Loading...
HomeMy WebLinkAboutDrainage ReportDrainage Report for West Vail Fire Station #3 Town of Vail, Colorado r Ql ��tLb Cuildin ;`y Ccv e 1 oAment De � 9 Safety and InspeCtie m p P�7nt s alldi±y ^� , onstrL_ -- prov; A PC_ of of cr, :icial i ' .118rQ aion. PLk'J' , LXAMIWti,. May 2010 0 0 R E L 32492 5 '° 0 sq q q Drainage Report for West Vail Fire Station #3 Town of Vail, Colorado May 2010 Prepared for: Town of Vail Vail, CO 81658 Prepared By: Marcin Engineering, LLC P.O. Box 1062 101 Eagle Road, Ste. #5 Avon, Colorado 81620 Table of Contents 1. INTRODUCTION ....................................................... 2. METHODOLOGY ....................... ............................... 3. EXISTING HYDROLOGY ............. ............................... 1 4. PROPOSED HYDROLOGY ........... ............................... 2 5. STORM SEWER, INLET, VALLEY PAN CAPACITY......... 2 6. CONCLUSION ........................... ............................... 3 7. REFERENCES ............................. ..............................4 FIGURES APPENDIX A — RATIONAL METHOD — EXISTING CONDITIONS APPENDIX B — RATIONAL METHOD — PROPOSED W/O CHAMONIX SITE APPENDIX C — RATIONAL METHOD — PROPOSED W/ CHAMONIX SITE APPENDIX D — STORMCEPTOR, STORM SEWER, PAN AND INLET CALCS 1. INTRODUCTION This Drainage Report has been prepared for the Town of Vail and considers the existing and proposed hydrology for the proposed "West Vail Fire Station #3" project site, along with the future "Chamonix" site development, located in Town of Vail, Colorado. The site is bordered by Vail Das Schone Subdivision Filing No.I Block B, Lot 11 & 12 to the West, Vail Das Schone Subdivision Tract B to the East, Vail Das Schone Subdivision Parcel B, a re- subdivision of Tract D to the North, and the North Frontage Road to the south. Figure 1 depicts the location of the proposed site, along with the future "Chamonix" site development. The intent of this report is to evaluate the pre - development and post - development discharge rates to the existing 15" CPP(corrugated polyethylene pipe) storm outlet on the Southeast corner of the proposed "West Vail Fire Station #3" property, shown at design point 2 -A on Figure 3. The 50 and 100 -year rainfall storm events, along with anticipated snowmelt run -offs will be evaluated according to the Town of Vail Code, to determine if the proposed storm system design can safely accommodate these discharge rates, without causing damage to the surrounding infrastructure. We will also evaluate the 8' valley pans connected with curb and gutter in the CDOT right -of -way to determine if street flooding will occur. 2. METHODOLOGY Due to the urban nature and the small size of the individual sub - basins within the study area, it was determined that the rainfall run -off would be analyzed using the Rational Method. Modifications as recommended in the Urban Storm Discharge Criteria Manual published by the Urban Drainage and Flood Control District, Denver, Colorado in June 2001 have also been adopted. At the time, no previous drainage study was available to provide information about the existing hydrology study or soil type. It was assumed according to the Natural Resource Conservation Service, that the soil type classification will be Hydraulic Type -B. Runoff coefficients used for 50 and 100 -year storms calculations can be found in Table 1 in Appendices A, B, and C. The storm data that was used for this analysis is from the Intensity - Duration- Frequency Curve found in Figure 2, which was prepared by Inter - Mountain Engineering. 3. EXISTING HYDROLOGY The existing site is approximately 1.72 acres (including R.O.W), and consists of approximately 46% impervious area and a large steeply - sloped bank consisting of natural vegetation terrain to the West. The drainage basins and discharge design points for the existing conditions are depicted in Figure 3. Basin EX -1 is approximately 1.96 acres and consists of a steeply - sloped bank, which naturally drains to an existing ditch along the West side of North Frontage Road to an existing 24" CMP, shown at design point 1 -A. This existing pipe then discharges into an existing valley inlet on the east side of the existing site entrance. The 50 -year storm discharge rate at design point 1 -A was calculated to be 2.75 cfs. It should be noted that this off -site drainage basin was determined using GIS contours, as well as visual onsite inspections, because topography was not provided in the existing conditions survey for this area. Basin EX -2 is approximately 1.71 acres and consists of steep- sloped bank to the Northwest, which drains to the existing site. The discharge is collected in the existing valley inlet, shown at design point 2 -A, which then is discharged into an existing 15" storm pipe. The 50 -year storm discharge at design point 2- A was calculated to be 5.36 cfs. All basin calculations, travel times (Tc), and the 50 and 100 -year storm discharge rate calculations can be found in Table 2, SF -2 and SF -3 forms in Appendix A. 4. PROPOSED HYDROLOGY After the proposed "West Vail Fire Station #3" site development is complete, the 1.72 acre (including R.O.W) site will generally consist of an 8,656 square foot two -story fire station, concrete and asphalt driveway, parking lot, and concrete sidewalks. The proposed site will increase the impervious area to approximately 52 %, thereby increasing the storm water discharge rates to the common point of study. In addition to analyzing the discharge rates from the "West Vail Fire Station #3" site , the proposed storm system design was further analyzed to included the future "Chamonix" site development (preliminary design provided by Alpine Engineering) and its effects on the discharge rates to design point 2 -A. Figures 4 and 5 depict the modified sub - basins and design points for the proposed "West Vail Fire Station #3" site development and future "Chamonix" site development. For the purpose of this report, runoff from the roof structures of the proposed building will contribute to the nearest