Loading...
HomeMy WebLinkAboutB07-0066 Structural Engineering Calculations Phase IV February 16, 2007s 0 • Vail, Colorado Denver, Colorado Frisco, Colorado Monroe & Newell Engineers, Inc. STRUCTURAL ENGINEERING CALCULATIONS For: Lions Square Lodge North Phase IV Vail, CO CW109 COPY M &N #6640.00 MAR 2 3 2007 TOWN OF VAIL These drawings and calculations are the property of Monroe & Newell Engineers, Inc. Any use or reproductions of these calculations without the expressed written permission of Monroe & Newell Engineers, Inc. is strictly prohibited. * *P.E. stamp on sheet applies to the following calculation pages and indicates that have been reviewed. This includes all sheets attached to this cover. February 16, 2007 *'ia 2006 Platinum Sponsor The Colorado Chapter of The American Institute of Architects www. monroe -newel l . corn 1701 Wynkoop Street * Suite 200 * Denver, Colorado 80202 (303) 623 -4927 * FAX (303) 623 -6602 * email: denver ®monroe- newell.com Lion Square Lodge North Structural Calculations Table of Contents I. Structural 3D Model Views II. Structural Design Criteria III. IV. V. VI. VII. VIII. IX. X. Geotechnical Report First Level Framing Second Level Framing Third Level Framing Fourth Level Framing Fifth Level Framing Sixth Level Framing Roof Level Framing XI. Steel Column Design XII. Encased Concrete Column Design XIII. Foundation Design XIV. Existing Building • • Structural 3D Model Views is RAM 3D Viewer DataBase: lionsquare_north == <_P - 02/17/2007 10:44:52 RAM 3D Viewer DataBase: lionsquare—north . . . . . . . . . . . . . . . . . . . ------ ♦ 02/17/2007 10:46:08 1; O > l� . . . . . . . . . . . . . . . . . . . ------ ♦ 02/17/2007 10:46:08 1; O > RAM 3D Viewer DataBase: lionsquare_ north 02/17/2007 11:07:52 ® O O m � O © O • �� � i >. .� . 7 ■ ■ a � L i l t i ill i � I Y A ° -�,- -. �� ■ ! � � , � _ —V � � I � ; - �? �m°1 ■ r ii ni If11 MEN 1.1 i 1 pm _ A 9 ME! S11 I! s� �1 i i- ,rte ■-a .z �.� W ^ — V �•'.1u rti E ;o_ � ���- s.,ii.,. . r.i.� i3 O • ® '!) �i iuua�! W urn �1 • A Ali O 00 b 9® w d© d • • a a A o O G�� • c� 0 • Structural Design Criteria 0 • Monroe & Newell O L 70 1 '41 'Vil. :Suitc -10-1 DCMIC'r, C4a6YO& SUM2 k,ax:-A(13 Gn' W12 Project Name I.IONSQUART- PHASE TV NORTIT Date 11/3/2006 717- Location V", Co M-N Project # 6640 Governing jurisdiction/Bldg. Dept. Town Of Vail Phone Contact there Charlie Davis Fax 970-479-2452 Goveming Code :2003 IBC Letter Sent? Occupancy Category (IBC 1604.5) ITT Seismic Load Sesmic Use Group (IBC 1604.5) Importance Factor IE Site Class (IBC 1615.1.1 per geotechnical) C Ss (spectral response accel at short periods) 0.36Q jg ,1 S, (spectral response acceI at 1 see periods) OMI F. 1.200 F, U021 SMS 0.443 g Smi 0.141 g SDS 0.295 g SD1 0.094 g Seismic Design Category based on SDS B Seismic Design Category based on SD1 B Seismic Design Category B Lateral System BEARING WNIJ. SYSTFAI — Ordinary Reinforced Concrete Shear Walls Response Modification Factor R 4.50 System Overstrength Factor Q 2.50 Deflection Ampfification Factor Cd 4.00: Building Height per ASCE 7-02 9.5.5.3 9 ft Ct per ASCE 7-02 9.5.5.3 0.02. x per ASCE 7-02 9.5.5.3 0.75 Building Period, Ta, per ASCE 7-02 9.5.5.3 0.594 see Long Period Boundary, Ts 0.319 see Short Period Boundary, To 0.064 sec E , ,,, ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■rrYYYYYYYYYrI� Base Shear Coefficient Cs per ASCE 7 -02 9.5.5.2.1 -1 Upper Limit of Base Shear Coefficient Cs per ASCE 7 -02 9.5.5.2.1 -2 Lower Limit of Base Shear Coefficient Cs per ASCE 7 -02 9.5.5.2.1 -3 Governing Base Shear Coefficient Cs for Seismic Design Category B or higher Governing Base Shear Coefficient Cs for Seismic Design Category A Snow Load Site Elevation Ground Pg (IBC 1608.2) Exposure Factor Ce (IBC 1608.3.1) (W Importance Factor Is (IBC 1604.5) Thermal Factor Ct (IBC 1608.3.2) Flat Roof Snow Pf (IBC 1608.3) Roof Slope Factor Cs (ASCE 7.4) Sloped Roof Snow Ps (ASCE 7.4) Wind Load Basic Wind Speed (3- second gust) Exposure Category Mean Roof Height Gust Factor Kd Kh and Kz Kzt Internal Pressure Coefficient ps30 (IBC Table 1609.6.2.1) Height Adjustment Factor X Importance Factor, Iw MWFRS Design Horiz Wind Pressure ** *use Pf= 100psf per Town Of Vail * ** ** *must be 4:12 or greater per Town Of Vail* ** 0.066 0.035 0.013 0.035 0.010 8137 ft 142.86 psf 1.00 1.00 l: 1.00 100.00 psf lz u; 80.00 psf { 90.00 mph j` 71.00 ft ., 0.85 0.85 1.17 1.00 0.18 N/A psf Ila- kN /A E. 20.69 psf C ',structure Design Geotechnical Consultant • Vibration • Report # Addendum # Swell % % Active Rankine Pressure psf /ft At -rest Rankine Pressure psf /ft Passive Rankine Pressure psf /ft Coefficient of Sliding Friction Nk/k Footings Allowable Bearing (long -term) psf Allowable Bearing (short-term) psf Minimum frost depth in Minimum pressure required? Epsf Drilled Shafts /Driven Piles End Bearing ksf Side Friction (down) ks f Side Friction (up) Mksf Lateral values (rock) Modulus of subgrade A , pci Unit weight /A kcf Unconfined compressive strength ��/A ksi Cohesion /A ksi Lateral values (overburden) Modulus of subgrade `N /A pci Unit weight „N /A kcf Portland Cement type recommended N/A Designed per AISC Design Guide 11 Acceleration Limit for walking excitation 0.05 g Constant Force, Po 0.065 kips Damping ratio, 0.020; Structural Steel Wide flange, channel, tee ASTM A992 Angle, flat plate ASTM A36 Round & Rectangular HSS ASTM A500B Round Pipe ASTM A53B Fasteners High Strength Bolts 1/2" to 1" ASTM A325 -N High Strength Bolts 1" to 1 1/2" ASTM A325 -N Threaded Rods ASTM A449 Anchor Rods ASTM F1554 Washers ASTM F436 Headed Studs ASTM A108 Welds AWS E70XX Light Gauge Steel Metal Deck ASTM A653SS Welds AWS E60XX Studs ASTM A570 Mild Reinforcing Fy ksi ksi ksi ksi Fm ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi ksi Deformed Bars ASTM A615 ksi ksi WWF ASTM A185 ksi ksi Plate Dowels ASTM A706 ksi ksi Fcpara FcpciR Fv F Sawn Lumber J &P DF -L ' B&S DF -L N/A • P &T DF -L N /A,_" Manufactured Lumber LVL LSL We Cc w/c max Concrete Elevated Slab -on -deck (non -park) pcf 3.5 ksi "0.50 Elevated Slab -on -deck (park) Epcf pcf 4.5 ksi 0.40 Footings pcf 4.0 ksi 0.45 Precast Walls 5.0 ksi " 0.40 Superstructure Design PSF Live Loads occupancy (res rooms and corridors) (IBC 1607.1) 40 partitions (IBC 1607.5) 20 balconies > 100 ft2 *non - reducible 100 balcones < 100 ft2 *non - reducible 60 construction laydown (Third Level Low Roof over parking) *non - reducible 160: assembly /egress /main corridors 100j Dead Loads ** *steel self -wt already in RAM * ** Typical Tower Floor & Stair Landings 21/2" NW conc on 2" composite metal deck 45.00 deck deflection 4.01 concrete levelling 4.C!W • misc steel not in RAM model M /E /P Typical Tower Balcony 3 1/2" NW topping 2 1/2" NW conc on 2" composite metal deck deck deflection concrete levelling 1r� u E, _ 3.00 IOAO E 66.00 44.00 45.00 4.00 4.00 M /E /P /soffit 7.9 ® E 104.00 Tower High Roof L/360 asphalt shingles on backing board /membranes 8.00 rigid insul. on 3" NR roof deck 8.00 arch finishes 8.00 Exterior Wall members E 24.00 Second Level at 8128 - avg of high / low point H /360 2 1/2" NW topping (average) 31.00 4" NW cone on 2" composite metal deck 63.00 deck deflection 5.00 concrete levelling 5.00 M /E /P 25.00 Seismic (interstory) IBC 1617.3.1 E 129.00 Second Level at 8128 - flat 4" NW conc on 2" composite metal deck 63.00 deck deflection 5.00 concrete levelling 5.00 M /E /P 25.00 E 98.00 Third Level at 8139 8" sod at 120 pcf 80.00 rigid insulation (tapered) 12.00 4" NW on 2" composite deck 65.00 deck deflection 5.00 concrete levelling 5.00 M /E /P 15.00 E 182.00 Mechanical Room 2 1/2" NW conc on 2" composite metal deck 47.00 deck deflection 5.00 E 52.00 Deflections Roof members Dead + Snow L/360 Floor members Dead L/240 Dead + Live L/360 Exterior Wall members stucco /lath with steel stud backing H /360 stone /brick veneer with steel stud backing H /600 Drift Wind (total) H /400 Wind (interstory) H /200 Seismic (total) N/A Seismic (interstory) IBC 1617.3.1 H/67 n 0 a • a o n a ° o C c. 5 s, J o o o w N OD .�+ 00 J N A O O O (9 V n CCCCC �rcr� C��C"W! .f9cn O. N N N N N W W W W W N ro 5 C C C C O 0 0 0 0 0 O O G O O C to to A� W In In A� W to to A� W A 5 m W A OD ONO m W A 0o OND m OWO A OO ONO ? G C n W W N N N W N N N W W N N N N S O O O O O O O O O O O ,O W O, in A A y J W OD N V' In A W J W O7 N W J cn A W � tJ IJ fT in � la W O � �1 fT in y A .C+ N A •W-' W OV' N tWi� tNi� W W lvn J W N + O O O C O O O O O O .+ 0 0 O C 0 resign Requirement by Category Category A Category B Category C Category D Category E Category F For: Ordinary plain concrete shear walls , see 1910.2.1 Limit Buildinq Height ASCE 7, T•9.5.2.2 NP NP NP NP NP NP Seismic load effect E, Section 1617.1 QE ± 0.2DDSD E= p QE t 0.21DDSD = p QE t 0.034(D) Base Shear 1614 IBC 1616.4.1 IBC 1617.4 IBC 1617.4 IBC 1617.4 IBC 1617.4 IBC 1617.4 C'W CsW CsW CsW CSW 0.01 W 0.072W 0.072(W) 0.072(W) 0.072(W) 0.072(W) Design and Detailing requirement ASCE 9.5.2.6.1 ASCE 9.5.2.6.2 ASCE 9.5.2.6.3 ASCE 9.5.2.6.4 ASCE 9.5.2.6.5 ASCE 9.5.2.6.5 Connection ASCE 9.5.2.6.1.1 ASCE 9.5.2.6.1.1 ASCE 9.5.2.6.1.1 ASCE 9.5.2.6.1.1 ASCE 9.5.2.6.1.1 ASCE 9.5.2.6.1.1 .133SDSWp .133SDSWp .133SDSWp .133SDSWp .133SDSWp .133SDSWp 1335 os W p or 0.05W p 0.050 0.050 0.050 0.266 0.050 0.050 Anchorage of concrete or masonry walls 9.5.2.6.1.2 9.5.2.6.2.8 9.5.2.6.3.2 9.5.2.6.3.2 9.5.2.6.3.2 9.5.2.6.3.2 .133SDSWp .401ESDSWw 0.8SDSIE(Ww) 0.8SDSIE(Ww) O.BSDSIE(W.) O.BSDSIE(W.) Flexible or.05Wp 0.1(W) 0.136(W) 0.136(W) 0.136(W) 0.136(W) Rigid or 400SDSl 0.082Wp 0.082Wp 0.082Wp 0.082Wp Redundancy, p 1 1 1 ASCE 9.5.2.4 ASCE 9.5.2.4 ASCE 9.5.2.4 Diaphragm .21ESDSWp + Vp, .21ESDSWP + Vp, ASCE 9.5.2.6.4,4 ASCE 9.5.2.6.4.4 ASCE 9.5.2.6.4.4 E . 9.5.2.6.2.7 0.03W + Vpx Collector, element & connection 9.5.2.6.2.6 9.5.2.6.3.1 9.5.2.6.4.1 9.5.2.6.3.1 9.5.2.6.3.1 E Em =QQE t 0.2SDSD Em =Q% t 0.2SDSD Em =QQE t 0.2SDSD Em =QQE t 0.2SDSD =2.5 QE t 0.034(D) Light frame E E E E E Bearing wall & Shear wall .401ESDSWw .401ESDSWw .401ESDSWw .401ESDSW„ .401ESDSWw 0.068 0.068 0.068 0.068 0.068 concrete and masonry walls anchor 68 Ibs /ft Element Supporting discontinuous Em =QQE t 0.2SDSD Em =Q% t 0.2SDSD Em =Q% t 0.2SDSD Em =QQE t 0.2SDSD Em =QQE t 0.2SDSD Wall and Frame =2.5 QEt 0.034(D) Plan and Vertical Irregular n/a n/a n/a 9.5.2.6.4.2 9.5.2.6.5.1 9.5.2.6.5.1 of permit Type 1b or 5 Type 1 b or 5 .uilding Separations na n/a n/a n/a n/a n/a Architectural Component n/a 0.082Wp 0.082Wp 0.082Wp 0.082Wp 0.082Wp Mech & Electrical Component ASCE 9.6.1.3 ASCE 9.6.1.3 ASCE 9.6.1.3 ASCE 9.6.1.3 ASCE 9.6.1.3 Concrete IBC 1910.3 IBC 1910.4 IBC 1910.5 IBC 1910.5 IBC 1910.5 Seismic - force - resisting systems IBC 1910.3.1 IBC 1910.4.1 IBC 1910.5.1 IBC 1910.5.1 IBC 1910.5.1 Discontinuous members. IBC 1910.4.2 IBC 1910.4.2 IBC 1910.4.2 IBC 1910.4.2 Plain IBC 1910.4.4 IBC 1910.4.4 IBC 1910.4.4 IBC 1910.4.4 Frame members not proportioned to resist forces induced by earthquake motions. n/a n/a n/a IBC 1910.5.2 IBC 1910.5.2 IBC 1910.5.2 Slab on Grade IBC1911.1 IBC1911.1 IBC1911.1 IBC1911.1 IBC1911.1 Masonry IBC 2106.3 IBC 2106.4 IBC 2106.5 IBC 2106.6 IBC 2106.6 Seismic - force - resisting systems MSJC 1. 13.3 MSJC 1.13.4 MSJC 1.13.5 MSJC 1.13.6 MSJC 1.13.7 MSJC 1. 13.7 Anchorage of masonry walls. IBC 2106.2 IBC 2106.2.1 IBC 2106.2.1 IBC 2106.2.1 IBC 2106.2.1 IBC 2106.2.1 Wall not part of the lateral- force - resisting system IBC 2106.3.1 IBC 2106.3.1 IBC 2106.3.1 IBC 2106.3.1 IBC 2106.3.1 Design of discontinuous members that are part of the lateral- force - resisting system IBC 2106.4.1 IBC 2106.4.1 IBC 2106.4.1 IBC 2106.4.1 1.5 times the forces IBC 2106.5.1 IBC 2106.5.1 IBC 2106.5.1 Steel Structural steel IBC 2205.2.1 IBC 2205.2.1 IBC 2205.2.1 IBC 2205.2.2 IBC 2205.2.2 IBC 2205.2.2 Composite IBC 2212.1.2 IBC 2212.1.2 IBC 2212.1.2 Light frame IBC 2211.1 IBC 2211.1 IBC 2211.1 IBC 2211.4 IBC 2211.4 IBC 2211.4 Wood General IBC 2305 IBC2305 IBC2305 IBC2305 IBC2305 IBC2305 Shear wall 2305 Structural wood panel, h/d ratio, 2305.3.3 31/2:1 31/2:1 3'/2:1 2:1 2:1 2:1 Gypsum Board & Stucco 11/2:1 1'/2:1 11/2:1 1112:1 NP NP Particleboard 3'/2:1 3'/2:1 31/2:1 NP NP NP Fiberboard 1'12:1 1'12:1 1'12:1 NP NP NP tear Panel Connections (2305. L4) NA NA NA IBC 2305.1.4 IBC 2305.1.4 IBC 2305.1.4 mill Plate I I IBC 2305.3.10 IBC 2305.3.10 IBC 2305.3.10 MSJC = Masonry Standards Joint Committee (A Cl 530.1 -02 1ASCE 6- 02ITMS 602 -02) Monroe and Newell Engineers 1701 Wyncoop St Denver, CO 80202 (303) 623 -4927 2) ASCE 7 -02, SECTION 6.5 ANALYTICAL PROCEDURE METHOD 2 6.5.12 Design Wind Loads on Enclosed and Partially Enclosed Buildings. (all Heights) MWFRS Velocity pressure qz= .00256 Kz Kv Kd V2 Iw Eq. 6 -15 Exposure C Roof Height In = 71 feet Exposure coefficient Kz= Section 6.5.6.6, is obtained from Table 6 -3, Case 2 for MWFRS Topography factor Kr = 1.00 Section 6.5.7.2, Figure 6 -2 Directionality factor Kd = 0.85 Table 6 -4 Wind Speed V = 90 mph Importance factor Iw = 1.00 Table 1604.5 q,= 17.63 K psf Internal Pressure Coefficient (GCp,) = t 0.18 Figure 6 -5 for . Endosed Building Gust effect factor G = 0.85 Section 6.5.8.1 Pressures for MWFRS p = gGCp - q; (GCp,) Eq. 6 -17 Wall and Roof External pressure Coefficients Cp from figure 6 -6 or 6 -8 Wind Normal to ridge (L to 16.5) LB = 1.00 h/L = 71/16.5 = 4.30 8= 26.6 Windward wall Cp = 0.8 Windward roof Cp = -0.44 Leeward wall Cp = -0.50 for UB = 1.00 Leeward roof Cp = -0.60 Side wall Cp = -0.7 or Roof Cp = Wind parallel to ridge (L to 16.5) L/B = 1.00 Windward wall Cp = 0.8 h/L = 71/16.5 = 4.30 Leeward wall Cp = -0.50 for UB = 1.00 Roof Cp = -1.30 -0.70 Side wall Cp = -0.7 for dist 35.50 71.00 -7.72 �J = 26.6 21.33 4 4 n 20.98 a 3 It GCp, = t 0.18 q,(GCp) = t 20.76(0.18) 20.15 a 2 n = t 3.74 All forces shown in psf 19.00 t 5 n -10.59 = 16.5 p = gGCp - q, (GCp,) Eq. 6 -15 where q = q for windward q = qh for leeward wall, side wall and roof @ 71 ft q, = qh for enclosed building @71 ft 22. 12. Parallel to ride L to 16.5 Height Kh ®4on Cp ghGCp q; t 3.74 ®35n Leeward wall @25n 1.18 20.76 All forces shown in psf ®otolsn -0.50 -8.82 -_ L 16.5 '1 Roof Ht, h = 71 ft Normal to Ride L to 16.5 Parallel to ride L to 16.5 Height Kh qh Cp ghGCp Cp ghGCp Leeward wall all 1.18 20.76 -0.50 -8.82 -0.50 -8.82 Side wall all 1.18 20.76 -0.7 -12.35 -12.35 Roof ww -0.44 -22.94 fr 0 to 35.5 Lw -0.60 1-0�70 -12.35 fr >3 5.5 fr71- fr Wind normal to ride Wind parallel to ridge z, Ht. (ft) K, % C p =%GC WW +Lw C I p =q,GC Ww +LW Windward wall 0 to 15 0.85 14.96 0.8 10.17 19.00 0.80 10.17 19.00 20.0 0.90 15.90 0.8 10.81 19.63 0.80 10.81 19.63 25.0 0.95 16.66 0.8 11.33 20.15 0.80 11.33 20.15 30.0 0.98 17.31 0.8 11.77 20.60 0.80 11.77 20.60 35.0 1.01 17.88 0.8 12.16 20.98 0.80 1216 20.98 40.0 1.04 18.39 0.8 12.51 21.33 0.80 12.51 21.33 45.0 1.07 18.86 0.8 12.82 21.64 0.80 12.82 21.64 50.0 1.09 19.28 0.8 13.11 21.93 0.80 13.11 21.93 Project: Lion Square North M -N Project #: 6640 IBC2003.xls Wind Analysis RC8 Monroe and Newell Engineers Project: Lion Square North 1701 Wyncoop St M -N Project #: 6640 Denver, CO 80202 (303) 623 -4927 3). COMPONENTS AND CLADDING ASCE 6.5.12.4. 6.5.12.4.1 Low -rise building and building with h <_ 60ft Velocity pressure qZ= .00256 KZ KZ, Kd V2 Iw Eq. 6 -15 KZt = 1.00 Kd = 0.85 V= 90 1„, = 1.00 qZ = 17.63 KZ at mean roof high h = 71.0 ft Provision of ASCE 6.5.12.4.2 shall be use. Kh = 1.18 Exp = C velocity at mean roof height, qh = 20.80 p = gh(GCP - GCp;) (Eq. 6 -22) External pressure, + GCp = 0.92 - GCp = -0.98 Figure 6.11 through 6 -16 Internal pressure, Gp; = t 0.18 Enclosed Building Figure 6 -5 p = 20.80[0.92 - (±0.1 E psf 20.80[ -0.98 - ( ±0.18) psf p = 22.88 psf psf -24.13 psf psf 6.5.12.4.2 Building with h > 60ft at mean roof high h = 71.0 ft OK Kh = 1.18 qZ= 17.63 KZ P = q(GCP) - q (GCpi) (Eq. 6 -23) Z = 0 KZ = 0.85 qh = 20.80 qZ = 14.98 External pressure, + GCP = 1 - GCP = -1.1 Figure 6 -17 Internal pressure, Gp; = t 0.18 Enclosed Building Figure 6 -5 Windward wall, q = qZ = 14.98 q; = qh = 20.80 p = 14.98(1) - 20.80(±0.18) 14.98( -1.1) - 20.80(±0.18) = 14.98 ±3.74 psf -16.48 ±3.74 psf = 18.72 psf -20.22 psf Leeward wall, side wall and roof evaluated at height h q = qh = 20.80 q; = qh = 20.80 = 20.80(1) - 20.80(±0.18) 20.80( -1.1) - 20.80(±0.18) 20.80 ±3.74 psf -22.88 ±3.74 psf = 24.54 psf -26.62 psf IBC2003.xis Wind Analysis RCB Loris and Associates 2585 Trial Ridge Drive East Lafayette, Colorado 80026 303.444.2073 IBC2003, EARTHQUAKE LOADS (Sec. 1615) Soil Site Class C ] Table 1615.1.1 ( Default =D) Response Spectral Acc. (02 sec) Ss = 36.90 %g = 0.369g Figure 1615(1) Response Spectral Acc.( 1.0 sec) S, = 8.30%g = 0.083g Figure 1615(2) Site Coefficient Fa= 1.200 Table 1615.1.2(1) Site Coefficient Fv = 1.700 Table 1615.1.2(2) Max Considered Earthquake Acc. SMS = Fa-Ss = 0.443 Eq. 16 -38 Max Considered Earthquake Acc. SMi = F,.S, = 0.141 Eq. 16 -39 @ 5% Damped Design SDS = 2/3(SMS) = 0.295 Eq. 16 -40 SDI = 2/3(SM,) =0.094 Eq. 16-41 Building Categories II, standard N. = Seismic Use Group I Table 1604.5 &Sec.1616.2 Design Category Consideration: Riga Diaphragm Seismic Design Category for0.lsec B Table 1616.3(1) Seismic Design Category for 1.0sec B Table 1616.3(2) si <.75g NA Note a, T- 1616.3(1),(2) Since Ta ? .BTs (see below), SDC = B Control (exception of Section 1616.3 does not apply) Comply with Seismic Design Category B per ASCE -7, 9.5.2.2.3, 9.5.2.4.1 Equivalent lateral force procedure BEARING WALL SYSTEMS Basic Seismic Force Systems T- 9.5.2.21 Ordinary concrete shear wan C, = 0.02 x = 0.75 T- 9.5.5.3.2 Building ht. H„ = 92 ft Limited Building Height (ft) = NIL r-.� 1 BOA 19F S Of 0.094g Table 9.5.5.3.1 Approx Fundamental period, Ta = C,(h„ )" = 0.594 sec. , Eq. 9.5.5.3.2 -1 6a ;J —1 939 Use T = T, = 0.594 sec. 0.8Ts = 0.8(SD1/Sos) = 0.255 < Ta Is structure Regular & <_ 5 stories ? No - ASCE 9.5.5.2.1 Response Spectral Acc.( 0.2 sec) Ss = 0.369g Fa = 1.20 Response Spectral Acc.( 1.0 sec) S, = 0.083g F„ = 1.700 @ 5% Damped Design SDS = %(Fa.SJ = 0.295 Eq. 16 -40 SDI= 2 /a(F,S,) =0.094 Eq. 16-41 Response Modification Coef. R = 4.5 ASCE7, T- 9.5.2.2 Over Strength Factor Q. = 2.5 Importance factor IE = 1 Table 1604.5 Seismic Base Shear V = Cs W Eq. 9.5.5.2 -1 Cs_ SDS Eq. 9.5.5.2.1 -1 R /IE = 0.066 or need not to exceed, Cs = SD' = 0.035 Eq. 9.5.5.2.1 -2 (R/IE).T Min Cs = .0445DS IE = 0.013 Eq.9.5..5.2.1 -3 Use Cs = 0.035 Design base shear V= 0.035(W) Control Project: Project Number: 2/17/2007 BC2003.xls EarthQuake Analysis K. Wolf III RAM Mana g er v 11.1 RAMDataBase: lion square—north INTEPNATori, Building Code: IBC General Criteria BUILDING CODE FOR LIVE LOAD REDUCTION: IBC Live Load Reduction Method: General ROOF LOADS: Consider Snow Loads, Ignore Roof Live Loads DETERMINING NUMBER OF STORIES FOR LIVE LOAD REDUCTION: Include Roof Levels: No Include Unreducible Levels: Yes Include Storage Levels: Yes SELF - WEIGHT: Automatically calculate and include Self- Weight for Member Dead Loads: Beams: Yes Columns: Yes Walls: Yes Slabs / Decks: No Automatically calculate and include Self- Weight for Story Masses: Beams: Yes Columns: Yes Include half mass of columns above and below Walls: Yes Include half mass of walls above and below Slabs / Decks: No 02/17/07 10:42:18 Story Data: Level Story Label Layout Type E Echo of Input Data 10 ROOF RAM Manager v 11.1 5.167 9 RAMDataBase:lionsquare_ LOW ROOF 10.500 north 02/17/0711:15:31 SIXTH INTERNATKX Al Building Code: IBC 7 FIFTH FIFTH 11.500 Layout Types: FOURTH ROOF 11.500 LOW ROOF THIRD SIXTH 10.833 FIFTH SOD ROOF FOURTH 0.667 THIRD SECOND SOD ROOF 3.333 SECOND RAMP FIRST 6.000 RAMP FIRST Tables Selected: 11.000 Deck Table: ramdecks Master Steel Table: ramaisc Default Steel Table: ramaisc Alternate Steel Table: ramaisc Column Steel Table: ramaisc Reinforcement Table: ramastm Pan Form Table: ramceco Story Data: Level Story Label Layout Type Height (ft) 10 ROOF ROOF 5.167 9 LOW ROOF LOW ROOF 10.500 8 SIXTH SIXTH 11.500 7 FIFTH FIFTH 11.500 6 FOURTH FOURTH 11.500 5 THIRD THIRD 10.833 4 SOD ROOF SOD ROOF 0.667 3 SECOND SECOND 3.333 2 RAMP RAMP 6.000 1 FIRST FIRST 11.000 Composite Deck Properties: ID Thick Unit Wt f c Stud Diam Shored Deck Type in pcf ksi in in 1 4.00 145.00 4.50 4.00 0.75 No VULCRAFT 2.0VL 2 2.50 145.00 3.50 3.50 0.75 No VULCRAFT 2.0VL ID Hr Rib Space Wr AcRib YBar Self- Weight in in in in in psf 1 2.00 12.00 6.000 12.000 1.056 4.00 2 2.00 12.00 6.000 12.000 1.056 3.00 Noncomposite Deck Properties: ID Self- Weight 0 RAM Manager v 11.1 RAIDDataBase:lionsquare_ north INTEnATIC -x Building Code: IBC psf NA 0.00 Load Properties: Surface: ID PARKING(FLAT) RES BALCONIES <100ft2 BALCONIES> l 00ft2 HIGH ROOF SOD ROOF /CONST LAY PARKING(DRAIN) Line: ID EXT WALL SPANDREL ENCASING 6" STONE VNR/MORTAR Point: ID encasing - upper encasing - lower Echo of Input Data DL Constr DL psf psf 98.0 73.0 66.0 53.0 104.0 53.0 104.0 53.0 24.0 0.0 182.0 75.0 1�3► TlI oilK DL Constr DL k/ft k/ft 0.288 0.000 0.400 0.000 0.700 0.000 DL Constr DL kips kips 4.000 0.000 6.000 0.000 COLUMN SECTION PROPERTIES: Concrete: Reduction psf # Label Shape Depth/Diam 40.0 Reducible in 1 28x28 Rect 28.00 2 1800 Rect 30.00 3 16x20 Rect 20.00 4 18X18 Rect 18.00 Grid Systems: System Label Type towers Orthogonal parking Orthogonal LL Reduction psf Type 100.0 Unreducible 40.0 Reducible 60.0 Unreducible 100.0 Unreducible 100.0 Roof 160.0 Unreducible 100.0 Unreducible LL Reduction k/ft Type 0.000 Reducible 0.000 Reducible 0.000 Reducible LL Reduction kips Type 0.000 Reducible 0.000 Reducible Width Cracked Factor in 28.00 0.70 18.00 0.70 16.00 0.70 18.00 0.70 X Offset ft 0.000 0.000 Page 2/111 02/17/07 11:15:31 Constr LL psf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Constr LL k/ft 0.000 0.000 0.000 Constr LL kips 0.000 0.000 Y Offset ft 0.000 0.000 Mass DL psf 98.0 66.0 104.0 104.0 24.0 182.0 129.0 Mass DL k/ft 0.288 1.000 0.000 Mass DL kips 4.000 6.000 Rotation 0.00 17.00 Echo of Input Data RAM Manager v 11.1 RAMDataBase:lionsquare_ north INTERNAm -4 Building Code: IBC Grids: System: towers X Grids Label X Min Y Max Y ft ft ft % 0.0000 - 11.0000 111.0000 A 4.0000 - 11.0000 111.0000 B 23.0833 - 11.0000 111.0000 D 35.5417 - - -- - - -- E 41.0834 - - -- - - -- G 55.7292 - - -- - - -- G.8 66.0417 - - -- - - -- H 68.0834 - 11.0000 111.0000 J 72.5000 - - -- - - -- 73.5000 - - -- - - -- K.5 83.1667 - - -- - - -- 93.3333 - - -- L 95.0938 - 11.0000 111.0000 98.9167 - - -- - - -- M 111.0938 - 11.0000 111.0000 114.4167 - - -- - - -- N 119.0938 - 11.0000 111.0000 125.3333 - - -- - - -- P 129.0938 - - -- - - -- Q 135.0938 - - -- - - -- 139.0105 - 11.0000 111.0000 R 156.0938 - - -- - - -- S 160.0938 - - -- - - -- T 176.0104 - 11.0000 111.0000 U 194.5104 - 11.0000 111.0000 + 199.5000 - 11.0000 111.0000 V 201.8333 - 11.0000 111.0000 W 214.0833 - - -- - - -- X 225.3229 - 11.0000 111.0000 Y 243.1667 - 11.0000 111.0000 Y.2 244.9167 - 11.0000 111.0000 Z 250.8333 - - -- - - -- Y Grids Label Y Min X Max X ft ft ft 16 9.7500 - 11.0000 - - -- 15 25.5417 - 11.0000 - - -- 14 31.4584 - 22.0000 - - -- 13 36.3230 - - -- - - -- 12 39.7917 - - -- 260.0000 11 41.3230 - 22.0000 - - -- 10 44.5417 - 11.0000 260.0000 Page 3/111 02/17/07 11:15:31 Echo of Input Data RAM Manager vl 1.1 Page 4/111 L DataBase:lionsquare_ north 02/17/0711:15:31 Building Code: IBC Y Grids Label Y Min X Max X 9 45.9479 - 22.0000 - - -- = 47.9591 - 11.0000 - - -- 8 53.3334 - - -- - - -- 7 55.8230 145.0000 260.0000 6.8 56.6667 - 11.0000 - - -- 6 60.8022 - - -- - - -- 5.5 63.4584 - 22.0000 270.0000 5 68.2604 - - -- - - -- 4 76.7604 - - -- - - -- 3.5 79.7917 - 11.0000 - - -- 3 81.3333 - 11.0000 260.0000 2 83.8229 - - -- - - -- 1.5 90.6667 - 11.0000 260.0000 1 97.7500 - - -- - - -- 0.5 98.7188 - 11.0000 260.0000 System: parking X Grids Label X Min Y Max Y 0.00 ft ft ft A' 0.0000 - - -- - - -- B' 104.3854 - - -- - - -- C' 110.9063 - - -- - - -- D' 124.4688 - - -- - - -- E' 132.0417 - - -- - - -- F' 145.9583 - - -- - - -- G' 153.5313 - - -- - - -- H' 167.0938 - - -- - - -- J' 174.6667 - - -- - - -- K' 188.2292 - - -- - - -- Y Grids Label Y Min X Max X ft ft ft 0' 0.0000 - 22.0000 - - -- 1' 19.5833 - 22.0000 - - -- DATA FOR FLOOR TYPE: ROOF Grid Systems: towers Columns: ID X Y Shape ft ft 26 47.083 74.333 T 27 66.042 74.333 T 28 34.750 35.458 T Orientation Param* Angle ksi 90.00 46.0 0.00 46.0 90.00 46.0 Max % Frame LLRed Type None Gravity None Gravity None Gravity Beam Design Criteria RAM Steel v 11.1 DataBase: lionsquare_north Building Code: IBC TABLES SELECTED: Master Steel Table: ramaisc Default Steel Table: ramaisc Alternate Steel Table: ramaisc UNBRACED LENGTH: Check Unbraced Length Do Not Consider Point of Inflection as Brace Point Noncomposite/Precomposite Beam Design: Deck Perpendicular to Beam Braces flange Deck Parallel to Beam does not Brace flange Calculate Cb for all Simple Span Beams Use Cb =1 for all Cantilevers SPAN/DEPTH CRITERIA: Maximum Span/Depth Ratio (ft/ft): 0.00 DEFLECTION CRITERIA: Default Criteria L/d delta (in) Unshored Initial (Construction Load): 0.0 1.0 Post Composite Live Load: 480.0 0.0 Total Superimposed: 360.0 0.0 Total (Init +Superimp- Camber): 360.0 0.0 Shored Dead Load: 0.0 0.0 Live Load: 360.0 0.0 Total Load: 240.0 0.0 Noncomposite Dead Load: 0.0 0.0 Live Load: 480.0 0.0 Total Load: 360.0 0.0 Alternate Criteria L/d delta (in) Unshored Initial (Construction Load): 0.0 0.0 Post Composite Live Load: 0.0 0.0 Total Superimposed: 600.0 0.3 Total (Init +Superimp - Camber): 600.0 0.3 Shored Dead Load: 0.0 0.0 Live Load: 0.0 0.0 Total Load: 0.0 0.0 Noncomposite Dead Load: 0.0 0.0 Live Load: 0.0 0.0 02/17/07 11:53:47 Steel Code: AISC LRFD Beam Design Criteria RAM Steel v11. 1 Page 2/2 RAM DataBase:lionsquare_ north 02/17/0711:53:47 T� Building Code: IBC Steel Code: AISC LRFD Total Load: 600.0 0.3 Note: 0.0 indicates No Limit CAMBER CRITERIA FOR COMPOSITE BEAMS: Do not Camber CAMBER CRITERIA FOR NONCOMPOSITE BEAMS: Do not Camber STUD CRITERIA: Stud Distribution: Use Optimum Maximum % of Full Composite Allowed: 100.00 Minimum % of Full Composite Allowed: 25.00 Maximum Rows of Studs Allowed: 3 Minimum Flange Width for 2 Rows of Studs (in): 5.500 Minimum Flange Width for 3 Rows of Studs (in): 8.500 Maximum Stud Spacing: Per Code WEB OPENING CRITERIA: Stiffener Fy (ksi): 36.000 Stiffener Dimensions Minimum Width (in): 1.000 Minimum Thickness (in): 0.250 Increment of Width (in): 0.250 Increment of Thickness (in): 0.125 Increment of Length (in): 1.000 Do Not Allow Stiffeners on One Side of web Allow Stiffeners on Two Sides of web ,o. Gravity Column Design Criteria ram Fill RAMSteelvll.1 DataBase:lionsquare_north 02/17/0711:42:50 WERNATO,AL Building Code: IBC Steel Code: AISC LRFD DEFAULT SPLICE LEVELS: Level Splice ROOF N LOW ROOF N SIXTH N FIFTH N FOURTH N THIRD N SOD ROOF N SECOND N RAMP N FIRST N DESIGN DEFAULTS: Maximum Angle from column axis at which beam reaction is not split between column sides for calculating unbalanced moments: 30.0 deg. Skip -load the Live Load around Column TRIAL GROUPS: Trial Group I Section Rect HS Round HS 1 W4 HSS5X5 HSS4. 2 W4 HSS8X8 HSS3 3 W4 HSS10X10 HSS20 COLUMN BRACING: Deck Braces Column Maximum Angle from column axis from which beam braces column: 60.0 deg. BASE PLATES: Design Code: AISC LRFD Plate Fy (ksi) 36.000 Plate fc (ksi) 4.000 Minimum Dimension From Face of Column to Edge of Plate (in) 0.750 Minimum Dimension From Side of Column to Edge of Plate (in) 0.750 Increment of Plate Dimensions (in) 0.250 Increment of Plate Thickness (in) 0.125 Minimum Footing Dimension Parallel to Web (ft) 10.00 Minimum Footing Dimension Perpendicular to Web (ft) 10.00 Floor Design per AISC Design Guide 11- Vibration Mitigation 29000 ksi, Es 4.50 ksi, f c 145 pcf, we 3704 ksi, Ec static 5000 ksi, Ec dynamic 5.800 n 28.00 ft, span 2.00 in, deck depth 4.00 in, slab above deck 63.42 psf, recommended slab + deck weight 64.00 psf, slab + deck weight 9.00 psf, self - weight of beams /joists 11.00 psf, live load 5.00 psf, m /e /p 96.00 in, spacing of beams /joists 96.00 in, effective slab width Beam /joist Properties 18.10 in2, Ag 712.00 in4, Ix 18.10 in, d 0.802 in, y centroid below top of deck 3221 in4, Ij 712.00 lb /ft, wj 584 lb /ft, wd 0.0593333 k /in, wj 0.048666667 k /in,wd 0.105 in, Oj 0.391 in, deflection under wet concrete 10.90 Hz, fj 5 in, average concrete thickness 21.55 in4 /ft, Ds, slab inertia per unit width 402.62 in4 /ft, Dj, joist inertia per unit width 2 Cj 19. 6 ft, floor width (perpendicular to joists) 26.94 ft, Bj, effective beam panel width 100.69 k, Wj, weight of panel 0.3 k, impulse force 0.025 beta, damping ratio 0.0026 ap /g less then 0.005 OK Geotechnical Report KOECHLEIN CONSULTING ENGINEERS, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS GEOTECHNICAL INVESTIGATION PROPOSED ADDITIONS LION SQUARE LODGE AND CONDOMINIUMS 660 LIONSHEAD PLAZA VAIL, COLORADO Prepared for: Bill Anderson Lion Square Lodge 660 Lionshead Plaza Vail, Colorado 81657 Job No. 05 -190 December 14, 2005 DENVER: 12364 West Alameda Pkwy., Suite 115, Lakewood, CO 80228 (303) 989 -1223 A VONISIL PER THORNE: (9 70) 949 -6009 December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical *Engineer �.► TABLE OF CONTENTS INDEX SCOPE 1 EXECUTIVE SUMMARY 2 SITE CONDITIONS 4 North Condominium - Residential Additions 4 North Condominium - Parking Garage Addition 5 East Condominium Additions 5 PROPOSED CONSTRUCTION 6 North Condominium - Residential Additions 6 North Condominium - Parking Garage Addition 7 East Condominium Additions 7 INVESTIGATION 8 ADDITIONAL INVESTIGATION 9 SUBSURFACE CONDITIONS 9 North Condominium - Residential and Parking Garage Addition 10 East Condominium Additions 11 RADON 12 MOLD 12 EXISTING STRUCTURES 13 North Condominium - Residential Additions 13 North Condominium - Parking Garage Addition 13 East Condominium Additions 14 EXISTING FILL 15 North Condominium - Residential Additions 15 North Condominium - Parking Garage Addition 16 East Condominium Additions 16 GROUND WATER 17 North Condominium - Residential Additions 17 North Condominium - Parking Garage Addition 18 East Condominium Additions 18 EXCAVATIONS 19 North Condominium - Residential Additions 19 North Condominium - Parking Garage Addition 20 East Condominium Additions 20 SHORING 21 North Condominium - Residential Additions 22 North Condominium - Parking Garage Addition 22 East Condominium Additions 23 SEISMICITY 24 FOUNDATIONS 24 North Condominium - Residential Additions 24 North Condominium - Parkin Garage Addition 26 East Condominium Additions 28 December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer TABLE OF CONTENTS INDEX SLABS -ON -GRADE 30 North Condominium - Residential Additions 31 North Condominium - Parking Garage Addition 32 East Condominium Additions 33 FOUNDATION DRAINAGE 35 LATERAL WALL LOADS 36 RETAINING WALLS 37 SURFACE DRAINAGE 37 IRRIGATION 38 COMPACTED FILL 39 LIMITATIONS 40 December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineer TABLE OF CONTENTS FIGURES VICINITY MAP LOCATIONS OF EXPLORATORY BORINGS LOGS OF EXPLORATORY BORINGS LEGEND OF EXPLORATORY BORINGS GRADATION TEST RESULTS FOUNDATION EXCAVATION RECOMMENDATIONS TYPICAL WALL DRAIN DETAIL TYPICAL RETAINING WALL DRAIN DETAIL SUMMARY OF LABORATORY TEST RESULTS n Fig. I Fig. 2 Figs. 3 and 4 Fig. 5 Figs. 6 thru 8 Fig. 9 Fig. 10 Fig. I I Table I December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineers SCOPE This report presents the results of a geotechnical investigation for the construction of the proposed additions for Lion Square Lodge and Condominiums located at 660 Lionshead Plaza in Vail, Colorado. The approximate site location is shown on the Vicinity Map, Fig. 1. The purpose of this investigation was to evaluate the subsurface conditions at the site and to provide geotechnical recommendations for construction of the proposed additions. The purpose of this report is to provide descriptions of subsurface soil and ground water conditions encountered in the exploratory borings, recommended foundation systems, and recommended foundation design and construction criteria for the proposed construction. This report was prepared from data developed during our field investigation, our laboratory testing, and our experience with similar projects and subsurface conditions in the area. The recommendations presented in this report are based on the construction of the proposed additions to the existing structure as described in the PROPOSED CONSTRUCTION section of this report. We should be contacted to review our recommendations when the final plans for the proposed construction have been completed. The following paragraphs present a summary of our findings and conclusions. • December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineer EXECUTIVE SUMMARY Subsurface conditions encountered in the exploratory borings for the proposed north condominium additions were similar. The subsurface conditions encountered in exploratory borings TH -1 thru TH -3 consisted of approximately 4 inches of asphalt underlain by roadbase to a depth of approximately 1 foot. Below the roadbase to the maximum depths explored of 13.0, 15.0, and 9.0 feet, the subsurface conditions consisted of dense to very dense, silty, non - expansive sand and gravel with scattered cobbles and boulders. Practical drill rig refusal was encountered on boulders in exploratory borings TH -1 thru TH -3 at depths of 12.5, 15.0 and 8.0 feet. Refer to the SUBSURFACE CONDITIONS of this report for additional details. 