C
O
N
C
N
W
N
U)
3
)
E
`O
U)
3
O
N
x
0
u�
0
0 0
0
0 0�
o
0 0
0
0 0�
o
M
M
N
0
m
r r
r
r J
1nQ L17'OZ61 '13 '^UI
et
I
0
UI 0£'OZ6L '13 'AUi
1
N
I
I
I
II I
0
UI OL'666L A 'AUl
- -
Cl)
I
!
I
�I
#
I
j I
I
I i
I
I II '
I
-
1
u'
mr
_
N
I
I L I �
ca
cl) urA
C
l
UI SS'L46L'13 'AUl
ab
0
�i
—
{
- —
0
UD
I I
!
UI 9Z'966L l3 "^UI
i
I
o
o J
!
l
I
w
I I
I
I
I
i I
I
I I
I
I
I
{
II !
I
I
I
I
� i
In J
t
G
I �
UI OZ11L6L '13 'AUl
F
II
0
— LL
I ;
..
0 0
0
0 0
0
0 0
0
0 0
0
Cl)
1 (M
M
0)
M
0) 0)
0) 0)
0
W
C
O
N
C
N
W
N
U)
3
)
E
`O
U)
3
O
N
x
c
_m
K
O
r
O
N
M
U
O
0
Q
U
0
Q
L
0
0
.
C
X
W
N
L
3
a�
cn
E
L
0
'' ^
V/
3
0
`L
L
Lo
X
E
L
U
v
m
3�
0
N
_N
U
N
�O
a
10
CL
/ O / �
ii
E
E
m
co
L
^^
♦ W
v /
E
L
O
' ++
v I
O
0
N
O
3
N
E
`o
U)
0
x
p
O
O
O
O
O
0
m
C
c
E
E
E
E
E
O
U
O
U
O
U
O
U
O
U
O
O
0
N
O
y d
a
C
C ,C p
W
�
N
M
GJZ
io
c
of
c
8i
°
N cO
3
d'
J V
I�
00
O
O
a0
C
N N N
C y •�
r-
l0
0)
m
f6
M
U
(
O
f0
J
O
O
N
N
N
O
N
O
U
�
N
N
00�
n
ti
P
r--
m
r
Z
V
N
4'1
11'1
V
C 0—
O
N
O
O
J N
LO
O
M
IUI
7
V
N
t+ Q
It
1-
O
N
N
O
d
C IlJ�
M
N
N
I
�
N
tr C
V
IO
1�
O)
C',
N
IO
C
0)
m
m
ti
> J ..�
C W -
r
0)
L
m
O
d co
J d
O
t0
N
O
f^
N
OO
M
M
M
O
7
N
J N
O
O
O
W
00
N
C N C
E
may=
C)
r
MM
E
T
L
N
LL V
O
O
N
r
(V
N
j
G
�p
C
O
O
U
x
C
C
O
J
E
U
vi
c
}
�
N
c
It
o
3�
J
(p
N
�
d
`o
N
E
N
M
V
N
fp
Qj
d
�
li
U
W
d
r
O
C
a
z
JZ
O
0
N
O
3
N
E
`o
U)
0
x
O£'OZ6L'13'nu{ I I I I
I II I
I
I j I
OL'6461 '13 'nul
I I', I
0
i
I I II I ^ I
I
I I I I
I
I I I
I
I
55'L46L'13'nul I ' '• i j i �
I
1
5Z�546L '13 'nul
I I 1
i I
i
I
I I
I
: _ I
OZ'tr 461 '13 'nul
I
I
I i
I
I
I
I
: I
C
O
C
N
W
N
N
3
v
E
`o
N
3
O
N
I I
0
u
0
O
0
O
0
O
0
O
0
O
o
O
0)
M
M
N
O
0)
O
0)
m
�
Y J
lno Ltr'OZ61 '13 'nul
0
M
` 0
I I I
CO
ul
3
ul
i
0
0 0
M
BP
O
� L
N
U
cu
CA
u)
3
°
0
N
Lo
0
LO
u)
}
O J
W
I
I
N
ul
III
o
O
O
O
O O
O
M
M
Cl)
W
O
O)
(D
m
O)
(3)
m
O)
r
LLJ
O£'OZ6L'13'nu{ I I I I
I II I
I
I j I
OL'6461 '13 'nul
I I', I
0
i
I I II I ^ I
I
I I I I
I
I I I
I
I
55'L46L'13'nul I ' '• i j i �
I
1
5Z�546L '13 'nul
I I 1
i I
i
I
I I
I
: _ I
OZ'tr 461 '13 'nul
I
I
I i
I
I
I
I
: I
C
O
C
N
W
N
N
3
v
E
`o
N
3
O
N
I I
C
O
C
N
W
N
N
3
v
E
`o
N
3
O
N
a
m
K
0
0
N
0
M
U
0
0
Q
U
O
Q
L
O
O
.