ground basin or inlet, and the proposed foundation drain system discharge rates will not be included, due to the minimal impact it will have on the storm system design. Snowmelt discharge rates were also calculated for the entire site shown in Table 3 of the Appendices A, B, and C, but these flows were also disregarded for the calculated discharge rates, due to the low probability of a 50 or 100 -year rainfall runoff event occurring at the same time as snowmelt discharge. The proposed storm system includes a connected network of roof drains, trench drains, 18" HDPE /RCP, 24" RCP, Type 13 and Type R inlets, and a new STC -4800 Stormceptor (See Appendix D for Stormceptor Calcs). Each sub -basin was analyzed based on their individual time of concentration (Tc) and travel times. All sub -basin calculations, travel times (Tc), and the 50 and 100 -year storm discharge rate calculations can be found in Table 2, SF -2 and SF -3 forms in Appendix B and C. Ultimately, the total calculated flow will be discharged into design point 2 -A, which is a proposed 5' Type -R inlet. The 50 -year storm discharge rate at design point 2 -A was calculated to be 8.22 cfs. Further analyzing our storm system design to include the future "Chamonix" site development, we calculated an increased flow to 13.63 cfs to our common point of study design point 2 -A shown on Figure 5. The increase in flow was calculated based on the preliminary plan design concept from Alpine Engineering of the future "Chamonix" site development, and we assumed that all storm water from sub -basin PR -6 will be piped into design point 6 -A shown in Figure 5, with no on -site detention. 4. STORM SEWER, INLET, AND VALLEY PAN CAPACITY The storm sewer design was analyzed for 50 and 100 -year storm events using "Hydraflow Storm Sewers ". Each depicted inlet was assumed to collect 100% of the surface flow. The flow from the "Chamonix" development was assumed to be piped to the inlet at design point 6 -A, shown in Figure 5 (or inlet 3 in the provided output from "Hydraflow Storm Sewers" in Appendix D). The storm system was sized to allow the 50 and 100 -year flows to stay in the pipe with the assumption of an outlet condition at the proposed Stormceptor. It was not within the scope of this report to analyze how the existing downstream storm system will function with these flows from the "West Vail Fire Station #3" and " Chamonix" developments. All output calculations can be found on the storm sewer summary pages in Appendix D. Inlet 5 is located at the west curb return of the east entrance to the "West Vail Fire Station #3" site . This inlet is in the CDOT right -of -way and has been sized to provide a dry tire condition during the 50 -year storm event. This inlet was analyzed using UD -Inlet and the 50 and 100 -year flows for the site. The total spread into the street from the flowline is a maximum of 0.8 feet for the 50 -year storm and 1.3 feet for the 100 -year storm. Each driveway is traversed by an 8' valley pan. The basin PR -2 shown in Figure 5 was divided into two additional smaller basins to determine the amount of runoff which would be carried by these pans (see basins PR -7 and PR -8 on the SF -3 tables in Appendix Q. The flow for a 50 -year storm for the west valley pan was calculated at 1.0 cfs and the east valley pan was 0.42 cfs. Both pans are proposed to maintain a 0.75% grade across the driveways. Using a depth of the pan of 0.16 feet and a total width of 8', the capacity of the pan is approximately 1.2 cfs (see pan calculations in Appendix D). These calculations show that the 50 -year flows will be contained within each valley pan. 5. CONCLUSION After analyzing the proposed storm system for the "West Vail Fire Station #3" site development and with the future "Chamonix" site development, it was determined to replace the existing 15" storm pipe that connects inlets from design point 2 -A to design point 7 -A with a 24" RCP. This pipe size was determined using the 50 and 100 -year storm discharge rates at design point 2 -A shown on Figure 5, and using the "Hydraflow Storm Sewer" software from Autodesk. The selection of the reinforced concrete pipe material was determined based on CDOT guidelines within the right -of -way. We also recommend replacing the existing inlet manhole at design point 7 -A shown on Figure 5 with an STC -4800 Model Stormceptor combined with a slotted manhole cover, and also replacing the existing 18" storm pipe connecting design point 7 -A to design point 8 -A with a 24" RCP connecting to the existing curb inlet. Once the future "Chamonix" site is constructed, there should be an additional drainage study to analyze the existing downstream storm system infrastructure to determine if it is adequately sized for these increased flows. 6. Reference criteria used for technical information used to support the conceptual design of the proposed storm system. 1. Civil Engineering Reference Manual, Michael R. Lindeburg, PE, Professional Publications, Inc., Tenth Edition, 2006 2. Urban Drainage and Flood Control District Drainage Criteria Manual, Volume 1, June, 2001 4 FIGURES 4 1 AJW � ate► � � "�_ D m n 0 i oe !t� 0 .�K C) -C u A \ m + 0 R■ on tE ■ E ■R ■1R ■M ■EE ■1 ■1w/ /■ iiUM1 AR■M r1 ■ ■ � ^z� lirwii►�ii� ■w�, ■i liisis =sio °siisiisssssissi ■i C ■ R�Etd,��1r��!■N/■! t1�■ �rr lr■t■w■t■■rr■■■■r!r =/.r./si s 2 , h *�N..Nrr ■ r ■ ■1\R1lw■ . ■ ■! ■ ■ ■t ■!t ■t ■ ■R ■ ■ ■ ■ ■■ R ■1 ■r ■ ■ ■ ■/i RR1■ 1.\ ��►` M■ 1►\■/■ �R■ R■■■ t ■i ■E ■N1 ■R ■ ■11MR ■ ■R1 ■R■ ■tR! w ■ ■ ■t ►t ■1�C ■■\\ tu• mt■ CuNU ■ ■ /t ■ ■ ■tll ■11 / ■tRt1 ■tr■■ ■� --- - -- �+ \■■■L \E■E\ % ■ ■t ■ ■ 11ER /w■ ■!t ■w E■■R1tl1 ■f ■ ■1 /tt ■ ■ ■ ■! ■ ■t111 1 ■1�d ►`�iQ \Q ■ilfi\■dw� : ■ ■tt ■w / ■R /d1 ■ttR ■R ■Rt ■ ■I i �R ■1 ■R ■A /1 ■ ►�EliYtt■ bm u■ ■Rd■■■ ■1B■ ■1!.111 ■d ■ ■ ■1 ■E ■ ■i1' RE■ 1■ RRa/■ ■ ■ \ ■ ■R ■t \� ■■►. \RwE ■ ■E ■Rd ■ ■1R1 ■/111 ■ ■R ■1 ■ ■i ■11 r Now 1111111 aiiii�iiiiiIIiiIIIIi1a :1 1•# rt �1 ■ w..1 *� /��r ■ ■. \Rtt.