2. Subsurface conditions encountered in the exploratory borings for the proposed east condominium additions varied. Subsurface conditions encountered in exploratory boring TH -4 consisted of approximately 1 foot of topsoil underlain by existing fill to a depth of 10.0 feet. The existing fill is characterized by medium dense to very dense, silty, gravelly sand. Below the existing fill to the maximum depth explored of 15.0 feet the subsurface conditions consisted of dense to very dense, gravelly, silty, non - expansive, sand with scattered cobbles and boulders. The subsurface conditions encountered in exploratory boring TH -5 consisted of existing fill to a depth of 3.0 feet underlain by dense to very dense, gravelly, silty, non - expansive sand with scattered cobbles and boulders to the maximum depth explored of 10.0 feet. The existing fill is characterized by medium dense to very dense, silty, gravelly sand. The subsurface conditions encountered in exploratory boring TH -6 consisted of existing fill to a depth of 3.0 feet underlain by dense to very dense, gravelly, silty, non- expansive sand with scattered cobbles and boulders to the maximum depth explored of 5.0 feet. The existing fill is characterized by medium dense to very dense, silty, gravelly sand. Practical drill rig refusal was encountered on a boulder in exploratory borings TH -4 thru TH -6 at depths of 15.0, 10.0, and 5.0 feet. Refer to the SUBSURFACE CONDITIONS section of this report for additional details. 3. Approximately 4 inches of flexible pavement underlain by 8 inches of roadbase was encountered in the area of proposed construction for the north condominium addition. Up to 10.0 feet of existing fill was encountered during this investigation in the area of the proposed east condominium additions. Because of the amount and type of fill, special 2 December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineer considerations should be taken into account when selecting a floor system and foundation system for the proposed additions. Refer to the EXISTING STRUCTURES, EXISTING FILL, FOUNDATIONS, and SLABS -ON- GRADE sections of this report for additional details. 4. At the time of this investigation, no free ground water was encountered in any of the exploratory borings to the maximum depth explored of 15.0 feet. Refer to the GROUND WATER section of this report for additional details. 5. We understand that the proposed construction for the north condominium additions will consist of a below grade parking garage and two residential towers on the east and west ends of the existing building. We understand that the proposed construction for the east condominium additions will consist of four pods at the west entryways for the existing structure. The proposed construction will also consist of an expansion to the east and west sides of the building. Refer to the PROPOSED CONSTRUCTION and EXISTING STRUCTURES sections of this report for additional details. 6. Due to the depths of the proposed excavations and the possibility that shoring may be required for the proposed construction, an additional investigation may be necessary. Refer to the ADDITIONAL INVESTIGATION section of this report for additional details. 7. Due to the soil conditions below the proposed additions, special construction requirements could be necessary for the foundation construction for the proposed additions. Refer to the EXISTING STRUCTURES, SHORING, and FOUNDATIONS section of this report for additional recommendations. 8. Based on the soil conditions below the proposed additions, we anticipate that the soils will safely support slabs -on -grade with a low risk of movement. Refer to the SLABS -ON -GRADE section of the report for additional recommendations. 9. Based on the subsurface conditions encountered in the exploratory borings, we anticipate that heavy -duty construction equipment will be required to complete the necessary excavations for the proposed additions. Refer to the EXCAVATIONS section of this report for additional recommendations. 3 December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer 10. Drainage around the proposed additions should be designed and constructed to provide for rapid removal of surface runoff and avoid concentration of water adjacent to foundation walls. Refer to the SURFACE DRAINAGE section of this report for additional details. 11. Based on the subsurface soil profile and our experience with subsurface conditions in the immediate area, this site has a seismic site classification of Site Class C. Refer to the SEISMICITY section of this report for additional details. 12. The potential for radon gas is a concern in the area. Refer to the RADON section of this report for additional recommendations. 13. The potential for mold is a concern for new construction. Refer to the MOLD section of this report for additional recommendations. SITE CONDITIONS The site of the proposed additions will be located at Lion Square Lodge and Condominiums, located at 660 Lionshead Plaza, in Vail, Colorado. The following paragraphs present site specific conditions for the proposed additions. North Condominium - Residential Additions The site of the proposed north condominium residential additions will be located on the east and west sides of the existing building. At the time of this investigation, the east side of the site is occupied by an existing mechanical room. The west side of the site is occupied by landscaping and asphalt. The overall site is occupied by Lion Square North Condominiums existing building and parking 4 December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer lot. The north condominium site is fairly level with a slight drop to the south of approximately 3 percent. Vegetation in the area of the proposed north condominium additions consisted of grass and trees. North Condominium - Parking Garage Addition The site of the proposed north condominium parking garage addition will be located in the existing parking lot on the north side of the existing Lion Square North Condominium Building. The existing parking lot is currently paved with flexible asphalt. The north condominium parking garage site is fairly level with a slight drop to the south of approximately 3 percent. There is no vegetation • present in the area of the proposed north condominium parking garage addition. East Condominium Additions The site of the proposed east condominium additions will be located on the entire existing Lion Square Lodge and Condominiums lot. Four pod additions will be constructed at the west entrances of the existing building. Landscaping around the entrances consists of grass, shrubbery, and trees. The entire building will be extended on both east and west sides by 4 to 6 feet. Landscaping around the entire building consists of grass, shrubbery, and trees. Currently the east condominium site is occupied by Lion Square Lodge and Condominiums, associated parking garages, and landscaping. The east condominium site is fairly 5 December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer level. Vegetation in the area of the proposed east condominium additions consisted of grass, weeds, shrubbery, and trees. PROPOSED CONSTRUCTION At the time of our investigation, a site plan showing the location and layout of the proposed additions was provided by the architect. Based on the site plan and conversations with the architect, we understand that there will be additions to the north building and the east building of the Lion Square Lodge and Condominiums. The following paragraphs present additional details regarding the proposed additions. North Condominium - Residential Additions We understand that the north condominium residential additions will be constructed on the west and east sides of the existing building. Based on the site plan and conversations with the architect, we understand that the construction for the north condominium residential additions will consist of two residential towers constructed on the west and east ends of the existing building. We understand that the additions will be six - stories in height with no below grade areas. We anticipate excavations of up to 4 feet for the additions. We anticipate that the additions will be of cast -in -place concrete, masonry, and structural steel construction with slab -on -grade floors. Anticipated structural loads are assumed to be those associated with medium - weight commercial construction. • December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer North Condominium - Parking Garage Addition We understand that a below grade parking garage will be constructed in the area of the existing north condominium parking area. We understand that the parking garage will consist of a below grade level with an exposed above grade level. We anticipate excavations of up to 14.0 feet for the below grade parking structure may be required. The north condominium parking garage addition will most likely be of cast -in -place concrete and structural steel construction with slab- on -grade floors. Anticipated structural loads are assumed to be those associated with medium - weight commercial construction. East Condominium Additions We understand that the east condominium additions will consist of four pod additions constructed at the west entrances of the existing building. We anticipate that the pod additions will be three stories in height with an elevator and a below grade area. We anticipate that the below grade area will be constructed adjacent to the south portion of the existing building that has an existing below grade area. We also understand that the existing building will be expanded by 6.0 feet on the east side and 5.0 feet on the west side. The expansion will extend the full height of the existing building including any below grade areas. We understand that excavation depths for the proposed east condominium 7 December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer additions could be up to 10.0 feet in depth. The proposed east condominium additions will most likely be of cast -in -place concrete, masonry, and structural steel construction, with slab -on -grade floors. Anticipated structural loads are those associated with medium - weight commercial construction. INVESTIGATION Subsurface conditions for the proposed additions were investigated at the two sites on November 1 and 21, 2005 by drilling six exploratory borings with a 4 -inch diameter continuous flight power auger mounted on a truck drill rig at the approximate locations shown in the Locations of Exploratory Borings, Fig. 2. An engineer from our office was on the sites during our field investigation to supervise the drilling of the exploratory borings and to visually classify and document the subsurface soil and ground water conditions. The engineer also obtained representative samples of the soils encountered within the exploratory borings to be examined in our laboratory. A description of the subsurface soils encountered in the exploratory borings is shown in the Logs of Exploratory Borings, Figs. 3 and 4; and in the Legend of Exploratory Borings, Fig. 5. The laboratory investigation included a visual classification of all samples and testing of selected samples obtained from the exploratory borings to determine their natural moisture content, natural dry density, and gradation properties. The results of the laboratory testing are presented in the Logs of Exploratory Borings, Figs. 3 and 4; in the N. December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer Gradation Test Results, Figs. 6 thru 8; and in the Summary of Laboratory Test Results, Table I. ADDITIONAL INVESTIGATION We understand that the north condominium and east condominium additions will be constructed with below grade areas. At the time of our investigation, the subsurface investigation was conducted with a 4 -inch solid stem continuous flight power auger. We encountered practical drill rig refusal on boulders in all of our exploratory borings at depths varying between 5.0 and 15.0 feet. If excavations for the proposed additions will extend below a depth of 15.0 feet, and shoring is required, additional investigation of these sites may be required. The additional investigation would provide additional data to the shoring contractor regarding subsurface conditions and will help to verify whether ground water will adversely affect construction of the additions. If an additional investigation is required, the investigation should be conducted with an ODEX drill rig system that is able to penetrate cobbles and boulders. SUBSURFACE CONDITIONS The subsurface conditions encountered in the exploratory borings drilled for the north condominium proposed additions were similar. However, the subsurface conditions encountered in the proposed east condominium additions varied. The E December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer following paragraphs present detailed descriptions of the subsurface conditions for the additions. North Condominium - Residential and Parking Garage Addition The subsurface conditions encountered in exploratory borings TH -1, TH -2, and TH -3 drilled in the area of the proposed north condominium residential addition and parking garage addition were similar. The subsurface conditions encountered in the exploratory borings consisted of approximately 4 inches of asphalt underlain by roadbase to depths of approximately 1 foot. Below the roadbase to the maximum depth explored of 15.0 feet, the subsurface conditions • consisted of brown, white, dry to very moist, dense to very dense, non - expansive, silty sand and gravel with scattered cobbles and boulders. Practical drill rig refusal was encountered on boulders in the exploratory borings at depths of 13.0, 15.0, and 8.0 feet. The subsurface conditions encountered for this project were consistent with soils encountered at an adjacent project. The subsurface conditions encountered for an adjacent project consisted of silty sands and gravels with pockets of sand, and scattered cobbles and boulders to the maximum depth explored of 60.0 feet. 10 December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineer At the time of this investigation, no free ground water was encountered in any of the exploratory borings to the maximum depth explored of 15.0 feet. Refer to the GROUND WATER section of this report for additional details. ' East Condominium Additions The subsurface conditions encountered in exploratory borings TH -4, TH -5 and TH -6 consisted of approximately 0 to 1 foot of topsoil underlain by existing fill to varying depths of 3.0 to 10.0 feet. The existing fill was characterized by brown, red - brown, tan, moist to very moist, medium dense to very dense, silty, sandy gravel. Below the existing fill to the maximum depth explored of 15.0 feet, the subsurface conditions consisted of red - brown, moist to wet, dense to very dense, gravelly, silty sand. Practical drill rig refusal was encountered on boulders in all of the exploratory borings at varying depths of 15.0, 10.0, and 5.0 feet. The subsurface conditions encountered for this project were consistent with soils encountered at an adjacent project. The subsurface conditions encountered for an adjacent project consisted of silty sands and gravels with pockets of sand and scattered cobbles and boulders to the maximum depth explored of 60.0 feet. • 11 December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineer At the time of this investigation ground water was not encountered in the exploratory borings to the maximum depth explored of 15.0 feet. Refer to the GROUND WATER section of this report for additional details. RADON In recent years, radon gas has become a concern. Radon gas is a colorless, odorless gas that is produced by the decay of minerals in soil and rock. The potential for radon gas in the subsurface strata is likely. We anticipate that the east condominium and north condominium parking garage will be constructed with below grade areas or under floor space. We recommend that all below grade areas and under floor spaces be constructed with a below grade ventilation system. MOLD In recent years, mold has become a concern. Mold tends to grow in areas that are dark and damp, such as under floor spaces, below grade areas, or bathrooms. Recommendations for mold prevention, mitigation, or remediation are outside the scope of this investigation. We recommend that the contractor and/or owner contact a Professional Industrial Hygienist to provide specific recommendations for the prevention and/or remediation of mold. 12 December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineer EXISTING STRUCTURES We understand that portions of the existing structures will be demolished in order to construct the proposed additions. The following paragraphs present additional recommendations for construction adjacent to existing structures. North Condominium - Residential Additions We anticipate that the excavations for the north condominium residential tower additions will consist of construction of new foundations adjacent to the existing footings. We do not anticipate the existing footings adversely affecting the construction of the proposed addition footings. North Condominium - Parking Garage Addition We anticipate that the excavations for the north condominium parking garage addition will consist of a below grade area adjacent to the existing building, which is constructed at grade. Excavation for new footings adjacent to existing footings may cause undercutting of the soils beneath the existing footings. The loss of support could result in settlement of the existing footings. Excavations for foundations adjacent to existing structures should be performed with care. The excavation should be made so that existing foundations and floor slabs are not undermined. Excavations adjacent to existing structures should be excavated at a 1 to 1 slope (Horizontal to Vertical) in order to minimize the risk of 13 December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer differential settlement between foundation elements. In addition, the existing foundations may require underpinning. When structural plans have been completed, we recommend that an excavation plan be prepared which addresses the construction of new below grade footings adjacent to existing shallow footings. East Condominium Additions We understand that the east condominium additions will be constructed with and without below grade areas, depending on the existing building. Due to the depth of the excavation for the below grade areas and the proximity of the excavation to the existing footings, we recommend that when final plans have been developed, an excavation plan be prepared that minimizes the influence of the excavation on adjacent foundations. Excavation for new footings adjacent to existing footings may cause undercutting of the soils beneath the existing footings. The loss of support could result in settlement of the existing footings. Excavations for foundations adjacent to existing structures should be performed with care. The excavation should be made so that existing foundations and floor slabs are not undermined. Excavations adjacent to existing structures should be excavated at a 1 to 1 slope (Horizontal to Vertical) in order to minimize the risk of differential settlement between foundation elements. In addition, the existing foundations may require underpinning. When structural plans have been 14 • December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer completed, we recommend that an excavation plan be prepared which addresses the construction of new below grade footings adjacent to existing shallow footings. EXISTING FILL Based on the subsurface conditions encountered in our exploratory borings, existing fill was encountered at various depths below the proposed additions. The following paragraphs present the extent of the fill and how the fill may affect the design and construction of the proposed additions. North Condominium - Residential Additions Existing fill was encountered in the exploratory borings in the area of the proposed residential additions to a depth of 1.0 foot. Based on the subsurface conditions encountered in the area of the proposed north condominium residential additions, we do not anticipate that existing fill will be encountered in the excavation for the proposed north condominium residential additions. Therefore, we do not anticipate that the existing fill will adversely affect the design and construction of the north condominium residential additions foundations. However, the existing fill may affect the construction of the slabs -on- grade. Refer to the FOUNDATIONS and SLABS -ON -GRADE sections of this report for additional details. 15 C] December 14, 2005 Job No. 05 -190 KOECHLEIN CONSUL TING ENGINEERS, INC. Consulting Geotechnical Engineer North Condominium - Parking Garage Addition Existing fill was encountered in the exploratory borings in the area of the proposed garage addition to a depth of 1.0 foot. Based on the subsurface conditions encountered in the area of the proposed north condominium parking garage addition, we do not anticipate that existing fill will be encountered in the excavation for the proposed north condominium parking garage addition foundations. Therefore, we do not anticipate that the existing fill will adversely affect the design and construction of the north condominium parking garage addition. Refer to the FOUNDATIONS and SLABS -ON -GRADE sections of this report for additional details. East Condominium Additions Existing fill was encountered in our exploratory borings in the area of the proposed east condominium additions to varying depths of 3.0 to 10.0 feet. Based on the subsurface conditions encountered in the exploratory borings in the area of the proposed east condominium additions, we anticipate that existing fill will be encountered to depths of up to 10.0 feet. However, based on conversations with the architect, we understand that the footings for the proposed additions will be constructed at the same elevations as the existing footings. Therefore, we do not anticipate that the existing fill will adversely affect the 16 December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer design and construction of the east condominium additions foundations. However, the existing fill may affect the construction of the slabs -on- grade. Refer to the FOUNDATIONS and SLABS -ON -GRADE section of this report for additional recommendations. GROUND WATER We understand that the proposed north condominium residential additions will not be constructed with a below grade area. Based on the site plan and conversations with the architect, we understand that the north condominium garage addition and the proposed east condominium additions will be constructed with below grade areas or under floor space. The following paragraphs present additional details regarding the ground water influence on the proposed construction. North Condominium - Residential Additions We anticipate excavation depths of up to 4 feet for the proposed additions. Ground water was not encountered in exploratory borings TH -1, TH -2, and TH -3 to the maximum depth explored of 15.0 feet. Therefore, we do not anticipate that ground water will adversely influence construction of the north condominium residential additions. However, this investigation was conducted during a dry time of year and ground water levels can fluctuate during different times of the year such as spring runoff. If ground water is encountered in the 17 December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer excavation for the proposed construction, we should be contacted for recommendations at that time. North Condominium - Parking Garage Addition We anticipate excavation depths of up to 14 feet for the proposed parking garage addition. Ground water was not encountered in exploratory borings TH -1, TH -2, and TH -3 to the maximum depth explored of 15.0 feet. Therefore, we do not anticipate that ground water will adversely influence construction of the north condominium parking garage addition. However, this investigation was conducted during a dry time of year and ground water levels can fluctuate during different times of the year such as spring runoff. If ground water is encountered in the excavation for the proposed construction, we should be contacted for recommendations at that time. East Condominium Additions We anticipate excavation depths of up to 10 feet for the proposed east condominium additions. No free ground water was encountered in exploratory borings TH -4, TH -5, and TH -6 to the maximum depth explored of 15.0 feet. Therefore, we do not anticipate that ground water will adversely influence construction of the proposed east condominium additions. If ground water is rV December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer encountered during excavation for the proposed east condominium additions, we should be contacted for specific recommendations at that time. EXCAVATIONS We anticipate that the subsurface conditions for the proposed additions will vary. The following paragraphs present the anticipated soil conditions and excavation concerns with the proposed additions. North Condominium - Residential Additions We anticipate the subsurface soils at the north condominium foundation elevation will consist of the natural sand and gravel. Based on the proposed plans and the existing topography, we anticipate that excavations of up to 4 feet will be required for the north condominium residential additions. In our opinion, heavy- duty construction equipment will be required to complete the necessary excavations in the natural, sand and gravel. Care needs to be exercised during construction so that all excavation slopes remain stable. In our opinion, the natural sand and gravel in this portion of the site classify as Type B soils in accordance with OSHA. OSHA regulations should be followed in any excavations or cuts. 19 December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer North Condominium - Parking Garage Addition We anticipate the subsurface soils at the north condominium parking garage foundation elevation will consist of the natural sand and gravel. Based on the proposed plans and the existing topography, we anticipate that excavations of up to 14 feet will be required for the north condominium parking garage addition. Due to the depth of the excavation and the proximity of the excavation to existing footings, we anticipate that shoring may be required. Refer to the SHORING section of this report for additional details. In our opinion, heavy -duty construction equipment will be required to complete the necessary excavations in the natural sand and gravel. Care needs to be exercised during construction so that all excavation slopes remain stable. In our opinion, the natural sand and gravel in this portion of the site classify as Type B soils in accordance with OSHA. OSHA regulations should be followed in any excavations or cuts. East Condominium Additions We anticipate that the natural silty sand and/or sand and gravel will be present at the foundation elevation for the proposed north condominium addition. Due to the existing structure having a below grade area on the south end and the remainder of the building being constructed at grade, the depth of the foundation excavation could vary. We anticipate that excavations of up to 10 feet in depth 20 C7 December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer could be required for construction of the proposed east condominium additions. Based on the subsurface conditions encountered within the borings, we anticipate that these excavations will be in the existing gravel fill, natural silty sand, or sand and gravel with cobbles and boulders. Due to the depth of the excavation and the proximity to existing footings, we anticipate that shoring may be required. Refer to the SHORING section of this report for additional details. In our opinion, heavy -duty construction equipment will be required to complete the necessary excavations in the existing gravel fill, natural silty sand, and natural sand and gravel. Care needs to be exercised during construction so that all excavation slopes remain stable. In our opinion, the natural sand and gravel, silty sand, and existing gravel fill encountered in this portion of the site classify as Type B soils in accordance with OSHA. OSHA regulations should be followed in any excavations or cuts. SHORING Due to the anticipated depth of excavation and proximity to existing foundations for the proposed north condominium and east condominium additions, shoring of the excavation may be required. 