K
W
N
L
3
a�
cn
E
L
O
' 4a
V ,
3
_O
L
E
s_
X
E
f6
t
U
v
c
R
3�
m
E
0
N
N
iz
U
d
�O
EL`
d
m
a
O
CL
E
E
' m
V
L
AA
/ W
c /
E
L-
0
/ -W
V n
a
0
N
O
u�
rn
E
`o
N
0
m
a
x
c
c
c
c
c
3
0
O
o
0
0
0
o
p
c
c
c
c
c
a)
c a
=
E
E
E
E
E
U
U
U
U
U
O CL
0
N
O
y d
C
N
cJz
�
O
i•r
M
(
m
O
O
c
7
J ti
C
t`
W
O
N
O
N
N
00
�
p
2
O
c
c
O
c
c
ti
c
J
O
O
N
N
O
O
O
`o
rn
M
r*
P-�
r
Iri
a2
ON
N
0
N
E
S o
n
r
r
r
r
m
z
7
lA
i
O
NO
I
7
In
N
C O ---
O
N
O
O
J h
0
n
P
C
N
a
v
I-
rn
N
N
O
0)
m
>
C J�
_ W
�
ti
r
m
N
N
O�
ILQ
M
N
t. C
In
t`
O
N
L )
CD 0
> J
C ui
r
r
m
r
t
h
N
O
�
�
O
O
O
C C
O
l�A
M
N
O
M
M
J N
N
O
O
O
O
O
C N C
Q
T
L
O)
N
N
O
N
N
E
10
O
x i
c
U
0
a
C
O
c
J
E
U
ui
c
�
R
II
E
Q-
O
C
N
d'
L
U
W
o
y
a
z
C O
-
N
M
7
U)
f0
Jz
a
0
N
O
u�
rn
E
`o
N
0
m
a
x
55 LL6L 13 ^uI
i
I!
I
•nu I I I
5Z 5}6L '13 I
I
I
'Ljll I
I o
l lj I II I i I I ,
N
� I
aZ'trE6t 'i� 'nul I I I I
I
I I L I I II II'
I
C
O
C
N
W
N
N
3
d
E
`o
N
3
O
N
x
oe
N
0
° o ° O,
° o
° O
O°, =
°o
R
M
O
M
C0
04
(O
r 0)
O
0)
r
0)
0)
0 J 0)
inn Ltr'OZ6L '13 ' ^ul
O
M
LO
I
c» L
v
I
I
I I
a4
ul 0£'OZ6L "13 ' ^ul
�I, ILI
I
1
I I
c6
I
I
R
II I I I
ul
}
I
I
I
I I
M
R
I
I, I I '
I
11
° o
-- - rte
M
I I
I I
1
I
I
I I
I I
I
I
I
,
I I
ij
l �I
i I
I II
O
LO L
N U
co
(6
N
ul
i
° o
N
to
ul
}
0
C9
W
I
I
x
ul
II E
o
O O
O
O
O
O
M
M
N
O
O
m 0)
0)
d)
(Y)
0)
W
55 LL6L 13 ^uI
i
I!
I
•nu I I I
5Z 5}6L '13 I
I
I
'Ljll I
I o
l lj I II I i I I ,
N
� I
aZ'trE6t 'i� 'nul I I I I
I
I I L I I II II'
I
C
O
C
N
W
N
N
3
d
E
`o
N
3
O
N
x
I
I a
I
I I
M.
R
I
C
O
C
N
W
N
N
3
d
E
`o
N
3
O
N
x
Channel Report
Hydraflow Express Extension for AutoCAD® Civil 3138 2010 by Autodesk, Inc.