� ■ /tt ■R1 t a�■ ■RR ■x1E }4 �t mttli \ maps . =t //t.7i1r■�t�i itRiRlasit�isselsssarms . mogmanumb n y „ /d ■p 0R Itzma ■'�R1�E1I1R� +d1R�► \1R1 c�4110E1wRw1 /w1■ 11 v. 1d /■ �111 • \RRwEg�Cp`-bG.1 ■11 ■�if•���111 �rC ■C ■ ■tEt ■ /t1t� ■■ t3�R6 11111011 /1RR► 11R w.i- XzwtII.�.Et MOM 13W ■E /1 ■■ ■ro.1■ \h 1 ■r `CRCr�Swannm:�!WnuRHil= aitsomm i /n °o xi 1� t ■ ■1■Q��SHM "i- �_ I- Rrw �Rr��ldl�a7: =�■ r � R■■■■■■ 1/ RZ\ n euu/R■tR■ t/� ■•= `1�rtt.�rt�■ � oe■u■a!r Ir■/uuu/■ �•`�\�N■w��1t1 ■._.RG R / ■x.10 ■ /R1 ■tr.+ :_ ir■ /■ ■uu■s1■■ iii iiiiiiiii�asw:� +iciposi:~ i 1u■1t■RR■�i won No ■■t1t■1Rt■wu tMRr�-■1� tax am /1w ■rw O ■�1� �Y . /■■■■lRdlwrrr�.. ■ ■■ ■1 ■■ ■ssR ■t1■ ■ ■t ■ wtt! ■ /bra ■RS 1 � ig� ■ ■ ■R1 ■R ■■ !�� ■11R�R� ■ ■ ■tE ■t1Hlw! tY� + 11*Ami�■] ■ ■R ■1 ■t ■t� ■R■■■■■ M ■1 ■w1 ■ ■11 ■i11 !�M �R � w►�� -- ,. ■ w■■ t■■! ■ ■R ■ ■1 ■t ■ / ■`d ■R■ /1■■■t■ ■ ■l• ::NO Rt ■!w /1■ ■tuft K wxm tsiissuit ■siisssii i�. ■■tr.r■wrrrrwr.trrr.■ r/ 1 ■tR /1 ■ ■ ■1.. ■w ■. ■ ■tr ■ ■ ■ ■ ■t..r.� ✓- t � yq' ,� }�'�.� •.� _::,,ff !�� •� y > �.`. � �-Fr. <� s � -v r > $tar Q r • a w"r rj ft �� I \ \ � k � 0 <t X N r r \R' x \�V kwM i � 9 mz O y X O ocnoil 0 = 1 -- umz D � O OK 0 _ Z nOF M�v y Z D =1OZ ZNm D U) z 0 We ;I m \'A' gA \4��������4� m " ty��� `�S xg ° O Loll XC7 to I cn O v c> Z z C.) O D� 6iM m O '� 11 II m U) O OD M OD m 0 (� Pf' 8^ Vii' 0 D 0 v D 0 W z D Z m v D 0 #m x ## I o Ln c c z z O O .-. 0 0 -„ v v NQ 1 DATE N ( j x v\ D m o v, Z q i } Z D S 9 r i D D m� V) -11 C) z z m `� q S o o t\ y O Z 0 REN9DNS gy EXISTING DRAINAGE BASIN MAP MARCIN ENGINEERING LLC P.O. BOX 1062 WEST VAIL FIRE STATION #3 AVON, COLORADO 81620 VAIL, COLORADO 970- 748 -0274 ! R11 xX No I :1 N M 4 O O X O O I N 0 I ;u Z O a C)z ° —inv v In 1: 0 D ;u _ �m�0 m O II II m N � co° iDNm� w � nm N �tmZ o` —'rl 0 0= 1 " �mZ D�O j:ZO z°rr Ln mNv D Z D O Z ZNm C" D N Z x e O D rG) 8� rn r 0 ^3 c� D N0. DALE F&MONS BY D PROPOSED DRAINAGE BASIN MAP MARGIN ENGINEERI _ (ANALYZED W/O FUTURE CHAMONIX DEVELOPMENT) P.O. BOX 1062 � C a WEST VAIL FIRE STATION # 3 AVON, COLORADO 81620 m VAIL, COLORADO 970- 748 -0274 0 �i1��- Rfl" 111 \ 1 \ \ �0 rte/ - t °O vvvv�vv�v t HWP\11� On iz O 0 0 X 0 0 ° I N m zz ° —inov U) 2 0 D� C)m�0 m II II m O C �inF-< ? W 0 X N N 8* > m x zo 0 ;umz D 0 0ZO z - 1 m amino D Z D � Z in C m ) co D U) z mill 0 a n r m c) m Z 0 rx 0 I e D NO. I DALE REVISIONS BY PROPOSED DRAINAGE BASIN MAP MARCIN ENGINEERING LLC (ANALYZED W/ FUTURE CHAMONIX DEVELOPMENT) 0 P.O. BOX 1062 0i X \ WEST VAIL FIRE STATION # AVON, COLORADO 81620 to 970- 748 -0274 VAIL, COLORADO 0 APPENDIX — A Existing Drainage Table 1 Runoff Coefficients, C (from Urban Drainage and Flood Control Dist Manual) For Type B NRCS Hydrological Soils Only. % IMPERVIOUS C5 C25 C50 C100 0 0.08 0.25 0.30 0.35 5 0.10 0.28 0.33 0.38 10 0.14 0.31 0.36 0.40 15 0.17 0.33 0.38 0.42 20 0.20 0.35 0.40 0.44 25 0.22 0.37 0.41 0.46 30 0.25 0.39 0.43 0.47 35 0.27 0.41 0.44 0.48 40 0.30 0.42 0.46 0.50 45 0.32 0.44 0.48 0.51 50 0.35 0.46 0.49 0.52 55 0.38 0.48 0.51 0.54 60 0.41 0.51 0.54 0.56 65 0.45 0.54 0.57 0.59 70 0.49 0.58 0.60 0.62 75 0.54 0.62 0.64 0.66 80 0.59 0.66 0.68 0.70 85 0.66 0.72 0.73 0.75 90 0.73 0.78 0.80 0.81 95 0.81 0.85 0.87 0.88 100 0.90 0.94 0.95 0.96 Table 2 Sub Basin Data West Vail Fire Station #3 - Existing Conditions SUB -BASIN NO. AREA (sqft) AREA (acres) IMPERV area (sqft) % IMP C5 C25 C50 C100 EX -1 85450 1.9617 11,590 13.56% 0.17 0.33 0.38 0.42 EX -2 149220 3.4256 51,600 34.58% 0.27 0.41 0.44 0.48 Table 3 Precipitation and Snow Melt Rates West Vail Fire Station #3 Frequency (years) Snow Melt (cfs /acre) Total Acres Flow (cfs) 2 0.040 3.67 0.147 5 0.048 3.67 0.176 6 0.060 3.67 0.220 10 0.062 3.67 0.226 25 0.067 3.67 0.246 50 0.072 3.67 0.264 100 0.0800 3.67 0.294 m - m = m < < v O m m a CL CD < a m < m n Q W= 3 m y N (D N N C m (D d Q 3 N (0 (D 0 0. 7 0 M N 2 C CL N G 3 0_ N m n m (D O 3 co m (D CL U) m (D N ocn 0 0 0 0 0 0 O O O < CD CD m 0 m n 0 CD 0 m 3 (7 3 m C 3 (D CL m C.n 3 3 N 0 CL CD CD O (D n c Q m 3 0 v v (n CD m 3 c v n m 2 c CD G G N d � M D ch O z Tv S o� zv w n m X Z � X 3 o O N 3 Z CL v m O U) N A m N 0 0 v X X + N Z W D D ; CID - M Z Z W N D v I 00. C7D N J W N r m z O Ut T r m NI A p J = [ 0 m_ m W D �-�< r'a a) Z 1v O � a - � 3 m N W ro (T O N V e T _{ r m z A V OD ao 0) — 2 T m CD < O' a D r v v_ o� W , m o Z o n d m m ( Z ,< r m ocn:° 0 M m m �0 M (D -- 00 O OD ' y t0 ... w p W O 7 N n O On V O T o 1 A O C ,Z1 W D Z N m w w w p °i o Co D o N z 0 3 CT cn W 3 3 c 3 z W N A C D r (n 0,— N n n O 3 3 CD ur 3 m C 3 (D CL m C.n 3 3 N 0 CL CD CD O (D n c Q m 3 0 v v (n CD m 3 c v n m 2 c CD G G N d � M D ch O z Tv S o� zv w n m X Z � X 3 o O N 3 Z CL v m O U) N A m N 0 0 000 x D D m-4r n m 0 v ono v 00 C 3 m m' M m co CD ca 0 q;a 03�, n r z m Z D D xmv 0Cc o Om3 0 $ -n ovw c m mQ —z = m�O SNOW �5C - iz00 >$ r v m x z �I w IESIGN POINT AREA DESIGN 1111111 � III u nnans� lutput to Design Point M m co CD ca 0 q;a 03�, n r z m Z D D xmv 0Cc o Om3 0 $ -n ovw c m mQ —z = m�O SNOW �5C - iz00 >$ r v m x z �I w T O Q 0 O o_ f/1 fl. v a w 0 m W n w N 0 m 0 x m n IT! v 00 O z a r 3 m x O v X O 0 m v c m m 0 a r 0 c r D m v v N O 3 v z D O m rn m 3 v m a z N a z v D v m 0 3 t/t n w XMm0 x(a0w �6) "IZ00 D-�1� 20 n;a >3 r v m x z D D ' D ESIGN POINT X + X AREA DESIGN X N N v m m 0 1 X c z 0 m m A REA (ACRES) 0 A OD m A m t c (MINUTES) k A W b I (INIHR) w Q (CFS) c (MINUTES) m � WA) I r c w (INIHR) z O A Q (CFS) -n m m MAX CAPACITY (CFS) 4 M -nnings No, n 4 S LOPE( %) m yr P IPE SIZE(IN.) d m3 m L ENGTH(FT) p z m x �' X VELOCTTY(FPS - I v 0 t(MINUTES) z cn X ENGTH (FT) v D 3 �v x S LOPE ( %) m D N ONVEYANCE COEFF CA 0' N X YELOCM (FPS) O c t (MINU MS) Z v m m 3 D X utput to Design Point 0 x m n IT! v 00 O z a r 3 m x O v X O 0 m v c m m 0 a r 0 c r D m v v N O 3 v z D O m rn m 3 v m a z N a z v D v m 0 3 t/t n w XMm0 x(a0w �6) "IZ00 D-�1� 20 n;a >3 r v m x z APPENDIX - B Proposed Drainage (Fire Station Only) Table 1 Runoff Coefficients, C (from Urban Drainage and Flood Control Dist Manual) For Type B NRCS Hydrological Soils Only. % IMPERVIOUS C5 C25 C50 C100 0 0.08 0.25 0.30 0.35 5 0.10 0.28 0.33 