21 December 14, 2005 isJob No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer North Condominium - Residential Additions We anticipate that excavation depths for the residential towers will be up to 4 feet. Therefore, we do not anticipate that shoring will be necessary for the proposed north condominium residential additions. North Condominium - Parking Garage Addition We anticipate that the parking garage addition constructed adjacent to the existing building will require excavations of up to 14 feet in depth. Therefore, we anticipate that the excavation may require shoring and the existing foundations for the north condominium may need to be reinforced or underpinned. If a shoring system is necessary, we recommend a contractor specializing in shoring be contacted for design recommendations and construction of the shoring. Due to the difficult drilling conditions we were unable to investigate the subsurface conditions below 15.0 feet. If the excavation depths extend below 14 feet and/or shoring is required, additional subsurface information may be necessary. The additional investigation would provide the necessary data to the shoring contractor regarding subsurface conditions and will help to verify whether ground water will adversely affect construction of the proposed parking garage addition. Refer to the ADDITIONAL INVESTIGATION section of this report for additional information. 22 December 14, 2005 Job No. 05 -190 • East Condominium Additions KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer We understand that the existing building has a below grade area for the south quarter of the existing building. Additions constructed in these areas will also be constructed with below grade areas. The northern three- quarters of the existing building are constructed at grade. Additions constructed in this portion of the building will also be constructed at grade with no below grade areas. Based on the depth of the proposed construction, the proximity to the existing building, and the varied foundation depths of the existing building, we anticipate that the excavation cuts may require shoring. We also anticipate that the existing foundations may need to be reinforced or underpinned. If a shoring system is necessary, we recommend a contractor specializing in shoring be contacted for design recommendations and construction of the shoring. Due to the difficult drilling conditions, we were unable to investigate the subsurface conditions below 15.0 feet. If the excavation depths extend below 14 feet and/or shoring is required, additional subsurface information may be necessary. The additional investigation would provide the necessary data to the shoring contractor regarding subsurface conditions and will help to verify whether ground water will adversely affect construction of the proposed east condominium additions. Refer to the ADDITIONAL INVESTIGATION section of this report for additional information. 23 December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineer SEISMICITY Based on our experience with subsurface conditions in this immediate area, it is our opinion that the soil profile for the natural soils and bedrock at this site would classify as stiff soil, in accordance with the 2003 International Building Code (IBC). Based on this classification, it is our opinion that the subject site has a seismic site classification of Site Class C. FOUNDATIONS Based on the subsurface conditions encountered in our exploratory borings, the subsurface soils at the foundation elevations for the proposed additions varied. The • following paragraphs present our foundation design and construction recommendations for the proposed additions. North Condominium - Residential Additions We anticipate the subsurface soils at the foundation elevation for the north condominium residential additions will consist of natural sands and gravels. In our opinion the natural sands and gravels will safely support a spread footing foundation system for the proposed north condominium residential additions. Spread footings for the proposed north condominium residential additions should be designed and constructed to meet the following criteria: 24 December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineer 1. Footings should be supported by the undisturbed, natural sands and gravels or properly moisture conditioned and compacted fill, as described below in Items 6, 9, and 10. 2. Spread footings may be designed for a maximum allowable soil bearing pressure 3,000 psf for foundations constructed on the natural sands and gravels. 3. Spread footings constructed on the natural soils may experience up to 0.5 inch of differential movement between foundation elements. Because the soils are granular in nature, we anticipate that the majority of the differential settlement will occur during construction. 4. Wall footings and foundation walls should be designed to span a distance of at least 10.0 feet in order to account for anomalies in the soil or compacted fill. 5. Column footings should have a minimum dimension of 24 inches square and continuous wall footings should have a minimum width of 16 inches. Footing widths may be greater to accommodate structural design loads. 6. Foundation wall backfill should not be considered for support of load bearing footings. Footings should be stepped and supported by undisturbed natural sand and gravel and should not be constructed on foundation wall backfill. Foundation walls or grade beams should be designed to span across an excavation backfill zone and should not be constructed with footings within this zone. 7. We anticipate that differential movement of up to 0.5 inches may occur between existing foundation elements and new foundation elements. Due to the granular nature of the soil, we anticipate that this settlement will occur during construction. 8. Excavation for foundations adjacent to existing structures should be performed with care. The excavation should be made so that existing foundations and floor slabs are not undermined. Excavations adjacent to existing structures should be excavated at a 1 to 1 slope (Horizontal to Vertical). Refer to Foundation Excavation Recommendations, Fig. 9. 25 December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. 40 Job No. 05 -190 Consulting Geotechnical Engineer 9. We anticipate that cobbles and boulders will be encountered at the foundation elevation. Removal of the cobbles and boulders may result in depressions and rough bottoms in the excavation. The resulting depressions can be backfilled with compacted backfill or lean concrete. Refer to the COMPACTED FILL section of this report for backfill requirements. 10. Fill should be placed and compacted as outlined in the COMPACTED FILL section of this report. We recommend that a representative of our office observe and test the placement and compaction of structural fill used in foundation construction. It has been our experience that without engineering quality control, inappropriate construction techniques occur, which result in unsatisfactory foundation performance. 11. We recommend that a representative of our office observe the completed foundation excavation. Variations from the conditions described in this report, which were not indicated by our borings, can occur. The representative can observe the excavation to IVevaluate the exposed subsurface conditions. North Condominium - Parking Garage Addition We anticipate the subsurface soils at the foundation elevation for the north condominium below grade parking garage addition will consist of natural sands and gravels. In our opinion the natural sands and gravels will safely support a spread footing foundation system for the proposed north condominium parking garage addition. Spread footings for the proposed north condominium parking garage addition should be designed and constructed to meet the following criteria: 26 December 14, 2005 • Job No. 05-190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer 1. Footings should be supported by the undisturbed, natural sands and gravels or properly moisture conditioned and compacted fill, as described below in Items 6, 8, and 9. 2. Spread footings may be designed for a maximum allowable soil bearing pressure 4,500 psf for foundations constructed on the natural sands and gravels. 3. Spread footings constructed on the natural soils may experience up to 0.5 inch of differential movement between foundation elements. Because the soils are granular in nature, we anticipate that the majority of the differential settlement will occur during construction. 4. Wall footings and foundation walls should be designed to span a distance of at least 10.0 feet in order to account for anomalies in the soil or compacted fill. 5. Column footings should have a minimum dimension of 24 inches square and continuous wall footings should have a minimum width 40 of 16 inches. Footing widths may be greater to accommodate structural design loads. • 6. Foundation wall backfill should not be considered for support of load bearing footings. Footings should be stepped and supported by undisturbed natural sand and gravel and should not be constructed on foundation wall backfill. Foundation walls or grade beams should be designed to span across an excavation backfill zone and should not be constructed with footings within this zone. 7. Excavation for foundations adjacent to existing structures should be performed with care. The excavation should be made so that existing foundations and floor slabs are not undermined. Excavations adjacent to existing structures should be excavated at a 1 to 1 slope (Horizontal to Vertical). Refer to Foundation Excavation Recommendations, Fig. 9. 8. We anticipate that cobbles and boulders will be encountered at the foundation elevation. Removal of the cobbles and boulders may result in depressions and rough bottoms in the excavation. The resulting depressions can be backfilled with compacted backfill or 27 December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineer lean concrete. Refer to the COMPACTED FILL section of this report for backfill requirements. 9. Fill should be placed and compacted as outlined in the COMPACTED FILL section of this report. We recommend that a representative of our office observe and test the placement and compaction of structural fill used in foundation construction. It has been our experience that without engineering quality control, inappropriate construction techniques occur which result in unsatisfactory foundation performance. 10. We recommend that a representative of our office observe the completed foundation excavation. Variations from the conditions described in this report, which were not indicated by our borings, can occur. The representative can observe the excavation to evaluate the exposed subsurface conditions. East Condominium Additions We anticipate the subsurface soils at the foundation elevation for the east condominium additions will consist of the existing gravel fill, natural silty sands, or natural sands and gravels. The existing fill is not suitable for construction of foundations and must be removed prior to construction of the new foundations. In our opinion the natural silty sands or sands and gravels will safely support a spread footing foundation system for the proposed east condominium additions. Spread footings for the proposed east condominium additions should be designed and constructed to meet the following criteria: W. December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineer 1. Footings should be supported by the undisturbed, natural silty sands or sands and gravels or properly moisture conditioned and compacted fill, as described below in Items 6, 9, and 10. 2. Spread footings may be designed for a maximum allowable soil bearing pressure 3,000 psf for foundations constructed on the natural silty sands or sands and gravels. 3. Spread footings constructed on the natural soils may experience up to 0.5 inch of differential movement between foundation elements. Because the soils are granular in nature, we anticipate that the majority of the differential settlement will occur during construction. 4. Wall footings and foundation walls should be designed to span a distance of at least 10.0 feet in order to account for anomalies in the soil or compacted fill. 5. Column footings should have a minimum dimension of 24 inches square and continuous wall footings should have a minimum width cr of 16 inches. Footing widths may be greater to accommodate structural design loads. • 6. Foundation wall backfill should not be considered for support of load bearing footings. Footings should be stepped and supported by undisturbed natural silty sands or sands and gravels and should not be constructed on foundation wall backfill. Foundation walls or grade beams should be designed to span across an excavation backfill zone and should not be constructed with footings within this zone. 7. Excavation for foundations adjacent to existing structures should be performed with care. The excavation should be made so that existing foundations and floor slabs are not undermined. Excavations adjacent to existing structures should be excavated at a 1 to 1 slope (Horizontal to Vertical). Refer to Foundation Excavation Recommendations, Fig. 9. 8. We anticipate that differential movement of up to 0.5 inches may occur between existing foundation elements and new foundation 29 December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineer elements. Due to the granular nature of the soil, we anticipate that this settlement will occur during construction. 9. We anticipate that cobbles and boulders will be encountered at the foundation elevation. Removal of the cobbles and boulders may result in depressions and rough bottoms in the excavation. The resulting depressions can be backfilled with compacted backfill or lean concrete. Refer to the COMPACTED FILL section of this report for backfill requirements. 10. Fill should be placed and compacted as outlined in the COMPACTED FILL section of this report. We recommend that a representative of our office observe and test the placement and compaction of structural fill used in foundation construction. It has been our experience that without engineering quality control, inappropriate construction techniques occur which result in unsatisfactory foundation performance. 11. We recommend that a representative of our office observe the completed foundation excavation. Variations from the conditions (aw described in this report, which were not indicated by our borings, can occur. The representative can observe the excavation to evaluate the exposed subsurface conditions. SLABS-ON-GRADE We anticipate that the soils at the slab -on -grade elevation for the proposed additions will consist of existing fill or the natural sands and gravels. Due to the nature and extent of the existing fill special considerations should be taken into account for construction of slabs -on -grade for the proposed additions. The following paragraphs present construction options for slabs -on -grade at this site for each addition. 30 December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer North Condominium - Residential Additions Based on the subsurface conditions anticipated in the area of the north condominium residential additions, we anticipate that existing fill and/or natural sands and gravels with scattered cobbles and boulders will be encountered at the floor slab elevation. The existing fill is not suitable for construction of slabs -on- grade and must be removed prior to construction. Slabs -on -grade could be constructed on the natural sands and gravels or properly moisture conditioned and compacted fill with a low risk of movement. Slabs -on -grade for the north condominium residential additions should be designed and constructed to meet the following recommendations: 1. Slabs -on -grade may be constructed on the natural sands and gravels or properly moisture conditioned and compacted structural fill. 2. A modulus of subgrade reaction of 200 psi/in may be used in the design of slabs -on -grade constructed on the natural sands and gravels or newly compacted structural fill. 3. Slabs should be separated from exterior walls and interior bearing members. Vertical movement of the slabs should not be restricted. 4. Slab- bearing partitions should be minimized. Where such partitions are necessary, a slip joint should be constructed to allow free vertical movement of the partitions 5. Exterior slabs should be separated from the addition. These slabs should be reinforced to function as independent units. Movement of these slabs should not be transmitted directly to the foundations or walls of the structures. 31 December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineer 6. Heating and air conditioning systems supported by slabs should be provided with flexible connections so that slab movement is not transmitted to duct work. 7. Frequent control joints should be provided in all slabs to reduce problems associated with shrinkage. 8. Fill beneath slabs -on -grade may consist of an approved imported non - expansive structural fill. Fill should be placed and compacted as recommended in the COMPACTED FILL section of this report. Placement and compaction of fill beneath slabs should be observed and tested by a representative of our office. North Condominium - Parking Garage Addition Based on the subsurface conditions anticipated in the area of the north condominium parking garage addition, we anticipate that natural sands and gravels with scattered cobbles and boulders will be encountered at the floor slab elevation. Slabs -on -grade could be constructed on the natural sands and gravels or properly moisture conditioned and compacted fill with a low risk of movement. Slabs -on -grade for the north condominium parking garage addition should be designed and constructed to meet the following recommendations: 1. Slabs -on -grade may be constructed on the natural sands and gravels or properly moisture conditioned and compacted structural fill. 2. A modulus of subgrade reaction of 275 psi /in may be used in the design of slabs -on -grade constructed on the natural sands and gravels or newly compacted structural fill. 32 December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineer 3. Slabs should be separated from exterior walls and interior bearing members. Vertical movement of the slabs should not be restricted. 4. Slab - bearing partitions should be minimized. Where such partitions are necessary, a slip joint should be constructed to allow free vertical movement of the partitions 5. Exterior slabs should be separated from the addition. These slabs should be reinforced to function as independent units. Movement of these slabs should not be transmitted directly to the foundations or walls of the structures. 6. Frequent control joints should be provided in all slabs to reduce problems associated with shrinkage. 7. Fill beneath slabs -on -grade may consist of an approved imported non - expansive structural fill. Fill should be placed and compacted as recommended in the COMPACTED FILL section of this report. Placement and compaction of fill beneath slabs should be observed and tested by a representative of our office. East Condominium Additions Based on the subsurface conditions encountered in the exploratory borings in the area of the proposed east condominium additions, we anticipate that the subsurface conditions will consist of the existing fill, natural silty sands, or sands and gravels. Because of the nature and extent of the existing fill we anticipate that slabs -on -grade constructed directly on the existing fill will have a moderate risk of movement. If the owner is not willing to assume a moderate risk of movement, the slabs -on -grade should be constructed on the natural silty sands, sands and gravels, or properly moisture conditioned and compacted new structural 33 • December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer fill. Slabs -on -grade for the east condominium additions should be designed and constructed to meet the following recommendations: Slabs -on -grade should be constructed on the natural silty sands, sands and gravels, or properly moisture conditioned and compacted structural fill. 2. A modulus of subgrade reaction of 200 psi /in may be used in the design of slabs -on -grade constructed on the natural silty sands, sands and gravels, or newly compacted structural fill. 3. Slabs should be separated from exterior walls and interior bearing members. Vertical movement of the slabs should not be restricted. 4. Slab - bearing partitions should be minimized. Where such partitions are necessary, a slip joint should be constructed to allow free vertical movement of the partitions Exterior slabs should be separated from the addition. These slabs should be reinforced to function as independent units. Movement of these slabs should not be transmitted directly to the foundations or walls of the structures. 6. Heating and air conditioning systems supported by slabs should be provided with flexible connections so that slab movement is not transmitted to duct work. 7. Frequent control joints should be provided in all slabs to reduce problems associated with shrinkage. Fill beneath slabs -on -grade may consist of an approved imported non- expansive structural fill. Fill should be placed and compacted as recommended in the COMPACTED FILL section of this report. Placement and compaction of fill beneath slabs should be observed and tested by a representative of our office. 34 December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineer FOUNDATION DRAINAGE Surface water tends to flow through relatively permeable backfill typically found adjacent to foundations. The water that flows through the fill collects on the surface of relatively impermeable soils occurring at the foundation elevation. Both this surface water and possible ground water can cause wet or moist below grade conditions after construction. Since we anticipate that the proposed north condominium residential additions will not be constructed with a below grade area, it is our opinion that a foundation drain will not be necessary for this addition. However, we understand that the proposed north condominium parking garage and the east condominium additions will be constructed with below grade areas. We recommend that foundation drains be constructed around the below grade areas for these additions. The drains may consist of a manufactured drain system and gravel. The gravel should have a maximum size of 1.5 inches and have a maximum of 3 percent passing the No. 200 sieve. Concrete aggregate will be satisfactory for the drainage layer. The manufactured drain should extend from the bottom of the foundation wall up 2 feet of the wall. The drain pipe should be sloped so that water flows to a sump where the water can be removed by pumping, or to a positive gravity outlet. Recommended details for a typical wall drain are presented in the Typical Wall Drain Detail, Fig. 10. 35 December 14, 2005 Job No. 05 -190 LATERAL WALL LOADS KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer We anticipate below grade walls that require lateral earth pressures will be constructed for this project. Lateral earth pressures depend on the type of backfill and the height and type of wall. Walls, which are free to rotate sufficiently to mobilize the strength of the backfill, should be designed to resist the "active" earth pressure condition. Walls that are restrained should be designed to resist the "at rest" earth pressure condition. The following table presents the lateral wall pressures that may be used for design. Earth Pressure Condition Equivalent Fluid Pressure' cf) Active 35 At -rest 50 Passive 300 Notes: 1. Equivalent fluid pressures are for a horizontal backfill condition with no hydrostatic pressures or live loads. 2. A coefficient of friction of 0.5 may be used at the base of spread footings to resist lateral wall loads. Backfill placed behind or adjacent to foundation walls should be placed and compacted as recommended in the COMPACTED FILL section of this report. Placement and compaction of the fill should be observed and tested by a representative of our office. 36 December 14, 2005 KOECHLEIN CONSULTING ENGINEERS, INC. Job No. 05 -190 Consulting Geotechnical Engineer RETAINING WALLS Due to the excavation depths and the proposed construction, we anticipate that retaining walls may be constructed as part of the development of the subject site. If retaining walls are planned at the subject site, foundations for retaining walls may be designed and constructed as recommended in the FOUNDATIONS —North Condominium - Residential Additions section of this report. Lateral earth loads for retaining wall designs are presented in the LATERAL WALL LOADS section of this report. In order to reduce the possibility of developing hydrostatic pressures behind retaining walls, a drain should be constructed adjacent to the wall. The drain may consist of a manufactured drain system and gravel. The gravel should have a maximum size of 1.5 inches and have a maximum of 3 percent passing the No. 200 sieve. Concrete aggregate will be satisfactory for the drainage layer. The manufactured drain should extend from the bottom of the retaining wall to within 2 feet of subgrade elevation. The water can be drained by a perforated pipe with collection of the water at the bottom of the wall leading to a positive gravity outlet. A typical detail for a retaining wall drain is presented in the Typical Retaining Wall Drain Detail, Fig. 11. SURFACE DRAINAGE Reducing the wetting of structural soils can be achieved by carefully planned and maintained surface drainage. We recommend the following precautions be observed 37 December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer during construction and maintained at all times during and after the construction is completed. 1. Wetting or drying of the open foundation excavations should be minimized during construction. 2. All surface water should be directed away from the top and sides of the excavations during construction. 3. The ground surface surrounding the exterior of the proposed additions should be sloped to drain away in all directions. We recommend a slope of at least 12 inches in the first 10 feet for landscaped areas adjacent to the proposed additions. 4. Hardscape (concrete and asphalt) should be sloped to drain away from the additions. We recommend a slope of at least 2 percent for all hardscape within 10 feet of the additions. 5. Backfill, especially around foundation walls, must be placed and (W compacted as recommended in the COMPACTED FILL section of this report. 6. Roof drains should discharge at least 10 feet away from foundation walls with drainage directed away from the additions. 7. Surface drainage for this site should be designed by a Professional Civil Engineer. IRRIGATION Irrigation systems installed next to foundation walls or sidewalks could cause consolidation of the existing fill and/or backfill below and adjacent to these areas. This can result in settling of exterior steps, patios, and/or sidewalks if they are constructed on these soils. Because of the consolidation potential of the existing fill at this site, we December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer strongly recommend using minimal irrigation for landscaping and planting vegetation that requires no irrigation. We recommend the following precautions be followed: 1. Do not install an irrigation system next to foundation walls or above retaining walls. The irrigation system should be at least 10 feet away from the additions or face of retaining walls. 2. Irrigation heads should be pointed away from the structures or in a manner that does not allow the spray to come within 5 feet of the additions or face of retaining walls. 3. The landscape around the irrigation system should be sloped so that no ponding occurs at the irrigation heads. 4. Install landscaping geotextile fabrics to inhibit growth of weeds and to allow normal moisture evaporation. We do not recommend the use of a plastic membrane to inhibit the growth of weeds. 5. Control valve boxes, for automatic irrigation systems, should be located at least 10 feet away from the structures and periodically checked for leaks and flooding. COMPACTED FILL Structural fill for this project may consist of existing on -site, gravel fill free of deleterious material, natural silty sands, sands and gravels, or approved imported structural fill. The imported fill may consist of non - expansive silty or clayey sands or gravels with up to 30 percent passing the No. 200 sieve and a maximum plasticity index of 10. No gravel or cobbles larger than 6 inches should be placed in fill areas. Fill areas should be stripped of all vegetation, existing fill, and loose soils, and then scarified, moisture treated, and compacted. Fill should be placed in thin loose lifts, moisture 39 December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer treated, and compacted as shown in the following table. The recommended compaction varies for the given use of the fill, as indicated in the following table. We recommend that a representative of our office observe and test the placement and compaction of each lift placed of structural fill. Fill below foundations, slab -on- grade floors, and exterior slabs -on -grade is considered structural. It has been our experience that without engineering quality control, inappropriate construction techniques can occur which result in unsatisfactory foundation and slab -on -grade performance. LIMITATIONS Although the exploratory borings were located to obtain a reasonably accurate determination of the foundation and subgrade conditions, variations in the subsurface conditions are always possible. Any variations that exist beneath the site generally become evident during demolition and removal of the existing foundations and excavation for the proposed additions. If excavation depths extend beyond 14.0 feet, M Recommended Compaction Use of Fill Percentage of the Standard Proctor Maximum Dry Density ASTM D -698 Percentage of the Modified Proctor Maximum Dry Density (ASTM D -1557) Below Structure Foundations 98 95 Below Slabs -On -Grade 95 90 Utility Trench Backfill 95 90 Backfill (Non - Structural) 90 90 Notes: 1. For clay soils, the moisture content should be 0 to +3 percent of the optimum moisture content. For granular soils the moisture content should be —2 to +2 of the optimum moisture content. We recommend that a representative of our office observe and test the placement and compaction of each lift placed of structural fill. Fill below foundations, slab -on- grade floors, and exterior slabs -on -grade is considered structural. It has been our experience that without engineering quality control, inappropriate construction techniques can occur which result in unsatisfactory foundation and slab -on -grade performance. LIMITATIONS Although the exploratory borings were located to obtain a reasonably accurate determination of the foundation and subgrade conditions, variations in the subsurface conditions are always possible. Any variations that exist beneath the site generally become evident during demolition and removal of the existing foundations and excavation for the proposed additions. If excavation depths extend beyond 14.0 feet, M December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer and/or shoring is required, an additional investigation may be required. Refer to the ADDITIONAL INVESTIGATION section of this report for additional details. A representative from our office must observe the completed excavations to confirm that the soils are as indicated by the exploratory borings and to verify our foundation and slab -on -grade recommendations. The placement and compaction of fill, as well as installation of foundations, should also be observed and/or tested. The design criteria and subsurface data presented in this report are valid for 3 years provided that a representative from our office observes the site at that time and confirms that the site conditions are similar to the conditions presented in the SITE CONDITIONS section of this report and that the recommendations presented in this report are still applicable. We recommend that final plans and specifications for proposed construction be submitted to our office for study, prior to beginning construction, to determine compliance with the recommendations presented in this report. 