8 ft Cross Pan
Triangular
Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope ( %)
N -Value
Calculations
Compute by:
No. Increments
= 25.00, 25.00
= 0.16
= 100.00
= 0.75
= 0.013
Q vs Depth
=10
Section
Highlighted
Depth (ft)
= 0.16
Q (cfs)
= 1.175
Area (sqft)
= 0.64
Velocity (ft/s)
= 1.84
Wetted Perim (ft)
= 8.01
Crit Depth, Yc (ft)
= 0.16
Top Width (ft)
= 8.00
EGL (ft) Depth (ft)
= 0.21
1.00
0.75
0.50
0.25
0.00
-0.25
0 1 2 3 4 5 6 7 8 19D
INLET IN A SUMP OR SAG LOCATION
Project = West Vail Fire Dept
Inlet ID = Inlet 5
�- Lo (C)-
H-Curb
H -Vert �
0
Wp
W
Lp (G)
of Inlet
I Depression (additional to continuous gutter depression 'a' from'Q- AIIow)
ber of Unit Inlets (Grate or Curb Opening)
a Information
th of a Unit Grate
i of a Unit Grate
Opening Ratio for a Grate (typical values 0.15 -0.90)
ging Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 3.00)
Orifice Coefficient (typical value 0.67)
Opening Information
th of a Unit Curb Opening
it of Vertical Curb Opening in Inches
it of Curb Orifice Throat in Inches
of Throat (see USDCM Figure ST -5)
Width for Depression Pan (typically the gutter width of 2 feet)
ping Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (typical value 2.30 -3.00)
ping Coefficient for Multiple Units
ping Factor for Multiple Units
as a Weir
Depth at Local Depression without Clogging (0 cfs grate, 3.34 cfs curb)
Row Used for Combination Inlets Only
Depth at Local Depression with Clogging (0 cfs grate, 3.34 cfs curb)
Row Used for Combination Inlets Only
as an Orifice
Depth at Local Depression without Clogging (0 cfs grate, 3.34 cfs curb)
Depth at Local Depression with Clogging (0 cfs grate, 3.34 cfs curb)
dtino Gutter Flow Depth Outside of Local Depression
ling Coefficient for Multiple Units
ling Factor for Multiple Units
as a Weir, Grate as an Orifice
Depth at Local Depression without Clogging (0 cfs grate, 3.34 cfs curb)
Depth at Local Depression with Clogging (0 cfs grate, 3.34 cfs curb)
as an Orifice, Grate as an Orifice
Depth at Local Depression without Clogging (0 cfs grate, 3.34 cfs curb)
Depth at Local Depression with Clogging (0 cfs grate, 3.34 cfs curb)
Itina Gutter Flow Depth Outside of Local Depression
Inlet Length
Inlet Interception Capacity (Design Discharge from Q -Peak)
Rant Gutter Flow Depth (based on sheet Q -Allow geometry)
Rant Street Flow Spread (based on sheet Q -Allow geometry)
Itant Flow Depth at Street Crown
Type =
a_.,
No =1
L (G) =
W. =
A.,, =
G (G) =
C. (G) =
C. (G) =
MINOR MAJOR
CDOT Type R Curb Opening
inches
feel
feet
1 3.001
3.00
1
1
MINOR MAJOR
N/A N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
MINOR MAJOR
L (C) =
Hen =
H-, =
Theta =
W =
C (C) =
C. (C) =
C (C) =
5.00
5.00
6.00
6.00
5.95
5.95
63.4
63.4
2.00
2.00
0.10
0.10
2.30
2.30
0.67
0.67
MINOR MAJOR
Coef = N/A N/A
Clog = N/A N/A
cl
dour ,n'
d„„ _
do d =
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
nches
riches
riches
riches
d _
d _
MINOR MAJOR
Coef = 1.00 1.00
Clog = 0.10 0.10
MINOR MAJOR
d,� = 3.67 4.14 inches
d_ =1 3.821 4.31 linches
dog = 1 3.41 _ 3.75
d_ =1 3.591 4.012
.,,,b = 1 0.821 1.31
L =
Q. =
d =
T=
dcR-1 =
5.01
5.0
feet
cfs
inches
feet
inches
3.3
4.0
0.82
1.31
0.8
1.3
0.00
0.00
UD- Inlet _v2.14c.xls, Inlet In Sump 5/13/2010,10:02 AM