0.38 10 0.14 0.31 0.36 0.40 15 0.17 0.33 0.38 0.42 20 0.20 0.35 0.40 0.44 25 0.22 0.37 0.41 0.46 30 0.25 0.39 0.43 0.47 35 0.27 0.41 0.44 0.48 40 0.30 0.42 0.46 0.50 45 0.32 0.44 0.48 0.51 50 0.35 0.46 0.49 0.52 55 0.38 0.48 0.51 0.54 60 0.41 0.51 0.54 0.56 65 0.45 0.54 0.57 0.59 70 0.49 0.58 0.60 0.62 75 0.54 0.62 0.64 0.66 80 0.59 0.66 0.68 0.70 85 0.66 0.72 0.73 0.75 90 0.73 0.78 0.80 0.81 95 0.81 0.85 0.87 0.88 100 0.90 0.94 0.95 0.96 Table 2 Sub Basin Data West Vail Fire Station #3 - Proposed Conditions w/o Chamonix Development SUB -BASIN NO. AREA (sqft) AREA (acres) IMPERV area (sqft) % IMP C5 C25 C50 C100 PR -1 65660 1.5073 10,740 16.36% 0.17 0.33 0.38 0.42 PR -2 69890 1.6045 22,040 31.54% 0.25 0.39 0.43 0.47 PR -3 33185 0.7618 10,275 30.96% 0.25 0.39 0.43 0.47 PR -4 26665 0.6121 9,625 36.10% 0.27 0.41 0.44 0.48 PR -5 8800 0.2020 6,985 79.38% 0.59 0.66 0.68 0.70 PR -6 28290 0.6494 1,540 5.44% 0.10 0.28 0.33 0.38 Table 3 Precipitation and Snow Melt Rates West Vail Fire Station #3 Frequency (years) Snow Melt (cfslacre) Total Acres Flow (cfs) 2 0.040 5.33 0.213 5 0.048 5.33 0.256 6 0.060 5.33 0.320 10 0.062 5.33 0.328 25 0.067 5.33 0.357 50 0.072 5.33 0.384 100 0.0800 5.33 0.426 ID v l 10 v o n1 < a ID D a Q N M 3 (D N y CO N N p�j (D C a (D 111 3 �' C p cn m o a j O N y C < O a v � a N n v o o N CD CL N CD N N J (T N (7 o noCD 0ino 0 0 0 0 0 0 O 00 < CS tU ( n CD m 7 L7 (n y N n — Cl T n m cn (D Cl a =° ' O 7 m m D ino OZ o - v CL O M o zv O n T a Z O O --I f --I T O O 0 N °1 n Z m � 3 0 3 X v (D A < (D �O o N � o 3 o (D v v T T v v m T T T �u �u CT CT A W N --+ G Z W 03 0 M 0 N 0 O 0 J 0 Cn D jV ;u D cn A CD o N N m N 0 A 0-- J D z v D 0 0 0 0 0 0 n D N r m z ( A (T N D) ( A O O Cn O (T T 1 r A Z — n1 N oAOC xx 0 m r 0 X < m m m � v o v � - cn 3 m W 1 ' W W CT N co 0) N A r O N T „ -- o 0 0 o m 0 T D � NCna rno6 N r m z OA (n CD c, G7 J (T O N T 1 m J A A N N^ CD f Cn Cn Cn Cn .. O D � v v 0 W Cn Cn A J W o 0D m 0 0 0 o 0 0 z o D 1 D o N N N N� G fD 7 -� Cn O O 00 Cn .... (D O m N 0 O (D < N A A W ul N ^ Cl, W O (D — cn — 0 0 0 0— CD W (P W Cn — -42 3 y N W W Cn J 00 m A CD 0 0 n C A cu D 0 Z II C N m + D o N Z (D W J D) Cn W 7 C 3 3 - O 00 J J D (7 O CD CD 7 (n (n y N n — Cl T n m cn (D Cl a =° ' O 7 m m D ino OZ o - v CL O M o zv O n T a Z O O --I f --I T O O 0 N °1 n Z m � 3 0 3 X v (D A < (D �O o N � o 3 o (D 1..0....0...000 00000000000000000000000000*0•• 0 a 0 3 0 m 0 2 D D M -I r 0 m n C v a) m v v DO O to r D z zv D 2 m v O O -- 4 O T 0 C m rnZ 2 m � O S(1)OD1 4) L. Z 'aZO 0 D - 20 n X r� r v m v 2 z (D U) v cu to m 0 W DESIGN POINT D D D > D > D D D D N W '+ + X + AREA DESIGN + + A + + Z7 .ZI T7 cn a� m n X c z O T 0 N m �-4 REA (ACRES) cno�rn 0 0 W O W m 0 0 A A w W 0 O W V ° o °o C(MINUTES) w Cl cl N + -A W A i'4 N 0 W A A a o I (INIHR) 0 0 a° U, (CFS) w N ca o c(MINUTES) co 1 w 0 -1 N O o 0 O N (0 o° o U (C -A) D r w -4 w -4 w co a a ( IN/HR ) c N A t0 � z Z O -n m N N w cn Cn W O J N m W (CFS) T AX CAPACITY (CFS) Mannings No, n 0 0 Cn 0 Cl N 0 (DI N 0 N --1 c �„ c LOPE 1 %) + D 0) 0 0 0 < v m r m PIPE SIZE(IN.) —1 m m N w LENGTH(FT) O z m X w o N PX. VELOCITY(FPS) � a O o ii w o t (MINUTES) Z X D LENGTH (FT) 4 3 n v 2 IS LOPE ( %) D y 2 - ONVEYANCE COEFF N N PX. VELOCITY (FPS) x i O c t(MINUTES) z v m 3 D A co utput to Design Point D D D D D D D 0 2 D D M -I r 0 m n C v a) m v v DO O to r D z zv D 2 m v O O -- 4 O T 0 C m rnZ 2 m � O S(1)OD1 4) L. Z 'aZO 0 D - 20 n X r� r v m v 2 z (D U) v cu to m 0 W O - o 0 3 N cn m 000 2 D D m gr 0 m 0 ;K c IT! D v � < m 0 W to �� D O 1;0 0 r D Z IT! Z D D =m 0 0 O T ovw C IT! mD —z = m m O m to 0 00 aO c' Z Z Om O D - 20 n PO r 3 r v m 2 z MAX CAPACITY (CFS) Mannings No, n 0 0 0 0 (T N 0 6 N C. N m o o o LOPE D - 0 m r IPE SIZE(IN.) �0 Z! m 3 rn N < w ENGTH(FT) O Z m x PX. VELOCITY(FPS) 0 O w w o t(MINUTES) Z cn O N OD D LENGTH (FT) 0 I 0 LOPE ( %) D N ;u-4 ONVEYANCE COEFF 0 to PX. VELOCITY (FPS) � 0 C ITI I I I I IT_ I I t(MINUTES) Z 0 000 2 D D m gr 0 m 0 ;K c IT! D v � < m 0 W to �� D O 1;0 0 r D Z IT! Z D D =m 0 0 O T ovw C IT! mD —z = m m O m to 0 00 aO c' Z Z Om O D - 20 n PO r 3 r v m 2 z APPENDIX — C Proposed Drainage (Fire Station and Chamonix) Table 1 Runoff Coefficients, C (from Urban Drainage and Flood Control Dist Manual) For Type B NRCS Hydrological Soils Only. % IMPERVIOUS C5 C25 C60 C100 0 0.08 0.25 0.30 0.35 5 0.10 0.28 0.33 0.38 10 0.14 0.31 0.36 0.40 15 0.17 0.33 0.38 0.42 20 0.20 0.35 0.40 0.44 25 0.22 0.37 0.41 0.46 30 0.25 0.39 0.43 0.47 35 0.27 0.41 0.44 0.48 40 0.30 0.42 0.46 0.50 45 0.32 0.44 0.48 0.51 50 0.35 0.46 0.49 0.52 55 0.38 0.48 0.51 0.54 60 0.41 0.51 0.54 0.56 65 0.45 0.54 0.57 0.59 70 0.49 0.58 0.60 0.62 75 0.54 0.62 0.64 0.66 80 0.59 0.66 0.68 0.70 85 0.66 0.72 0.73 0.75 90 0.73 0.78 0.80 0.81 95 0.81 0.85 0.87 0.88 100 0.90 0.94 0.95 0.96 Table 2 Sub Basin Data Xw1 ...+6 Al H c:. s c+� +inn +f4 - Prnnncarl rnnditinns w /Chamonix Development SUB -BASIN NO. PRA AREA (sqft) 65660 AREA (acres) 1.5073 - I - IMPERV area (sqft) 10,740 % IMP 16.36% C5 0.17 - C25 0.33 C50 0.38 C100 0.42 PR -2 69890 1.6045 22,040 31.54% 0.25 0.39 0.43 0.47 PR -3 33185 0.7618 10,275 30.96% 0.25 0.39 0.43 0.47 PR -4 18575 0.4264 9,625 51.82% 0.35 0.46 0.49 0.52 PR -5 8800 0.2020 6,985 79.38% 0.59 0.66 0.68 0.70 PR -6 139765 3.2086 87,940 62.92% 0.45 0.54 0.57 0.59 Table 3 Precipitation and Snow Melt Rates West Vail Fire Station #3 Frequency (years) Snow Melt (cfs /acre) Total Acres Flow (cfs) 2 0.040 7.71 0.308 5 0.048 7.71 0.370 6 0.060 7.71 0.463 10 0.062 7.71 0.474 25 0.067 7.71 0.517 50 0.072 7.71 0.555 100 0.0800 7.71 0.617 m m � m'< 0 my° <m 3 a ID D1 f1 fJ 0 = 1 CD d rn m . .3 r cn (n y (D C �- d d n C O N w 9(9 m o o r C 7 (D cl (n `G O O " N A CD m n m tu cn o y 3 O 7 v n Cn N CD O ZL Cn (� CD M CD O N -� CD a °• (D c � Q O rr d N N N 0 3 C _ d N V Cr N 0 O Ut 0 0 0 (n O 0 0 0 0 0 0 CD su CD CD O CD 0 CD n 0 0 0 0 0 o °-° m 0 z e � Cl d � m a� r N N N N N CD O 1 00000cn.., m � o �o -- Ft A A A W CT N aD M CO CA co Cn s V 7 N n n On N W Cr CJ7 A :a 3 m �I A cn ' O n O C ,Z1 W 2 A N N j