41 December 14, 2005 Job No. 05 -190 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineer We appreciate the opportunity to provide this service. If we can be of further assistance in discussing the contents of this report or in analyses of the proposed project from a geotechnical viewpoint, please contact our office. KOECHLEIN CONSULTING ENGINEERS, INC. Jay P. Skinner Engineer Reviewed by: Scott B. Myers, P.E. Senior Engineer (4 copies sent) 42 cS Ca9 - �µ APPROXIMATE SITE LOCATION KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineers Qota:o P'On ` , Red Sandstone Elementary School -- t ,..1.70 Exit 176 nPa d Cir rr Forest Rd do VICINITY MAP NOT TO SCALE JOB NO. 05 -190 FIG. 1 x \\ X11 % I 1 j' 1 ' I 1 I ANTLERS CONDOMINIUMS J06110.05-190 NOECHLEIN CONSULTING ENGINEERS, INC. C —ulling Geoteehniwi Engineers OLD GONDOLA r' ?'. BUILDING r -� - PROPOSED - EAST ADDITIONS T (TYP) - TH.S ! TH-4 I LION SQUARE y ti EAST CONDOMINIUMS LOCATIONS OF EXPLORATORY BORINGS MO.2 \F PROPOSE PROPOSED BELOW GRADE NORTH PARKING ADDITION ADDITION , TH -2 TH-1 TH -3' j PROPOSED f NORTH'. LION SQUARE ADDITI�`N NORTH CONDOMINIUMS NOECHLEIN CONSULTING ENGINEERS, INC. C —ulling Geoteehniwi Engineers OLD GONDOLA r' ?'. BUILDING r -� - PROPOSED - EAST ADDITIONS T (TYP) - TH.S ! TH-4 I LION SQUARE y ti EAST CONDOMINIUMS LOCATIONS OF EXPLORATORY BORINGS MO.2 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineers 90 N��"� °:� 90 sad t3: f- m w r w m LL 85 85 D z O O z > -n w m -1 m w 80 80 J --q 75 75 70 70 65 65 LOGS OF EXPLORATORY BORINGS JOB NO. 05 -190 FIG. 3 TH -3 TH -2 APP.EL.105.0 TH -1 APP.EL.104.0 105 APP.EL.103.0 105 Q� d p Y3� bad �a WC =4 100 50/5 Q6 - 200 =20 100 pad (3 q C?: 50/10° bqa boo WC =4 ° - 200 =19 0 D6Q 95 b 6 95 Ppd WC =4 °oo bnd - 200 =21 90 N��"� °:� 90 sad t3: f- m w r w m LL 85 85 D z O O z > -n w m -1 m w 80 80 J --q 75 75 70 70 65 65 LOGS OF EXPLORATORY BORINGS JOB NO. 05 -190 FIG. 3 105 100 95 .E 1- w w LL 85 Z O w J w 80 75 70 65 JOB NO. 05 -190 TH -4 APP. EL.100.0 50/12 10/12 WC =17 DD =110 - 200 =15 TH -5 APP. E L.99.0 10/12 WC= 15 - 200 =17 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineers 105 —i TH -6 APP.EL.99.0 DQ a' WC =4 - 200 =14 LOGS OF EXPLORATORY BORINGS 100 95 m m r m 85 > O Z m m 80 75 70 65 FIG. 4 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineers LEGEND: ■ ASPHALT Iffl ROADBASE 0 0: SAND and GRAVEL, Silty, Scattered cobbles and q° boulders, Dry to very moist, Dense to very dense, Brown, White. ® TOPSOIL FILL, Gravel, Sandy, Silty, Moist to very moist, Medium dense to very dense, Brown, Red - brown, Tan. ElSAND, Silty, Gravelly, Moist to wet, Dense to very dense, Red - brown. T REFUSAL. Indicates practical drill rig refusal on a boulder. CALIFORNIA DRIVE SAMPLE. The symbol 50/ 10 indicates that 50 blows of a 140 pound hammer falling 30 inches were required to drive a 2.5 inch O.D. sampler 10 inches. BULK SAMPLE. Obtained from the cuttings from the auger attached to the truck drill rig. ' SPLIT SPOON DRIVE SAMPLE. The symbol 10/ 12 indicates that 10 blows of a 140 pound hammer falling 30 inches were required to drive a 2.0 inch O.D. sampler 12 inches. Notes: 1. Exploratory borings were drilled on November 1 and 21, 2005 using a 4 -inch diameter continuous flight power auger mounted on a truck drill rig. 2. No free ground water was encountered at the time of drilling in any of the exploratory borings to the maximum depth explored of 15.0 feet. 3. The Boring Logs are subject to the explanations, limitations, and conclusions as contained in this report. 4. Laboratory Test Results: WC - Indicates natural moisture ( %) DD - Indicates dry density (pcf) -200 - Indicates percent passing the No. 200 sieve ( %) 5. Approximate elevations are based on elevations taken using a Stanley Compulevel Elevation Measurement System, assigning TH -1 elevation 100.0. LEGEND OF EXPLORATORY BORINGS JOB NO. 05 -190 FIG. 5 KOECHLEIN CONSULTING ENGINEERS 9M 9100 #140 �1 100 I ° 90 NT II 10 80 I I I� 20 70 m so 3o ? M � 60 z Cn 40 n d F- I 50 X 50 - m z 50 x LLJ I I M 40 70 20 60 D LU I 80 a 30 I I m p 70 20 - 100 200 100 10 1 0.1 0.01 0.001 DIAMETER OF PARTICLE IN MM I GRAVEL SAND SILT CLAY 80 10 I I 90 0 I 100 200 100 10 1 0.1 0.01 0.001 DIAMETER OF PARTICLE IN MM +75 MM GRAVEL SAND SILT CLAY Sample of SAND, Gravelly, Silty GRAVEL 29 % SAND 52 % Source TH -1 Sample No. Elev. /Depth 4.0 feet SILT & CLAY 19 % LIQUD LIMIT % PLASTICITY INDEX % 100 I 0 I 90 10 80 20 70 I 30 z m so a 40 z s0 F- I 50 X w 40 - m 60 D ° LI 30 I 70 20 I 80 10 I I 90 0 100 200 100 10 1 0.1 0.01 0.001 DIAMETER OF PARTICLE IN MM +75 MM GRAVEL SAND SILT CLAY Sample of SAND, Gravelly Silty GRAVEL 30 % SAND 49 % Source TH -2 Sample No. Elev. /Depth 9.0 feet SILT & CLAY 21 % LIQUID LIMIT % PLASTICITY INDEX GRADATION TEST RESULTS Job No. 05 -190 FIG. 6 KOECHLEIN CONSULTING ENGINEERS Sample of SAND, Gravelly, Silty GRAVEL 30 % SAND 50 % Source TH -3 Sample No. Elev. /Depth 4.0 feet SILT & CLAY 20 % LIQUD LIMIT % PLASTICITY INDEX % 100 0 100 GRAVEL 15 % SAND 70 % Source TH4 Sample No. Elev. /Depth 9.0 feet SILT & CLAY 15 % LIQUID LIMIT % PLASTICITY INDEX %p 0 so 10 80 80 20 70 (0 I 20 70 C7 30 ? 30 I W so -17 ? m 60 40 Q 0- I Qa. 40 z 50 z so z i w so so 40 40 m D s0 W a 80 D W o 30 Z m m p I 70 20 70 20 80 10 80 10 I 90 o I 90 0 I 200 100 10 1 0.1 0.01 0.001 100 DIAMETER OF PARTICLE IN MM +75 MM GRAVEL SAND SILT CLAY Sample of SAND, Gravelly, Silty GRAVEL 30 % SAND 50 % Source TH -3 Sample No. Elev. /Depth 4.0 feet SILT & CLAY 20 % LIQUD LIMIT % PLASTICITY INDEX % 100 0 90 GRAVEL 15 % SAND 70 % Source TH4 Sample No. Elev. /Depth 9.0 feet SILT & CLAY 15 % LIQUID LIMIT % PLASTICITY INDEX %p 10 80 20 70 (0 I 30 ? m W so 40 Q 0- z 50 z so 40 80 D W o 30 m p I 70 20 80 10 90 0 100 200 100 10 1 0.1 0.01 0.001 DIAMETER OF PARTICLE IN MM +75 MM GRAVEL SAND SILT CLAY Sample of FILL, Sand, Silty Gravelly GRAVEL 15 % SAND 70 % Source TH4 Sample No. Elev. /Depth 9.0 feet SILT & CLAY 15 % LIQUID LIMIT % PLASTICITY INDEX %p GRADATION TEST RESULTS Job No. 05 -190 FIG. 7 KOECHLEIN CONSULTING ENGINEERS 100 0 90 80 - 20 70 (D 30 z i m so X Q 40 C) a — � 50 50 Z7 F- 50 W I M 40 m a 30 -- 60 D W I z a 30 20 — m O 70 20 80 1 0 80 10 90 0 -ffT 100 200 100 10 1 0.1 0.01 0.001 DIAMETER OF PARTICLE IN MM +75 MM GRAVEL SAND SILT CLAY 90 0 I 100 200 100 10 1 0.1 0.01 0.001 DIAMETER OF PARTICLE IN MM +75 MM GRAVEL SAND SILT CLAY Sample of SAND, Silty, Gravelly GRAVEL 12 % SAND 71 % Source TH -5 Sample No. Elev. /Depth 4.0 feet SILT & CLAY 17 % LIQUD LIMIT % PLASTICITY INDEX 100 0 90 10 80 - 20 70 ( 30 z 60 m X ao m a a z 50 — F- 50 Z7 W 40 60 D m a 30 -- O 70 20 — 80 1 0 90 0 100 200 100 10 1 0.1 0.01 0.001 DIAMETER OF PARTICLE IN MM +75 MM GRAVEL SAND SILT CLAY Sample of GRAVEL, Sandy, Silty GRAVEL 57 % SAND 29 % Source TH -6 Sample No. Elev. /Depth 4.0 feet SILT & CLAY 14 % LIQUID LIMIT % PLASTICITY INDEX % GRADATION TEST RESULTS Job No. 05 -190 FIG. 8 NEW CC I FIRM NATURAL SOILS KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineers NG FOOTING / FIRM NATURAL SOILS �1 EXCAVATION SLOPE ADJACENT TO FOOTINGS - EXCAVATIONS MAY NOT EXTEND PAST THIS PROJECTED LINE FOUNDATION EXCAVATION RECOMMENDATIONS JOB NO. 05 -190 FIG.9 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineers CLAYEY BACKFILL 10 COMPACTED BACKFILL ;I BELOW GRADE WALL EDGE OF EXCAVATION (EXCAVATE AS PER OSHA REGULATIONS) MANUFACTURED WALL DRAIN WATERPROOFING OR DAMPPROOFING FILTER FABRIC GRAVEL - 12" `PLASTIC SHEETING F^� PERFORATED PIPE 12" MIN. NOTES: 1. DRAIN SHOULD BE AT LEAST 12 INCHES BELOW TOP OF FOOTING AT THE HIGHEST POINT AND SLOPE DOWNWARD TO A POSITIVE GRAVITY OUTLET OR TO A SUMP WHERE WATER CAN BE REMOVED BY PUMPING. 2. EXCAVATIONS ADJACENT TO FOOTINGS SHOULD BE CUT AT A 1 TO 1 (HORIZONTAL TO VERTICAL) OR FLATTER SLOPE FROM THE BOTTOM OF THE FOOTINGS. EXCAVATIONS ADJACENT TO FOOTINGS SHOULD NOT BE CUT VERTICALLY. 3. THE DRAIN SHOULD BE LAID ON A SLOPE RANGING BETWEEN 118 INCH AND 1/4 INCH DROP PER FOOT OF DRAIN. 4. GRAVEL SPECIFICATIONS: 1.5 INCH TO NO. 4 GRAVEL WITH LESS THAN 3% PASSING THE NO. 200 SIEVE. 5. THE BELOW GRADE CONCRETE FOUNDATION WALLS SHOULD BE PROTECTED FROM MOISTURE INFILTRATION BY APPLYING A SPRAYED ON MASTIC WATERPROOFING, DAMPPROOFING, OR AN EQUIVALENT PROTECTION METHOD. TYPICAL WALL DRAIN DETAIL JOB NO. 05 -190 FIG. 10 KOECHLEIN CONSULTING ENGINEERS, INC. Consulting Geotechnical Engineers CLAYEY BACKFILL 10 I ! WALL DRAIN RED COMPACTED BACKFILL 11 �— RETAINING WALL EDGE OF EXCAVATION (EXCAVATE AS PER OSHA REGULATIONS) FILTER FAB L PERFORATED PIPE NOTES: WATERPROOFING OR DAMPPROOFING 1. DRAIN SHOULD BE SLOPED DOWNWARD TO A POSITIVE GRAVITY OUTLET OR TO A SUMP WHERE WATER CAN BE REMOVED BY PUMPING. 2. THE DRAIN SHOULD BE LAID ON A SLOPE RANGING BETWEEN 1/8 INCH AND 1/4 INCH DROP PER FOOT OF DRAIN. 3. GRAVEL SPECIFICATIONS: 1.5 INCH TO NO. 4 GRAVEL WITH LESS THAN 3% PASSING THE NO. 200 SIEVE. 4. THE BELOW GRADE CONCRETE RETAINING WALLS SHOULD BE PROTECTED FROM MOISTURE INFILTRATION BY APPLYING A SPRAYED ON MASTIC WATERPROOFING, DAMPPROOFING, OR AN EQUIVALENT PROTECTION METHOD. TYPICAL RETAINING WALL DRAIN DETAIL JOB NO. 05 -190 FIG. 11 First Level Framing il II -4 In CIA 0 u Lf) cr) Lo L O 0 U I "At wo Cx- r� r - - - - - - - - - - - - - - -------- -- --- z -)i ------ ------- Gravity Beam Design RAM Steel v 11.1 Page 164/219 RAM DataBase:lionsquare_north 02/17/0711:53:47 INTERIJATcA k Building Code: IBC Steel Code: AISC LRFD Floor Type: FIRST Beam Number = 87 SPAN INFORMATION (ft): I -End (135.09,53.33) J -End (135.09,81.33) Maximum Depth Limitation specified = 20.00 in Beam Size (Optimum) = W 18X40 Fy = 50.0 ksi Total Beam Length (ft) = 28.00 COMPOSITE PROPERTIES (Not Shored): LINE LOADS (k/ft): Load Dist DL CDL Left Right Concrete thickness (in) CLL 4.00 4.00 Unit weight concrete (pcf) 0.967 0.780 145.00 145.00 fc (ksi) 0.000 4.50 4.50 Decking Orientation 0.967 0.780 perpendicular perpendicular Decking type 0.000 VULCRAFT 2.OVL VULCRAFT 2.0VL beff (in) = 84.00 Y bar(in) = 19.20 Mnf (kip -ft) = 689.90 Mn (kip -ft) = 514.17 C (kips) = 192.50 PNA (in) = 15.06 Ieff (in4) = 1540.72 Itr (in4) = 2237.92 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 21.4 # of studs: Full = 48 Partial = 18 Actual = 18 Number of Stud Rows = 1 Percent of Full Composite Action = 32.62 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.967 0.780 0.750 - -- NonR 0.000 27.999 0.967 0.780 0.750 0.000 2 0.000 0.040 0.040 0.000 - -- NonR 0.000 28.000 0.040 0.040 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 33.73 kips 0.90Vn = 152.24 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 112.5 14.0 0.0 1.00 0.90 294.00 Init DL 1.4DL 112.5 14.0 - -- - -- . Max + 1.2DL +1.6LL 236.1 14.0 - -- - -- 0.85 437.04 Controlling 1.2DL +1.6LL 236.1 14.0 - -- - -- 0.85 437.04 REACTIONS (kips): Left Right Initial reaction 11.48 11.48 DL reaction 14.11 14.11 Max +LL reaction 10.50 10.50 Max +total reaction (factored) 33.73 33.73 DEFLECTIONS: Initial load (in) at 14.00 ft = -0.639 LID = 526 Live load (in) at 14.00 ft = -0.232 L/D = 1447 FilRAM Steel v 11.1 Gravity Beam Design Page 165/219 RAMDataBase:lionsquare_ north 02/17/0711:53:47 INTERNATO,IZI Building Code: IBC Steel Code: AISC LRFD Post Comp load (in) at 14.00 ft = -0.290 L/D = 1158 Net Total load (in) at 14.00 ft = -0.929 L/D = 362 F11RAM Steel vl 1.1 RAMDataBase:lionsquare_ north 111T,",",�A Building Code: IBC Gravity Beam Design Page 166/219 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: FIRST Beam Number = 88 SPAN INFORMATION (ft): I -End (135.09,81.33) J -End (135.09,97.75) Maximum Depth Limitation specified = 20.00 in Beam Size (Optimum) = W 18X76 Fy = 50.0 ksi Total Beam Length (ft) = 16.42 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 4.00 4.00 Unit weight concrete (pcf) 145.00 145.00 f c (ksi) 4.50 4.50 Decking Orientation perpendicular perpendicular Decking type VULCRAFT 2.0VL VULCRAFT 2.0VL beff (in) = 49.25 Y bar(in) = 16.18 Mnf (kip -ft) = 1091.83 Mn (kip -ft) = 883.28 C (kips) = 201.82 PNA (in) = 13.85 Ieff (in4) = 2419.07 Itr (in4) = 3434.38 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn[1] = 21.4 Qn[2] = 26.5 # of studs per stud segment: Max = 30,15 Partial = 10,8 Actual = 10,8 Number of Stud Rows = 2 Percent of Full Composite Action = 26.78 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 11.063 0.07 0.07 11.063 80.01 0.00 0.00 0.0 58.48 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.735 0.547 0.750 - -- NonR 0.000 16.416 0.735 0.547 0.750 0.000 2 0.000 0.076 0.076 0.000 - -- NonR 0.000 16.416 0.076 0.076 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 145.64 kips 0.90Vn = 208.85 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 29.6 8.2 0.0 1.00 0.90 611.25 Init DL 1.4DL 29.6 8.2 - -- - -- Max + 1.2DL +1.6LL 748.6 11.1 - -- - -- 0.85 750.79 Controlling 1.2DL +1.6LL 748.6 11.1 - -- - -- 0.85 750.79 REACTIONS (kips): RAM Steel v 11.1 RAMDataBase:lionsquare_north INTERNATO -AL Building Code: IBC Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 167/219 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 5.14 5.16 32.77 60.62 25.23 45.56 79.69 145.64 at 8.86 ft = -0.026 L/D = 7450 at 8.86 ft = -0.130 L/D = 1516 at 8.86 ft = -0.288 L/D = 683 at 8.86 ft = -0.315 L/D = 626 F11 RAM Steel vl 1.1 RAMDataBase:lionsquare_north 'NaRNAT x.;u I Building Code: IBC ' Gravity Beam Design Page 168/219 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: FIRST Beam Number = 89 SPAN INFORMATION (ft): I -End (135.09,81.33) J -End (160.09,81.33) Maximum Depth Limitation specified = 20.00 in Beam Size (Optimum) = W 18X86 Fy = 50.0 ksi Total Beam Length (ft) = 25.00 COMPOSITE PROPERTIES (Not Shored): POINT LOADS (kips): Dist DL CDL Left Right Concrete thickness (in) Red% 4.00 4.00 Unit weight concrete (pcf) 7.000 145.00 145.00 fc (ksi) 0.00 4.50 4.50 Decking Orientation 0.00 parallel parallel Decking type 25.56 VULCRAFT 2.0VL VULCRAFT 2.0VL beff (in) = 75.00 Y bar(in) = 17.28 Mnf (kip -ft) = 1351.82 Mn (kip -ft) = 1329.51 C (kips) = 1033.78 PNA (in) = 18.19 Ieff (in4) = 4143.25 Itr (in4) = 4283.24 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 26.5 24.30 11.15 0.00 0.0 # of studs per stud segment: Full = 27,18,28,16 0.00 Snow Partial = 20,20,25,14 0.00 0.0 Actual = 20,20,25,14 0.0 Number of Stud Rows = 2 Percent of Full Composite Action = 76.92 21.000 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 7.000 5.81 4.37 0.00 0.0 5.75 0.00 0.0 0.00 Snow 0.00 7.000 34.86 11.60 0.00 0.0 25.56 0.00 0.0 0.00 Snow 0.00 0.00 0.0 -0.90 0.00 0.0 0.00 Snow 14.000 5.79 4.35 0.00 0.0 5.75 0.00 0.0 0.00 Snow 0.00 14.000 24.30 11.15 0.00 0.0 17.91 0.00 0.0 0.00 Snow 0.00 0.00 0.0 -0.46 0.00 0.0 0.00 Snow 21.000 4.58 3.45 0.00 0.0 4.51 0.00 0.0 0.00 Snow 0.00 21.000 9.51 7.75 0.00 0.0 7.02 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.086 0.086 0.000 - -- NonR 0.000 25.000 0.086 0.086 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 110.69 kips 0.90Vn = 238.46 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ I ADL 247.0 14.0 7.0 1.07 0.90 697.50 Init DL I ADL 247.0 14.0 - -- - -- Max + 1.2DL +1.6LL 847.3 14.0 - -- - -- 0.85 1130.08 Controlling 1.2DL +1.6LL 847.3 14.0 - -- - -- 0.85 1130.08 F11RAM Steel vl 1.1 RRM&M DataBase:lionsquare_north INTEP.NATK ,1k Building Code: IBC REACTIONS (kips): Initial reaction DL reaction Max +LL reaction Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 169/219 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 21.19 23.64 45.85 41.15 34.79 31.70 -0.85 -0.51 110.69 100.10 at 12.37 ft = -0.428 L/D = 702 at 12.37 ft = -0.244 LID = 1231 at 12.37 ft = -0.404 L/D = 743 at 12.37 ft = -0.832 LID = 361 Gravity Beam Design RAM Steel vl 1.1 RAMDataBase:lionsquare_ north NTERN Y,,AL Building Code: IBC Page 149/219 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: FIRST Beam Number = 80 SPAN INFORMATION (ft): I -End (119.09,81.33) J -End (119.09,97.75) Maximum Depth Limitation specified = 20.00 in Beam Size (Optimum) = W 18X 106 Fy = 50.0 ksi Total Beam Length (ft) = 16.42 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 4.00 4.00 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.50 4.50 Decking Orientation perpendicular perpendicular Decking type VULCRAFT 2.0VL VULCRAFT 2.OVL beff (in) = 49.25 Y bar(in) = 15.46 Mnf (kip -ft) = 1439.02 Mn (kip -ft) = 1270.44 C (kips) = 318.09 PNA (in) = 14.74 Ieff (in4) = 3581.30 Itr (in4) = 4482.35 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn[l] = 21.4 Qn[2] = 26.5 Qn[3] = 26.5 # of studs per stud segment: Max = 12,30 f Partial = 12,14 Actual = 12,14 Number of Stud Rows = 3 Percent of Full Composite Action = 42.21 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 4.750 0.08 0.08 4.751 124.85 0.00 0.00 0.0 92.82 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.784 0.584 0.800 - -- NonR 0.000 16.416 0.784 0.584 0.800 0.000 2 0.000 0.106 0.106 0.000 - -- NonR 0.000 16.416 0.106 0.106 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 231.34 kips 0.90Vn = 297.89 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 32.8 8.2 0.0 1.00 0.90 862.50 Init DL 1.4DL 32.8 8.2 - -- - -- Max + 1.2DL +1.6LL 1072.5 4.8 0.85 1079.88 Controlling 1.2DL +1.6LL 1072.5 4.8 =__ __- 0.85 1079.88 REACTIONS (kips): RAM Steel v 11.1 RAMDataBase:lionsquare_ north 'NIIIN.1111,:" Building Code: IBC Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 150/219 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 5.72 5.68 96.08 43.45 72.52 33.43 231.34 105.63 at 7.47 ft = -0.020 L/D = 9692 at 7.47 ft = -0.124 L/D = 1593 at 7.47 ft = -0.276 L/D = 713 at 7.47 ft = -0.297 L/D = 664 Gravity Beam Design RAM Steel v 11.1 RAMDataBase:lionsquare_ north NTE, ,,,a ,a•- Building Code: IBC Page 135/219 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: FIRST Beam Number = 74 SPAN INFORMATION (ft): I -End (111.09,24.46) J -End (111.09,53.33) Maximum Depth Limitation specified = 20.00 in Beam Size (User Selected) = W 18X46 Fy = 50.0 ksi Total Beam Length (ft) = 28.88 COMPOSITE PROPERTIES (Not Shored): Center PreCmp+ Init DL Max + Controlling REACTIONS (kips): 1.4DL 1.4DL 1.2DL +1.6LL 1.2DL +1.6LL Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) at Live load (in) at kip -ft ft ft Left Right Concrete thickness (in) 14.4 - -- 4.00 4.00 Unit weight concrete (pcf) 14.4 - -- 145.00 145.00 fc (ksi) 4.50 4.50 Decking Orientation perpendicular perpendicular Decking type VULCRAFT 2.0VL VULCRAFT 2.0VL beff (in) = 86.63 Y bar(in) = 19.15 Mnf (kip -ft) = 789.27 Mn (kip -ft) = 554.44 C (kips) = 171.11 PNA (in) = 13.80 Ieff (in4) = 1638.71 Itr (in4) = 2552.61 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 21.4 # of studs: Full = 52 Partial = 16 Actual = 16 Number of Stud Rows = 1 Percent of Full Composite Action = 25.35 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.784 0.584 0.800 - -- NonR 0.000 28.875 0.784 0.584 0.800 0.000 2 0.000 0.046 0.046 0.000 - -- NonR 0.000 28.875 0.046 0.046 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 32.86 kips 0.90Vn = 175.93 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Center PreCmp+ Init DL Max + Controlling REACTIONS (kips): 1.4DL 1.4DL 1.2DL +1.6LL 1.2DL +1.6LL Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) at Live load (in) at kip -ft ft ft 91.9 14.4 0.0 91.9 14.4 - -- 237.2 14.4 - -- 237.2 14.4 - -- Left 9.09 11.98 11.55 32.86 Right 9.09 11.98 11.55 32.86 14.44 ft = -0.477 14.44 ft = -0.263 1.00 0.90 - -- 0.85 - -- 0.85 L/D = 726 LID = 1316 Phi *Mn kip -ft 340.13 471.27 471.27 III RAM Steel vl 1.1 RAMDataBase:lionsquare_ north iNre112-11 x,14 Building Code: IBC Gravity Beam Design Page 136/219 02/17/07 11:53:47 Steel Code: AISC LRFD Post Comp load (in) at 14.44 ft = -0.329 L/D = 1053 Net Total load (in) at 14.44 ft = -0.806 L/D = 430 F11RAM Steel vl 1.1 RAMDataBase:lionsquare_ north r,re�r,rrKx.iu Building Code: IBC Gravity Beam Design Floor Type: FIRST Beam Number = 75 SPAN INFORMATION (ft): I -End (111.09,53.33) J -End (111.09,81.33) Maximum Depth Limitation specified = 20.00 in Beam Size (Optimum) = W 18X50 Total Beam Length (ft) = 28.00 COMPOSITE PROPERTIES (Not Shored): Page 137/219 02/17/07 11:53:47 Steel Code: AISC LRFD Fy = 50.0 ksi POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% Left Right Concrete thickness (in) 3.198 27.98 0.14 0.00 4.00 4.00 Unit weight concrete (pcf) Snow 145.00 145.00 fc (ksi) 0.0 4.50 4.50 Decking Orientation LINE LOADS (k/ft): perpendicular perpendicular Decking type VULCRAFT 2.OVL VULCRAFT 2.OVL beff (in) = 84.00 Y bar(in) = 18.79 Mnf (kip -ft) = 848.69 Mn (kip -ft) = 752.51 C (kips) = 466.89 PNA (in) = 17.64 Ieff (in4) = 2338.29 Itr (in4) = 2730.07 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn[l] = 21.4 Qn[2] = 26.5 28.000 0.050 0.050 # of studs: Max = 56 Partial = 47 Actual = 47 Number of Stud Rows = 2 Percent of Full Composite Action = 46.40 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 3.198 27.98 0.14 0.00 0.0 21.97 0.00 0.0 0.00 Snow 0.00 0.00 0.0 -2.81 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 1.032 0.832 0.800 - -- NonR 0.000 27.999 1.032 0.832 0.800 0.000 2 0.000 0.050 0.050 0.000 - -- NonR 0.000 28.000 0.050 0.050 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 96.98 kips 0.90Vn = 172.53 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 121.3 14.0 0.0 1.00 0.90 378.75 Init DL 1.4131, 121.3 14.0 - -- - -- Max + 1.2DL +1.6LL 374.5 11.0 - -- - -- 0.85 639.63 Controlling 1.2DL +1.6LL 374.5 11.0 - -- - -- 0.85 639.63 REACTIONS (kips): Left Right Initial reaction 12.47 12.36 DL reaction 39.94 18.34 Max +LL reaction 30.66 13.71 RAM Steel v11.1 RAMDataBase:lionsquare_ north NTERNAT, 0,A Building Code: IBC Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 138/219 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right -2.49 -0.32 96.98 43.95 at 13.72 ft = -0.527 L/D = 637 at 13.58 ft = -0.250 L/D = 1344 at 13.58 ft = -0.401 L/D = 838 at 13.58 ft = -0.928 L/D = 362 Gravity Beam Design RAM Steel vl 1.1 RAMDataBase:lionsquare_ north 1NTE1NAT",,kL Building Code: IBC Page 139/219 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: FIRST Beam Number = 76 SPAN INFORMATION (ft): I -End (111.09,53.33) J -End (129.09,53.33) Maximum Depth Limitation specified = 20.00 in Beam Size (Optimum) = W 18X65 Fy = 50.0 ksi Total Beam Length (ft) = 18.00 COMPOSITE PROPERTIES (Not Shored): POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL Left Right Concrete thickness (in) Red% 4.00 4.00 Unit weight concrete (pcf) 0.00 145.00 145.00 fc (ksi) 0.00 4.50 4.50 Decking Orientation 0.0 parallel parallel Decking type 8.000 8.86 6.67 0.00 0.0 VULCRAFT 2.0VL VULCRAFT 2.0VL beff (in) = 46.19 Y bar(in) = 16.63 Mnf (kip -ft) = 964.37 Mn (kip -ft) = 964.37 C (kips) = 706.67 PNA (in) = 18.07 Ieff (in4) = 2977.05 Itr (in4) = 2977.05 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 26.5 # of studs per stud segment: Full = 27,22,6 LL Red% Partial = 27,22,6 Actual = 27,22,6 - -- Number of Stud Rows = 2 Percent of Full Composite Action = 100.00 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 8.000 60.61 12.83 0.00 0.0 46.69 0.00 0.0 0.00 Snow 0.00 0.00 0.0 -4.53 0.00 0.0 0.00 Snow 8.000 8.86 6.67 0.00 0.0 8.75 0.00 0.0 0.00 Snow 0.00 16.000 15.01 12.21 0.00 0.0 11.20 0.00 0.0 0.00 Snow 0.00 16.000 8.86 6.67 0.00 0.0 8.75 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.065 0.065 0.000 - -- NonR 0.000 18.000 0.065 0.065 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 131.01 kips 0.90Vn = 223.56 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ I ADL 148.5 8.0 8.0 1.66 0.90 498.75 Init DL 1.4DL 148.5 8.0 - -- - -- Max + 1.2DL +1.6LL 821.7 8.0 - -- - -- 0.85 819.71 Controlling 1.2DL +1.6LL 821.7 8.0 - -- - -- 0.85 819.71 REACTIONS (kips): F11 RAM Steel v 11.1 RAMDataBase:lionsquare_ north INiERNAT ,'k Building Code: IBC Initial reaction DL reaction Max +LL reaction Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 140/219 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 13.52 26.04 41.83 52.68 33.01 42.37 -2.52 -2.01 103.02 131.01 at 8.91 ft = -0.176 L/D = 1224 at 8.91 ft = -0.148 L/D = 1456 at 8.91 ft = -0.272 L/D = 795 at 8.91 ft = -0.448 L/D = 482 Gravity Beam Design RAM Steel v11.1 DataB ase: lionsquare_north Building Code: IBC Page 129/219 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: FIRST Beam Number = 71 SPAN INFORMATION (ft): I -End (103.09,24.46) J -End (103.09,53.33) Maximum Depth Limitation specified = 20.00 in Beam Size (User Selected) = W 18X46 Fy = 50.0 ksi Total Beam Length (ft) = 28.88 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 4.00 4.00 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.50 4.50 Decking Orientation perpendicular perpendicular Decking type VULCRAFT 2.0VL VULCRAFT 2.OVL beff (in) = 86.63 Y bar(in) = 19.15 Mnf (kip -ft) = 789.27 Mn (kip -ft) = 712.53 C (kips) = 467.81 PNA (in) = 17.76 Ieff (in4) = 2244.30 Itr (in4) = 2552.61 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn[l] = 21.4 Qn[2] = 26.5 # of studs per stud segment: Full = 13,16,26 Partial = 4,6,8 Actual = 10,12,19 Number of Stud Rows = 2 Percent of Full Composite Action = 69.30 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 7.000 11.35 0.08 2.86 0.0 0.01 0.00 0.0 0.00 Snow 0.00 15.333 6.86 0.08 1.54 0.0 0.00 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.784 0.584 0.800 - -- NonR 0.000 28.875 0.784 0.584 0.800 0.000 2 0.000 0.046 0.046 0.000 - -- NonR 0.000 28.875 0.046 0.046 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 51.67 kips 0.90Vn = 175.93 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 93.0 14.5 0.0 1.00 0.90 340.13 Init DL 1.4DL 93.0 14.5 - -- - -- Max + 1.2DL +1.6LL 373.4 14.7 0.85 605.65 Controlling 1.2DL +1.6LL 373.4 14.7 ___ ___ 0.85 605.65 REACTIONS (kips): III RAM Steel v 11.1 RAMDataBase:lionsquare_ north 1'1111 x,110 -k Building Code: IBC Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 130/219 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 9.19 9.15 23.80 18.38 14.44 13.06 51.67 42.95 at 14.29 ft = -0.482 L/D = 718 at 14.29 ft = -0.238 L/D = 1454 at 14.29 ft = -0.477 L/D = 726 at 14.29 ft = -0.959 LID = 361 Fil RAM Steel vl 1.1 RAMDataBase:lionsquare_ north " ,1�1,110-1� Building Code: IBC Gravity Beam Design Page 126/219 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: FIRST Beam Number = 70 SPAN INFORMATION (ft): I -End (95.09,81.33) J -End (119.09,81.33) Maximum Depth Limitation specified = 20.00 in Beam Size (Optimum) = W 18X60 Fy = 50.0 ksi Total Beam Length (ft) = 24.00 COMPOSITE PROPERTIES (Not Shored): POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL Left Right Concrete thickness (in) Red% 4.00 4.00 Unit weight concrete (pcf) 0.00 145.00 145.00 f c (ksi) 0.00 4.50 4.50 Decking Orientation 0.0 parallel parallel Decking type 16.000 6.59 4.95 0.00 0.0 VULCRAFT 2.0VL VULCRAFT 2.0VL beff (in) = 64.50 Y bar(in) = 17.77 Mnf (kip -ft) = 976.55 Mn (kip -ft) = 913.83 C (kips) = 636.17 PNA (in) = 17.88 Ieff (in4) = 2721.62 Itr (in4) = 3027.66 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 26.5 # of studs per stud segment: Full = 27,7,34 Red% Type Partial = 12,12,24 1 0.000 0.060 0.060 Actual = 12,12,24 NonR Number of Stud Rows = 2 Percent of Full Composite Action = 44.99 24.000 0.060 0.060 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 8.000 6.64 5.00 0.00 0.0 6.57 0.00 0.0 0.00 Snow 0.00 8.000 15.09 12.29 0.00 0.0 11.20 0.00 0.0 0.00 Snow 0.00 16.000 6.59 4.95 0.00 0.0 6.57 0.00 0.0 0.00 Snow 0.00 16.000 18.34 12.36 0.00 0.0 13.71 0.00 0.0 0.00 Snow 0.00 0.00 0.0 -0.32 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.060 0.060 0.000 - -- NonR 0.000 24.000 0.060 0.060 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 60.61 kips 0.90Vn = 203.93 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 199.9 12.1 8.0 1.00 0.90 435.23 Init DL 1.4DL 199.9 12.1 - -- - -- Max + 1.2DL +1.6LL 482.6 16.0 - -- - -- 0.85 776.75 Controlling 1.2DL +1.6LL 482.6 16.0 - -- - -- 0.85 776.75 REACTIONS (kips): RAM Steel v 11.1 �M DataBase:lionsquare_north Building Code: IBC Initial reaction DL reaction Max +LL reaction Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 127/219 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 18.02 18.03 23.52 24.59 18.60 19.44 -0.11 -0.21 57.99 60.61 at 12.00 ft = -0.530 UD = 544 at 12.00 ft = -0.204 L/D = 1409 at 12.00 ft = -0.269 L/D = 1070 at 12.00 ft = -0.799 LID = 360 III RAM Steel vl 1.1 RAMDataBase:lionsquare_ north 1Nre&NA'a,14 Building Code: IBC Gravity Beam Design Page 119/219 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: FIRST Beam Number = 67 SPAN INFORMATION (ft): I -End (95.09,53.33) J -End (95.09,81.33) Maximum Depth Limitation specified = 20.00 in Beam Size (User Selected) = W 18X46 Fy = 50.0 ksi Total Beam Length (ft) = 28.00 COMPOSITE PROPERTIES (Not Shored): LINE LOADS (k/ft): Load Dist Left Right Concrete thickness (in) 4.00 4.00 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.50 4.50 Decking Orientation perpendicular perpendicular Decking type VULCRAFT 2.0VL VULCRAFT 2.0VL beff (in) = 82.52 Y bar(in) = 19.04 Mnf (kip -ft) = 786.41 Mn (kip -ft) = 679.94 C (kips) = 393.40 PNA (in) = 17.64 Ieff (in4) = 2099.81 Itr (in4) = 2529.88 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn[1] = 21.4 Qn[2] = 26.5 # of studs per stud segment: Max = 2,52 Partial = 2,19 kips 0.90Vn = 175.93 kips Actual = 2,38 Number of Stud Rows = 2 Percent of Full Composite Action = 55.22 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 1.250 0.08 0.08 LoadCombo Mu 1.252 47.33 0.00 0.00 0.0 48.47 0.00 0.0 0.00 Snow 0.00 0.00 0.0 -11.61 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.952 0.767 0.738 - -- NonR 0.000 27.999 0.952 0.767 0.738 0.000 2 0.000 0.046 0.046 0.000 - -- NonR 0.000 28.000 0.046 0.046 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 161.71 kips 0.90Vn = 175.93 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ I ADL 111.6 14.0 0.0 1.00 0.90 340.13 Init DL 1.4DL 111.6 14.0 - -- - -- Max + 1.2DL +1.6LL 324.7 11.5 - -- - -- 0.85 577.95 Controlling 1.2DL +1.6LL 324.7 11.5 - -- - -- 0.85 577.95 REACTIONS (kips): RAM Steel v 11.1 RAMDataBase: lionsquare_ north '11111,410 , Building Code: IBC Initial reaction DL reaction Max +LL reaction Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 120/219 