v A O A W W W12 O W i D O CO) z -•1 n 3 c 3 3 '- N CO N V CA z' 7 D X(D 0000= r N � C1 0 O 3 3 CD 3 CD o < d m >, � . n O Z o� o zv o T m W z� f Z CO) s --1 7 1 D 0hj D 7 Z x v v o o In m W CJ1 A A W W N N S S G G) C Z W W w o o 0 0 0 0 > m a al N > N ( N N C CA N N A A- D D Z v I 0 0 0 o o O O o o o o n n D la U Ut W W N N N N— W V " W N r m O A A O O l ll L L, `••' _ _ T r m cn Z O oAO(N.Icl,Lrl = =D J = 0 m m O A r- A O A� J J D DN1 �< z •o _ _ 3 to m CT o o ( W ( (n A A N N , ,•,� O d 0 0 0 o o o o o o o o m m a O N N C CT A A W W 3 T � � Oo c co V V V V W W D D r m ��_ C 0 ( C) Ul V V 0 (n O O N N ` _ c n m V A A A A N N N N < CD O ( (T C CC.n A A U Ut c cn v v 0 0 ° D Cl) O CA 0 0 U Ul O A V V W W CD o < d m >, � . n O Z o� o zv o T m W z� f Z CO) s --1 7 1 D 0hj D 7 Z x 0 xaa m -1 r 0 m n A C v < 0 0 3 m y O �0 03y D r�z m �x G a < 0 �� v �3 c M m C CO X Q z xrn3 SNOW 'oaIz �z00 CO) -4 > 3 r v m -o s z O N T N N O 7 W nnnmunn � CAN'll. fat= IIIRII�iiii �0 03y D r�z m �x G a < 0 �� v �3 c M m C CO X Q z xrn3 SNOW 'oaIz �z00 CO) -4 > 3 r v m -o s z O N T N N O 7 W 000 xDD 0M0 7 c v 5 ca m C) 00 v d CD v CL 0 0 CL 0 0 S 0 m V) 0 IIIIIIIIIII �llll MI N I MUM, ' I��IIIII�I 1119E &IIIIIIEIE . III&�EIIIIII�I� mdnwnn amnmmi .� dl �O O3y D � m D xmv 0 0 nay ovw c m M G) -- z =OIo my Ow a O C- z T 1 Z m 0 C y D r r v m x z APPENDIX — D Stormceptor Analysis Storm Sewer Analysis Inlet Calculations Cross Pan Calculation U ma ' 111L Mb Stormceptor' Stormceptor Sizing Detailed Report PCSWMM for Stormceptor Project Information Date 14/28/2010 Project Name West Vail Fire Station #3 Project Number N/A Location Vail, CO Stormwater Quality Objective This report outlines how Stormceptor System can achieve a defined water quality objective through the removal of total suspended solids (TSS). Attached to this report is the Stormceptor Sizing Summary. Stormceptor System Recommendation The Stormceptor System model STC 4800 achieves the water quality objective removing 82% TSS for a NJDEP (clay, silt, sand) particle size distribution and 99% runoff volume. The Stormceptor System The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for all rainfall events, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re- suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load. Stormceptor is the only oil and sediment separator on the market sized to remove TSS for a wide range of particle sizes, including fine sediments (clays and silts), that are often overlooked in the design of other stormwater treatment devices. MATERIALS "" Stormceptor' all storms dominate hydrologic activity, US EPA reports "Early efforts in stormwater management focused on flood events ranging from the 2 -yr to the 100 -yr storm. Increasingly stormwater professionals have come to realize that small storms (i.e. < 1 in. rainfall) dominate watershed hydrologic parameters typically associated with water quality management issues and BMP design. These small storms are responsible for most annual urban runoff and groundwater recharge. Likewise, with the exception of eroded sediment, they are responsible for most pollutant washoff from urban surfaces. Therefore, the small storms are of most concern for the stormwater management objectives of ground water recharge, water quality resource protection and thermal impacts control." "Most rainfall events are much smaller than design storms used for urban drainage models. In any given area, most frequently recurrent rainfall events are small (less than 1 in. of daily rainfall)." "Continuous simulation offers possibilities for designing and managing BMPs on an individual site -by -site basis that are not provided by other widely used simpler analysis methods. Therefore its application and use should be encouraged." — US EPA Stormwater Best Management Practice Design Guide, Volume 1 — General Considerations, 2004 Design Methodology Each Stormceptor system is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology from up -to -date local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing (summary of analysis presented in Appendix 2): • Site parameters • Continuous historical rainfall, including duration, distribution, peaks (Figure 1) • Interevent periods • Particle size distribution • Particle settling velocities (Stokes Law, corrected for drag) • TSS load (Figure 2) • Detention time of the system The Stormceptor System maintains continuous positive TSS removal for all influent flow rates. Figure 3 illustrates the continuous treatment by Stormceptor throughout the full range of storm events analyzed. It is clear that large events do not significantly impact the average annual TSS removal. There is no decline in cumulative TSS removal, indicating scour does not occur as the flow rate increases. 2 ■ MATERIALS'" Stormceptor° I -- i 30 ' r I � j E j � F c 15 . 3 10- 5.' i Flow (cfs) Figure 1. Runoff Volume by Flow Rate for EAGLE FAA AIRPORT — CO 2454, 1984 to 1993 for 7.7 ac, 44% impervious. Small frequent storm events represent the majority of annual rainfall volume. Large infrequent events have little impact on the average annual TSS removal, as they represent a small percentage of the total annual volume of runoff. _.. - _. - -- - _- _ - -- -- - - - - -- - -- __ - - - - -- - - - - -- . _..__ . 50! 4 „Q 40 _ a o 35- 0 0. 5.. H 15.. J 10...1 t t 5f 0 0 c. o p — 1 pp pp cn o+ pp p a p .i a cn pp p a N w tA "p ie Flow (cfs) Figure 2. Long Term Pollutant Load by Flow Rate for EAGLE FAA AIRPORT — 2454, 1984 to 1993 for 7.7 ac, 44% impervious. The majority of the annual pollutant load is transported by small frequent storm events. Conversely, large infrequent events carry an insignificant percentage of the total annual pollutant load. 3 R j M a-" ATERIALS"" u Stormceptor° U H N is > t a� N H m E 3 U Flow (Cfs) Stormceptor Model STC 4800 Drainage Area (ac) 7.7 TSS Removal ( %) 82 Impervious ( %) 44 Figure 3. Cumulative TSS Removal by Flow Rate for EAGLE FAA AIRPORT — 2454, 1984 to 1993. Stormceptor continuously removes TSS throughout the full range of storm events analyzed. Note that large events do not significantly impact the average annual TSS removal. Therefore no decline in cumulative TSS removal indicates scour does not occur as the flow rate increases. 