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 11.46 11.39 59.25 16.08 56.63 12.49 -11.09 -0.52 161.71 39.29 at 13.86 ft = -0.545 L/D = 617 at 13.58 ft = -0.252 L/D = 1332 at 13.58 ft = -0.377 L/D = 891 at 13.58 ft = -0.921 L/D = 365 F,1RAM Steel v11.1 RAMDataBase:lionsquuare_ north INTERNATONA' Building Code: IBC Gravity Beam Design Floor Type: FIRST Beam Number = 66 SPAN INFORMATION (ft): I -End (95.09,24.46) J -End (95.09,53.33) Maximum Depth Limitation specified = 20.00 in Beam Size (User Selected) = W 18X50 Total Beam Length (ft) = 28.88 COMPOSITE PROPERTIES (Not Shored): Page 113/219 02/17/07 11:53:47 Steel Code: AISC LRFD Fy = 50.0 ksi POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL Left Right Concrete thickness (in) Red% 4.00 4.00 Unit weight concrete (pcf) 0.00 145.00 145.00 fc (ksi) 0.00 4.50 4.50 Decking Orientation 0.0 perpendicular perpendicular Decking type LINE LOADS (k/ft): VULCRAFT 2.OVL VULCRAFT 2.0VL beff (in) = 83.83 Y bar(in) = 18.78 Mnf (kip -ft) = 848.55 Mn (kip -ft) = 656.52 C (kips) = 256.66 PNA (in) = 16.23 Ieff (in4) = 1939.90 Itr (in4) = 2729.00 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 21.4 0.000 # of studs per stud segment: Full = 14,16,26 - -- NonR Partial = 5,6,9 28.875 0.050 0.050 Actual = 6,8,12 Number of Stud Rows = 1 Percent of Full Composite Action = 34.92 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 7.000 12.40 0.08 3.13 0.0 0.01 0.00 0.0 0.00 Snow 0.00 15.333 7.49 0.08 1.68 0.0 0.00 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.723 0.538 0.738 - -- NonR 0.000 28.875 0.723 0.538 0.738 0.000 2 0.000 0.050 0.050 0.000 - -- NonR 0.000 28.875 0.050 0.050 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 50.98 kips 0.90Vn = 172.53 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 87.0 14.5 0.0 1.00 0.90 378.75 Init DL 1.4DL 87.0 14.5 - -- - -- Max + 1.2DL +1.6LL 368.4 14.7 - -- - -- 0.85 558.04 Controlling 1.2DL +1.6LL 368.4 14.7 - -- - -- 0.85 558.04 REACTIONS (kips): RAM Steel v 11.1 Gravit, RAMDataBase:lionsquare_ north 111,111IN-11,01-11 Building Code: IBC Left Initial reaction 8.59 DL reaction 24.06 Max +LL reaction 13.81 Max +total reaction (factored) 50.98 DEFLECTIONS: Beam Design Page 114/219 02/17/07 11:53:47 Steel Code: AISC LRFD Right 8.55 18.14 12.30 41.45 Initial load (in) at 14.15 ft = -0.401 L/D = 863 Live load (in) at 14.15 ft = -0.263 L/D = 1316 Post Comp load (in) at 14.15 ft = -0.556 L/D = 624 Net Total load (in) at 14.15 ft = -0.957 L/D = 362 rilGravity Beam Design RAM Steel v 11.1 Page 82/219 RAMDataBase:lionsquare_ north 02/17/0711:53:47 '1,,rEk�,P�A Building Code: IBC Steel Code: AISC LRFD Floor Type: FIRST Beam Number = 53 SPAN INFORMATION (ft): I -End (68.08,53.33) J -End (68.08,81.33) Maximum Depth Limitation specified = 20.00 in Beam Size (Optimum) = W 18X76 Fy = 50.0 ksi Total Beam Length (ft) = 28.00 COMPOSITE PROPERTIES (Not Shored): POINT LOADS (kips): Dist DL Left Right Concrete thickness (in) NonRLL 4.00 4.00 Unit weight concrete (pcf) Red% CLL 145.00 145.00 f c (ksi) 20.44 4.50 4.50 Decking Orientation 0.0 perpendicular perpendicular Decking type 0.076 VULCRAFT 2.OVL VULCRAFT 2.0VL beff (in) = 77.58 Y bar(in) = 17.61 Mnf (kip -ft) = 1228.47 Mn (kip -ft) = 1071.01 C (kips) = 562.68 PNA (in) = 17.70 Ieff (in4) = 3135.43 Itr (in4) = 3871.47 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn[1] = 21.4 Qn[2] = 26.5 0.0 # of studs per stud segment: Max = 9,6,24,39 Partial = 5,4,13,22 -0.10 0.00 Actual = 5,4,13,22 Snow Number of Stud Rows = 2 Percent of Full Composite Action = 50.46 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 3.333 62.19 0.08 20.44 33.5 2.80 0.00 0.0 0.00 Snow 0.00 28.000 0.076 0.076 -0.31 33.7 -0.47 0.00 0.0 0.00 Snow 6.000 1.04 0.06 - -- - -- 0.85 910.36 Controlling 1.2DL +1.6LL 667.1 14.9 14.927 24.82 0.06 5.74 33.5 4.40 0.00 0.0 0.00 Snow 0.00 -0.07 33.7 -0.10 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.834 0.672 0.646 - -- NonR 0.000 27.999 0.834 0.672 0.646 0.000 2 0.000 0.076 0.076 0.000 - -- NonR 0.000 28.000 0.076 0.076 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 139.63 kips 0.90Vn = 208.85 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 103.6 14.0 0.0 1.00 0.90 611.25 Init DL 1.4DL 103.6 14.0 - -- - -- Max + 1.2DL +1.6LL 667.1 14.9 - -- - -- 0.85 910.36 Controlling 1.2DL +1.6LL 667.1 14.9 - -- - -- 0.85 910.36 RAM Steel v11.1 RAMDataBase:lionsquare_ north VERNA10-k Building Code: IBC REACTIONS (kips): Initial reaction DL reaction Max +LL reaction Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 83/219 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 10.62 10.53 79.93 33.59 27.32 15..38 -0.66 -0.16 139.63 64.93 at 13.58 ft = -0.271 L/D = 1242 at 13.58 ft = -0.219 L/D = 1532 at 13.58 ft = -0.653 L/D = 515 at 13.58 ft = -0.924 L/D = 364 RAM Steel vl 1.1 Gravity Beam Design RAMDataBase: lionsquare_north INTERNATa,k Building Code: IBC Floor Type: FIRST Beam Number = 44 SPAN INFORMATION (ft): I -End (55.73,53.33) J -End (55.73,81.33) Maximum Depth Limitation specified = 20.00 in Beam Size (User Selected) = W 18X 119 Total Beam Length (ft) = 28.00 Mp (kip -ft) = 1091.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% 3.333 0.95 3.333 1.12 3.333 90.34 38.75 40.9 8.64 0.00 0.0 -0.74 41.1 -0.07 0.00 0.0 LINE LOADS (k/ft): Page 64/219 02/17/07 11:53:47 Steel Code: AISC LRFD Fy = 50.0 ksi RoofLL Red% 0.00 Snow 0.00 Snow Load Dist DL LL Red% Type 1 0.000 0.871 0.675 - -- NonR 27.999 0.871 0.675 2 0.000 0.119 0.000 - -- NonR 27.999 0.119 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 173.90 kips 0.90Vn =336.02 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center Max + 1.2DL +1.6LL 572.5 5.5 0.0 1.00 0.90 982.50 Controlling 1.2DL +1.6LL 572.5 5.5 0.0 1.00 0.90 982.50 REACTIONS (kips): Left Right DL reaction 95.27 24.86 Max +LL reaction 37.23 13.20 Max -LL reaction -0.45 -0.06 Max +total reaction (factored) 173.90 50.96 DEFLECTIONS: Dead load (in) at 12.74 ft = -0.625 L/D = 538 Live load (in) at 12.74 ft = -0.286 LID = 1175 Net Total load (in) at 12.74 ft = -0.910 L/D = 369 Gravity Beam Design RAM Steel v11.1 DataB ase: lionsquare_north Building Code: IBC Floor Type: FIRST Beam Number = 45 SPAN INFORMATION (ft): I -End (55.73,53.33) J -End (72.50,53.33) Maximum Depth Limitation specified = 20.00 in Beam Size (User Selected) = W 18X86 Total Beam Length (ft) = 16.77 COMPOSITE PROPERTIES (Not Shored): Page 65/219 02/17/07 11:53:47 Steel Code: AISC LRFD Fy = 50.0 ksi Left Right Concrete thickness (in) 4.00 4.00 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.50 4.50 Decking Orientation parallel parallel Decking type VULCRAFT 2.OVL VULCRAFT 2.0VL beff (in) = 45.16 Y bar(in) = 15.64 Mnf (kip -ft) = 1187.84 Mn (kip -ft) = 970.97 C (kips) = 185.55 PNA (in) = 13.07 Ieff (in4) = 2660.54 Itr (in4) = 3711.51 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 26.5 # of studs per stud segment: Full = 20,8,27 Partial = 5,2,7 Actual = 5,2,7 Number of Stud Rows = 1 Percent of Full Composite Action = 26.24 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 6.177 45.91 9.84 10.21 36.8 10.88 0.00 0.0 0.00 Snow 0.00 -0.15 36.9 -0.23 0.00 0.0 0.00 Snow 6.177 4.23 3.18 0.00 0.0 4.18 0.00 0.0 0.00 Snow 0.00 12.354 79.93 10.62 20.69 36.8 13.57 0.00 0.0 0.00 Snow 0.00 -0.31 36.9 -0.46 0.00 0.0 0.00 Snow 12.354 3.80 2.87 0.00 0.0 3.75 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.086 0.086 0.000 - -- NonR 0.000 16.770 0.086 0.086 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 145.54 kips 0.90Vn = 238.46 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 105.8 6.2 6.2 1.66 0.90 697.50 (vow Init DL I ADL 105.8 6.2 Max + 1.2DL +1.6LL 641.8 12.4 - -- - -- 0.85 825.33 Controlling 1.2DL +1.6LL 641.8 12.4 - -- - -- 0.85 825.33 Gravity Beam Design RAM Steel v11.1 Page 66/219 RAM DataBase:lionsquare_north 02/17/0711:53:47 NTERNArOC AL Building Code: IBC Steel Code: AISC LRFD REACTIONS (kips): Initial reaction DL reaction Max +LL reaction Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Left Right 12.50 15.46 54.44 80.87 21.59 30.31 -0.38 -0.60 99.88 145.54 at 8.64 ft = -0.086 L/D = 2353 at 8.64 ft = -0.091 L/D = 2215 at 8.64 ft = -0.276 L/D = 729 at 8.64 ft = -0.361 L/D = 557 Gravity Beam Design RAM Steel v 11.1 DataB ase: lionsquare_north Building Code: IBC Page 57/219 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: FIRST Beam Number = 40 SPAN INFORMATION (ft): I -End (48.41,53.33) J -End (48.41,81.33) Maximum Depth Limitation specified = 20.00 in Beam Size (User Selected) = W 18X46 Fy = 50.0 ksi Total Beam Length (ft) = 28.00 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 4.00 4.00 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.50 4.50 Decking Orientation perpendicular perpendicular Decking type VULCRAFT 2.0VL VULCRAFT 2.0VL beff (in) = 84.00 Y bar(in) = 19.08 Mnf (kip -ft) = 787.48 Mn (kip -ft) = 554.32 C (kips) = 171.11 PNA (in) = 13.80 Ieff (in4) = 1631.49 Itr (in4) = 2538.26 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 21.4 # of studs per stud segment: Full = 6,48 Partial = 2,16 Actual = 2,16 Number of Stud Rows = I Percent of Full Composite Action = 25.35 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 3.333 1.12 0.07 3.333 1.12 0.07 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.945 0.762 0.732 - -- NonR 0.000 27.999 0.945 0.762 0.732 0.000 2 0.000 0.046 0.046 0.000 - -- NonR 0.000 27.999 0.046 0.046 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 35.42 kips 0.90Vn = 175.93 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ I ADL 111.1 14.0 0.0 1.00 0.90 340.13 Init DL I ADL 111.1 14.0 - -- - -- Max + 1.2DL +1.6LL 235.8 13.9 =__ _ -- 0.85 471.17 Controlling 1.2DL +1.6LL 235.8 13.9 0.85 471.17 REACTIONS (kips): RAM Steel vl 1.1 MRAM DataBase: lionsquare—north Building Code: IBC Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 58/219 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 11.43 11.32 15.85 14.14 10.25 10.25 35.42 33.37 at 14.00 ft = -0.543 L/D = 619 at 14.00 ft = -0.214 L/D = 1570 at 14.00 ft = -0.280 L/D = 1200 at 14.00 ft = -0.823 L/D = 408 Gravity Beam Design RAM Steel v 11.1 RAMDataBase:lionsquare_ north wr11N,11 x.:u Building Code: IBC Page 39/219 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: FIRST Beam Number = 148 SPAN INFORMATION (ft): I -End (27.17,53.33) J -End (31.54,53.33) Beam Size (User Selected) = W 18X60 Fy = 50.0 ksi Total Beam Length (ft) = 4.38 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 4.00 4.00 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.50 4.50 Decking Orientation parallel parallel Decking type VULCRAFT 2.OVL VULCRAFT 2.0VL beff (in) = 13.13 Y bar(in) = 12.83 Mnf (kip -ft) = 688.33 Mn (kip -ft) = 571.15 C (kips) = 53.01 PNA (in) = 10.38 Ieff (in4) = 1430.27 Itr (in4) = 1852.55 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 26.5 # of studs per stud segment: Full = 8,8 Partial = 2,2 Actual = 2,2 Number of Stud Rows = 1 Percent of Full Composite Action = 26.40 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 1.972 13.04 9.44 0.00 0.0 8.36 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.060 0.060 0.000 - -- NonR 0.000 4.375 0.060 0.060 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) =16.10 kips 0.90Vn = 203.93 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 14.5 2.0 2.4 1.66 0.90 461.25 Init DL 1.4DL 14.5 2.0 - -- - -- Max + 1.2DL +1.6LL 31.6 2.0 - -- - -- 0.85 485.48 Controlling 1.2DL +1.6LL 31.6 2.0 - -- - -- 0.85 485.48 REACTIONS (kips): Left Right Initial reaction 5.31 4.39 �.. DL reaction 7.29 6.01 Max +LL reaction 4.59 3.77 Max +total reaction (factored) 16.10 13.24 RAM Steel v11.1 RAMDataBase:lionsquare_ north Building Code: IBC DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design at 2.12 ft = -0.001 at 2.12 ft = -0.001 at 2.12 ft = -0.001 at 2.12 ft = -0.002 Page 40/219 02/17/07 11:53:47 Steel Code: AISC LRFD L/D = 52411 L/D = 28220 �Fjj Design RAM Steel v 11.1 Gravity Beam Page 37/219 RAM DataBase:lionsquare_ north 02/17/0711:53:47 ION INTERNATAL Building Code: IBC Steel Code: AISC LRFD Floor Type: FIRST Beam Number = 21 SPAN INFORMATION (ft): I -End (23.17,53.33) J -End (23.17,81.33) Maximum Depth Limitation specified = 20.00 in Beam Size (User Selected) = W 18X 175 Fy = 50.0 ksi Total Beam Length (ft) = 28.00 Mp (kip -ft) = 1658.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 3.333 0.92 3.333 0.98 3.334 178.59 63.66 48.2 25.09 0.00 0.0 0.00 Snow -0.74 48.3 -1.72 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.797 0.618 - -- NonR 27.999 0.797 0.618 2 0.000 0.175 0.000 - -- NonR 28.000 0.175 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 302.78 kips 0.90Vn = 480.60 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Center Max + Controlling REACTIONS (kips): 1.2DL+ 1.6LL 1.2DL+ 1.6LL DL reaction Max +LL reaction Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Dead load (in) Live load (in) Net Total load (in) kip -ft ft ft 997.6 3.3 0.0 997.6 3.3 0.0 1.00 0.90 1.00 0.90 Left Right 172.60 35.10 59.79 15.57 -1.85 -0.25 302.78 67.02 at 12.46 ft = -0.643 L/D = 522 at 12.46 ft = -0.249 L/D = 1352 at 12.46 ft = -0.892 L/D = 377 Phi *Mn kip -ft 1492.50 1492.50 Gravity Beam Design RAM Steel v 11.1 DataBase: lionsquare_north Building Code: IBC Floor Type: FIRST Beam Number =15 SPAN INFORMATION (ft): I -End (16.78,53.33) J -End (16.78,81.33) Maximum Depth Limitation specified = 20.00 in Beam Size (User Selected) = W 18X35 Total Beam Length (ft) = 28.00 COMPOSITE PROPERTIES (Not Shored): Page 25/219 02/17/07 11:53:47 Steel Code: AISC LRFD Fy = 50.0 ksi Stud Capacity (kips) Qn = 21.4 # of studs per stud segment: Full = 5,39 Partial = 2,13 Actual = 3,20 Number of Stud Rows = 1 Percent of Full Composite Action = 45.68 ft Left Right Concrete thickness (in) 14.0 4.00 4.00 Unit weight concrete (pcf) RoofLL 145.00 145.00 fc (ksi) 4.50 4.50 Decking Orientation perpendicular perpendicular Decking type VULCRAFT 2.OVL VULCRAFT 2.0VL beff (in) = 76.67 Y bar(in) = 19.11 Mnf (kip -ft) = 599.63 Mn (kip -ft) = 483.90 C (kips) = 235.27 PNA (in) = 16.69 Ieff (in4) = 1465.00 Itr (in4) = 1922.94 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 21.4 # of studs per stud segment: Full = 5,39 Partial = 2,13 Actual = 3,20 Number of Stud Rows = 1 Percent of Full Composite Action = 45.68 ft POINT LOADS (kips): 14.0 96.3 14.0 Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL 3.333 0.98 0.06 3.333 0.98 0.06 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.824 0.664 0.639 - -- NonR 0.000 28.000 0.824 0.664 0.639 0.000 2 0.000 0.035 0.035 0.000 - -- NonR 0.000 28.000 0.035 0.035 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 30.82 kips 0.90Vn = 143.37 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Center PreCmp+ Init DL Max + �,.. Controlling REACTIONS (kips): 1.4DL 1.4DL 1.2DL+ 1.6LL 1.2DL +1.6LL kip -ft ft 96.3 14.0 96.3 14.0 205.2 13.9 205.2 13.9 Red% CLL Phi ft 0.0 1.00 0.90 1: 1: Phi *Mn kip -ft 249.38 411.31 411.31 RAM Steel v11.1 RAMDataBase:lionsquare_north NTERNATIC -A1 Building Code: IBC Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 26/219 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 9.90 9.81 13.76 12.26 8.94 8.94 30.82 29.03 at 14.00 ft = -0.656 L/D = 512 at 14.00 ft = -0.208 L/D = 1616 at 14.00 ft = -0.272 L/D = 1236 at 14.00 ft = -0.928 L/D = 362 IIIRAM Steel v 11.1 RAMDataBase:lionsquare_north INTERN -110 I Building Code: IBC Gravity Beam Design Page 13/219 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: FIRST Beam Number = 7 SPAN INFORMATION (ft): I -End (4.00,53.33) J -End (27.17,53.33) Maximum Depth Limitation specified = 20.00 in Beam Size (User Selected) = W 18X60 Fy = 50.0 ksi Total Beam Length (ft) = 23.17 Cantilever on right (ft) = 4.00 Mp (kip -ft) = 512.50 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 6.389 13.91 0.00 0.0 8.94 0.00 0.0 0.00 Snow 6.389 2.38 0.00 0.0 2.36 0.00 0.0 0.00 Snow 12.778 13.76 0.00 0.0 8.94 0.00 0.0 0.00 Snow 12.778 2.36 0.00 0.0 2.34 0.00 0.0 0.00 Snow 19.083 5.28 0.00 0.0 5.23 0.00 0.0 0.00 Snow 23.167 7.29 0.00 0.0 4.59 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.060 0.000 - -- NonR 19.166 0.060 0.000 2 19.167 0.060 0.000 - -- NonR 23.166 0.060 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 56.19 kips 0.90Vn = 203.93 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Center Max + Max - Right Max - Controlling REACTIONS (kips): 1.2DL+ 1.6LL 1.2DL+ 1.6LL 1.2DL +1.6LL 1.2DL+ 1.6LL DL reaction Max +LL reaction Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Center span: Dead load (in) Live load (in) Net Total load (in) Right cantilever: Dead load (in) Pos Live load (in) kip -ft ft ft 231.4 6.4 6.4 -65.0 19.2 0.1 -65.0 19.2 4.0 231.4 6.4 6.4 Left Right 15.28 31.08 11.32 22.05 -0.96 0.00 36.45 72.58 1.02 1.02 1.00 1.02 1'1 1'1 1'1 1 •1 at 9.49 ft = -0.211 L/D = 1090 at 9.49 ft = -0.171 L/D = 1341 at 9.49 ft = -0.383 L/D = 601 = 0.110 L/D = 876 _ -0.034 L/D = 2794 Phi *Mn kip -ft 461.25 461.25 461.25 461.25 *4"DW • ' Gravity Beam Design II RAM Steel v 11.1 ImDataBase:lionsquare_ north Al2-4 Building Code: IBC Right cantilever: Neg Live load (in) = 0.112 L/D = 855 Neg Total load (in) = 0.222 L/D = 433 Page 14/219 02/17/07 11:53:47 Steel Code: AISC LRFD Second Level Framing ® � _ T C\l 00 N CO ------ -F- .......... I t ------ ----- LO LL 0 "a 0 CIO Ul NMI Q--o j . .>r_ i..l _ I O I ���/ 1 cn all In Lf) LO cr) • C N C Lo it it i'l CXD F:- - r- ;-T i -- - - - - -- -�-:T -41 r-, - �i - -1 ------ I Iii -------------- 17 rr C3 - - - - --- - - - - it LO —Eh,- -- ---- --- - oe Y ID F -!-IT -1 7 k5 LL, •0 "o � A � � � CC*C��1; -��CC' ;rtC� 1 I it 04) C �_: ��� � CSC C�CTC ITV rd O > 0 ll� 0 6 U coo w GO cz al C� I or .11 CID I)t I I ' I ,. I I r =� C_ I I � i . � ' I � ! i i '' i - i I I ---- T -T-' !:T- ------- V. i: . L I L E� -I ---- Lo LLLL 11, b 1 i ❑ El El 0 tt �J Gravity Beam Design RAM Steel v 11.1 RAMDataBase:lionsquare_ north NTERNAT2 AL Building Code: IBC 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: SOD ROOF Beam Number =18 DL LL Red% Type SPAN INFORMATION (ft): I -End (95.17,54.58) J -End (95.17,97.75) 0.466 - -- Maximum Depth Limitation specified = 23.00 in 31.500 0.530 0.466 31.5 Beam Size (User Selected) = W21X201 0.466 - -- NonR 1.2DL +1.6LL Fy = 50.0 ksi Total Beam Length (ft) = 43.17 3 0.000 0.201 0.000 - -- Cantilever on right (ft) = 11.67 0.201 0.000 114.50 4 Mp (kip -ft) = 2208.33 0.201 0.000 - -- NonR 43.166 0.201 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 4.350 5.55 0.00 0.0 4.78 0.00 0.0 0.00 Snow 6.308 13.89 0.00 0.0 11.94 0.00 0.0 0.00 Snow 9.950 6.23 0.00 0.0 5.38 0.00 0.0 0.00 Snow 12.608 14.04 0.00 0.0 12.07 0.00 0.0 0.00 Snow 15.550 6.23 0.00 0.0 5.38 0.00 0.0 0.00 Snow 18.908 14.05 0.00 0.0 12.08 0.00 0.0 0.00 Snow 21.150 6.23 0.00 0.0 5.38 0.00 0.0 0.00 Snow 25.208 14.05 0.00 0.0 12.08 0.00 0.0 0.00 Snow 26.750 41.49 0.00 0.0 33.98 0.00 0.0 0.00 Snow 37.800 13.06 0.00 0.0 11.21 0.00 0.0 0.00 Snow 43.167 12.19 0.00 0.0 6.12 0.00 0.0 0.00 Snow 43.167 25.74 0.00 0.0 16.46 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 26.750 0.530 0.466 - -- NonR 31.5 31.500 0.530 0.466 31.5 2 31.500 0.530 0.466 - -- NonR 1.2DL +1.6LL 43.166 0.530 0.466 3 0.000 0.201 0.000 - -- NonR 156.57 31.500 0.201 0.000 114.50 4 31.500 0.201 0.000 - -- NonR 43.166 0.201 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 236.90 kips 0.90Vn = 565.11 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Center Max + Max - Right PreCmp- Max - Controlling REACTIONS (kips): DL reaction Max +LL reaction 1.02 1.25 1.00 1.00 1.00 1 •1 1'1 1 •1 1 •1 1'1 Phi *Mn kip -ft 1987.50 1987.50 249.38 1987.50 1987.50 kip -ft ft ft 1.2DL +1.6LL 945.3 15.5 3.4 1.2DL +1.6LL - 1274.7 31.5 4.8 1.4DL -8.9 31.5 2.0 1.2DL +1.6LL - 1274.7 31.5 6.3 1.2DL +1.6LL - 1274.7 31.5 6.3 Left Right 33.58 156.57 41.60 114.50 1.02 1.25 1.00 1.00 1.00 1 •1 1'1 1 •1 1 •1 1'1 Phi *Mn kip -ft 1987.50 1987.50 249.38 1987.50 1987.50 RAM Steel vl 1.1 RAMDataBase:lionsquare_ north rffER ATO,.,u Building Code: IBC Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Center span: Dead load (in) Live load (in) Net Total load (in) Right cantilever: Dead load (in) Pos Live load (in) Neg Live load (in) Pos Total load (in) Neg Total load (in) Gravity Beam Design Left Right -11.61 0.00 106.86 371.09 at 15.12 ft = -0.217 at 15.12 ft = -0.495 at 15.12 ft = -0.712 _ -0.289 L/D = 970 _ -0.673 L/D = 416 = 0.627 L/D = 447 _ -0.962 L/D = 291 = 0.338 L/D = 827 Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD L/D = 1742 L/D = 763 L/D = 531 Gravity Beam Design RAM Steel vl 1.1 RAMDataBase:lionsquare_ north Itl�ERNATIOf:4L Building Code: 113C 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: SOD ROOF Beam Number = 17 LL Red% Type 1 0.000 0.182 SPAN INFORMATION (ft): I -End (135.09,62.29) 0.182 J -End (135.18,97.75) 2 30.107 Maximum Depth Limitation specified = 23.00 in 0.000 - -- NonR 35.460 0.182 0.000 Beam Size (User Selected) = W21X182 30.1 2.0 Max - Fy = 50.0 ksi Total Beam Length (ft) = 35.46 Controlling 1.2DL +1.6LL 852.1 17.5 Cantilever on right (ft) = 5.35 Mp (kip -ft) = 1983.33 Left Right DL reaction 38.47 POINT LOADS (kips): Max +LL reaction 33.61 42.55 Dist DL RedLL Red% NonRLL StorLL 0.00 Red% RoofLL Red% 4.902 7.12 0.00 0.0 6.12 0.00 0.0 0.00 Snow 4.902 9.48 0.00 0.0 8.20 0.00 0.0 0.00 Snow 11.202 10.60 0.00 0.0 9.17 0.00 0.0 0.00 Snow 11.202 9.31 0.00 0.0 8.05 0.00 0.0 0.00 Snow 17.502 10.59 0.00 0.0 9.16 0.00 0.0 0.00 Snow 17.502 9.30 0.00 0.0 8.04 0.00 0.0 0.00 Snow 23.794 10.59 0.00 0.0 9.16 0.00 0.0 0.00 Snow 23.794 9.31 0.00 0.0 8.05 0.00 0.0 0.00 Snow 35.461 9.20 0.00 0.0 4.61 0.00 0.0 0.00 Snow 35.461 8.09 0.00 0.0 4.06 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.182 0.000 - -- NonR 30.106 0.182 0.000 2 30.107 0.182 0.000 - -- NonR 35.460 0.182 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 106.17 kips 0.90Vn = 508.71 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi 1.01 2.24 1.00 1.00 1.01 1 •1 1'1 1 `1 1'1 1 `1 Phi *Mn kip -ft 1785.00 1785.00 249.38 1785.00 1785.00 kip -ft ft ft Center Max + 1.2DL +1.6LL 852.1 17.5 6.3 Max - 1.2DL +1.6LL -188.5 30.1 6.3 Right PreCmp- 1.4DL -8.9 30.1 2.0 Max - 1.2DL +1.6LL -188.5 30.1 5.4 Controlling 1.2DL +1.6LL 852.1 17.5 6.3 REACTIONS (kips): Left Right DL reaction 38.47 61.57 Max +LL reaction 33.61 42.55 Max -LL reaction -1.54 0.00 Max +total reaction (factored) 99.94 141.97 DEFLECTIONS: 1.01 2.24 1.00 1.00 1.01 1 •1 1'1 1 `1 1'1 1 `1 Phi *Mn kip -ft 1785.00 1785.00 249.38 1785.00 1785.00 RAM Steel v 11.1 RAMDataBase: lionsquare—north "1E1"^10- Building Code: IBC Center span: Dead load (in) Live load (in) Net Total load (in) Right cantilever: Dead load (in) Pos Live load (in) Neg Live load (in) Neg Total load (in) Gravity Beam Design at 14.90 ft = at 14.90 ft = at 14.90 ft = 0.168 L/D _ -0.037 L/D 0.199 L/D 0.367 L/D Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD -0.364 L/D = 992 -0.352 L/D = 1026 -0.716 L/D = 504 764 3471 646 350 ril RAM Steel v 11.1 RAMDataBase:lionsquare_north INTERN,110 41 Building Code: IBC Gravity Beam Design 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: SOD ROOF Beam Number =14 SPAN INFORMATION (ft): I -End (109.89,54.58) J -End (144.47,65.16) Maximum Depth Limitation specified = 23.00 in Beam Size (User Selected) = W21X182 Fy = 50.0 ksi Total Beam Length (ft) = 36.16 Cantilever on left (ft) = 6.66 Mp (kip -ft) = 1983.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 0.000 8.17 0.00 0.0 4.30 0.00 0.0 0.00 Snow 9.626 32.23 0.00 0.0 37.07 0.00 0.0 0.00 Snow 0.00 0.0 -8.24 0.00 0.0 0.00 Snow 26.357 38.47 0.00 0.0 33.61 0.00 0.0 0.00 Snow 0.00 0.0 -1.54 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 26.357 0.400 0.000 0.0% Red 36.162 0.400 0.000 2 9.626 0.400 0.000 0.0% Red 26.356 0.400 0.000 3 6.663 0.400 0.000 0.0% Red 9.625 0.400 0.000 4 0.000 0.400 0.000 0.0% Red 6.662 0.400 0.000 5 0.000 0.549 0.483 - -- NonR 6.662 0.379 0.334 6 6.663 0.379 0.334 - -- NonR 9.625 0.304 0.267 7 9.626 0.000 0.000 - -- NonR 9.651 0.852 0.749 8 9.652 0.852 0.749 - -- NonR 26.356 0.427 0.375 9 26.370 0.426 0.375 - -- NonR 36.162 0.177 0.156 10 0.000 0.091 0.080 - -- NonR 6.662 0.091 0.080 11 6.663 0.091 0.080 - -- NonR 36.162 0.091 0.080 12 0.000 0.182 0.000 - -- NonR 6.662 0.182 0.000 13 6.663 0.182 0.000 - -- NonR 36.162 0.182 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 162.61 kips 0.90Vn = 508.71 kips Gravity Beam Design WH RAM Steel v 11.1 RAMDataBase:lionsquare_ north NTER"A`0,k Building Code: IBC MOMENTS (Ultimate): Span Cond LoadCombo Left Max - 1.2DL +1.6LL Center Max + 1.2DL +1.6LL Max - 1.2DL +1.6LL Controlling 1.2DL +1.6LL REACTIONS (kips): DL reaction Max +LL reaction Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Left cantilever: Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft = 0.250 L/D = kip -ft -160.4 6.7 6.7 1.00 0.90 1785.00 935.4 26.4 0.0 1.00 0.90 1785.00 -160.4 6.7 3.0 1.89 0.90 1785.00 935.4 26.4 0.0 1.00 0.90 1785.00 Left Right 78.62 42.35 62.03 32.81 -7.92 -3.21 193.60 103.31 Dead load (in) = 0.236 L/D = 677 Pos Live load (in) _ -0.063 L/D = 2547 Neg Live load (in) = 0.250 L/D = 641 Neg Total load (in) = 0.486 L/D = 329 Center span: Dead load (in) at 21.86 ft = -0.381 Live load (in) at 21.86 ft = -0.336 Net Total load (in) at 21.86 ft = -0.717 L/D = 928 L/D = 1055 L/D = 494 RAM Steel v 11.1 Gravity Beam Design RAM DataBase:lionsquare_ north 02/17/0711:53:47 I"TE1NAT"`14L Building Code: IBC Steel Code: AISC LRFD Floor Type: SOD ROOF Beam Number = 16 SPAN INFORMATION (ft): I -End (119.09,57.40) J -End (119.20,97.75) Maximum Depth Limitation specified = 23.00 in Beam Size (User Selected) = W21X182 Fy = 50.0 ksi Total Beam Length (ft) = 40.35 Cantilever on right (ft) = 11.67 Mp (kip -ft) = 1983.33 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 3.494 13.01 0.00 0.0 11.16 0.00 0.0 0.00 Snow 9.794 10.66 0.00 0.0 9.24 0.00 0.0 0.00 Snow 9.794 14.03 0.00 0.0 12.06 0.00 0.0 0.00 Snow 16.094 9.31 0.00 0.0 8.05 0.00 0.0 0.00 Snow 16.094 14.04 0.00 0.0 12.07 0.00 0.0 0.00 Snow 22.394 9.30 0.00 0.0 8.04 0.00 0.0 0.00 Snow 22.394 14.04 0.00 0.0 12.07 0.00 0.0 0.00 Snow 34.986 8.63 0.00 0.0 7.45 0.00 0.0 0.00 Snow 34.986 13.05 0.00 0.0 11.20 0.00 0.0 0.00 Snow 40.353 8.10 0.00 0.0 4.07 0.00 0.0 0.00 Snow 40.353 12.18 0.00 0.0 6.11 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.182 0.000 - -- NonR 28.685 0.182 0.000 2 28.686 0.182 0.000 - -- NonR 40.352 0.182 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 139.06 kips 0.90Vn = 508.71 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center Max + 1.2DL +1.6LL 738.4 9.8 6.3 1.27 0.90 1785.00 Max - 1.2DL +1.6LL -840.8 28.7 6.3 1.32 0.90 1785.00 Right PreCmp- 1.4DL -8.9 28.7 2.0 1.00 0.90 249.38 Max - 1.2DL +1.6LL -840.8 28.7 6.3 1.00 0.90 1785.00 Controlling 1.2DL +1.6LL -840.8 28.7 6.3 1.00 0.90 1785.00 REACTIONS (kips): Left Right DL reaction 32.23 101.50 (aw Max +LL reaction 37.07 72.69 Max -LL reaction -8.24 0.00 Max +total reaction (factored) 98.00 238.10 DEFLECTIONS: F,IRAM Steel v 11.1 RAMDataBase:lionsquare_ north INIIINAiO-4 Building Code: IBC Center span: Dead load (in) at Live load (in) at Net Total load (in) at Right cantilever: Dead load (in) _ Pos Live load (in) _ Neg Live load (in) _ Pos Total load (in) _ Neg Total load (in) _ Gravity Beam Design 13.48 ft = 13.48 ft = 13.48 ft = 0.202 L/D 0.445 L/D 0.436 L/D 0.647 UD 0.234 L/D Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD -0.166 L/D = 2072 -0.336 L/D = 1024 -0.502 L/D = 686 1386 630 642 433 1197 'Fil RAM Steel vl 1.1 DataBase:lionsquare_ north NTE Building Code: IBC Gravitv Beam Design Floor Type: SOD ROOF Beam Number = 69 02/17/07 11:53:47 Steel Code: AISC LRFD SPAN INFORMATION (ft): I -End (153.33,67.87) J -End (153.33,97.75) Maximum Depth Limitation specified = 23.00 in Beam Size (Optimum) = W21X101 Fy = 50.0 ksi Total Beam Length (ft) = 29.88 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 4.00 4.00 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.50 4.50 Decking Orientation parallel parallel Decking type VULCRAFT 2.0VL VULCRAFT 2.0VL beff (in) = 89.65 Y bar(in) = 19.75 Mnf (kip -ft) = 1785.34 Mn (kip -ft) = 1623.71 C (kips) = 768.71 PNA (in) = 20.81 Ieff (in4) = 5437.04 Itr (in4) = 6450.21 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 26.5 # of studs per stud segment: Full = 25,27,1,28,24 Partial = 9,10,10,16,14 Actual = 9,10,10,16,14 Number of Stud Rows = 1 Percent of Full Composite Action = 37.19 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 5.626 8.59 3.64 0.00 0.0 7.40 0.00 0.0 0.00 Snow 0.00 5.626 10.55 4.45 0.00 0.0 9.12 0.00 0.0 0.00 Snow 0.00 11.926 13.27 5.64 0.00 0.0 11.41 0.00 0.0 0.00 Snow 0.00 11.926 10.60 4.47 0.00 0.0 9.16 0.00 0.0 0.00 Snow 0.00 18.218 13.30 5.66 0.00 0.0 11.43 0.00 0.0 0.00 Snow 0.00 18.218 10.60 4.47 0.00 0.0 9.17 0.00 0.0 0.00 Snow 0.00 24.530 12.33 5.26 0.00 0.0 10.58 0.00 0.0 0.00 Snow 0.00 24.530 9.82 4.15 0.00 0.0 8.48 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.101 0.101 0.000 - -- NonR 0.000 29.884 0.101 0.101 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 120.11 kips 0.90Vn = 288.90 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 250.1 15.7 6.3 1.00 0.90 948.75 Init DL I ADL 250.1 15.8 - -- - -- Max + 1.2DL +1.6LL 1032.7 18.2 - -- - -- 0.85 1380.15 Controlling 1.2DL +1.6LL 1032.7 18.2 - -- - -- 0.85 1380.15 Iril RAM Steel vl l.1 RAMDataBase:lionsquare_ north INTERNATC1,k I Building Code: IBC REACTIONS (kips): Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 19.80 20.96 44.69 47.39 37.23 39.52 113.19 120.11 at 14.94 ft = -0.412 L/D = 871 at 14.94 ft = -0.349 L/D = 1027 at 14.94 ft = -0.583 L/D = 615 at 14.94 ft = -0.994 L/D = 361 Gravity Beam Design ram RAM Steel v 11.1 DataBase:lionsquare_ north 02/17/0711:53:47 1NIERIVA 2,111 Building Code: IBC Steel Code: AISC LRFD Floor Type: SOD ROOF Beam Number = 22 SPAN INFORMATION (ft): I -End (176.01,76.76) J -End (176.01,97.75) Maximum Depth Limitation specified = 23.00 in Beam Size (Optimum) = W 18X35 Fy = 50.0 ksi Total Beam Length (ft) = 20.99 Cantilever on right (ft) = 2.00 COMPOSITE PROPERTIES (Not Shored): POINT LOADS (kips): Dist DL Left Right Concrete thickness (in) Red% 4.00 0.00 Unit weight concrete (pcf) 13.05 145.00 0.00 fc (ksi) 0.00 4.50 0.00 Decking Orientation 9.323 parallel parallel Decking type 11.43 VULCRAFT 2.0VL Noncomposite beff (in) = 28.48 Y bar(in) = 16.51 Mnf (kip -ft) = 524.66 Mn (kip -ft) = 497.54 C (kips) = 318.09 PNA (in) = 17.37 Ieff (in4) = 1393.08 Itr (in4) = 1543.66 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 26.5 # of studs: Full = 36 Partial = 25 Actual = 25 Number of Stud Rows = 1 Percent of Full Composite Action = 71.71 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 3.031 13.05 5.55 0.00 0.0 11.21 0.00 0.0 0.00 Snow 0.00 9.323 13.30 5.66 0.00 0.0 11.43 0.00 0.0 0.00 Snow 0.00 15.635 12.33 5.26 0.00 0.0 10.58 0.00 0.0 0.00 Snow 0.00 20.990 11.49 3.10 0.00 0.0 5.76 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 18.990 0.400 0.000 0.000 0.0% Red 0.000 20.989 0.400 0.000 0.000 0.000 2 15.636 0.400 0.000 0.000 0.0% Red 0.000 18.989 0.400 0.000 0.000 0.000 3 9.323 0.400 0.000 0.000 0.0% Red 0.000 15.635 0.400 0.000 0.000 0.000 4 0.000 0.400 0.000 0.000 0.0% Red 0.000 9.322 0.400 0.000 0.000 0.000 5 0.000 0.091 0.038 0.080 - -- NonR 0.000 18.989 0.091 0.038 0.080 0.000 6 18.990 0.091 0.038 0.080 - -- NonR 0.000 20.989 0.091 0.038 0.080 0.000 7 0.000 0.035 0.035 0.000 - -- NonR 0.000 18.989 0.035 0.035 0.000 0.000 8 18.990 0.035 0.035 0.000 - -- NonR 0.000 Gravity Beam Design RAM Steel v 11.1 RAMDataBase:lionsquare_ north Building Code: IBC Load Dist DL CDL LL Red% Type CLL 20.989 0.035 0.035 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 58.02 kips 0.90Vn = 143.37 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb kip -ft ft ft Center PreCmp+ 1 4DL 619 011 6 3 1 22 Right PreCmp- Init DL Max + Max - PreCmp- Max - Controlling REACTIONS (kips): 1.4DL -8.9 19.0 3.4 2.02 1.4DL 61.9 9.3 - -- - -- 1.2DL+1.6LL 286.7 9.3 - -- - -- 1.2DL+1.6LL -47.5 19.0 3.4 2.22 1.4DL -8.9 19.0 2.0 1.00 1.2DL +1.6LL -47.5 19.0 2.0 1.00 1.2DL +1.6LL 286.7 9.3 - -- - -- Initial reaction DL reaction Max +LL reaction Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Center span: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Right cantilever: Init load (in) Pos Live load (in) Neg Live load (in) Neg Post Comp load (in) Neg Total load (in) Left Right 8.83 12.26 23.64 37.57 17.87 23.41 -0.62 0.00 56.97 82.54 Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD Phi 1'1 1 •1 1: 1 •1 1 •1 1'1 1: at 9.30 ft = -0.179 L/D = 1272 at 9.40 ft = -0.140 L/D = 1628 at 9.40 ft = -0.246 L/D = 928 at 9.40 ft = -0.425 L/D = 537 = 0.056 L/D = 861 _ -0.008 L/D = 5895 = 0.047 L/D = 1016 = 0.076 L/D = 629 = 0.132 L/D = 363 Phi *Mn kip -ft 249.38 249.38 422.91 249.38 249.38 249.38 422.91 Gravity Beam Design RAM Steel v 11.1 RAMDataBase:lionsquare_ north INTERNAT0,A1 Building Code: 113C Floor Type: SOD ROOF Beam Number = 45 SPAN INFORMATION (ft): I -End (66.04,81.33) J -End (95.17,81.33) Maximum Depth Limitation specified = 23.00 in Beam Size (User Selected) = W 18X 119 Total Beam Length (ft) = 29.13 COMPOSITE PROPERTIES (Not Shored): 02/17/07 11:53:47 Steel Code: AISC LRFD Fy = 50.0 ksi Left Right Concrete thickness (in) 4.00 4.00 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.50 4.50 Decking Orientation parallel perpendicular Decking type VULCRAFT 2.OVL VULCRAFT 2.OVL beff (in) = 77.29 Y bar(in) = 16.79 Mnf (kip -ft) = 1771.50 Mn (kip -ft) = 1673.07 C (kips) = 821.72 PNA (in) = 18.17 Ieff (in4) = 5115.39 Itr (in4) = 5699.31 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 26.5 # of studs: Full = 110 Partial = 30 Actual = 76 Number of Stud Rows = 1 Percent of Full Composite Action = 69.11 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 5.825 8.86 3.74 0.00 0.0 7.65 0.00 0.0 0.00 Snow 0.00 6.458 18.80 8.21 0.00 0.0 15.17 0.00 0.0 0.00 Snow 0.00 11.650 8.86 3.74 0.00 0.0 7.65 0.00 0.0 0.00 Snow 0.00 17.125 17.77 7.77 0.00 0.0 14.95 0.00 0.0 0.00 Snow 0.00 17.475 8.86 3.74 0.00 0.0 7.65 0.00 0.0 0.00 Snow 0.00 23.300 8.86 3.74 0.00 0.0 7.65 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.510 0.210 0.448 - -- NonR 0.000 29.125 0.510 0.210 0.448 0.000 2 0.000 0.119 0.119 0.000 - -- NonR 0.000 29.125 0.119 0.119 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 122.26 kips 0.90Vn = 336.02 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 246.2 17.1 0.0 1.00 0.90 982.50 Init DL 1.4DL 246.2 17.1 - -- - -- Max + 1.2DL +1.6LL 994.7 17.1 - -- - -- 0.85 1422.11 Controlling 1.2DL +1.6LL 994.7 17.1 - -- - -- 0.85 1422.11 IF! I RAM Steel vl 1.1 RAMDataBase:lionsquare_ north 'NTERNATKIAL Building Code: IBC REACTIONS (kips): Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 21.87 18.67 48.83 41.49 39.79 33.98 122.26 104.16 at 14.42 ft = -0.418 L/D = 836 at 14.42 ft = -0.330 L/D = 1060 at 14.42 ft = -0.552 L/D = 633 at 14.42 ft = -0.970 L/D = 360 III RAM Steel v 11.1 RAMDataBase:lionsquare_ north r rearrarKx int Building Code: IBC Gay Beam Design Floor Type: SECOND Beam Number = 117 SPAN INFORMATION (ft): I -End (209.22,97.75) J -End (209.26,74.63) Maximum Depth Limitation specified = 11.00 in Beam Size (Optimum) = W 10X22 Total Beam Length (ft) = 23.13 COMPOSITE PROPERTIES (Not Shored): 02/17/07 11:53:47 Steel Code: AISC LRFD Fy = 50.0 ksi Center PreCmp+ Init DL Max + Controlling REACTIONS (kips): 1.4131, 1.4DL 1.2DL +1.6LL 1.2DL+ 1.6LL Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) at Live load (in) at kip -ft ft ft Left Right Concrete thickness (in) 11.6 - -- - -- 2.50 2.50 Unit weight concrete (pcf) 11.6 - -- - -- 145.00 145.00 fc (ksi) 3.50 3.50 Decking Orientation 90.1 deg 90.1 deg Decking type VULCRAFT 2.0VL VULCRAFT 2.0VL beff (in) = 58.26 Y bar(in) = 11.15 Mnf (kip -ft) = 234.28 Mn (kip -ft) = 164.22 C (kips) = 88.57 PNA (in) = 8.79 Ieff (in4) = 294.08 Itr (in4) = 455.03 Stud length (in) = 3.50 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 17.7 # of studs: Full = 32 Partial = 10 Actual = 10 Number of Stud Rows = 1 Percent of Full Composite Action = 27.29 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.321 0.258 0.194 0.0% Red 0.000 23.125 0.321 0.258 0.194 0.000 2 0.000 0.022 0.022 0.000 - -- NonR 0.000 23.125 0.022 0.022 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 8.35 kips 0.90Vn = 66.10 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Center PreCmp+ Init DL Max + Controlling REACTIONS (kips): 1.4131, 1.4DL 1.2DL +1.6LL 1.2DL+ 1.6LL Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) at Live load (in) at kip -ft ft ft 26.2 11.6 0.0 1.00 26.2 11.6 - -- - -- 48.3 11.6 - -- - -- 48.3 11.6 - -- - -- Left 3.23 3.96 2.25 8.35 Right 3.23 3.96 2.25 8.35 11.56 ft = -0.526 11.56 ft = -0.147 1 •1 AS 1. L/D = 528 LJD = 1892 Phi *Mn kip -ft 97.50 139.59 139.59 MIRAM Steel vl 1.1 DataBase:lionsquare_north I Building Code: IBC Gravity Beam Design Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD Post Comp load (in) at 11.56 ft = -0.194 L/D = 1428 Net Total load (in) at 11.56 ft = -0.720 L/D = 385 Gravity Beam Design RAM Steel v11.1 RAMDataBase:lionsquare_ north INTERNATO -AL Building Code: IBC Floor Type: SECOND Beam Number = 20 02/17/07 11:53:47 Steel Code: AISC LRFD SPAN INFORMATION (ft): I -End (23.08,39.79) J -End (55.73,39.79) Beam Size (User Selected) = W21X93 Fy = 50.0 ksi Total Beam Length (ft) = 32.65 COMPOSITE PROPERTIES (Not Shored): POINT LOADS (kips): Dist DL Left Right Concrete thickness (in) StorLL 2.50 2.50 Unit weight concrete (pcf) CLL 145.00 145.00 fc (ksi) 2.07 3.50 3.50 Decking Orientation 0.0 parallel parallel Decking type 11.667 VULCRAFT 2.OVL VULCRAFT 2.OVL beff (in) = 97.94 Y bar(in) = 18.01 Mnf (kip -ft) = 1405.96 Mn (kip -ft) = 1363.95 C (kips) = 566.85 PNA (in) = 20.57 Ieff (in4) = 4522.97 Itr (in4) = 4850.65 Stud length (in) = 3.50 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 23.6 2.90 2.07 # of studs: Full = 70 Partial = 21 Actual = 54 0.0 Number of Stud Rows = 1 Percent of Full Composite Action = 76.51 24.548 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 6.137 3.64 2.96 2.07 41.5 0.00 0.00 0.0 0.00 Snow 0.00 11.667 4.57 3.68 2.72 41.5 0.00 0.00 0.0 0.00 Snow 0.00 12.274 3.58 2.90 2.07 41.5 0.00 0.00 0.0 0.00 Snow 0.00 18.411 3.58 2.90 2.07 41.5 0.00 0.00 0.0 0.00 Snow 0.00 24.548 3.58 2.90 2.07 41.5 0.00 0.00 0.0 0.00 Snow 0.00 30.685 3.58 2.90 2.07 41.5 0.00 0.00 0.0 0.00 Snow 0.00 18.000 57.95 0.00 27.38 41.5 0.00 0.00 0.0 0.00 Snow 0.00 -0.81 41.7 -0.02 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.093 0.093 0.000 - -- NonR 0.000 32.645 0.093 0.093 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 74.74 kips 0.90Vn = 338.26 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 138.0 12.3 6.1 1.01 0.90 828.75 Init DL 1.4DL 138.0 12.3 - -- - -- Max + 1.2DL +1.6LL 960.2 18.0 - -- - -- 0.85 1159.36 Controlling 1.2DL +1.6LL 960.2 18.0 - -- - -- 0.85 1159.36 REACTIONS (kips): RAM Steel vl 1.1 RAMDataBase:lionsquare_ north IWERNAiOXA Building Code: IBC Initial reaction DL reaction Max +LL reaction Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 10.26 11.03 38.30 45.20 10.85 12.81 -0.22 -0.27 63.31 74.74 at 16.65 ft = -0.308 LID = 1273 at 16.65 ft = -0.202 L/D = 1937 at 16.65 ft = -0.776 L/D = 505 at 16.65 ft = -1.084 L/D = 361 Third Level Framing E A oQ O 04 4) L d Lo o C\qj r,T - - - - - -r - -- -- - , (r�z 4"1", CID r! C� I L -i t--,-I -�-L, - O�M,7\ ---- - --- - - iT -,-'T C-J� T -i - li i ' i I -i- -- I ----- -i --- F- LO JLO I 0-M-- jj LU of Gravity Beam Design RAM Steel v 11.1 RAMDataBase:lionsquare_ north INTEPNA O-q Building Code: IBC 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: THIRD Beam Number = 99 SPAN INFORMATION (ft): I -End (207.96,63.46) J -End (207.96,97.75) Beam Size (Optimum) = W 18X35 Fy = 50.0 ksi Total Beam Length (ft) = 34.29 COMPOSITE PROPERTIES (Not Shored): Center PreCmp+ Init DL Max + Controlling REACTIONS (kips): 1.4DL 1.4DL 1.2DL +1.6LL 1.2DL +1.6LL Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) kip -ft ft ft Left Right Concrete thickness (in) 17.1 - -- - -- 2.50 2.50 Unit weight concrete (pcf) 17.1 - -- - -- 145.00 145.00 f c (ksi) 3.50 3.50 Decking Orientation perpendicular perpendicular Decking type VULCRAFT 2.0VL VULCRAFT 2.0VL beff (in) = 73.50 Y bar(in) = 17.04 Mnf (kip -ft) = 522.40 Mn (kip -ft) = 403.43 C (kips) = 141.71 PNA (in) = 13.57 Ieff (in4) = 1051.53 Itr (in4) = 1542.34 Stud length (in) = 3.50 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 17.7 # of studs: Full = 50 Partial = 16 Actual = 16 Number of Stud Rows = 1 Percent of Full Composite Action = 27.52 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.404 0.325 0.245 1.8% Red 0.000 34.291 0.404 0.325 0.245 0.000 2 0.000 0.035 0.035 0.000 - -- NonR 0.000 34.291 0.035 0.035 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) =15.64 kips 0.90Vn = 143.37 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Center PreCmp+ Init DL Max + Controlling REACTIONS (kips): 1.4DL 1.4DL 1.2DL +1.6LL 1.2DL +1.6LL Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) kip -ft ft ft 74.0 17.1 0.0 1.00 74.0 17.1 - -- - -- 134.1 17.1 - -- - -- 134.1 17.1 - -- - -- Left 6.17 7.53 4.12 15.64 Right 6.17 7.53 4.12 15.64 1 •1 1: 1: at 17.15 ft = -0.757 L/D = 544 at 17.15 ft = -0.245 L/D = 1677 at 17.15 ft = -0.327 L/D = 1260 Phi *Mn kip -ft 249.38 342.91 342.91 III RAM Steel vl 1.1 RAMDataBase:lionsquare_north INTERNATO -A Building Code: IBC Net Total load (in) at Gravity Beam Design Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD 17.15 ft = -1.083 L/D = 380 RAM Steel vl 1.1 Gravity Beam Design RAMDataBase:lionsquare_ north 02/17/0711:53:47 Building Code: IBC Steel Code: AISC LRFD Floor Type: THIRD Beam Number = 11 SPAN INFORMATION (ft): I -End (37.88,56.67) J -End (55.73,56.67) Beam Size (Optimum) = W 16X31 Fy = 50.0 ksi Total Beam Length (ft) = 17.85 COMPOSITE PROPERTIES (Not Shored): POINT LOADS (kips): Dist DL Left Right Concrete thickness (in) NonRLL 2.50 2.50 Unit weight concrete (pcf) Red% 145.00 145.00 fc (ksi) 3.01 3.50 3.50 Decking Orientation 0.00 perpendicular parallel Decking type 0.00 VULCRAFT 2.0VL VULCRAFT 2.0VL beff (in) = 45.91 Y bar(in) = 14.63 Mnf (kip -ft) = 393.95 Mn (kip -ft) = 347.43 C (kips) = 165.33 PNA (in) = 13.96 Ieff (in4) = 855.17 Itr (in4) = 1065.08 Stud length (in) = 3.50 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 23.6 9.09 11.71 # of studs per stud segment: Full = 5,8,3,7,8 0.0 0.00 Partial = 2,3,2,3,4 Actual = 2,3,2,3,4 42.0 Number of Stud Rows = 1 Percent of Full Composite Action = 42.49 0.00 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 3.619 23.43 3.01 12.00 41.8 0.00 0.00 0.0 0.00 Snow 0.00 0.031 0.000 0.000 -0.28 42.0 -0.05 0.00 0.0 0.00 Snow 14.2 9.756 3.58 2.90 2.07 41.8 0.00 0.00 0.0 0.00 Snow 0.00 14.167 25.70 9.09 11.71 41.8 1.30 0.00 0.0 0.00 Snow 0.00 -0.27 42.0 -0.08 0.00 0.0 0.00 Snow 15.893 26.44 3.01 13.96 41.8 0.00 0.00 0.0 0.00 Snow 0.00 -0.40 42.0 0.00 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.107 0.086 0.065 41.8% Red 0.000 17.854 0.107 0.086 0.065 0.000 2 0.000 0.031 0.031 0.000 - -- NonR 0.000 17.854 0.031 0.031 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 87.98 kips 0.90Vn = 118.06 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 61.6 9.8 0.0 1.00 0.90 202.50 Init DL 1.4DL 61.6 9.8 - -- - -- Max + 1.2DL +1.6LL 245.7 14.2 - -- - -- 0.85 295.31 Controlling 1.2DL +1.6LL 245.7 14.2 - -- - -- 0.85 295.31 F11RAM Steel v 11.1 RAMDataBase:lionsquare_ north NTERNATO,,A1 Building Code: IBC REACTIONS (kips): Initial reaction DL reaction Max +LL reaction Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 6.97 13.14 29.75 51.87 9.02 16.09 -0.24 -0.43 50.14 87.98 at 9.28 ft = -0.231 L/D = 929 at 9.28 ft = -0.108 L/D = 1990 at 9.28 ft = -0.355 L/D = 603 at 9.28 ft = -0.586 L/D = 366 Gravity Beam Design RAM Steel v 11.1 4M.", M DataBase:lionsquare_north Building Code: IBC 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: THIRD Beam Number =102 SPAN INFORMATION (ft): I -End (194.51,76.76) J -End (194.51,95.75) Beam Size (Optimum) = W 12X 19 Fy = 50.0 ksi Total Beam Length (ft) = 18.99 COMPOSITE PROPERTIES (Not Shored): Center PreCmp+ Init DL Max + Controlling REACTIONS (kips): kip -ft I ADL 23.8 Left Right Concrete thickness (in) 44.6 2.50 2.50 Unit weight concrete (pcf) = -0.292 L/D = 780 145.00 145.00 f c (ksi) = -0.113 L/D = 2014 3.50 3.50 Decking Orientation perpendicular perpendicular Decking type VULCRAFT 2.OVL VULCRAFT 2.0VL beff (in) = 56.97 Y bar(in) = 13.12 Mnf (kip -ft) = 226.94 Mn (kip -ft) = 155.62 C (kips) = 70.86 PNA (in) = 9.12 Ieff (in4) = 318.69 Itr (in4) = 504.10 Stud length (in) = 3.50 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 17.7 # of studs: Max = 18 Partial = 8 Actual = 8 Number of Stud Rows = 1 Percent of Full Composite Action = 25.44 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.445 0.357 0.270 0.0% Red 0.000 18.989 0.445 0.357 0.270 0.000 2 0.000 0.019 0.019 0.000 - -- NonR 0.000 18.989 0.019 0.019 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 9.39 kips 0.90Vn = 77.41 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Center PreCmp+ Init DL Max + Controlling REACTIONS (kips): kip -ft I ADL 23.8 1.4DL 23.8 1.2DL +1.6LL 44.6 1.2DL +1.6LL 44.6 Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Left Right ft ft 9.5 0.0 1.00 9.5 - -- - -- 9.5 - -- - -- 9.5 - -- - -- 1'1 1' TI 3.57 3.57 4.41 4.41 2.56 2.56 9.39 9.39 at 9.49 ft = -0.292 L/D = 780 at 9.49 ft = -0.085 L/D = 2668 at 9.49 ft = -0.113 L/D = 2014 Phi *Mn kip -ft 92.63 132.28 132.28 Gravity Beam Design RAM Steel v 11.1 DataBase: lionsquare_ north Building Code: IBC Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD Net Total load (in) at 9.49 ft = -0.405 L/D = 562 Gravitv Beam Design RAM Steel v 11.1 DataB ase: lionsquare_ north Building Code: IBC Floor Type: THIRD Beam Number = 113 02/17/07 11:53:47 Steel Code: AISC LRFD SPAN INFORMATION (ft): I -End (226.71,79.79) J -End (251.83,79.79) Beam Size (Optimum) = W 16X26 Fy = 50.0 ksi Total Beam Length (ft) = 25.12 Cantilever on right (ft) = 1.00 COMPOSITE PROPERTIES (Not Shored): SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 9.61 kips 0.90Vn = 104.15 kips Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 3.50 3.50 Decking Orientation perpendicular perpendicular Decking type VULCRAFT 2.0VL VULCRAFT 2.OVL beff (in) = 65.33 Y bar(in) = 15.78 Mnf (kip -ft) = 363.59 Mn (kip -ft) = 272.45 C (kips) = 106.29 PNA (in) = 12.10 Ieff (in4) = 661.84 Itr (in4) = 986.88 Stud length (in) = 3.50 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 17.7 # of studs: Full = 37 Partial = 13 Actual = 13 Number of Stud Rows = 1 Percent of Full Composite Action = 27.50 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 25.125 2.41 0.52 0.05 0.0 0.60 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 24.125 0.288 0.000 0.000 0.0% Red 0.000 25.124 0.288 0.000 0.000 0.000 2 0.000 0.180 0.144 0.109 0.0% Red 0.000 24.124 0.180 0.144 0.109 0.000 3 24.125 0.016 0.013 0.010 0.0% Red 0.000 25.124 0.016 0.013 0.010 0.000 4 0.000 0.180 0.144 0.109 0.0% Red 0.000 20.180 0.180 0.144 0.109 0.000 5 20.181 0.180 0.144 0.109 0.0% Red 0.000 24.124 0.000 0.000 0.000 0.000 6 24.125 0.283 0.144 0.272 - -- NonR 0.000 25.124 0.283 0.144 0.272 0.000 7 0.000 0.026 0.026 0.000 - -- NonR 0.000 24.124 0.026 0.026 0.000 0.000 8 24.125 0.026 0.026 0.000 - -- NonR 0.000 25.124 0.026 0.026 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 9.61 kips 0.90Vn = 104.15 kips V1, Gravity Beam Design 11 RAM Steel vl 1.1 RamDataBase:lionsquare_ north INTERNHTICXJAL Building Code: IBC MOMENTS (Ultimate): Span Cond LoadCombo Center PreCmp+ 1.4131, PreCmp- 1.4131, Init DL 1.4131- Max + 1.2DL +1.6LL Max - 1.2DL +1.6LL Right PreCmp- 1.4131, Max - 1.2D Controlling 1.2D REACTIONS (kips): Initial reaction DL reaction Max +LL reaction Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Center span: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Right cantilever: Init load (in) Neg Live load (in) Neg Post Comp load (in) Neg Total load (in) L +1.6LL L +1.6LL Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft 14.37 kip -ft 31.4 11.9 0.0 1.00 0.90 165.75 -0.9 24.1 24.1 1.14 0.90 34.12 31.4 11.9 - -- - -- 56.9 11.8 - -- - -- 0.85 231.58 -4.5 24.1 24.1 1.15 0.90 34.44 -0.9 24.1 1.0 1.00 0.90 165.75 -4.5 24.1 1.0 1.00 0.90 165.75 56.9 11.8 - -- - -- 0.85 231.58 Left Right 3.75 4.25 4.52 7.45 2.62 3.39 -0.03 0.00 9.61 14.37 at 11.94 ft = at 11.94 ft = at 11.94 ft = at 11.94 ft = = 0.035 L/D = 0.011 L/D = 0.013 L/D 0.048 L/D -0.268 -0.086 -0.106 -0.374 687 2126 1805 498 L/D = 1081 L/D = 3384 L/D = 2719 L/D = 774 ERAM Steel v11.1 RAMDataBase: lio nsquare_north Building Code: IBC Gravity Beam Design 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: THIRD Beam Number = 116 SPAN INFORMATION (ft): I -End (226.71,68.90) J -End (251.83,68.90) Beam Size (Optimum) = W 16X26 Fy = 50.0 ksi Total Beam Length (ft) = 25.12 kip -ft Cantilever on right (ft) = 6.92 Max + Mp (kip -ft) = 184.17 14.0 6.1 0.0 POINT LOADS (kips): Max - 1.2DL +1.6LL -69.2 Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 25.125 2.41 0.05 0.0 0.60 0.00 0.0 0.00 Snow 25.125 0.77 0.02 0.0 0.00 0.00 0.0 0.00 Snow LINE LOADS (k/ft): 6.9 Controlling Load Dist DL LL Red% Type 1 0.000 0.337 0.204 0.0% Red 18.208 0.337 0.204 2 18.209 0.142 0.136 - -- NonR 20.180 0.283 0.272 3 20.181 0.283 0.272 - -- NonR 25.124 0.283 0.272 4 18.209 0.248 0.239 - -- NonR 25.124 0.248 0.239 5 0.000 0.026 0.000 - -- NonR 18.208 0.026 0.000 6 18.209 0.026 0.000 - -- NonR 25.124 0.026 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 14.81 kips 0.90Vn = 104.15 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi REACTIONS (kips): Left Right kip -ft ft ft Center Max + 1.2DL +1.6LL 14.0 6.1 0.0 Max +total reaction (factored) Max - 1.2DL +1.6LL -69.2 18.2 18.2 Right PreCmp- 1.4DL -0.9 18.2 1.0 Live load (in) at Max - 1.2DL +1.6LL -69.2 18.2 6.9 Controlling 1.2DL +1.6LL -69.2 18.2 18.2 REACTIONS (kips): 1.00 2.37 1.00 1.00 2.37 1 •1 1 •1 1 •1 1 •1 1 •1 LAD = 4159 L/D = 3150 Phi *Mn kip -ft 165.75 107.02 165.75 142.43 107.02 Left Right DL reaction 1.37 12.14 Max +LL reaction 1.86 6.87 Max -LL reaction -0.92 0.00 Max +total reaction (factored) 4.63 25.56 DEFLECTIONS: Center span: Dead load (in) at 11.74 ft = 0.053 Live load (in) at 11.74 ft = 0.069 1.00 2.37 1.00 1.00 2.37 1 •1 1 •1 1 •1 1 •1 1 •1 LAD = 4159 L/D = 3150 Phi *Mn kip -ft 165.75 107.02 165.75 142.43 107.02 RAM Steel v 11.1 UMDataBase:lionsquare_ north INTERIWTa,AL Building Code: IBC Center span: Net Total load (in) Right cantilever: Dead load (in) Pos Live load (in) Neg Live load (in) Pos Total load (in) • U Gravity Beam Design at 11.74 ft = 0.122 = -0.269 L/D = 617 = -0.184 L/D = 904 = 0.070 L/D = 2358 _ -0.452 L/D = 367 Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD L/D = 1792 ,". Gravity Beam Design RAM Steel vl 1.1 RAMDataBase:lionsquare_ north MERNATO-Al Building Code: IBC Floor Type: THIRD Beam Number = 23 02/17/07 11:53:47 Steel Code: AISC LRFD SPAN INFORMATION (ft): I -End (0.00,44.54) J -End (23.08,44.54) Beam Size (Optimum) = W 18X35 Fy = 50.0 ksi Total Beam Length (ft) = 23.08 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 0.00 2.50 Unit weight concrete (pcf) 0.00 145.00 fc (ksi) 0.00 3.50 Decking Orientation parallel parallel Decking type Noncomposite VULCRAFT 2.OVL beff (in) = 34.62 Y bar(in) = 14.86 Mnf (kip -ft) = 445.08 Mn (kip -ft) = 366.59 C (kips) = 94.48 PNA (in) = 12.00 Ieff (in4) = 967.12 Itr (in4) = 1264.71 Stud length (in) = 3.50 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 23.6 # of studs per stud segment: Full = 5,7,6,6 Partial = 2,2,2,2 Actual = 2,2,2,2 Number of Stud Rows = 1 Percent of Full Composite Action = 36.69 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 4.000 5.51 1.23 1.40 17.0 0.55 0.00 0.0 0.00 Snow 0.00 4.000 3.43 2.79 1.97 17.0 0.00 0.00 0.0 0.00 Snow 0.00 10.361 11.04 2.22 3.63 17.0 2.01 0.00 0.0 0.00 Snow 0.00 10.361 4.17 3.38 2.42 17.0 0.00 0.00 0.0 0.00 Snow 0.00 16.722 2.66 2.16 1.54 17.0 0.00 0.00 0.0 0.00 Snow 0.00 16.722 4.17 3.38 2.42 17.0 0.00 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.288 0.000 0.000 0.0% Red 0.000 4.000 0.288 0.000 0.000 0.000 2 0.000 0.016 0.013 0.010 17.0% Red 0.000 4.000 0.016 0.013 0.010 0.000 3 0.000 0.035 0.035 0.000 - -- NonR 0.000 23.083 0.035 0.035 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 35.14 kips 0.90Vn = 143.37 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 82.6 10.4 6.4 1.08 0.90 245.46 Init DL 1.4DL 82.6 10.4 - -- - -- Max + 1.2DL +1.6LL 246.8 10.4 - -- - -- 0.85 311.60 Gravity Beam Design WH RAM Steel v 11.1 RAMDataBase:lionsquare_ north '"1111',110 Building Code: IBC Span Cond LoadCombo Controlling 1.2DL +1.6LL REACTIONS (kips): Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) at Live load (in) at Post Comp load (in) at Net Total load (in) at Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD Mu @ Lb Cb Phi Phi *Mn 246.8 10.4 - -- - -- 0.85 311.60 Left Right 8.39 7.63 19.17 13.83 7.58 6.12 35.14 26.40 11.31 ft = -0.364 L/D = 761 11.31 ft = -0.175 L/D = 1587 11.31 ft = -0.383 L/D = 723 11.31 ft = -0.747 L/D = 371 r� Fourth Level Framing 0 00, L D - Li P LO Ao cj Lo ow '. . . III RAM Steel v 11.1 RAMDataBase:lionsquare_ north INTERNATI0-k Building Code: IBC Gravity Beam Design Floor Type: FOURTH Beam Number =14 SPAN INFORMATION (ft): I -End (207.96,63.46) J -End (207.96,97.75) Beam Size (Optimum) = W 18X35 Total Beam Length (ft) = 34.29 COMPOSITE PROPERTIES (Not Shored): 02/17/07 11:53:47 Steel Code: AISC LRFD Fy = 50.0 ksi Center PreCmp+ Init DL Max + Controlling REACTIONS (kips): 1.4DL 1.4DL 1.2DL+ 1.6LL 1.2DL +1.6LL Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) kip -ft ft ft Left Right Concrete thickness (in) 17.1 - -- 2.50 2.50 Unit weight concrete (pcf) 17.1 - -- 145.00 145.00 fc (ksi) 3.50 3.50 Decking Orientation perpendicular perpendicular Decking type VULCRAFT 2.0VL VULCRAFT 2.OVL beff (in) = 73.50 Y bar(in) = 17.04 Mnf (kip -ft) = 522.40 Mn (kip -ft) = 403.43 C (kips) = 141.71 PNA (in) = 13.57 Ieff (in4) = 1051.53 Itr (in4) = 1542.34 Stud length (in) = 3.50 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 17.7 # of studs: Full = 50 Partial = 16 Actual = 16 Number of Stud Rows = 1 Percent of Full Composite Action = 27.52 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.404 0.325 0.245 1.8% Red 0.000 34.291 0.404 0.325 0.245 0.000 2 0.000 0.035 0.035 0.000 - -- NonR 0.000 34.291 0.035 0.035 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) =15.64 kips 0.90Vn = 143.37 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Center PreCmp+ Init DL Max + Controlling REACTIONS (kips): 1.4DL 1.4DL 1.2DL+ 1.6LL 1.2DL +1.6LL Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) kip -ft ft ft 74.0 17.1 0.0 74.0 17.1 - -- 134.1 17.1 - -- 134.1 17.1 - -- Left 6.17 7.53 4.12 15.64 Right 6.17 7.53 4.12 15.64 1.00 0.90 - -- 0.85 - -- 0.85 at 17.15 ft = -0.757 L/D = 544 at 17.15 ft = -0.245 L/D = 1677 at 17.15 ft = -0.327 L/D = 1260 Phi *Mn kip -ft 249.38 342.91 342.91 Gravity Beam Design RAM Steel v11.1 RAMDataBase:lionsquare_ north INIIIIIAI",�. L Building Code: IBC Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD I*wW Net Total load (in) at 17.15 ft = -1.083 L/D = 380 Gravity Beam Design RAM Steel v 11.1 RAMDataBase:lionsquare_ north INIIINATO,111 Building Code: IBC 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: FOURTH Beam Number =119 SPAN INFORMATION (ft): I -End (9.00,53.99) J -End (9.00,82.17) Beam Size (Optimum) = W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 28.18 COMPOSITE PROPERTIES (Not Shored): POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL Left Right Concrete thickness (in) Red% 2.50 2.50 Unit weight concrete (pcf) 0.00 145.00 145.00 fc (ksi) 0.00 3.50 3.50 Decking Orientation 0.0 parallel parallel Decking type 22.802 9.93 5.36 2.88 23.7 VULCRAFT 2.OVL VULCRAFT 2.0VL beff (in) = 72.27 Y bar(in) = 20.31 Mnf (kip -ft) = 942.59 Mn (kip -ft) = 833.53 C (kips) = 259.81 PNA (in) = 18.38 Ieff (in4) = 2819.91 Itr (in4) = 3459.80 Stud length (in) = 3.50 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 23.6 # of studs per stud segment: Full = 20,4,13,11 Red% Type Partial = 6,5,6,5 1 0.000 0.055 0.055 Actual = 6,5,6,5 NonR Number of Stud Rows = 1 Percent of Full Composite Action = 30.72 28.177 0.055 0.055 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 8.219 12.39 6.34 2.65 23.7 4.47 0.00 0.0 0.00 Snow 0.00 15.510 11.66 5.97 2.49 23.7 4.20 0.00 0.0 0.00 Snow 0.00 22.802 9.93 5.36 2.88 23.7 2.09 0.00 0.0 0.00 Snow 0.00 8.240 21.74 0.00 5.76 23.7 4.11 0.00 0.0 0.00 Snow 0.00 22.594 16.06 0.00 3.51 23.7 4.13 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.055 0.055 0.000 - -- NonR 0.000 28.177 0.055 0.055 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 72.39 kips 0.90Vn = 251.69 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 120.9 15.5 7.3 1.07 0.90 486.40 Init DL 1.4DL 120.9 15.5 - -- - -- Max + 1.2DL +1.6LL 560.9 15.5 - -- - -- 0.85 708.50 Controlling 1.2DL +1.6LL 560.9 15.5 - -- - -- 0.85 708.50 REACTIONS (kips): RAM Steel v11.1 UmDataBase:lionsquare_ north �NTERNATff-k Building Code: IBC Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 8.98 10.26 35.26 38.09 15.53 16.68 67.16 72.39 at 13.95 ft = -0.300 L/D = 1127 at 13.95 ft = -0.235 L/D = 1440 at 13.95 ft = -0.616 L/D = 549 at 13.95 ft = -0.916 L/D = 369 Gravity Beam Design RAM Steel v 11.1 DataB ase: lionsquare_ north Building Code: IBC Floor Type: FOURTH Beam Number = 46 SPAN INFORMATION (ft): I -End (0.00,44.54) J -End (23.08,44.54) Beam Size (Optimum) = W21X44 Total Beam Length (ft) = 23.08 COMPOSITE PROPERTIES (Not Shored): 02/17/07 11:53:47 Steel Code: AISC LRFD Fy = 50.0 ksi POINT LOADS (kips): Dist DL Left Right Concrete thickness (in) Red% 0.00 2.50 Unit weight concrete (pcf) 4.000 0.00 145.00 fc (ksi) 0.00 0.00 3.50 Decking Orientation Snow parallel parallel Decking type 2.79 Noncomposite VULCRAFT 2.OVL beff (in) = 34.62 Y bar(in) = 16.32 Mnf (kip -ft) = 611.92 Mn (kip -ft) = 478.69 C (kips) = 70.86 PNA (in) = 12.37 Ieff (in4) = 1399.53 Itr (in4) = 1903.98 Stud length (in) = 3.50 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 23.6 0.00 Snow # of studs: Full = 30 Partial = 9 Actual = 9 1.85 Number of Stud Rows = 1 Percent of Full Composite Action = 27.51 0.00 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 4.000 2.31 0.78 0.52 30.8 0.00 0.00 0.0 0.00 Snow 0.00 4.000 3.43 2.79 1.97 30.8 0.00 0.00 0.0 0.00 Snow 0.00 9.000 2.07 1.68 1.20 30.8 0.00 0.00 0.0 0.00 Snow 0.00 10.361 4.17 3.38 2.42 30.8 0.00 0.00 0.0 0.00 Snow 0.00 16.722 2.28 1.85 1.33 30.8 0.00 0.00 0.0 0.00 Snow 0.00 16.722 4.17 3.38 2.42 30.8 0.00 0.00 0.0 0.00 Snow 0.00 4.000 23.33 0.00 6.18 30.8 0.00 0.00 0.0 0.00 Snow 0.00 -0.20 30.9 0.00 0.00 0.0 0.00 Snow 9.000 22.26 0.00 7.25 30.8 0.00 0.00 0.0 0.00 Snow 0.00 -0.00 30.9 0.00 0.00 0.0 0.00 Snow LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.288 0.000 0.000 0.0% Red 0.000 4.000 0.288 0.000 0.000 0.000 2 0.000 0.016 0.013 0.010 30.8% Red 0.000 4.000 0.016 0.013 0.010 0.000 3 0.000 0.044 0.044 0.000 - -- NonR 0.000 23.083 0.044 0.044 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 69.78 kips 0.90Vn = 195.62 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 74.8 10.4 6.4 1.07 0.90 352.61 IIIRAM Steel v 11.1 UMDataBase:lionsquare_ north 1�ITERNATO -J11 Building Code: IBC Gravity Beam Design Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn Init DL I ADL 74.8 10.4 - -- - -- Max + 1.2DL +1.6LL 393.0 9.0 - -- - -- 0.85 406.88 Controlling 1.2DL +1.6LL 393.0 9.0 - -- - -- 0.85 406.88 REACTIONS (kips): Left Right Initial reaction 7.84 7.10 DL reaction 44.58 21.69 Max +LL reaction 10.18 5.95 Max -LL reaction -0.11 -0.02 Max +total reaction (factored) 69.78 35.54 DEFLECTIONS: Initial load (in) at 10.85 ft = -0.202 L/D = 1368 Live load (in) at 10.85 ft = -0.132 L/D = 2106 Post Comp load (in) at 10.85 ft = -0.525 LID = 527 Net Total load (in) at 10.85 ft = -0.728 L/D = 381 III RAM Steel v 11.1 OR-AM DataBase:lionsquare_north �u�� Building Code: IBC Gravity Beam Design 02/17/07 11:53:47 Steel Code: AISC LRFD Floor Type: FOURTH Beam Number = 51 SPAN INFORMATION (ft): I -End (23.08,39.79) J -End (41.08,39.79) Beam Size (Optimum) = W 16X26 Fy = 50.0 ksi Total Beam Length (ft) = 18.00 COMPOSITE PROPERTIES (Not Shored): Stud Capacity (kips) Qn = 23.6 # of studs per stud segment: Full = 11,6,9,6,2 Partial = 5,3,4,3,1 Actual = 5,3,4,3,1 Number of Stud Rows = 1 Percent of Full Composite Action = 49.21 POINT LOADS (kips): Dist DL CDL RedLL Red% Left Right Concrete thickness (in) RoofLL 2.50 2.50 Unit weight concrete (pcf) 2.99 3.36 21.0 145.00 145.00 fc (ksi) 0.00 3.50 3.50 Decking Orientation -0.02 21.2 parallel parallel Decking type 0.00 VULCRAFT 2.0VL VULCRAFT 2.0VL beff (in) = 54.00 Y bar(in) = 15.33 Mnf (kip -ft) = 356.96 Mn (kip -ft) = 310.01 C (kips) = 188.95 PNA (in) = 15.35 Ieff (in4) = 754.09 Itr (in4) = 946.91 Stud length (in) = 3.50 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 23.6 # of studs per stud segment: Full = 11,6,9,6,2 Partial = 5,3,4,3,1 Actual = 5,3,4,3,1 Number of Stud Rows = 1 Percent of Full Composite Action = 49.21 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 7.500 6.53 2.99 3.36 21.0 0.00 0.00 0.0 0.00 Snow 0.00 -0.02 21.2 -0.01 0.00 0.0 0.00 Snow 11.667 33.15 1.64 9.69 21.0 0.00 0.00 0.0 0.00 Snow 0.00 -0.26 21.2 0.00 0.00 0.0 0.00 Snow 15.000 3.27 2.65 1.90 21.0 0.00 0.00 0.0 0.00 Snow 0.00 17.222 1.61 1.31 0.93 21.0 0.00 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.026 0.026 0.000 - -- NonR 0.000 18.000 0.026 0.026 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 47.28 kips 0.90Vn = 104.15 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 31.1 7.5 7.5 1.65 0.90 165.75 Init DL 1.4DL 31.1 7.5 - -- - -- Max + 1.2DL +1.6LL 260.5 11.7 - -- - -- 0.85 263.51 Controlling 1.2DL +1.6LL 260.5 11.7 - -- - -- 0.85 263.51 REACTIONS (kips): RAM Steel v 11.1 DataB ase: lionsqu are_north Building Code: IBC Initial reaction DL reaction Max +LL reaction Max -LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravitv Beam Design Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 3.06 6.01 16.32 28.70 4.53 8.02 -0.09 -0.14 26.83 47.28 at 9.45 ft = -0.146 LAD = 1481 at 9.45 ft = -0.097 L/D = 2216 at 9.45 ft = -0.401 L/D = 538 at 9.45 ft = -0.547 L/D = 395 III RAM Steel v 11.1 gRARM DataBase:lionsquare_north Bui lding Code: IBC Gay Beam Design Floor Type: FOURTH Beam Number = 12 SPAN INFORMATION (ft): I -End (201.83,70.26) J -End (201.83,97.75) Beam Size (Optimum) = W 16X26 Total Beam Length (ft) = 27.49 COMPOSITE PROPERTIES (Not Shored): 02/17/07 11:53:47 Steel Code: AISC LRFD Fy = 50.0 ksi Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 3.50 3.50 Decking Orientation perpendicular perpendicular Decking type VULCRAFT 2.0VL VULCRAFT 2.OVL beff (in) = 77.98 Y bar(in) = 16.16 Mnf (kip -ft) = 368.72 Mn (kip -ft) = 272.84 C (kips) = 106.29 PNA (in) = 12.10 Ieff (in4) = 680.15 Itr (in4) = 1021.67 Stud length (in) = 3.50 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 17.7 # of studs: Full = 39 Partial = 13 Actual = 13 Number of Stud Rows = 1 Percent of Full Composite Action = 27.44 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 25.490 0.86 0.16 0.06 0.0 0.00 0.00 0.0 0.00 Snow 0.00 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.242 0.194 0.146 0.0% Red 0.000 25.489 0.242 0.194 0.146 0.000 2 25.490 0.077 0.062 0.047 0.0% Red 0.000 27.489 0.077 0.062 0.047 0.000 3 0.000 0.202 0.162 0.122 0.0% Red 0.000 27.489 0.202 0.162 0.122 0.000 4 0.000 0.026 0.026 0.000 - -- NonR 0.000 27.489 0.026 0.026 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL +1.6LL) = 14.02 kips 0.90Vn = 104.15 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi *Mn kip -ft ft ft kip -ft Center PreCmp+ 1.4DL 50.6 13.7 0.0 1.00 0.90 165.75 Init DL 1.4DL 50.6 13.7 - -- - -- Max + 1.2DL +1.6LL 94.7 13.8 - -- - -- 0.85 231.91 Controlling 1.2DL +1.6LL 94.7 13.8 - -- - -- 0.85 231.91 REACTIONS (kips): RAM Steel v11.1 ramDataBase:lionsquare_ north INTERNATI -A, Building Code: IBC Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Gravity Beam Design Page 2/2 02/17/07 11:53:47 Steel Code: AISC LRFD Left Right 5.26 5.15 6.51 6.94 3.69 3.56 13.72 14.02 at 13.74 ft = -0.563 L/D = 585 at 13.74 ft = -0.175 L/D = 1887 at 13.74 ft = -0.237 L/D = 1390 at 13.74 ft = -0.801 L/D = 412 • Fifth Level Framing 0 0 `r..