4 Uff IA u Stormceptor' Appendix 1 Stormceptor Design Summary Project Information Date 4/28/2010 Project Name West Vail Fire Station #3 Project Number N/A Location Vail, CO Designer Information Company Marcin Engineering Contact Brad Stempihar Rainfall Name EAGLE FAA AIRPORT State CO ID 2454 Years of Records 1984 to 1993 Latitude 39 °23'24 "N Longitude 106 °33'0 "W Notes N/A Drainage Area Total Area (ac) 7.7 Imperviousness ( %) 44 The Stormceptor System model STC 4800 achieves the water quality objective removing 82% TSS for a NJDEP (clay, silt, sand) particle size distribution and 99% runoff volume. Stormceptor Sizing Summary Water Quality Objective TSS Removal ( %) 80 Runoff Volume ( %) 90 Upstream Storage Storage Discharge (ac -ft) (cfs) 0 0 Stormceptor Model TSS Removal Runoff Volume STC 450i 60 80 STC 900 71 94 STC 1200 71 94 STC 1800 72 94 STC 2400 77 97 STC 3600 78 97 STC :00 82 99 STC 6000 83 99 STC 7200 86 100 STC 11000 89 100 STC 13000 90 100 STC 16000 92 100 0 MATERIALS"" RL Stormceptor* Particle Size Distribution Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal. NJDEP (clay, silt, sand Particle Size Distribution Specific Settling Particle Size Distribution Specific Settling Gravity Velocity Gravity Velocity m % ft/s Prn % ft/s 1 5 2.65 0.0012 4 15 2.65 0.0012 29 25 2.65 0.0025 75 15 2.65 0.0133 175 30 2.65 0.0619 375 5 2.65 0.1953 750 5 2.65 0.4266 Stormceptor Design Notes • Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor. • Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal. • Only the STC 4501 is adaptable to function with a catch basin inlet and /or inline pipes. • Only the Stormceptor models STC 4501 to STC 7200 may accommodate multiple inlet pipes. • Inlet and outlet invert elevation differences are as follows: Inlet and Outlet Pipe Invert Elevations Differences Inlet Pipe Configuration STC 4501 STC 900 to STC STC 11000 to 7200 STC 16000 Single inlet pipe 3 in. 1 in. 3 in. Multiple inlet pipes 3 in. 3 in. Only one inlet pipe. Design estimates are based on stable site conditions only, after construction is completed. Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative. Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance. For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909 -7763 www.rinkerstormceptor.com 6 N --- MATERIALS"" U %14b Stormceptor° Appendix 2 Summary of Design Assumptions Site Drainage Area Total Area (ac) 7.7 Imperviousness ( %) 44 Surface Characteristics Width (ft) 1158 Slope ( %) 2 Impervious Depression Storage (in.) 0.02 Pervious Depression Storage (in.) 0.2 Impervious Manning's n 0.015 Pervious Manning's n 0.25 Maintenance Frequency Infiltration Parameters Norton's equation is used to estimate infiltration Max. Infiltration Rate (in /hr) 2.44 Min. Infiltration Rate (in /hr) 0.4 Decay Rate (0) 0.00055 Regeneration Rate (s 0.01 Evaporation Daily Evaporation Rate (inches /day) 0.1 Sediment build -up reduces the storage volume for sedimentation. Frequency of maintenance is assumed for TSS removal calculations. Maintenance Frequency (months) 1 12 Upstream Attenuation Dry Weather Flow Dry Weather Flow (cfs) No Winter Months Winter Infiltration False Stage- storage and stage- discharge relationship used to model attenuation upstream of the Stormceptor System is identified in the table below. Storage ac -ft Discharge cfs 0 0 7 RWI" I-.- MATERIALS"" U% Stormceptor® Particle Size Distribution Removing fine particles from runoff ensures the majority of pollutants, such as heavy metals, hydrocarbons, free oils and nutrients are not discharged into natural water resources. The table below identifies the particle size distribution elected to define TSS removal for the design of the Stormceptor System. NJDEP clay, silt, sand Particle Size Distribution Specific Settling Particle Size Distribution Specific Settling Gravity Velocity Gravity Velocity P m % ft/s PM % ft/s 1 5 2.65 0.0012 4 15 2.65 0.0012 29 25 2.65 0.0025 75 15 2.65 0.0133 175 30 2.65 0.0619 375 5 2.65 0.1953 750 5 2.65 0.4266 PCSWMM for Stormceptor Grain Size Distributions 100 90 - - - - - -- - - -- -- - - -------------- -- - - - -- 80 70 _ -- - ___ GRAVEL U. C 60 CLAY SILT SAND COBBLES' 0 50 _ _ _ _ _ _ __ _ ---- i- - ci 40 30 20 - - -- - - - -- i i 10 I 0 1 10 100 1000 10000 Grain Size (um) - + -NJDFP -Fine Distribution OK -110 - *-F -95 Sand -*- Coarse Distribution Figure 1. PCSWMM for Stormceptor standard design grain size distributions. 8 R MATERIALS"" l u g Stormceptor° TSS Loading Parameters TSS Loading Function I Buildup / Washoff Buildup/Washoff Parameters Target Event Mean Concentration 125 (EMC) (mg /L) Exponential Buildup Power 0.4 Exponential Washoff Exponential 0.2 ]ROLOGY ANA TSS Availability Parameters Availability = A + BiC Availability Constant A 0.057 Availability Factor B 0.04 Availability Exponent C 1.1 Min. Particle Size Affected by 400 Availability (pm) PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of the Stormceptor System are based on the average annual removal of TSS for the selected site parameters. The Stormceptor System is engineered to capture fine particles (silts and sands) by focusing on average annual runoff volume ensuring positive removal efficiency is maintained during all rainfall events, while preventing the opportunity for negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section. Rainfall Station Rainfall Station Rainfall File Name Latitude Longitude Elevation (ft) Rainfall Period of Record (y) Total Rainfall Period (y) EAGLE FAA AIRPORT CO2454.NDC Total Number of Events 710 39 °23'24 "N Total Rainfall (in.) 79.5 106 0 33'0 "W Average Annual Rainfall (in.) 7.2 6497 Total Evaporation (in.) 6.4 10 Total Infiltration (in.) 44.5 10 Percentage of Rainfall that is 36.3 Runoff ( %) R 0 �MATERIALS- U Stormceptor® Rainfall Event Analysis Rainfall Depth in. No. of Events Percentage of Total Events % Total Volume