• Sixth Level Framing LID LCJ I d C? • ICI �:. 1 ' 1 C\j Ln 7 7 Elf) [7- T ­, -- -- - - - - - - - - : T II I J_ -I CJ � � I i� -I -! -r � I 1 ,1 -IT LO I C�e - D I -I _r n;_IT- Sm co 7 F+1 FBI W 4% ! 1 r ; �N_^ ��I In "I 7� U o4 0 0 U JI QI 1*0 U o 10 0 U COP) 10 _w d �Ff OF ------------- CC It ji I - --- - -- -- -- it it i It ���--- I�- -r - -I- ire--- �-- i- '- -I- I - -r,r- I ------ ------- it It -j L-I- L -------- - I II ----- Ar IL, It C1 -D- ---- 1- -. IL, 71 -1 E -17 LJ3 S it t t :;I I I !I I I I 1 1, 7- 1 C�� ��C, V -1� Roof Level Framing cn iU > LO LO cm Ln 00 1) 1 1 Tj i (e ; ' - , -4--i ---------- it I-T >+ 17 Ti A3 - - - - - - - L C it I i I -1 -1 T 4 1- IT - ----------- 7---' 17 It J I T-4 - - - -- - --- - - - - I - - - - - - -j L C ' -i - li i -I IT - --- - - - - -- ,U) �}, Lo 0,7 -------- iT it b F1 :pi LU I EJ im p ;I I ' it CJ IU) ob 7� o� co r, u COO C\1 't! in m 6; If F T�- -'iT T ----------- cn -4 - - - - - - - - - - - i ' 1 C L .4 -im-iL -4 - C-) -r -- ----------- :1 T- ---------- ---- I - --------- ----- LO ILO It ----- --- cm "', Z'tl rZ 0 (no it - �� C� L6 L6 c�y Lateral System Framing Criteria, Mass and Exposure Data RAM Frame v 11.1 DataBase: lionsquare_ north 02/17/07 12:40:10 CRITERIA: Rigid End Zones: Ignore Effects Member Force Output: At Face of Joint P- Delta: No Ground Level: Base Wall Mesh Criteria: Wall Element Type: Shell Element with No Out -of -Plane Stiffness Max. Allowed Distance between Nodes (ft) : 6.00 Advanced Wall Mesh Criteria: Optimization Level : 3 Shape Quality Level : 0.60 DIAPHRAGM DATA: Story Diaph # Diaph Type ROOF 1 Rigid EccX 2 Rigid kips 3 Rigid LOW ROOF 1 Rigid SIXTH 1 Rigid 4.01 2 Rigid FIFTH 1 Rigid 2 2 Rigid FOURTH 1 Rigid 0.00 2 Rigid THIRD 1 Rigid 212.62 2 Rigid SOD ROOF 1 Rigid SECOND 1 Rigid 64.61 2 Rigid RAMP 1 Rigid FIRST 1 Rigid Disconnect Internal Nodes of Beams: Yes Disconnect Nodes outside Slab Boundary: Yes STORY MASS DATA: Includes Self Mass of: Beams Columns (Half mass of columns above and below) Walls (Half mass of walls above and below) Calculated Values: Story Diaph # Weight Mass NMI Xm Ym EccX EccY kips k -s2 /ft ft -k -s2 ft ft ft ft ROOF 1 129.0 4.01 2121 49.05 54.69 0.00 0.00 2 11.3 0.35 24 16.71 86.42 0.00 0.00 3 86.0 2.67 1005 212.62 78.05 0.00 0.00 None 40.8 1.27 7454 193.89 64.61 -- -- LOW ROOF 1 39.8 1.24 102 14.16 35.25 0.00 0.00 Criteria, Mass and Exposure Data RAM RAM Frame v 11.1 Page 2/3 INMERNATMAL DataBase:lionsquare_ north 02/17/07 12:40:10 Story Diaph # Weight Mass MMI Xm Ym EccX EccY None 200.7 6.23 48715 123.54 66.97 -- -- SIXTH 1 290.9 9.03 4458 56.48 49.82 0.00 0.00 2 282.5 8.77 4306 222.05 77.64 0.00 0.00 None 61.2 1.90 540 16.85 82.99 -- -- FIFTH 1 232.5 7.22 3039 224.06 78.64 0.00 0.00 2 516.1 16.03 17293 39.29 52.53 0.00 0.00 None 92.6 2.88 2216 203.11 79.54 -- -- FOURTH 1 374.6 11.63 7819 213.11 79.50 0.00 0.00 2 604.1 18.76 22054 41.26 53.29 0.00 0.00 THIRD 1 423.6 13.15 8688 213.17 79.01 0.00 0.00 2 651.3 20.23 24153 40.18 55.23 0.00 0.00 SOD ROOF 1 1557.6 48.37 126497 98.39 80.48 0.00 0.00 None 99.2 3.08 20234 174.74 68.96 -- -- SECOND 1 356.5 11.07 11804 41.49 42.36 0.00 0.00 2 261.5 8.12 5531 216.08 80.20 0.00 0.00 None 37.9 1.18 597 27.72 89.68 -- -- RAMP 1 185.3 5.75 1669 26.98 69.77 0.00 0.00 None 262.8 8.16 72571 102.67 62.77 -- -- FIRST 1 2156.6 66.97 274407 92.22 64.05 0.00 0.00 None 131.5 4.08 22474 194.34 71.67 -- -- Story Diaph # Combine ROOF 1 1 -SIXTH 2 1 -SIXTH 3 2 -SIXTH None None LOW ROOF 1 1 -FIFTH None 2 -FIFTH SIXTH 1 None 2 None None None FIFTH 1 None 2 None None None FOURTH 1 None 2 None THIRD 1 None 2 None SOD ROOF 1 None None None SECOND 1 None 2 None None None RAMP 1 None None None ( Criteria. Mass and Exposu 1 RAM RAM Frame vl 1.1 N1E11,P,l".:A, DataBase:lionsquare_ north Story Diaph # Combine FIRST 1 None None None Values Used: Story Diaph # Weight Mass MMI kips k -s2 /ft ft -k -s2 SIXTH 1 431.2 13.39 7723 2 368.6 11.45 5494 FIFTH 1 272.3 8.46 51599 2 716.8 22.26 98800 FOURTH 1 374.6 11.63 7819 2 604.1 18.76 22054 THIRD 1 423.6 13.15 8688 2 651.3 20.23 24153 SOD ROOF 1 1557.6 48.37 126497 SECOND 1 356.5 11.07 11804 2 261.5 8.12 5531 RAMP 1 185.3 5.75 1669 FIRST 1 2156.6 66.97 274407 ire Data Xm ft 53.21 219.85 193.40 62.88 213.11 41.26 213.17 40.18 98.39 41.49 216.08 26.98 92.22 Page 3/3 02/17/07 12:40:10 Ym EccX EccY ft ft ft 52.24 0.00 0.00 77.73 0.00 0.00 72.30 0.00 0.00 56.57 0.00 0.00 79.50 0.00 0.00 53.29 0.00 0.00 79.01 0.00 0.00 55.23 0.00 0.00 80.48 0.00 0.00 42.36 0.00 0.00 80.20 0.00 0.00 69.77 0.00 0.00 64.05 0.00 0.00 Some mass has been detected on one or more stories that is not associated with any diaphragms.It will be ignored in Analysis unless it is combined with one or more diaphragms. See the Loads - Masses command. WIND EXPOSURE DATA: Calculated Values: Story Diaph # ROOF 1 85.83 2 78.50 3 LOW ROOF 1 SIXTH 1 245.83 2 FIFTH 1 24.90 2 FOURTH 1 83.42 2 THIRD 1 252.08 2 SOD ROOF 1 SECOND 1 98.00 2 RAMP 1 FIRST 1 Expose Full Full Full Full Full Full Full Full Full Full Full Full Full Full Full Full Full ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Building Extents (ft) Min X Max X Min Y Max Y 22.23 85.83 27.79 78.50 5.16 28.26 79.32 93.51 191.84 245.83 58.14 97.42 2.19 24.90 23.55 46.53 24.65 83.42 30.21 76.08 194.01 252.08 56.96 98.25 194.26 252.08 57.21 98.00 3.75 83.42 9.50 90.92 175.76 252.08 60.55 98.00 -0.25 99.17 9.50 90.92 175.76 252.08 60.55 98.00 -1.41 99.17 9.50 90.92 3.50 202.33 45.45 98.25 -0.25 99.17 9.50 81.58 175.76 252.08 59.42 98.00 3.75 52.29 56.42 81.58 -0.25 202.08 9.50 98.00 Expose Full Full Full Full Full Full Full Full Full Full Full Full Full Full Full Full Full ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Loads and Applied Forces RAM Frame v 11.1 NTE�,ACTA DataBase:lionsquare_ north 02/17/07 12:40:10 LOAD CASE: E Seismic ASCE 7 -02 / IBC 2003 Equivalent Lateral Force Site Class: C Importance Factor: 1.00 Ss: 0.369 g S 1: 0.083 g Fa: 1.200 Fv: 1.700 SDs: 0.295 g SDI: 0.094 g Seismic Use Group: H Seismic Design Category: B Provisions for: Force Ground Level: Base Dir Eccent R Ta Equation Building Period -T X None 4.5 User Defined Use Ta Dir Ta Cu T T -used Eg95521 -1 Eg95521 -2 Eg95521 -3 k X 0.594 1.700 0.594 0.594 0.066 0.035 0.0130 1.047 Total Building Weight (kips) = 8359.72 APPLIED DIAPHRAGM FORCES Type: EQ_IBC03_X_NoE_F Level Diaph.# Ht Fx Fy X Y ft kips kips ft ft ROOF 1 82.00 0.00 0.00 49.05 54.69 ROOF 2 82.00 0.00 0.00 16.71 86.42 ROOF 3 82.00 0.00 0.00 212.62 78.05 LOW ROOF 1 76.83 0.00 0.00 14.16 35.25 SIXTH 1 66.33 33.78 0.00 53.21 52.24 SIXTH 2 66.33 28.88 0.00 219.85 77.73 FIFTH 1 54.83 17.48 0.00 193.40 72.30 FIFTH 2 54.83 46.01 0.00 62.88 56.57 FOURTH 1 43.33 18.79 0.00 213.11 79.50 FOURTH 2 43.33 30.31 0.00 41.26 53.29 THIRD 1 31.83 15.39 0.00 213.17 79.01 THIRD 2 31.83 23.66 0.00 40.18 55.23 SOD ROOF 1 21.00 36.60 0.00 98.39 80.48 SECOND 1 20.33 8.10 0.00 41.49 42.36 SECOND 2 20.33 5.94 0.00 216.08 80.20 RAMP 1 17.00 3.49 0.00 26.98 69.77 FIRST 1 11.00 25.75 0.00 92.22 64.05 APPLIED STORY FORCES Type: EQ_IBC03_X_NoE_F Level Ht Fx Fy ft kips kips ROOF 82.00 0.00 0.00 LOW ROOF 76.83 0.00 0.00 SIXTH 66.33 62.66 0.00 FIFTH 54.83 63.49 0.00 FOURTH 43.33 49.10 0.00 294.19 0.00 �Fjj Loads and Applied Forces RAM RAM Frame v11.1 Page 2/2 N,EPNwTK-X, DataBase:lionsquare_ north 02/17/07 12:40:10 THIRD 31.83 39.05 0.00 SOD ROOF 21.00 36.60 0.00 SECOND 20.33 14.04 0.00 RAMP 17.00 3.49 0.00 FIRST 11.00 25.75 0.00 294.19 0.00 F11 RAM RAM Frame v 11.1 IMNATIIA DataBase:lionsquare_ north CRITERIA: Building Story Shears 02/17/07 12:40:10 Rigid End Zones: Ignore Effects Member Force Output: At Face of Joint P- Delta: No Ground Level: Base Wall Mesh Criteria: Wall Element Type: Shell Element with No Out -of -Plane Stiffness Max. Allowed Distance between Nodes (ft) : 6.00 Advanced Wall Mesh Criteria: Optimization Level : 3 Shape Quality Level: 0.60 Load Case: E1 E EQ_IBC03_X_NoE_F Level Diaph. # Shear -X Shear -Y kips kips ROOF 1 0.00 -0.00 ROOF 3 -0.00 0.00 SIXTH 1 33.78 -0.00 SIXTH 2 28.88 0.00 FIFTH 1 35.09 2.01 FIFTH 2 79.80 -0.00 FIFTH None 11.27 -2.01 FOURTH 1 65.15 0.00 FOURTH 2 110.11 -0.00 THIRD 1 80.54 -0.00 THIRD 2 133.77 -0.10 SOD ROOF 1 152.96 22.52 SOD ROOF None 97.95 -21.64 SECOND 1 47.74 -7.66 SECOND 2 8.46 23.76 SECOND None 208.86 -14.88 RAMP 1 63.07 -6.09 RAMP None 205.25 4.96 FIRST 1 292.13 -1.73 FIRST None 2.10 1.73 Summary - Total Story Shears Level Shear -X Change -X Shear -Y Change -Y kips kips kips kips ROOF -0.00 -0.00 0.00 0.00 LOW ROOF 0.00 0.00 -0.00 -0.00 SIXTH 62.66 62.66 -0.00 -0.00 FIFTH 126.15 63.49 -0.00 -0.00 FOURTH 175.26 49.10 0.00 0.00 THIRD 214.30 39.05 -0.10 -0.10 SOD ROOF 250.90 36.60 0.87 0.97 SECOND 265.06 14.16 1.22 0.35 RAM RAM Frame v 11.1 INll","X ,l DataBase: lionsquare_ north RAMP FIRST Building Story Shears Page 2/2 02/17/07 12:40:10 268.32 3.26 -1.13 -2.35 294.23 25.91 -0.00 1.13 w w 0 z i I 0 w H a I w Ln H N H W 0 � v � U 0 b rd 0 a, a ro �0 Cl) ` �s~H�4 ro IU) 0 (d 44 V>1 -��0U) 41 a) m U a� 3 o 0 w b m -,1 �4 ni >�-1 w R� Q as o o _ T 04 .� yy Nf\l (O,m I. co lo- i I I I il•� w W 0 z I I 0 U H a I w In .H N H w C` O •• L W H � � U N O 0 N �l ro �4 co ca S:ll (v -W 44 �40v� >10O H �a �+ � I o � �4 0 I� •ail �0U) 41 0 U) U N 3 0 Fj 0 0 w M m -H k >� wa 0 � E �H 0 aQa� 1 1 1 •6 0 1 1 W 0 Z X M O U P� H a w Ln N r-I W O •• \ U O `izi (d •ri J, �i (a 10 0 0 Q) U -M �4 W Cd (d U) x ��J 0'.. HU) >1 r 0 0 m 41 Q) U) U N 3 0 0w (d U) -4 �4 cd > �-4 W M aJ araa� co b9''0 N f cc d kk C f� C-C N � M- ■ �D r tt � � 610 1 1 'o NCR - F24 W 0 z I x M O U H a I w �r �r N H W o •• � U N O 'i� fd 0 Q1 W b .r., -�j .c., EQ �4 ro la 0 �; N H •n H Cf) >1 r 0 cn co U (d U) -H �4M >�-4 wcQ v rd rQ Aj m E (d HQ) cxQa2 F 00 L O 0 L o ll'Z N Luo, t, I �I W w O z { x i 0 u Ca H { a w ui N rl W o •• N O O a� a ro rl 4J cn H %' H �-I { Q � O (do >1 .��4 oU) m U N 3 O :- W N 44 (d U) -H p rd > w w a� (d 4-) a q a O- ci�; Ln F co N co — bb'EZ- � N pq co II N -- __ I f I- r w w O z I I 0 U H a I w Ln H v� v� N r-I W 0 I o � U U1 � b .0 �r O ro I F-+ 0 � W w r, rOw� • �4 r�0uz � v cn U N 3 O rg N N G Id U) -H k (0 > �4 W fYl � xQa� F C^ It co � cD Ln co ri a; `51.9 L- F24 w 0 z X I I O U W H a I w Ln N r-I w O I H (� N O b ro m A N -rq 41 0 ro �IH 0 U 5C n Q �4 H f� m >1 r 0 0 m Ul U r a) vw ro U) -H �ro >� xQa� :11,1 C i i cc — �— N N co — �co M N O N R O co C (D _ N •;i Q) 0'0- L I � ' • Steel Column Design 0 9 to 121 � I lit l�t� 111 i / f YA l r jo 1 tt .- • 1 1 ` •� 1 � y tiY to 121 M1RAM Steel vl 1.1 Gravity Column Design Summary ANN DataBase:lionsquare_ north Building Code: IBC 02/17/07 11:45:20 Steel Code: AISC LRFD Column Line % - 15 Pu Mux Muy LC Interaction Eq. Angle Fy Size Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 69.2 3.3 34.0 1 0.78 Eq H1 -la 90.0 46 HSS8X8X1 /4 THIRD 91.9 1.6 4.9 1 0.46 Eq Hl -la 90.0 46 HSS8X8X1 /4 SOD ROOF 91.9 1.6 4.9 1 0.46 Eq Hl -la 90.0 46 HSS8X8X1 /4 Column Line % - 10 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 76.2 37.8 9.1 1 0.94 Eq Hl -la 0.0 46 HSS8X8X1 /4 THIRD 113.0 1.6 8.8 1 0.60 Eq Hl -la 90.0 46 HSS8X8X1 /4 SOD ROOF 113.1 1.6 8.8 1 0.60 Eq H1 -la 90.0 46 HSS8X8Xl /4 Column Line A - 16 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 16.7 2.2 4.7 1 0.43 Eq H1 -lb 90.0 46 HSS5X5X3 /16 FOURTH 33.4 2.3 2.3 1 0.57 Eq Hl -la 90.0 46 HSS5X5X3 /16 THIRD 50.1 2.3 1.1 1 0.70 Eq Hl -la 0.0 46 HSS5X5X3 /l6 SOD ROOF 50.2 2.3 1.1 1 0.70 Eq H1 -la 0.0 46 HSS5X5X3 /16 Column Line 4.00ft - 17.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 19.1 4.7 1.2 6 0.46 Eq H1 -la 0.0 46 HSS5X5X3 /16 FOURTH 40.0 2.3 0.6 2 0.56 Eq Hl -la 0.0 46 HSS5X5X3 /16 THIRD 60.0 2.3 0.4 1 0.77 Eq HI-la 0.0 46 HSS5X5X3 /16 SOD ROOF 60.0 2.3 0.4 1 0.77 Eq H1 -la 0.0 46 HSS5X5X3 /16 Column Line A - 15 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 54.2 12.9 7.6 8 0.95 Eq Hl -la 90.0 46 HSS5X5X5 /16 Column Line 4.00ft - 28.54ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size LOW ROOF 13.8 0.0 1.9 1 0.44 Eq Hl-la 90.0 46 HSS5X5X3/ 16 SIXTH 22.9 0.0 1.8 1 0.67 Eq H1 -1a 0.0 46 HSS5X5X3 /16 Column Line 4.00ft - 41.54ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size LOW ROOF 13.8 1.9 0.0 1 0.44 Eq H1 -la 0.0 46 HSS5X5X3 /16 SIXTH 22.8 1.7 0.0 1 0.67 Eq H1 -la 90.0 46 HSS5X5X3 /16 Column Line A - 10 Level Pu Mux FIFTH 37.6 0.9 Muy LC Interaction Eq. Angle Fy Size 14.7 1 0.84 Eq H1 -1a 0.0 46 HSS5X5X1 /4 Column Line 9.00ft - 62.23ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 40.9 0.0 0.0 1 0.45 Eq H1 -la 0.0 46 HSS5X5X3 /16 Gravity Column Design Summary RAM Steel vl 1.1 Page 2/19 RAM DataBase:lionsquare_ north 02/17/0711:45:20 INTERNATCkAt Building Code: IBC Steel Code: AISC LRFD Column Line 4.00ft - 49.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SOD ROOF 0.0 0.0 0.0 1 0.00 Eq Hl -lb 0.0 46 HSS5X5X3 /16 Column Line A - 6.8 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size THIRD 102.1 23.9 16.5 10 0.96 Eq Hl -la 0.0 46 HSS8X8X1 /4 SOD ROOF 102.1 23.9 16.5 10 0.96 Eq H1 -la 0.0 46 HSS8X8X1 /4 SECOND 116.9 9.7 0.0 1 0.56 Eq H1 -la 0.0 46 HSS8X8X1 /4 RAMP 145.0 5.4 0.0 1 0.61 Eq H1 -la 0.0 46 HSS8X8X1 /4 Column Line 8.00ft - 82.17ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 5.3 0.0 0.0 1 0.04 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Column Line 8.00ft - 90.67ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 5.3 0.0 0.0 1 0.04 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Column Line 8.63ft - 25.54ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size LOW ROOF 11.0 0.0 0.0 1 0.29 Eq H1 -la 90.0 46 HSS5X5X3 /16 SIXTH 11.3 0.0 0.0 1 0.30 Eq H1 -la 0.0 46 HSS5X5X3 /16 Column Line 8.63ft - 44.54ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size LOW ROOF 11.0 0.0 1.3 1 0.34 Eq Hl -la 90.0 46 HSS5X5X3 /16 SIXTH 17.2 0.0 1.2 1 0.50 Eq Hl -la 90.0 46 HSS5X5X3 /16 Column Line 9.00ft - 44.54ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 33.2 4.5 4.3 10 0.74 Eq H1 -la 90.0 46 HSS5X5X3 /16 Column Line 9.00ft - 53.99ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 90.8 0.0 0.0 1 0.99 Eq Hl -la 90.0 46 HSS5X5X3 /16 Column Line 9.00ft - 62.23ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 40.9 0.0 0.0 1 0.45 Eq H1 -la 0.0 46 HSS5X5X3 /16 IIIRAM Steel vl 1.1 Gravity Column Design Summary RAMDataBase: lionsquare - north INTERNAT0,14l Building Code: IBC Page 3/19 02/17/07 11:45:20 Steel Code: AISC LRFD Column Line 9.00ft - 76.58ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFI'H 31.7 0.0 0.0 1 0.34 Eq H1 -la 0.0 46 HSS5X5X3 /16 Column Line 10.87ft - 32.54ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size LOW ROOF 8.8 0.2 0.1 1 0.28 Eq Hl-la 0.0 46 HSS5X5X3/ 16 Column Line 10.87ft - 37.54ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size LOW ROOF 8.8 0.1 0.2 1 0.27 Eq Hl-la 90.0 46 HSS5X5X3 /16 Column Line 12.25ft - 86.42ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF -0.5 0.0 0.2 1 0.02 Eq H1 -lb 90.0 46 HSS5X5X1 /8 Column Line 16.21ft - 32.54ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size LOW ROOF 8.5 0.2 0.1 1 0.27 Eq H1 -la 0.0 46 HSS5X5X3 /16 Column Line 16.21ft - 37.54ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size LOW ROOF 7.9 0.5 0.3 1 0.27 Eq H1 -la 0.0 46 HSS5X5X3 /16 Column Line 18.63ft - 25.54ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size LOW ROOF 10.9 0.0 0.0 1 0.28 Eq H1 -la 0.0 46 HSS5X5X3 /16 SIXTH 11.2 0.0 0.0 1 0.29 Eq H1 -la 90.0 46 HSS5X5X3 /16 Column Line 18.63ft - 44.54ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size LOW ROOF 10.9 0.0 0.0 1 0.11 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 21.17ft - 86.42ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF -0.5 0.2 0.0 1 0.02 Eq H1 -lb 0.0 46 HSS5X5X1 /8 Column Line B - 16 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 16.7 2.2 4.7 1 0.43 Eq Hl -lb 90.0 46 HSS5X5X3 /16 FOURTH 33.4 2.3 2.3 1 0.57 Eq H1 -la 90.0 46 HSS5X5X3 /16 THIRD 50.1 2.3 1.1 1 0.70 Eq H1 -1a 0.0 46 HSS5X5X3 /16 Ft Gravity Column Design Summary il RAM Steel v 11.1 RAMDataBase:lionsquare_ north PJTERNATa -A, Building Code: IBC SOD ROOF 50.2 Column Line 23.08ft - 17.83ft Page 4/19 02/17/07 11:45:20 Steel Code: AISC LRFD 2.3 1.1 1 0.70 Eq H1 -la 0.0 46 HSS5X5X3 /16 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 40.6 4.7 9.5 10 0.82 Eq H1 -la 0.0 46 HSS5X5X1 /4 FOURTH 73.9 2.3 2.3 1 0.78 Eq H1 -la 0.0 46 HSS5X5X1 /4 THIRD 100.7 2.3 1.4 1 0.97 Eq H1 -la 0.0 46 HSS5X5X1 /4 SOD ROOF 100.7 2.3 1.4 1 0.97 Eq H1 -la 0.0 46 HSS5X5X1 /4 Column Line 23.08ft - 28.54ft Pu Mux Muy LC Interaction Eq. Angle Fy Level Pu Mux Muy LC Interaction Eq. Angle Fy Size LOW ROOF 15.2 0.8 0.0 1 0.43 Eq H1 -la 0.0 46 HSS5X5X3 /16 SIXTH 19.1 0.8 0.0 1 0.53 Eq H1 -la 90.0 46 HSS5X5X3 /16 Column Line B - 14 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 135.5 1.3 56.6 10 0.89 Eq Hl-la 0.0 46 HS S8X8X3/8 THIRD 195.7 1.0 8.0 1 0.63 Eq H1 -la 0.0 46 HSS8X8X3 /8 SOD ROOF 195.7 1.0 8.0 1 0.63 Eq H1 -la 0.0 46 HSS8X8X3 /8 Column Line 23.08ft - 35.46ft 4.2 0.0 1 0.52 Eq Hl-la 0.0 46 HS S8X8X5/8 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SIXTH 17.8 6.9 8.3 3 0.91 Eq Hl -la 0.0 46 HSS5X5X1 /4 FIFTH 92.8 10.6 7.0 1 0.98 Eq Hl-la 90.0 46 HSS5X5X3 /8 Column Line 23.08ft - 41.54ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size LOW ROOF 18.3 0.0 0.0 1 0.19 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 23.08ft - 53.99ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 134.6 27.1 43.5 8 1.00 Eq H1 -la 0.0 46 HSS8X8X3 /8 Column Line B - 6.8 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size THIRD 209.4 17.7 77.4 8 0.93 Eq H1 -la 0.0 46 HSS8X8X5 /8 SOD ROOF 209.4 17.7 77.4 8 0.93 Eq H1 -la 0.0 46 HSS8X8X5 /8 SECOND 234.9 11.4 1.3 3 0.44 Eq Hl-la 0.0 46 HSS 8X8X5/8 RAMP 303.6 4.2 0.0 1 0.52 Eq Hl-la 0.0 46 HS S8X8X5/8 Column Line 24.90ft - 35.46ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 10.8 3.1 2.6 1 0.36 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Gravity Column Design Summary RAM Steel v11.1 RAMDataBase:lionsquare_ north INHR"AT0,AL Building Code: IBC LOW ROOF 10.9 SIXTH 40.5 3.1 2.6 1 0.36 Eq H1 -lb 4.8 2.7 1 0.77 Eq H1 -la Page 5/19 02/17/07 11:45:20 Steel Code: AISC LRFD 0.0 46 HSS5X5X3 /16 0.0 46 HSS5X5X3 /16 Column Line 24.90ft - 49.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 10.1 0.2 0.1 1 0.15 Eq H1 -lb 90.0 46 HSS5X5X3 /16 LOW ROOF 10.3 0.2 0.1 1 0.15 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Column Line 24.90ft - 59.73ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 11.1 0.6 0.0 1 0.16 Eq Hl -lb 90.0 46 HSS5X5X3 /16 LOW ROOF 11.2 0.6 0.0 1 0.16 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Column Line 24.90ft - 75.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 10.8 3.3 1.2 1 0.30 Eq H1 -lb 90.0 46 HSS5X5X3 /16 LOW ROOF 11.0 3.3 1.2 1 0.30 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Column Line 25.42ft - 75.33ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 89.7 0.0 7.7 6 0.84 Eq H1 -la 0.0 46 HSS5X5X5 /16 Column Line 25.42ft - 75.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 43.5 15.5 2.6 1 0.98 Eq H1 -la 0.0 46 HSS5X5X1 /4 Column Line 25.42ft - 82.17ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 5.3 0.0 0.0 1 0.04 Eq Hl -lb 0.0 46 HSS5X5X3 /16 Column Line 25.42ft - 90.67ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 5.3 0.0 0.0 1 0.04 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Column Line 26.25ft - 51.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 50.5 4.0 8.6 10 0.85 Eq H1 -la 0.0 46 HSS5X5X1 /4 Column Line 26.25ft - 63.98ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 65.3 20.6 0.0 12 0.89 Eq H 1 -1 a 90.0 46 HSS5X5X3 /8 RAM Steel vl 1.1 Gravity Column Design Summary RAMDataBase:lionsquare_north INTERN,aTCM, Building Code: IBC Page 6/19 02/17/07 11:45:20 Steel Code: RISC LRFD Column Line 26.75ft - 75.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SIXTH 27.8 0.0 0.0 1 0.30 Eq H1 -la 90.0 46 HSS5X5X3 /16 Column Line 28.75ft - 59.73ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 0.1 0.0 0.0 1 0.00 Eq H1 -lb 0.0 46 HSS5X5X3 /16 LOW ROOF 0.2 0.0 0.0 1 0.00 Eq H1 -lb 0.0 46 HSS5X5X3 /16 SIXTH 74.7 0.0 0.0 1 0.81 Eq H1 -la 0.0 46 HSS5X5X3 /16 Column Line 34.75ft - 30.46ft 0.0 0.0 1 0.84 Eq H1 -la 0.0 46 HSS5X5X1 /4 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 3.0 0.4 0.8 1 0.08 Eq Hl -lb 0.0 46 HSS5X5X3 /16 LOW ROOF 3.2 0.4 0.8 1 0.08 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Column Line 34.75ft - 31.46ft Level Pu FOURTH 72.9 THIRD 98.0 SOD ROOF 98.0 SECOND 112.0 RAMP 112.1 FIRST Column Line 34.75ft - 35.46ft Mux Muy LC Interaction Eq. Angle 0.0 0.0 1 0.30 Eq H1 -la 46 0.0 0.7 2.9 5 0.45 Eq H1 -la 0.0 0.7 2.9 5 0.45 Eq H1 -la 90.0 0.0 0.4 1.6 1 0.63 Eq H1 -la 0.7 0.0 0.4 1.6 1 0.63 Eq H1 -la SIXTH 0.0 Fy Size 46 HSS8X8X1 /4 46 HSS8X8X1 /4 46 HSS8X8X1 /4 46 HSS8X8X1 /4 46 HSS8X8X1 /4 0.7 Other Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 6.5 0.5 0.7 1 0.11 Eq H1 -lb 90.0 46 HSS5X5X3 /16 LOW ROOF 6.7 0.5 0.7 1 0.11 Eq H1 -lb 90.0 46 HSS5X5X3 /16 SIXTH 60.5 0.0 0.0 1 0.66 Eq H1 -la 90.0 46 HSS5X5X3 /16 FIFTH 99.6 0.0 0.0 1 0.84 Eq H1 -la 0.0 46 HSS5X5X1 /4 Column Line 35.54ft - 74.33ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 11.5 0.0 0.0 1 0.17 Eq H1 -lb 0.0 46 HSS5X5X3 /16 LOW ROOF 11.6 0.0 0.0 1 0.17 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 35.54ft - 75.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SIXTH 18.3 0.1 7.4 1 0.47 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 35.75ft - 75.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 29.8 12.2 0.2 1 0.86 Eq H1 -la 0.0 46 HSS5X5X3 /16 Gravity Column Design Summary RAM Steel v 11.1 ramDataBase:lionsquare_ north INTERNATO-All Building Code: IBC Column Line 37.88ft - 56.67ft Page 7/19 02/17/07 11:45:20 Steel Code: AISC LRFD Level Pu Mux Muy LC Interaction Eq. Angle Fy Size THIRD 128.0 6.8 23.6 12 0.93 Eq H1 -la 0.0 46 HSS8X8X1 /4 SOD ROOF 128.0 6.8 23.6 12 0.93 Eq H1 -la 0.0 46 HSS8X8X1 /4 SECOND 163.3 8.2 0.0 2 0.70 Eq H1 -la 0.0 46 HSS8X8X1 /4 RAMP 226.9 2.1 0.0 1 0.87 Eq H1 -la 0.0 46 HSS8X8X1 /4 Column Line 38.08ft - 53.99ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 79.0 13.2 1.1 17 0.95 Eq Hl -la 0.0 46 HSS5X5X5 /16 Column Line 38.08ft - 70.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 66.8 21.2 2.9 8 0.98 Eq Hl-la 0.0 46 HSS5X5X3 /8 Column Line 38.46ft - 30.46ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 3.4 0.6 0.0 1 0.05 Eq H1 -lb 0.0 46 HSS5X5X3 /16 LOW ROOF 3.5 0.6 0.0 1 0.05 Eq Hl -lb 0.0 46 HSS5X5X3 /16 Column Line 38.65ft - 49.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 10.2 0.0 0.0 1 0.39 Eq H1 -1a 0.0 46 HSS5X5X3 /16 LOW ROOF 10.4 0.0 0.0 1 0.40 Eq Hl -la 0.0 46 HSS5X5X3 /16 Column Line 38.65ft - 60.92ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 10.2 0.0 0.6 1 0.42 Eq Hl -la 90.0 46 HSS5X5X3 /16 LOW ROOF 10.4 0.0 0.6 1 0.42 Eq H1 -la 90.0 46 HSS5X5X3 /16 Column Line 39.96ft - 81.33ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 80.5 0.0 0.0 1 0.88 Eq 111 -1a 90.0 46 HSS5X5X3 /16 Column Line E - 12 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 56.9 0.0 14.5 10 0.97 Eq H1 -la 90.0 46 HSS5X5X1 /4 THIRD 95.5 0.0 0.7 1 0.83 Eq Hl -la 90.0 46 HSS5X5X1 /4 SOD ROOF 95.5 0.0 0.7 1 0.83 Eq H1 -la 0.0 46 HSS5X5X1 /4 Column Line 42.77ft - 59.73ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 0.7 0.3 0.2 18 0.04 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Gravity Column Design Summary 90 RAM Steel v 11.1 RAMDataBase:lionsquare_ north 11rHERNATO-41 Building Code: IBC LOW ROOF 0.9 0.3 SIXTH -1.2 0.7 0.2 18 0.04 Eq HI -lb 0.0 0.0 18 0.04 Eq Hl -lb 0.0 Page 8/19 02/17/07 11:45:20 Steel Code: AISC LRFD 46 HSS5X5X3 /16 46 HSS5X5X3 /16 Column Line 44.42ft - 75.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 43.2 17.7 0.2 1 0.97 Eq H1 -la 0.0 46 HSS5X5X1 /4 Column Line 47.08ft - 51.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SIXTH 31.4 6.9 2.8 1 0.77 Eq H1 -la 0.0 46 HSS5X5X3 /16 FIFTH 62.6 0.5 2.4 1 0.81 Eq H1 -la 0.0 46 HSS5X5X3 /16 Column Line 47.08ft - 63.21ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SIXTH 34.9 2.9 2.6 6 0.62 Eq H1 -la 90.0 46 HSS5X5X3 /16 FIFTH 70.5 1.6 0.0 1 0.84 Eq H1 -la 90.0 46 HSS5X5X3 /16 Column Line 47.08ft - 74.33ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 12.8 0.0 0.0 1 0.19 Eq H1 -lb 90.0 46 HSS5X5X3 /16 LOW ROOF 13.0 0.0 0.0 1 0.19 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Column Line 47.08ft - 75.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SIXTH 33.9 0.0 0.0 1 0.37 Eq H1 -la 90.0 46 HSS5X5X3 /16 Column Line 47.22ft - 30.46ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 3.4 0.6 0.0 1 0.05 Eq H1 -lb 0.0 46 HSS5X5X3 /16 LOW ROOF 3.5 0.6 0.0 1 0.05 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 50.92ft - 30.46ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 3.0 0.8 0.4 1 0.08 Eq H1 -lb 90.0 46 HSS5X5X3 /16 LOW ROOF 3.2 0.8 0.4 1 0.08 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 50.92ft - 35.46ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 9.6 1.8 1.0 1 0.21 Eq H1 -lb 0.0 46 HSS5X5X3 /16 LOW ROOF 9.8 1.8 1.0 1 0.21 Eq Hl -lb 90.0 46 HSS5X5X3 /16 Gravity Column Design Summary RAM Steel vl 1.1 RAMDataBase:lionsquare_ north INTERNATO -AL Building Code: IBC Page 9/19 02/17/07 11:45:20 Steel Code: AISC LRFD Column Line 51.42ft - 31.46ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 18.0 0.0 0.0 1 0.20 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 53.40ft - 49.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 12.1 0.5 1.6 1 0.55 Eq H1 -la 0.0 46 HSS5X5X3 /16 LOW ROOF 12.2 0.5 1.6 1 0.56 Eq H1 -la 0.0 46 HSS5X5X3 /16 Column Line 53.40ft - 60.92ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 9.9 0.1 0.7 1 0.41 Eq H1 -la 0.0 46 HSS5X5X3 /16 LOW ROOF 10.1 0.1 0.7 1 0.42 Eq H1 -la 0.0 46 HSS5X5X3 /16 Column Line 53.83ft - 70.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 62.6 13.9 0.0 12 1.00 Eq H1 -la 0.0 46 HSS5X5X1 /4 Column Line 55.73ft - 53.99ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 65.1 20.9 2.0 12 0.94 Eq H 1 -1 a 0.0 46 HSS5X5X3 /8 Column Line G - 6.8 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size THIRD 96.8 40.3 0.0 12 0.94 Eq H1 -la 0.0 46 HSS8X8X1 /4 SOD ROOF 96.8 40.3 0.0 12 0.94 Eq Hl -la 0.0 46 HSS8X8X1 /4 SECOND 128.4 8.6 0.0 1 0.62 Eq Hl -la 0.0 46 HSS8X8X1 /4 RAMP 153.3 4.8 0.0 1 0.66 Eq H1 -la 0.0 46 HSS8X8X1 /4 Column Line 55.96ft - 74.33ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 10.0 0.0 0.0 1 0.15 Eq H1 -lb 0.0 46 HSS5X5X3 /16 LOW ROOF 10.2 0.0 0.0 1 0.15 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 57.17ft - 75.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 17.6 0.2 7.0 1 0.45 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Column Line G.8 - 9 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 7.5 1.4 0.1 1 0.13 Eq H1 -lb 90.0 46 HSS5X5X3 /16 LOW ROOF 7.7 1.4 0.1 1 0.13 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Con t RAM Steel v 11.1 Gravity Column Design Summary L-1 AM DataBase:lionsquare_ north Building Code: IBC Page 10/ 19 02/17/07 11:45:20 Steel Code: AISC LRFD Column Line 66.04ft - 50.31ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 15.8 0.0 3.6 10 0.26 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 66.04ft - 50.33ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SIXTH 23.7 4.1 0.0 8 0.44 Eq H1 -la 90.0 46 HSS5X5X3 /16 Column Line G.8 - 6.8 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SECOND 140.2 2.7 68.2 10 1.00 Eq H1 -la 0.0 46 HSS8X8X3 /8 RAMP 140.5 2.7 68.2 10 1.00 Eq Hl -la 0.0 46 HSS8X8X3 /8 Column Line 66.04ft - 58.67ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SIXTH 32.0 10.0 0.6 8 0.81 Eq H1 -la 90.0 46 HSS5X5X3 /16 FIFTH 54.2 2.3 3.5 2 0.84 Eq Hl-la 90.0 46 HSS5X5X3/ 16 FOURTH 78.8 0.3 6.7 4 0.64 Eq H1 -la 0.0 46 HSS5X5X3 /8 THIRD 136.1 0.3 5.6 1 0.92 Eq HI-la 0.0 46 HSS5X5X3 /8 SOD ROOF 151.7 2.7 3.4 1 0.78 Eq H1 -la 0.0 46 HSS5X5X3 /8 Column Line 66.04ft - 60.92ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 15.5 1.5 0.7 1 0.32 Eq H1 -la 90.0 46 HSS5X5X3 /16 LOW ROOF 15.7 1.5 0.7 1 0.32 Eq H1 -la 90.0 46 HSS5X5X3 /16 Column Line G.8 - 5 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SECOND 54.4 7.5 0.0 12 0.85 Eq Hl -la 90.0 46 HSS5X5X3 /16 RAMP 54.5 7.5 0.0 12 0.86 Eq Hl -la 90.0 46 HSS5X5X3 /16 Column Line 66.04ft - 70.26ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SOD ROOF 25.8 3.7 0.0 1 0.36 Eq H1 -la 90.0 46 HSS5X5X3 /16 Column Line 66.04ft - 70.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 59.1 16.8 4.4 8 0.87 Eq Hl-la 90.0 46 HSS5X5X3 /8 Column Line 66.04ft - 74.33ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 9.2 2.3 2.3 1 0.29 Eq H1 -lb 0.0 46 HSS5X5X3 /16 LOW ROOF 9.4 2.3 2.3 1 0.29 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Gravity Column Design Summary WH RAM Steel vl 1.1 RAMDataBase:lionsquare_north NTERNAK,At Building Code: IBC SIXTH 34.5 3.3 FIFTH 49.7 0.8 3.0 1 0.65 Eq H1 -1a 0.0 2.4 1 0.68 Eq H1 -la 0.0 Page 11/19 02/17/07 11:45:20 Steel Code: AISC LRFD 46 HSS5X5X3 /16 46 HSS5X5X3 /16 Column Line 66.04ft - 83.