in. Percentage of Annual Volume % 0.25 635 89.4 44 55.4 0.50 48 6.8 16 20.5 0.75 18 2.5 11 13.9 1.00 8 1.1 7 8.9 1.25 1 0.1 1 1.4 1.50 0 0.0 0 0.0 1.75 0 0.0 0 0.0 2.00 0 0.0 0 0.0 2.25 0 0.0 0 0.0 2.50 0 0.0 0 0.0 2.75 0 0.0 0 0.0 3.00 0 0.0 0 0.0 3.25 0 0.0 0 0.0 3.50 0 0.0 0 0.0 3.75 0 0.0 0 0.0 4.00 0 0.0 0 0.0 4.25 0 0.0 0 0.0 4.50 0 0.0 0 0.0 4.75 0 0.0 0 0.0 5.00 0 0.0 0 0.0 5.25 0 0.0 0 0.0 5.50 0 0.0 0 0.0 5.75 0 0.0 0 0.0 6.00 0 0.0 0 0.0 6.25 0 0.0 0 0.0 6.50 0 0.0 0 0.0 6.75 0 0.0 0 0.0 7.00 0 0.0 0 0.0 7.25 0 0.0 0 0.0 7.50 0 0.0 0 0.0 7.75 0 0.0 0 0.0 8.00 0 0.0 0 0.0 8.25 0 0.0 0 0.0 >8.25 0 1 0.0 1 0 0.0 F requency of Occurence by Rainfall Depths 100 -.... ___._. ___ 70 4 .; C Q 50 ..i O � 00-1 C C `1 LL 10 j j. � N , N lA N N U N� U N U Ut N U N U U U N N Rainfall Depth (in.) 10 M r&er 1-0 MATERIALS'" US Stormceptor' Pollutograph Flow Rate cfs Influent Mass ton Effluent Mass ton Total Mass ton Cumulative Mass % 0.035 1.8216 1.8601 3.6817 49.5 0.141 2.8897 0.7931 3.6817 78.5 0.318 3.3913 0.2915 3.6817 92.1 0.565 3.5607 0.121 3.6817 96.7 0.883 3.6223 0.0605 3.6817 98.4 1.271 3.6509 0.0319 3.6817 99.1 1.73 3.6674 0.0143 3.6817 99.6 2.26 3.6773 0.0055 3.6817 99.9 2.86 3.6817 0 3.6817 100.0 3.531 3.6817 0 3.6817 100.0 4.273 3.6817 0 3.6817 100.0 5.085 3.6817 0 3.6817 100.0 5.968 3.6817 0 3.6817 100.0 6.922 3.6817 0 3.6817 100.0 7.946 16817 0 3.6817 100.0 9.041 3.6817 0 3.6817 100.0 10.206 3.6817 0 3.6817 100.0 11.442 3.6817 0 3.6817 100.0 12.749 3.6817 0 3.6817 100.0 14.126 3.6817 0 3.6817 100.0 15.574 3.6817 0 3.6817 100.0 17.092 3.6817 0 3.6817 100.0 18.681 3.6817 0 3.6817 100.0 20.341 3.6817 0 3.6817 100.0 22.072 3.6817 0 3.6817 100.0 23.873 3.6817 0 3.6817 100.0 25.744 3.6817 0 3.6817 100.0 27.687 3.6817 0 3.6817 100.0 29.7 3.6817 0 3.6817 100.0 31.783 3.6817 0 3.6817 1 100.0 Cumulative Mass Transported by Flow Rate 100 For area: 7.7 (ac), imperviousness: 44%, rainfall station: EAGLE FAA AIRPORT 90 80 0 70-i : - r 60 . c 50 -' 40 'c 30 Q 20 10 0.0 0.2 0.4 0,6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 Flow (cfs) 11 12Z O VA MATERIALS " U 3 S - Stormceptor° Cumulative Runoff Volume by Runoff Rate Runoff Rate cfs Runoff Volume ft 3 Volume Overflowed ft 3 Cumulative Runoff Volume % 0.035 196772 608865 24.4 0.141 482878 322756 59.9 0.318 667825 137811 82.9 0.565 746198 59436 92.6 0.883 774896 30740 96.2 1.271 788452 17183 97.9 1.73 796960 8675 98.9 2.26 802045 3590 99.6 2.86 805096 538 99.9 3.531 805528 105 100.0 4.273 805634 0 100.0 5.085 805634 0 100.0 5.968 805634 0 100.0 6.922 805634 0 100.0 7.946 805634 0 100.0 9.041 805634 0 100.0 10.206 805634 0 100.0 11.442 805634 0 100.0 12.749 805634 0 100.0 14.126 805634 0 100.0 15.574 805634 0 100.0 17.092 805634 0 100.0 18.681 805634 0 100.0 20.341 805634 0 100.0 22.072 805634 0 100.0 23.873 805634 0 100.0 25.744 805634 0 100.0 27.687 805634 0 100.0 29.7 805634 0 100.0 31.783 805634 0 100.0 Cumulative Volume of Runoff by Runoff Rate For area: 7.7 (ac). imperviousness: 44 %, rainfall station: EAGLE FAA AIRPORT F d E 3 0 o` d p m 3 E 7 U Flow (cfs) 12 WW" MATERIALS"" a 0 CD N 0 M U O 0 a U O Q L O O . X W N L 3 a� cn E L O -W v I 3 _O L E N O If1 I 3 m E `o N N LL 0 a` d m a / O / � Li E E 3 co L w co E L- 0 ' -+ V/ C C C C C C p o 0 •� 0 0 0 M 16 c a C C C C C = E E E E E U U U U U O 0 N O V C ,C O W N M 7 y GJZ C W N N r O FN W 3 J C.1 In OO O O a2 C c o " ) 0) m C N m V m - m C C O O 2 O C N W N n m W M J 117 O N N N co In _ m m m m c 0 N O N M � W C IA f2 C2 O N O N IA E V' O^ m m CF> m Z SC� IT I i V IA UI C O^ O N O O J N LO M U 7 N t: a v o) N N co m m m m m O W ... N N U O� M N t . C It In t` O O N d 0 D J m O O O O rl- O n C W = (0 I Iq N M C> c U U U U U U J N N O O O O O CD w C N C a v T V O lA Orl-� I!') N L C C w LL . O V M N N .� C U N C E N J T ui 10 } l0 N 3 II 0 _e � o a y � •- N M V N f0 GI � d' LL U D W u O CD n z C O N M V f0 JZ 0 N O c u�3 U) E 0 'm -`o T- C O N C N W N N N Cl) O N 3 O N U x 0 111 r O o 0 o O= O 0) M CY) M N co O #np Lti'OZ6L '13 ' ^ul O M o v I I I I ul 0£'OZ6L '13 ' ^ul j �I!lll I I I ! 1 u OL'6L6L �13'nul - i O c II I I I I I I ! I I I I ° o � I Cl) I I I O M L N U I co N I I ul 99'L l6L 'I3 'nuI s II II I I I � , I I I o N OZ'V161 '1� 'nul �^ N I O ul 9Z�946G'13 �nul � I 1 � # ' I I 'I I I I O J W I I I T I I I I ! I I x I to ul IIF O O o o O O r M O M co (O N O) O r � r r � r W C O N C N W N N N Cl) O N 3 O N U x OZ'V161 '1� 'nul I O N 3 O N U x _ a O O N M CU O 0 a U O a L O O . _ X W N L 3 a� cn E L O / -W V I 3 _O m L E N 0 0 �I 3 1 m E 0 N 'o a d CL ^ O CL m E E co c I L 3 cn E L O ' -+ V / C p C o C 0 C 0 C 0 C 0 t5 0 ai C p C C C C C = E E E E E w U U U U U O CL O O N O a c C ,C O S W N M 't � ui CJz m O w p _ m 0 0 c 7 � J tl co OO O O W C N N N 0) 0) 0) m m O C H (d N N 07 16 r L C C C C O C J N 00 O N O N O N 00 N S r P r m 0 r c O U M M O n C IA (O 00 O N O N (O E C7 0^ m m m z = D � ifi rn d r LO r O N O O J N C> 1� M R N a v fl- of 0 0 00 rn rn rn 0) 0) 0) > C IN Or N N U0 M N 7 lA O I2 CD 0 O m 0) O 0) O > C W L O O O N 00 N M O d O 0 r M M N 41 U U U U U U c m m J 0 00 ! 0 00 N C N C E f J q :3 U t M CA I- N V N N 0 N ti N O .2 C U N C J � O c 3 0 .� EI a `o N c :3 r N M 7 N (O ai � LL U W O CD a z C O �- N M V (f) (D Jz 0 N O c T E `o N 3 - o x C O N C N W N U) 3 ) E `O U) 3 O N x 0 u� 0 0 0 0 0 0� o 0 0 0 0 0� o M M N 0 m r r r r J 1nQ L17'OZ61 '13 '^UI et I 0 UI 0£'OZ6L '13 'AUi 1 N I I I II I 0 UI OL'666L A 'AUl - - Cl) I ! I �I # I j I I I i I I II ' I - 1 u' mr _ N I I L I � ca cl) urA C l UI SS'L46L'13 'AUl ab 0 �i — { - — 0 UD I I ! UI 9Z'966L l3 "^UI i I o o J ! l I w I I I I I i I I I I I I I { II ! I I I I � i In J t G I � UI OZ11L6L '13 'AUl F II 0 — LL I ; .. 0 0 0 0 0 0 0 0 0 0 0 0 Cl) 1 (M M 0) M 0) 0) 0) 0) 0 W C O N C N W N U) 3 ) E `O U) 3 O N x c _m K O r O N M U O 0 Q U 0 Q L 0 0 . C X W N L 3 a� cn E L 0 '' ^ V/ 3 0 `L L Lo X E L U v m 3� 0 N _N U N �O a 10 CL / O / � ii E E m co L ^^ ♦ W v / E L O ' ++ v I O 0 N O 3 N E `o U) 0 x p O O O O O 0 m C c E E E E E O U O U O U O U O U O O 0 N O y d a C C ,C p W � N M GJZ io c of c 8i ° N cO 3 d' J V I� 00 O O a0 C N N N C y •� r- l0 0) m f6 M U ( O f0 J O O N N N O N O U � N N 00� n ti P r-- m r Z V N 4'1 11'1 V C 0— O N O O J N LO O M IUI 7 V N t+ Q It 1- O N N O d C IlJ� M N N I � N tr C V IO 1� O) C', N IO C 0) m m ti > J ..