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 52.4 8.8 13.0 1 0.98 Eq H1 -la 90.0 46 HSS5X5X5 /16 Column Line G.8 - 1 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SOD ROOF 82.0 13.4 31.0 1 0.92 Eq H1 -la 90.0 46 HSS8X8X1 /4 SECOND 82.1 0.0 31.0 1 0.74 Eq H1 -la 0.0 46 HSS8X8X1 /4 RAMP 82.2 0.0 31.0 1 0.74 Eq H1 -la 0.0 46 HSS8X8X1 /4 Column Line 75.17ft - 45.95ft 46 HSS5X5X1 /4 RAMP 56.1 2.0 0.0 8 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 4.1 0.7 0.5 1 0.08 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Column Line 75.17ft - 53.33ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size w. ROOF 3.8 0.0 0.0 1 0.04 Eq Hl -lb 0.0 46 HSS5X5X3 /16 Column Line 78.33ft - 31.46ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size THIRD 45.6 18.0 0.0 8 0.99 Eq H1 -la 90.0 0.0 46 HSS5X5X1 /4 SOD ROOF 45.6 18.0 0.0 8 0.99 Eq H1 -la 46 0.0 46 HSS5X5X1 /4 SECOND 56.0 2.0 0.0 8 0.49 Eq Hl -la HSS5X5X3 /16 0.0 46 HSS5X5X1 /4 RAMP 56.1 2.0 0.0 8 0.49 Eq H1 -la 0.0 46 HSS5X5X1 /4 Column Line 78.50ft - 31.46ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SIXTH 10.5 3.8 0.5 1 0.27 Eq H1 -lb 90.0 46 HSS5X5X3 /16 FIFTH 18.5 1.4 2.8 2 0.38 Eq H1 -la 90.0 46 HSS5X5X3 /16 FOURTH 34.4 0.0 2.8 1 0.50 Eq Hl -la 90.0 46 HSS5X5X3 /16 Column Line K.5 - 9 Level Pu Mux ROOF 5.8 1.4 Muy LC Interaction Eq. Angle 1.0 1 0.14 Eq H1 -lb 90.0 Fy Size 46 HSS5X5X3 /16 Column Line K.5 - 8 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 6.6 0.1 0.0 1 0.08 Eq Hl -lb 90.0 46 HSS5X5X3 /16 RAM Steel vl 1.1 Gravity Column Design Summary RAMDataBase:lionsquare_north 11"IN T111,11 Building Code: IBC Column Line 83.17ft - 59.33ft Level Pu ROOF 8.8 LOW ROOF 8.9 SIXTH 14.0 FIFTH 18.4 FOURTH 23.8 THIRD 29.3 SOD ROOF 90.1 SECOND 110.6 RAMP 110.7 Column Line 88.25ft - 39.79ft Page 12/19 02/17/07 11:45:20 Steel Code: AISC LRFD Mux Muy LC Interaction Eq. Angle Fy Size 1.3 2.4 1 0.24 Eq H1 -lb 90.0 46 HSS5X5X3 /16 1.3 2.4 1 0.24 Eq H1 -lb 90.0 46 HSS5X5X3 /16 0.6 0.6 1 0.15 Eq H1 -lb 90.0 46 HSS5X5X3 /16 0.7 0.7 1 0.26 Eq Hl -la 0.0 46 HSS5X5X3 /16 0.7 0.7 1 0.32 Eq H1 -la 90.0 46 HSS5X5X3 /16 0.4 0.7 1 0.20 Eq H1 -lb 0.0 46 HSS5X5X5 /16 0.8 13.0 17 0.82 Eq H1 -la 0.0 46 HSS5X5X5 /16 0.1 0.1 1 0.68 Eq H1 -la 0.17 Eq H1 -lb 0.0 46 HSS5X5X5 /16 0.1 0.1 1 0.68 Eq H1 -1a 0.0 46 HSS5X5X5 /16 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size THIRD 19.8 3.9 0.0 8 0.39 Eq H1 -la 0.0 46 HSS5X5X3 /16 SOD ROOF 19.8 3.9 0.0 8 0.39 Eq H1 -1a 0.0 46 HSS5X5X3 /16 SECOND 32.6 0.8 0.0 12 0.35 Eq H1 -la 0.0 46 HSS5X5X3 /16 RAMP 32.7 0.8 0.0 12 0.35 Eq Hl -la 0.0 46 HSS5X5X3 /16 Column Line 89.25ft - 39.79ft 0.0 46 HSS5X5X3 /16 RAMP 38.0 1.9 0.9 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 8.9 0.2 2.2 8 0.17 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 95.17ft - 54.58ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SOD ROOF 130.3 57.9 5.4 6 0.91 Eq H1 -la 90.0 46 HSS8X8X3 /8 SECOND 130.4 57.9 5.4 6 0.91 Eq H1 -1a 0.0 46 HSS8X8X3 /8 RAMP 130.7 57.9 5.4 6 0.91 Eq H1 -la 0.0 46 HSS8X8X3 /8 Column Line 95.17ft - 86.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SOD ROOF 407.3 0.0 0.0 1 1.00 Eq H 1- l a 0.0 46 HS S l OX l OX5/ 16 SECOND 407.5 0.0 0.0 1 0.84 Eq H1-1a 90.0 46 HSS l OX 10X3/8 RAMP 407.8 0.0 0.0 1 0.84 Eq Hl-1a 90.0 46 HS S l OX l 0X3/8 Column Line 98.92ft -14 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 13.0 3.5 1.9 1 0.33 Eq H1 -lb 0.0 46 HSS5X5X3 /16 THIRD 25.8 1.7 0.9 1 0.39 Eq H1 -la 0.0 46 HSS5X5X3 /16 SOD ROOF 25.8 1.7 0.9 1 0.40 Eq H1 -la 0.0 46 HSS5X5X3 /16 SECOND 37.9 1.9 0.9 1 0.49 Eq H1 -la 0.0 46 HSS5X5X3 /16 RAMP 38.0 1.9 0.9 1 0.49 Eq Hl -la 0.0 46 HSS5X5X3 /16 Gravity Column Design Summary RAM Steel vl 1.1 Page 13/19 RAMDataBase:lionsquare_north 02/17/0711:45:20 NTERNATO,.ta Building Code: IBC Steel Code: AISC LRFD Column Line 98.92ft -12 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FOURTH 6.7 0.8 1.9 1 0.17 Eq H1 -lb 0.0 46 HSS5X5X3 /16 THIRD 15.0 0.8 0.9 1 0.17 Eq H1 -lb 0.0 46 HSS5X5X3 /16 SOD ROOF 15.0 0.8 0.9 1 0.17 Eq H1 -lb 0.0 46 HSS5X5X3 /16 SECOND 22.5 0.8 0.9 1 0.29 Eq H1 -la 0.0 46 HSS5X5X3 /16 RAMP 22.6 0.8 0.9 1 0.29 Eq H1 -la 0.0 46 HSS5X5X3 /16 Column Line 116.26ft - 56.53ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SOD ROOF 193.6 0.0 0.0 1 0.77 Eq H1 -la 17.0 46 HSS8X8X1 /4 SECOND 193.7 0.0 0.0 1 0.77 Eq H1 -la 17.0 46 HSS8X8X1 /4 RAMP 193.9 0.0 0.0 1 0.77 Eq H1 -la 17.0 46 HSS8X8Xl /4 Column Line 119.17ft - 86.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SOD ROOF 298.4 0.0 0.0 1 0.96 Eq H1 -1a 0.0 46 HSS8X8X5 /16 SECOND 298.5 0.0 0.0 1 0.96 Eq Hl -la 0.0 46 HSS8X8X5 /16 RAMP 298.7 0.0 0.0 1 0.96 Eq H1 -1a 0.0 46 HSS8X8X5 /16 Column Line 135.17ft - 92.40ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SOD ROOF 189.6 0.0 0.0 1 0.75 Eq Hl -la 0.0 46 HSS8X8X1 /4 SECOND 189.7 0.0 0.0 1 0.75 Eq H1 -1a 0.0 46 HSS8X8X1 /4 RAMP 189.9 0.0 0.0 1 0.75 Eq H1 -la 0.0 46 HSS8X8X1 /4 Column Line 144.47ft - 65.16ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SOD ROOF 142.1 35.0 0.0 12 0.82 Eq H1 -la 17.0 46 HSS8X8X5 /16 SECOND 142.2 35.0 0.0 12 0.82 Eq Hl -la 17.0 46 HSS8X8X5 /16 RAMP 142.4 35.0 0.0 12 0.82 Eq H1 -la 17.0 46 HSS8X8X5 /16 Column Line 153.33ft - 97.75ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SOD ROOF 154.2 7.5 75.1 8 0.95 Eq Hl-1a 0.0 46 HSS l OX 10X5/16 SECOND 154.3 7.5 75.1 8 0.95 Eq H1 -la 0.0 46 HSS10XlOX5 /16 RAMP 154.6 7.5 75.1 8 0.95 Eq Hl-la 0.0 46 HS S l OX 10X5/ 16 Column Line 161.68ft - 70.42ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SOD ROOF 87.9 38.1 0.0 12 0.86 Eq H1 -la 17.0 46 HSS8X8Xl /4 SECOND 88.0 38.1 0.0 12 0.86 Eq H1 -1a 17.0 46 HSS8X8X1 /4 RAMP 88.2 38.1 0.0 12 0.86 Eq H1 -la 17.0 46 HSS8X8X1 /4 Gravity Column Design Summary RAM Steel v 11.1 Page 14/19 RAM DataBase:lionsquare_north 02/17/0711:45:20 INTERNATIO-L Building Code: IBC Steel Code: AISC LRFD Column Line 176.01ft - 95.75ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 7.1 1.5 2.8 1 0.25 Eq Hl -lb 0.0 46 HSS5X5X3 /16 FOURTH 27.8 1.6 2.8 1 0.24 Eq Hl -lb 90.0 46 HSS5X5X5 /16 THIRD 47.1 1.7 2.6 1 0.43 Eq H1 -la 90.0 46 HSS5X5X5 /16 SOD ROOF 129.6 0.0 0.0 1 0.63 Eq H1 -la 90.0 46 HSS5X5X5 /16 SECOND 147.4 0.0 0.0 1 0.91 Eq H1 -la 90.0 46 HSS5X5X5 /16 RAMP 147.5 0.0 0.0 1 0.91 Eq Hl -la 90.0 46 HSS5X5X5 /16 Column Line 186.00ft - 85.68ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 0.5 0.1 0.0 1 0.01 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Column Line 186.00ft - 95.75ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SOD ROOF 0.0 0.0 0.0 1 0.00 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 194.51ft - 75.00ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 5.7 0.9 0.0 1 0.09 Eq HI -lb 90.0 46 HSS5X5X3 /16 LOW ROOF 5.9 0.9 0.0 1 0.09 Eq Hl -lb 90.0 46 HSS5X5X3 /16 SIXTH 12.1 0.5 0.0 1 0.13 Eq Hl -lb 90.0 46 HSS5X5X3 /16 Column Line 194.51ft - 84.50ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 5.0 1.4 0.7 1 0.14 Eq Hl -lb 90.0 46 HSS5X5X3 /16 LOW ROOF 6.2 1.4 2.2 1 0.22 Eq Hl -lb 90.0 46 HSS5X5X3 /16 SIXTH 20.6 1.1 2.1 1 0.36 Eq H1 -la 90.0 46 HSS5X5X3 /16 Column Line 194.51ft - 85.68ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 38.8 10.8 5.1 1 0.86 Eq Hl -la 90.0 46 HSS5X5X1 /4 Column Line 194.51ft - 95.75ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 4.6 5.5 2.6 4 0.42 Eq H1 -lb 0.0 46 HSS5X5X3 /16 FOURTH 43.9 5.2 2.8 1 0.83 Eq Hl -la 90.0 46 HSS5X5X3 /16 THIRD 63.2 2.0 1.7 1 0.85 Eq H1 -la 0.0 46 HSS5X5X3 /16 SOD ROOF 63.2 2.0 1.7 1 0.85 Eq Hl -la 90.0 46 HSS5X5X3 /l6 SECOND 80.3 2.3 1.5 12 0.94 Eq H1 -la 0.0 46 HSS5X5X3 /16 RAMP 80.4 2.3 1.5 12 0.95 Eq HI -la 0.0 46 HSS5X5X3 /16 Gravity Column Design Summary RAM Steel vl 1.1 Page 15/19 RAMDataBase: lionsquare - north 02/17/0711:45:20 INTERNATO,,x Building Code: IBC Steel Code: AISC LRFD Column Line 199.50ft - 84.50ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 5.7 0.3 0.7 1 0.07 Eq H1 -lb 0.0 46 HSS5X5X3 /16 LOW ROOF 8.4 0.1 0.2 1 0.09 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 199.50ft - 91.56ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 3.3 1.0 0.1 1 0.07 Eq H1 -lb 90.0 46 HSS5X5X3 /16 LOW ROOF 4.3 2.4 0.1 2 0.14 Eq H1 -lb 90.0 46 HSS5X5X3 /16 SIXTH 21.7 2.0 0.1 1 0.33 Eq Hl -la 90.0 46 HSS5X5X3 /16 Column Line + - 1 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SIXTH 12.7 3.8 5.2 1 0.75 Eq H1 -la 0.0 46 HSS5X5X3 /16 FIFTH 41.2 6.1 4.1 1 0.90 Eq H1 -la 0.0 46 HSS5X5X3 /16 FOURTH 59.3 0.1 3.9 1 0.82 Eq H1 -la 90.0 46 HSS5X5X3 /16 Column Line 205.06ft - 91.56ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size r. ROOF 2.4 0.1 0.2 1 0.02 Eq H1 -lb 90.0 46 HSS5X5X3 /16 LOW ROOF 2.7 0.0 0.0 1 0.03 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Column Line 205.06ft - 94.75ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 4.4 1.4 0.2 1 0.11 Eq H1 -lb 0.0 46 HSS5X5X3 /16 LOW ROOF 4.6 1.4 0.0 1 0.10 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 206.75ft - 63.46ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SIXTH 62.7 0.0 0.0 1 0.68 Eq H1 -la 0.0 46 HSS5X5X3 /16 FIFTH 120.4 0.0 0.0 1 0.83 Eq H1 -la 90.0 46 HSS5X5X5 /16 Column Line 209.26ft - 74.63ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SECOND 21.1 4.5 2.3 10 0.50 Eq Hl -la 0.0 46 HSS5X5X3 /16 RAMP 21.2 4.5 2.3 10 0.50 Eq H1 -la 0.0 46 HSS5X5X3 /16 Column Line 214.08ft - 74.63ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SECOND 21.9 4.4 1.6 1 0.48 Eq H1 -la 0.0 46 HSS5X5X3 /16 RAMP 21.9 4.4 1.6 1 0.48 Eq H1 -la 0.0 46 HSS5X5X3 /16 IIIRAM Steel v 11.1 Gravity Column Design Summary RAMDataBase:lionsquare_ north INTERNATKJv4t I Building Code: IBC Page 16/19 02/17/07 11:45:20 Steel Code: AISC LRFD Column Line W - 1 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size FIFTH 59.5 11.5 2.8 13 0.98 Eq H1 -la 0.0 46 HSS5X5X1 /4 FOURTH 94.9 0.9 2.7 1 0.92 Eq H1 -la 0.0 46 HSS5X5X1 /4 Column Line 214.24ft - 63.46ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 4.3 0.5 0.0 1 0.06 Eq H1 -lb 0.0 46 HSS5X5X3 /16 LOW ROOF 4.5 0.5 0.0 1 0.07 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 216.58ft - 83.29ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 13.1 1.4 0.4 1 0.44 Eq H1 -la 0.0 46 HSS5X5X3 /16 LOW ROOF 13.2 1.4 0.4 1 0.44 Eq H1 -la 0.0 46 HSS5X5X3 /16 Column Line 217.08ft - 94.75ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 7.9 1.2 3.4 4 0.28 Eq H1 -lb 0.0 46 HSS5X5X3 /16 LOW ROOF 8.1 1.2 3.4 4 0.28 Eq H1 -lb 0.0 46 HSS5X5X3 /16 SIXTH 48.0 0.0 3.3 1 0.67 Eq H1 -la 90.0 46 HSS5X5X3 /16 Column Line 219.49ft - 63.46ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 2.9 0.7 0.0 1 0.05 Eq H1 -lb 0.0 46 HSS5X5X3 /16 LOW ROOF 3.1 0.7 0.0 1 0.06 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 226.08ft - 83.29ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 4.5 0.4 1.3 1 0.14 Eq H1 -lb 90.0 46 HSS5X5X3 /16 LOW ROOF 4.6 0.4 1.3 1 0.15 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Column Line 226.58ft - 63.46ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SIXTH 88.1 0.0 0.0 1 0.53 Eq H1 -la 0.0 46 HSS5X5X3 /8 FIFTH 152.8 0.0 0.0 1 0.91 Eq H1 -la 0.0 46 HSS5X5X3 /8 Column Line 227.22ft - 94.75ft Level Pu Mux Muy L%- hireraction Eq. Angle Fy Size ROOF 3.5 1.0 0.0 1 O.u" E(1 -lb 0.0 46 HSS5X5X3 /16 T nw T3 1) c 1 n 1 ^ nn „ 11- nn n ec TTVC1GVGV7 11 C Gravity Column Design Summary '/ 1 \` RAM Steel vl 1.1 Page 17/19 RAMDataBase:lionsquare_ north 02/17/0711:45:20 INTERNATONk Building Code: IBC Steel Code: AISC LRFD 1%. Column Line 227.33ft - 74.63ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SECOND 26.3 2.3 2.2 16 0.45 Eq H1 -la 0.0 46 HSS5X5X3 /16 RAMP 26.4 2.3 2.2 16 0.45 Eq Hl -la 0.0 46 HSS5X5X3 /16 Column Line 227.67ft - 63.46ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 4.5 1.3 0.6 1 0.12 Eq H1 -lb 90.0 46 HSS5X5X3 /16 LOW ROOF 4.7 1.3 0.6 1 0.13 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 227.67ft - 72.42ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 5.3 0.2 0.1 1 0.08 Eq H1 -lb 0.0 46 HSS5X5X3 /16 LOW ROOF 5.4 0.2 0.1 1 0.08 Eq Hl -lb 0.0 46 HSS5X5X3 /16 Column Line 235.17ft - 91.75ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 3.6 0.2 0.2 1 0.05 Eq H1 -lb 0.0 46 HSS5X5X3 /16 f LOW ROOF 3.8 0.2 0.2 1 0.05 Eq H1 -lb 0.0 46 HSS5X5X3 /16 1%w Column Line 235.17ft - 94.75ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 1.2 0.3 0.2 1 0.03 Eq H1 -lb 90.0 46 HSS5X5X3 /16 LOW ROOF 1.4 0.3 0.2 1 0.03 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Column Line 243.17ft - 72.42ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 5.9 1.7 0.7 1 0.16 Eq Hl -lb 90.0 46 HSS5X5X3 /16 LOW ROOF 6.1 1.7 0.7 1 0.16 Eq H1 -lb 90.0 46 HSS5X5X3 /16 Column Line 243.17ft - 91.75ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 6.1 0.9 1.6 1 0.17 Eq H1 -lb 0.0 46 HSS5X5X3 /16 LOW ROOF 6.2 0.9 1.6 1 0.17 Eq H1 -lb 0.0 46 HSS5X5X3 /16 Column Line 243.33ft - 59.67ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SECOND 4.8 1.7 0.3 1 0.12 Eq Hl -lb 0.0 46 HSS5X5X3 /16 RAMP 4.9 1.7 0.3 1 0.12 Eq Hl -lb 0.0 46 HSS5X5X3 /16 Column Line Y.2 - 5.5 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SIXTH 33.5 5.0 0.0 1 0.92 Eq H1 -la 0.0 46 HSS5X5X1 /4 Gravity Column Design Summary RAM Steel v1 1. 1 DataB ase: lions quare_north Building Code: IBC FIFTH 58.0 Column Line 244.92ft - 71.63ft Level Pu SIXTH 21.9 FIFTH 43.9 FOURTH 60.7 THIRD 85.7 SOD ROOF 85.7 5.0 Mux 3.8 1.4 3.1 2.7 2.7 Page 18/19 02/17/07 11:45:20 Steel Code: AISC LRFD 0.0 1 0.90 Eq H1 -la 90.0 46 HSS5X5X1 /2 Muy LC Interaction Eq. Angle 1.9 12 0.49 Eq H1 -la 90.0 1.8 2 0.62 Eq H1 -1a 90.0 1.4 3 0.86 Eq H1 -la 0.0 0.7 1 0.83 Eq Hl -la 90.0 0.7 1 0.83 Eq H1 -la 0.0 Fy Size 46 HSS5X5X3 /16 46 HSS5X5X3 /16 46 HSS5X5X3 /16 46 HSS5X5X1 /4 46 HSS5X5X1 /4 Column Line 244.92ft - 74.62ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SECOND 87.7 34.0 3.1 15 0.84 Eq H 1 -1 a 90.0 46 HSS8X8X 1 /4 RAMP 87.9 34.0 3.1 15 0.84 Eq H1 -la 90.0 46 HSS8X8X1 /4 Column Line 250.83ft - 79.79ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SIXTH 40.3 0.0 0.0 1 0.44 Eq Hl -la 0.0 46 HSS5X5X3 /16 FIFTH 68.1 0.0 0.0 1 0.57 Eq H1 -la 90.0 46 HSS5X5X1 /4 FOURTH 89.1 0.0 0.0 1 0.75 Eq Hl-la 90.0 46 HSS5X5X 1 /4 THIRD 114.7 0.0 0.0 1 0.96 Eq H1 -la 90.0 46 HSS5X5X1 /4 SOD ROOF 114.7 0.0 0.0 1 0.96 Eq H1 -la 90.0 46 HSS5X5X1 /4 Column Line 250.83ft - 81.67ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SECOND 135.1 0.0 0.0 1 0.83 Eq H1 -la 90.0 46 HSS5X5X5 /16 RAMP 135.2 0.0 0.0 1 0.83 Eq H1 -la 90.0 46 HSS5X5X5 /16 Column Line 250.83ft - 95.25ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SIXTH 19.0 7.2 0.7 1 0.55 Eq H1 -la 90.0 46 HSS5X5X3 /l6 FIFTH 30.5 1.8 0.6 1 0.44 Eq Hl-la 90.0 46 HS S5X5X3/ 16 FOURTH 42.0 1.8 0.6 1 0.56 Eq H1 -la 90.0 46 HSS5X5X3 /16 THIRD 52.3 1.7 0.6 1 0.67 Eq H1 -la 90.0 46 HSS5X5X3 /16 SOD ROOF 52.3 1.7 0.6 1 0.67 Eq H1 -la 90.0 46 HSS5X5X3 /16 Column Line 250.83ft - 95.75ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SECOND 59.0 1.2 23.4 1 0.91 Eq H1 -la 0.0 46 HSS5X5X3 /8 RAMP 59.1 1.2 23.4 1 0.91 Eq H1 -la 0.0 46 HSS5X5X3 /8 Column Line 251.83ft - 59.67ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size SECOND 24.2 8.4 1.7 1 0.67 Eq H1 -la 90.0 46 HSS5X5X3 /16 Fil RAM INTER ATICA,,.0 Gravity Column Design Summary RAM Steel v 11.1 DataBase: lionsquare_ north Building Code: IBC Page 19/19 02/17/07 11:45:20 Steel Code: AISC LRFD RAMP 24.2 8.4 1.7 1 0.67 Eq H1 -la 90.0 46 HSS5X5X3 /16 F-5 Encased Concrete Column Design Concrete Column Des*gn RAM Concrete Column v 11.1 RAMDatabase: lionsquare_ north 'TEP "A Building Code: IBC COLUMN INFORMATION: Level FIRST Column Number: 1 Size: 16x20 Reinforcement Conc. Weight (pcf): Longitudinal: 1445 (4 x 3) Transverse: #3@ 9.0" 0'- 0 "- 11' -0" Confinement Tie Shear Legs Major 2 Longitudinal Bars Max Tension Stress Ratio: 0.38 MATERIAL PROPERTIES: Grid Location: Depth x Width (in) As (in2) Clear Cover (in) _ Shear Legs Minor 02/17/07 12:54:05 Concrete Code: ACI 318 -02 (23.17ft- 53.33ft) 20.00x 16.00 4.34 (1.36 %) 1.50 2 fc (ksi): 5.00 fy Long (ksi): 60.00 fct (ksi): 0.00 fy Shear (ksi): 60.00 Conc. Weight (pcf): 145.00 Conc. Type: NWC Conc. Modulus (ksi): 4074.28 Reinf. Modulus (ksi): 29000.00 DESIGN PARAMETERS: Major Minor Unbraced Length (ft) 10.24 11.00 K 0.84 0.90 Braced Against Sidesway- Yes Yes LONGITUDINAL REINFORCEMENT: Controlling Load Combination: (2) 1.200 D + 1.600 Lp Axial Load (kip) 375.98 Moment Top Major(kip -ft) - 135.47 Minor(kip-ft) 0.00 Moment Bottom Major(kip -ft) 22.38 Minor(kip -ft) -0.25 Calculated Parameters (Angle = 0.00 degrees): Ld/Cap = 0.55 0.65 Pn(kip): 375.98 0.65 Mn Major(kip-ft): 247.59 0.65 Mn Minor(kip-ft): Major Minor Kl/r 17.94 25.72 Slender No No TRANSVERSE REINFORCEMENT: Controlling Load Combination: (1) 1.400 D Vu (kip) Vc (kip) Vs (kip) 0 0 (Vc + Vs) (kip) Ld/Cap 1 Major: 20.30 57.23 27.13 0.75 63.28 0.32 1 Minor: 0.03 55.48 21.27 0.75 57.56 0.00 TORSION CAPACITY: .. Controlling Load Combination: (2) 1.200 D + 1.600 Lp 0.75 Tn (kip -ft) 14.27 Tu (kip -ft) 0.01 1 0I Concrete Column Design RAM Concrete Column v 11.1 "RAM Database: lionsquare_north Building Code: IBC COLUMN INFORMATION: Level FIRST Column Number: 3 Size: 16x20 Reinforcement Conc. Weight (pcf): Longitudinal: 1447 (4 x 3) Transverse: #3@ 6.0" 0'- 0 "- 11' -0" Confinement Tie Shear Legs Major 2 Longitudinal Bars Max Tension Stress Ratio: 1.00 MATERIAL PROPERTIES: Grid Location: Depth x Width (in) As (in2) Clear Cover (in) Shear Legs Minor 02/17/07 12:54:05 Concrete Code: ACI 318 -02 (D -8) 20.00x 16.00 8.40 (2.63 %) 1.50 2 fc (ksi): 5.00 fy Long (ksi): 60.00 fct (ksi): 0.00 fy Shear (ksi): 60.00 Conc. Weight (pcf): 145.00 Conc. Type: NWC Conc. Modulus (ksi): 4074.28 Reinf. Modulus (ksi): 29000.00 DESIGN PARAMETERS: Major Minor Unbraced Length (ft) 10.24 11.00 K 0.82 0.90 Braced Against Sidesway- Yes Yes LONGITUDINAL REINFORCEMENT: Controlling Load Combination: (2) 1.200 D + 1.600 Lp Axial Load (kip) 284.93 Moment Top Major(kip -ft) 274.95 Minor(kip -ft) 0.00 Moment Bottom Major(kip -ft) -77.00 Minor(kip -ft) -0.19 Calculated Parameters (Angle = 0.00 degrees): Ld/Cap = 0.91 0.65 Pn(kip): 284.93 0.65 Mn Major(kip-ft): 303.49 0.65 Mn Minor(kip-ft): Major Minor Kl /r 17.51 25.72 Slender No No TRANSVERSE REINFORCEMENT: Controlling Load Combination: (1) 1.400 D Vu (kip) Vc (kip) Vs (kip) (Vc + Vs) (kip) Ld/Cap 1 Major: 41.35 53.25 40.70 0.75 70.46 0.59 1 Minor: 0.02 49.68 31.90 0.75 61.18 0.00 TORSION CAPACITY: Controlling Load Combination: (2) 1.200 D + 1.600 Lp 0.75 Tn (kip -ft) 12.80 Tu (kip -ft) 0.01 WE Concrete Column Design RAM Concrete Column vl 1.1 Database: lionsquare_ north HreRr�atxx u Building Code: IBC COLUMN INFORMATION: Level FIRST Column Number: 4 Size: 16x20 Reinforcement NWC Longitudinal: 1445 (4 x 3) Transverse: #3@ 9.0" 0'- 0 "- 11' -0" Confinement Tie Shear Legs Major 2 Longitudinal Bars Max Tension Stress Ratio: 0.00 MATERIAL PROPERTIES: Frame Number: Grid Location: Depth x Width (in) As (in2) Clear Cover (in) Shear Legs Minor 02/17/07 12:54:05 Concrete Code: ACI 318 -02 11 (41.08ft- 81.33ft) 20.00x 16.00 4.34 (1.36 %) 1.50 2 fc (ksi): 5.00 fy Long (ksi): 60.00 fct (ksi): 0.00 fy Shear (ksi): 60.00 Conc. Weight (pcf): 145.00 Conc. Type: NWC Conc. Modulus (ksi): 4074.28 Reinf. Modulus (ksi): 29000.00 DESIGN PARAMETERS: Major Minor Unbraced Length (ft) 10.17 11.00 K 1.00 1.00 Braced Against Sidesway- Yes Yes LONGITUDINAL REINFORCEMENT: Controlling Load Combination: (2) 1.200 D + 1.600 Lp Axial Load (kip) 424.73 Moment Top Major(kip -ft) 29.63 Minor(kip -ft) 0.07 Moment Bottom Major(kip -ft) -0.00 Minor(kip -ft) 0.00 Calculated Parameters (Angle = 0.14 degrees): Ld/Cap = 0.51 0.65 Pn(kip): 424.73 0.65 Mn Major(kip-ft): 244.26 0.65 Mn Minor(kip-ft): 0.59 Major Minor Kl /r 21.13 28.58 Slender No No TRANSVERSE REINFORCEMENT: Controlling Load Combination: (1) 1.400 D Vu (kip) Vc (kip) Vs (kip) 0 (Vc + Vs) (kip) Ld/Cap 1 Major: 3.06 49.98 27.13 0.75 57.84 0.05 1 Minor: 0.09 48.45 21.27 0.75 52.29 0.00 TORSION CAPACITY: Controlling Load Combination: (8) 0.820 D - 1.000 E 1 0.75 Tn (kip -ft) 10.32 Tu (kip -ft) 0.01 Concrete Column Design RAM Concrete Column v 11.1 Database: lionsquare_ north Building Code: IBC COLUMN INFORMATION: Level FIRST Column Number: 6 Size: 16x20 Reinforcement NWC Longitudinal: 1447 (4 x 3) Transverse: #3@ 12.0" 0'- 0 "- 11' -0" Confinement Tie Shear Legs Major 2 Longitudinal Bars Max Tension Stress Ratio: 0.00 MATERIAL PROPERTIES: Frame Number: - Grid Location: Depth x Width (in) As (in2) Clear Cover (in) Shear Legs Minor 02/17/07 12:54:05 Concrete Code: ACI 318 -02 11 (68.08ft- 81.33ft) 20.00x 16.00 8.40 (2.63 %) 1.50 2 fc (ksi): 5.00 fy Long (ksi): 60.00 fct (ksi): 0.00 fy Shear (ksi): 60.00 Conc. Weight (pcf): 145.00 Conc. Type: NWC Conc. Modulus (ksi): 4074.28 Reinf. Modulus (ksi): 29000.00 DESIGN PARAMETERS: Major Minor Unbraced Length (ft) 10.17 11.00 K 1.00 1.00 Braced Against Sidesway- Yes Yes LONGITUDINAL REINFORCEMENT: Controlling Load Combination: (2) 1.200 D + 1.600 Lp Axial Load (kip) 929.55 Moment Top Major(kip -ft) - 133.36 Minor(kip -ft) -0.01 Moment Bottom Major(kip -ft) 0.00 Minor(kip-ft) 0.00 Calculated Parameters (Angle = 0.00 degrees): Ld/Cap = 0.98 0.65 Pn(kip): 929.55 0.65 Mn Major(kip-ft): 161.97 0.65 Mn Minor(kip-ft): 0.01 Major Minor Kl/r 21.13 28.58 Slender No No TRANSVERSE REINFORCEMENT: Controlling Load Combination: (1) 1.400 D Vu (kip) Vc (kip) Vs (kip) (Vc + Vs) (kip) Ld/Cap 1 Major: 13.12 64.23 20.35 0.75 63.44 0.21 1 Minor: 0.01 62.13 15.95 0.75 58.56 0.00 TORSION CAPACITY: Controlling Load Combination: (8) 0.820 D - 1.000 E 1 0.75 Tn (kip -ft) 14.44 Tu (kip -ft) 0.01 FilConcrete Column Des'gn RAM Concrete Column vl 1.1 �M Database: lionsquare_north 02/17/07 12:54:05 IMERNATo,,x Building Code: IBC Concrete Code: ACI 318 -02 COLUMN INFORMATION: Level FIRST Column Number: 11 Size: 16x20 Reinforcement Conc. Weight (pcf): Longitudinal: 1445 (4 x 3) Transverse: #3@ 9.0" 0'- 0 "- 11' -0" Confinement Tie Shear Legs Major 2 Longitudinal Bars Max Tension Stress Ratio: 0.00 MATERIAL PROPERTIES: Grid Location: Depth x Width (in) As (in2) Clear Cover (in) Shear Legs Minor (119.09ft- 81.33ft) 20.00x 16.00 4.34 (1.36 %) 1.50 2 fc (ksi): 5.00 fy Long (ksi): 60.00 fct (ksi): 0.00 fy Shear (ksi): 60.00 Conc. Weight (pcf): 145.00 Conc. Type: NWC Conc. Modulus (ksi): 4074.28 Reinf. Modulus (ksi): 29000.00 DESIGN PARAMETERS: Major Minor Unbraced Length (ft) 11.00 11.00 K 0.90 0.90 Braced Against Sidesway- Yes Yes LONGITUDINAL REINFORCEMENT: Controlling Load Combination: (2) 1.200 D + 1.600 Lp Axial Load (kip) 375.56 Moment Top Major(kip -ft) 0.05 Minor(kip -ft) -0.00 Moment Bottom Major(kip -ft) -0.34 Minor(kip -ft) 0.02 Calculated Parameters (Angle = 0.04 degrees): Ld/Cap = 0.45 0.65 Pn(kip): 375.56 0.65 Mn Major(kip-ft): 247.61 0.65 Mn Minor(kip-ft): Major Minor Kl/r 20.58 25.72 Slender No No TRANSVERSE REINFORCEMENT: Controlling Load Combination: (1) 1.400 D Vu (kip) Vc (kip) Vs (kip) (Vc + Vs) (kip) Ld/Cap 1 Major: 0.08 52.21 27.13 0.75 59.51 0.00 1 Minor: 0.01 50.61 21.27 0.75 53.91 0.00 TORSION CAPACITY: ,*mw Controlling Load Combination: (2) 1.200 D + 1.600 Lp 0.75 Tn (kip -ft) 14.26 Tu (kip -ft) 0.01 0.17 Concrete Column Design RAM Concrete Column v 11.1 Database: lionsquare_ north Building Code: IBC COLUMN INFORMATION: Level FIRST Column Number: 12 Size: 16x20 Reinforcement Conc. Weight (pcf): Longitudinal: 1445 (4 x 3) Transverse: #3@ 9.0" 0' -0 "- 11'4" Confinement Tie Shear Legs Major 2 Longitudinal Bars Max Tension Stress Ratio: 0.00 MATERIAL PROPERTIES: Grid Location: Depth x Width (in) As (in2) Clear Cover (in) Shear Legs Minor 02/17/07 12:54:05 Concrete Code: ACI 318 -02 (P -8) 20.00x 16.00 4.34 (1.36 %) 1.50 2 f (ksi): 5.00 fy Long (ksi): 60.00 fct (ksi): 0.00 fy Shear (ksi): 60.00 Conc. Weight (pcf): 145.00 Conc. Type: NWC Conc. Modulus (ksi): 4074.28 Reinf. Modulus (ksi): 29000.00 DESIGN PARAMETERS: Major Minor Unbraced Length (ft) 11.00 11.00 K 0.90 0.90 Braced Against Sidesway- Yes Yes LONGITUDINAL REINFORCEMENT: Controlling Load Combination: (2) 1.200 D + 1.600 Lp Axial Load (kip) 259.90 Moment Top Major(kip -ft) -0.00 Minor(kip -ft) -0.23 Moment Bottom Major(kip -ft) -0.62 Minor(kip -ft) 0.32 Calculated Parameters (Angle = 27.24 degrees): Ld/Cap = 0.31 0.65 Pn(kip): 259.90 0.65 Mn Major(kip-ft): 174.29 0.65 Mn Minor(kip-ft): Major Minor Kl/r 20.58 25.72 Slender No No TRANSVERSE REINFORCEMENT: Controlling Load Combination: (1) 1.400 D Vu (kip) Vc (kip) Vs (kip) (Vc + Vs) (kip) Ld/Cap 1 Major: 0.06 48.59 27.13 0.75 56.79 0.00 1 Minor: 0.08 47.10 21.27 0.75 51.27 0.00 TORSION CAPACITY: Controlling Load Combination: (2) 1.200 D + 1.600 Lp 0.75 Tn (kip -ft) 12.37 Tu (kip -ft) 0.01 89.73 Foundation Design III_Foundation Load Summary RAM RAM Manager v 11.1 INTERNAnlAL DataBase:lionsquare_ north Date: 02 /17/07 12:54:05 Forces on Gravity Members from RAM Concrete. Gravity Column Loads Dead +Live Col Level Dead Live Roof 18 LOW P (kip): kip kip kip 22 ramp 11.65 5.40 0.00 23 ramp 11.24 5.28 0.00 24 ramp 16.26 6.57 0.00 25 ramp 2.93 0.82 0.00 26 ramp 47.43 23.01 0.00 27 ramp 74.90 29.42 0.00 28 ramp 35.82 10.07 0.00 29 ramp 12.72 5.53 0.00 1 first 207.56 79.31 0.00 16 first 92.80 15.78 0.00 3 first 151.06 64.79 0.00 5 first 188.38 72.23 0.00 7 first 89.44 22.22 0.00 8 first 119.29 81.34 0.00 9 first 193.56 143.09 0.00 10 first 113.80 81.59 0.00 11 first 157.58 116.54 0.00 12 first 109.60 80.24 0.00 13 first 107.35 78.27 0.00 14 first 107.31 77.00 0.00 15 first 87.07 62.95 0.00 Gravity Wall Loads Wall Level Dead +Live -Live +Roof -Roof Min Total Max Total 18 LOW P (kip): 34.24 1.62 0.00 0.00 .0.00 34.24 35.87 ROOF M (kip -ft): 47.65 17.62 0.00 0.00 0.00 47.65 65.27 2 FIFTH P (kip): 81.66 12.64 0.00 0.00 0.00 81.66 94.31 M (kip -ft): -25.55 -16.51 0.00 0.00 0.00 -25.55 -42.06 4 FIFTH P (kip): 56.33 9.08 0.00 0.00 0.00 56.33 65.41 M (kip -ft): -8.67 -9.31 0.00 0.00 0.00 -8.67 -17.98 5 FIFTH P (kip): 154.47 42.31 0.00 0.00 0.00 154.47 196.78 M (kip -ft): 162.81 63.04 0.00 0.00 0.00 162.81 225.85 6 FIFTH P (kip): 71.27 21.94 0.00 0.00 0.00 71.27 93.20 M (kip -ft): -4.45 -2.24 0.00 0.00 0.00 -4.45 -6.69 10 FIFTH P (kip): 150.69 29.91 0.00 0.00 0.00 150.69 180.60 M (kip -11): 494.74 226.81 0.00 0.00 0.00 494.74 721.54 Load Cases: Case Load Description Load Name El E EQ_IBC03_X_NoE_F Foundation Load Summary RAM Manager v l 1.1 Page 2/4 INTERNAT10tJAL DataBase:lionsquare_ north Date: 02 /17/07 12:54:05 Frame Column/Brace Loads Col Level Case V x V y P M xx M yy T kip kip kip kip -ft kip -ft kip -ft 2 first El -0.04 -0.04 0.39 0.00 0.00 0.00 4 first El -0.12 -0.08 26.99 0.00 0.00 0.00 6 first El 0.95 -0.01 18.09 0.00 0.00 0.00 Frame Wall Loads Wall Level Case P Mom V kip kip -ft kip 1 first El -17.95 -5.75 -2.36 2 first El -1.45 3.35 0.55 3 first El -0.46 1.08 -0.50 4 first El -11.74 32.21 -7.84 5 first El 4.33 173.76 8.90 6 first El 3.41 -0.71 -0.17 7 first El -55.09 - 773.21 2.46 8 first E1 -18.33 710.01 40.18 12 first El -27.74 16.01 12.61 13 first El -48.80 -0.12 3.26 14 first El 0.13 233.79 -1.99 15 first El -2.53 202.53 -9.40 16 first El 25.88 - 690.92 139.20 17 first El 47.80 -2.59 -7.19 18 first El 21.43 24.11 12.17 19 first El -16.38 -9.29 -0.40 20 first El -3.98 43.89 -5.98 m. Foundation Load Summary 1 RAM RAM Manager v 11.1 INTERN^To,k DataBase: lionsquare_ north Wall Level Case P Mom V 21 first El -2.50 44.05 -6.96 22 first El 3.98 -3.16 -5.20 23 first El 0.73 210.68 38.61 24 first El 22.87 -1.32 -0.80 25 first El 0.02 2.37 3.39 26 first E1 -0.56 89.16 17.64 27 first El 0.02 5.20 2.92 28 first El -0.02 87.01 18.07 29 first E1 0.03 5.33 3.00 30 first El 0.91 70.66 14.18 31 first El 0.07 -30.71 5.32 32 first E1 -7.20 53.06 17.25 33 first El -30.06 7.82 -2.23 34 first El -39.31 188.02 -0.30 35 first El -2.79 198.49 -1.54 36 first El 0.85 4.41 -1.03 37 first El 4.34 18.56 2.55 38 first E1 2.33 -3.23 -1.23 39 first El 15.04 -3.34 -3.35 40 first El 15.91 12.57 2.39 41 first El 6.13 -2.97 -1.18 42 first El 20.94 1.22 -0.69 44 first El 21.78 -96.60 9.06 Page 3/4 Date: 02/17/07 12:54:05 Foundation Load Summary RAM Manager v 11.1 DataBase: lionsquare_ north 48 first El 1.10 -4.94 -0.53 49 first El 21.57 -79.97 3.24 51 first El 18.51 179.63 -2.91 53 first El -24.22 11.07 1.09 54 first El -17.99 164.16 -1.29 55 first El 23.69 12.32 0.64 10 first El -0.14 -0.17 -0.05 0 0 Page 4/4 Date: 02/17/07 12:54:05 • Existing Building 0 Monroe & Newell Engineers, Inc. JOB b ��- \-� SHEET NO OF CALCULATED BY DATE .2 CHECKED BY DATE C( AI F Monroe & Newell Engineers, Inc. 1\� ,\A 'OBb�vZT-r SHEET NO. OF I N\ CALCULATED BY DATE CHECKED BY DATE SCALE u(c)NI, Monroe & Newell Engineers, Inc. VMT JOB Ln R:�- SHEET NO. OF CALCULATED B DATE CHECKED BY DATE Monroe & Newell J °B Engineers, Inc. SHEET NO. OF CALCULATED BY DATE E\ CHECKED BY DATE erne e Monroe & Newell Engineers, Inc. JOB �6 �� bm SHEET NO. OF CALCULATED BY DATE 1 1 1 IGPq CHECKED BY SCALE DATE Monroe & Newell Engineers, Inc. JOB SHEET NO. OF CALCULATED BY CHECKED BY DATE DATE Monroe & Newell Engineers, Inc. JOB SHEET NO. OF O CALCULATED BY DATE CHECKED BY DATE SCALE Monroe & Newell Engineers, Inc. ,.Bbs-�%)�-= ��vA-tvvD - SHEET NO. OF t(,' CALCULATED BY DATE 1 v O CHECKED BY Cr AI F .,1 DATE (H 1Ivl3 q2 ZLP L121L� x1z s Monroe & Newell Engineers, Inc. L 1C %*� JO B SHEET NO. OF CALCULATED BY DATE tp O CHECKED BY DATE SCALE i r _ ' v�me-, LO� og, 6, 4--� 4 Monroe & Newell JOB LNOVX %.- u Engineers, Inc. SHEET NO. OF CALCULATED BY DATE A CHECKED BY DATE -'Zr.Al;: C; La A JOB Monroe & Newell Engineers, Inc. SHEET NO. OF CALCULATED BY L DATE CHECKED BY DATE ccni F C ,z 1a,8 . 5 ,a -�, S 3 - �- _. ....... y��_ H.S N OW `' ►�' -�I -rS i-N Monroe &Newell JOB Engineers, Inc. SHEET NO. OF CALCULATED BY D �-' DATE m d CHECKED BY DATE SCALE Monroe & Newell Engineers, Inc. SHEET NO OF t. CALCULATED BY �'" ` 1-3e— DATE CHECKED BY WaTT1.7 DATE W Monroe & Newell JOB —L o�� Le�,�tr Engineers, Inc. SHEET NO. OF CALCULATED BY DATE CHECKED BY DATE RCAI F I Maximum Considered Earthquake Ground Motion for 48 states Page 1 of 1 imUSGS science for a changing world LOCATION 39.6360 Lat. - 106.3736 Long. The interpolated Probabilistic ground motion values, in %g, at the requested poin Maximum Considered Earthquake Ground Motion Ss, 0.2 sec SA 33.69 S1, 1.0 sec SA 7.89 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Analysis Options page Design Values page http: // eqdesign .cr.usgs.gov /cgi- bin/design- lookup- 96- D6.cgi 1/5/2007 no JOB L O Yi�C1 ��� '^p�a C9cOYy Monroe & Newell Engineers, Inc. SHEET NO. OF CALCULATED BY DATE Q CHECKED BY DATE SCALE JOB LA o�q u`c,(e, � � 6Ya Monroe & Newell Engineers, Inc. SHEET NO. C OF CJ CALCULATED BY S DATE I r d CHECKED BY DATE rru. C(:AI F JOB L10 nor LA'm -rQ Loa Monroe & Newell L Engineers, Inc. SHEET NO. OF CALCULATED BY -- DATE 1 --I-- CHECKED BY DATE SC:AI F ;__...__. . .. __. .._.... ._. ..._ .. .... .. Lk ....... .. 1 Z 60i L . .` .... ..9y 7� �D ` L �a Q :5: i � K- Monroe &Newell JOB �l °v��A'i�t�.V 1 Q Engineers, Inc. SHEET NO. OF CALCULATED BY DATE CHECKED BY DATE ccni F t1w11'1±�.a W I ..._...._... j. Monroe &Newell JOB�'"`�� Engineers, Inc. SHEET NO. t OF CALCULATED BY �'. Cyr_.. DATE CJ b CHECKED BY DATE SCALE Monroe &Newell JOB Engineers, Inc. SHEET No. ^ OF CALCULATED BY S1�C. DATE d CHECKED BY DATE SrAI F JOB U ov-,�;W Ulc►wfQ� , �06 Flo Monroe & Newell Engineers, Inc. SHEET No. /� of II /ri CALCULATED BY �%� G` DATE b v CHECKED BY DATE SCALE Monroe & Newell Engineers, Inc. SHEET NO. G (�, OF CALCULATED BY DATE I I Z1 I O CHECKED BY SCALE DATE