� C W - r 0) L m O d co J d O t0 N O f^ N OO M M M O 7 N J N O O O W 00 N C N C E may= C) r MM E T L N LL V O O N r (V N j G �p C O O U x C C O J E U vi c } � N c It o 3� J (p N � d `o N E N M V N fp Qj d � li U W d r O C a z JZ O 0 N O 3 N E `o U) 0 x O£'OZ6L'13'nu{ I I I I I II I I I j I OL'6461 '13 'nul I I', I 0 i I I II I ^ I I I I I I I I I I I I 55'L46L'13'nul I ' '• i j i � I 1 5Z�546L '13 'nul I I 1 i I i I I I I : _ I OZ'tr 461 '13 'nul I I I i I I I I : I C O C N W N N 3 v E `o N 3 O N I I 0 u 0 O 0 O 0 O 0 O 0 O o O 0) M M N O 0) O 0) m � Y J lno Ltr'OZ61 '13 'nul 0 M ` 0 I I I CO ul 3 ul i 0 0 0 M BP O � L N U cu CA u) 3 ° 0 N Lo 0 LO u) } O J W I I N ul III o O O O O O O M M Cl) W O O) (D m O) (3) m O) r LLJ O£'OZ6L'13'nu{ I I I I I II I I I j I OL'6461 '13 'nul I I', I 0 i I I II I ^ I I I I I I I I I I I I 55'L46L'13'nul I ' '• i j i � I 1 5Z�546L '13 'nul I I 1 i I i I I I I : _ I OZ'tr 461 '13 'nul I I I i I I I I : I C O C N W N N 3 v E `o N 3 O N I I C O C N W N N 3 v E `o N 3 O N a m K 0 0 N 0 M U 0 0 Q U O Q L O O . K W N L 3 a� cn E L O ' 4a V , 3 _O L E s_ X E f6 t U v c R 3� m E 0 N N iz U d �O EL` d m a O CL E E ' m V L AA / W c / E L- 0 / -W V n a 0 N O u� rn E `o N 0 m a x c c c c c 3 0 O o 0 0 0 o p c c c c c a) c a = E E E E E U U U U U O CL 0 N O y d C N cJz � O i•r M ( m O O c 7 J ti C t` W O N O N N 00 � p 2 O c c O c c ti c J O O N N O O O `o rn M r* P-� r Iri a2 ON N 0 N E S o n r r r r m z 7 lA i O NO I 7 In N C O --- O N O O J h 0 n P C N a v I- rn N N O 0) m > C J� _ W � ti r m N N O� ILQ M N t. C In t` O N L ) CD 0 > J C ui r r m r t h N O � � O O O C C O l�A M N O M M J N N O O O O O C N C Q T L O) N N O N N E 10 O x i c U 0 a C O c J E U ui c � R II E Q- O C N d' L U W o y a z C O - N M 7 U) f0 Jz a 0 N O u� rn E `o N 0 m a x 55 LL6L 13 ^uI i I! I •nu I I I 5Z 5}6L '13 I I I 'Ljll I I o l lj I II I i I I , N � I aZ'trE6t 'i� 'nul I I I I I I I L I I II II' I C O C N W N N 3 d E `o N 3 O N x oe N 0 ° o ° O, ° o ° O O°, = °o R M O M C0 04 (O r 0) O 0) r 0) 0) 0 J 0) inn Ltr'OZ6L '13 ' ^ul O M LO I c» L v I I I I a4 ul 0£'OZ6L "13 ' ^ul �I, ILI I 1 I I c6 I I R II I I I ul } I I I I I M R I I, I I ' I 11 ° o -- - rte M I I I I 1 I I I I I I I I I , I I ij l �I i I I II O LO L N U co (6 N ul i ° o N to ul } 0 C9 W I I x ul II E o O O O O O O M M N O O m 0) 0) d) (Y) 0) W 55 LL6L 13 ^uI i I! I •nu I I I 5Z 5}6L '13 I I I 'Ljll I I o l lj I II I i I I , N � I aZ'trE6t 'i� 'nul I I I I I I I L I I II II' I C O C N W N N 3 d E `o N 3 O N x I I a I I I M. R I C O C N W N N 3 d E `o N 3 O N x Channel Report Hydraflow Express Extension for AutoCAD® Civil 3138 2010 by Autodesk, Inc. 8 ft Cross Pan Triangular Side Slopes (z:1) Total Depth (ft) Invert Elev (ft) Slope ( %) N -Value Calculations Compute by: No. Increments = 25.00, 25.00 = 0.16 = 100.00 = 0.75 = 0.013 Q vs Depth =10 Section Highlighted Depth (ft) = 0.16 Q (cfs) = 1.175 Area (sqft) = 0.64 Velocity (ft/s) = 1.84 Wetted Perim (ft) = 8.01 Crit Depth, Yc (ft) = 0.16 Top Width (ft) = 8.00 EGL (ft) Depth (ft) = 0.21 1.00 0.75 0.50 0.25 0.00 -0.25 0 1 2 3 4 5 6 7 8 19D INLET IN A SUMP OR SAG LOCATION Project = West Vail Fire Dept Inlet ID = Inlet 5 �- Lo (C)- H-Curb H -Vert � 0 Wp W Lp (G) of Inlet I Depression (additional to continuous gutter depression 'a' from'Q- AIIow) ber of Unit Inlets (Grate or Curb Opening) a Information th of a Unit Grate i of a Unit Grate Opening Ratio for a Grate (typical values 0.15 -0.90) ging Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 3.00) Orifice Coefficient (typical value 0.67) Opening Information th of a Unit Curb Opening it of Vertical Curb Opening in Inches it of Curb Orifice Throat in Inches of Throat (see USDCM Figure ST -5) Width for Depression Pan (typically the gutter width of 2 feet) ping Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (typical value 2.30 -3.00) ping Coefficient for Multiple Units ping Factor for Multiple Units as a Weir Depth at Local Depression without Clogging (0 cfs grate, 3.34 cfs curb) Row Used for Combination Inlets Only Depth at Local Depression with Clogging (0 cfs grate, 3.34 cfs curb) Row Used for Combination Inlets Only as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 3.34 cfs curb) Depth at Local Depression with Clogging (0 cfs grate, 3.34 cfs curb) dtino Gutter Flow Depth Outside of Local Depression ling Coefficient for Multiple Units ling Factor for Multiple Units as a Weir, Grate as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 3.34 cfs curb) Depth at Local Depression with Clogging (0 cfs grate, 3.34 cfs curb) as an Orifice, Grate as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 3.34 cfs curb) Depth at Local Depression with Clogging (0 cfs grate, 3.34 cfs curb) Itina Gutter Flow Depth Outside of Local Depression Inlet Length Inlet Interception Capacity (Design Discharge from Q -Peak) Rant Gutter Flow Depth (based on sheet Q -Allow geometry) Rant Street Flow Spread (based on sheet Q -Allow geometry) Itant Flow Depth at Street Crown Type = a_., No =1 L (G) = W. = A.,, = G (G) = C. (G) = C. (G) = MINOR MAJOR CDOT Type R Curb Opening inches feel feet 1 3.001 3.00 1 1 MINOR MAJOR N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A MINOR MAJOR L (C) = Hen = H-, = Theta = W = C (C) = C. (C) = C (C) = 5.00 5.00 6.00 6.00 5.95 5.95 63.4 63.4 2.00 2.00 0.10 0.10 2.30 2.30 0.67 0.67 MINOR MAJOR Coef = N/A N/A Clog = N/A N/A cl dour ,n' d„„ _ do d = N/A N/A N/A N/A N/A N/A N/A N/A nches riches riches riches d _ d _ MINOR MAJOR Coef = 1.00 1.00 Clog = 0.10 0.10 MINOR MAJOR d,� = 3.67 4.14 inches d_ =1 3.821 4.31 linches dog = 1 3.41 _ 3.75 d_ =1 3.591 4.012 .,,,b = 1 0.821 1.31 L = Q. = d = T= dcR-1 = 5.01 5.0 feet cfs inches feet inches 3.3 4.0 0.82 1.31 0.8 1.3 0.00 0.00 UD- Inlet _v2.14c.xls, Inlet In Sump 5/13/2010,10:02 AM