Loading...
HomeMy WebLinkAboutShoring Plan(OGGINS 8 SONS. INC. Name PH. (303) 791 -9911 FAX(303)791-0967 _ CAISSON DRILLING PROJECT: EARTH RETENTION TIE BACK ANCHORS SUBJECT: PROJECT NO.: s DATE: W xZ.— w�, t= �i 6 C 4"ti Lr'1 vV.1Z..1• `.. C w (� ire z.: �`— fl� <._ S7La_ Ci —4 "� Y 4,� j —� �. (y �'tr'7"C- .•'[.r�'� TbK I DS :4q 1 -p A-rt --r7 zr-u ')-2 -2- 4- St -7 Z i i q 0 0 UJ Z7 vl— 0 u 1 G.. L� u �. �+ '1w i Ea c L Ll a T iZ i� ✓ c "i t i. _ v •-1 c_: T `- E-�°- 1-A C rc>trl_U�ti "L� 0 0- O M J 0 O O �11f L i EKsS�r7 -tip Ewov�c�w;'.�. -L.. COGGINS & SO i NS, INC. Caisson Drilling, Excavation Shoring, Tieback Anchors EARTH RETENTION CALCULATIONS INDEX PROJECT NO. - 5117 PROJECT: FOUR SEASONS for ITEM NO. DESCRIPTION PAGES 1 SOILS S1.0-S1.2 2 "RISA -21)" ANALYSIS OF 7' -0" CANTILEVER S2.0-S2.4 3 "RISA -21)" ANALYSIS OF 10' -0" CANTILEVER S3.0-S3.4 4 "RISA -21)" ANALYSIS OF 13' -0" CANTILEVER S4.0-S4.4 5 EXCEL CHECKS S5.0-S5.2 6 "L -PILE 5.0" ANALYSIS T -0" EXPOSED - 8' -0" EMBED S6.0-S6.6 7 "L -PILE 5.0" ANALYSIS 10' -0" EXPOSED -10' -0" EMBED S7.0-S7.6 8 "L -PILE 5.0" ANALYSIS 13' -0" EXPOSED -12' -0" EMBED S8.0-S8.6 APPENDIX "A", REFERENCE MATERIAL AND CODES APPENDIX "B ". LAGGING DESIGN CRITERIA AND REFERENCES COGGINS & SO NS, INC. Caisson Drilling, Excavation Shoring, Tieback Anchors STRUCTURAL DESIGN CALCULATIONS EARTH RETENTION SYSTEM RECEIVED for PROJECT NO. - 5117 PROJECT DESCRIPTION: EARTH RETENTION FOUR SEASONS HOTELS AND RESORTS Prepared for CLIENT: LAYTON CONSTRUCTION COMPANY ADDRESS: 9090 SOUTH SANDY PARKWAY CITY: SANDY STATE: UTAH 84070 TEL: 801-568-9090 FAX: 801-569-5450 r�� 0 REG/ •.M- °. .�m. o .Roo Vs� Prepared By: JOHN H. HART, P.E. COGGINS & SONS, INC. DATE: August 28, 2006 AUG 31 nffi The Layton CompanjeS 9512 Titan Park Circle - Littleton, Colorado 80125,p (303) 791 -9911 - FAX (303) 791 -0967 (OGGINS & SONS INC. Name PH. (303)791 -9911 FAX(303)791-0967 64ISSON DRILLING PROJECT: EARTH RETENTION TIE BACKANCHORS SUBJECT: q (o PROJECT NO.: ` ` DATE: U / `'- / v (_ s4.e 0 _ .2-- Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:14 AM Job Number: 5117 FOUR SEASONS Checked By: Hot Rolled Steel Properties s I nhal F rlren r- rt—n Ki.. 1 A36 Gr.36 29000 _ .._. • 11154 .3 ....... '— I I .65 UVII-JILYIK/W-01 .49 TIe10 KSI 36 2 A572 Gr.50 29000 11154 .3 .65 .49 50 3 A992 29000 11154 .3 .65 .49 50 4 A500 Gr.42 29000 11154 .3 .65 .49 42 5 A500 Gr.46 29000 11154 .3 .65 .49 46 Hot Rolled Steel Section Sets 1 A I W 14X30 I Wide Flange Beam A572 Gr.50 T ical 8.85 19.6 291 Hot Rolled Steel Design Parameters Cm Cb Out s... In Joint Coordinates and Temperatures I nhPl Y rffl 1 N1 +_0 0 7. 161U r 2 N2 0 0 Joint Boundary Conditions Joint Label X [k /in] Y fk/inl Rotationn [k-ft/ ra Footing 1 N2 Reaction Reaction Reaction Member Primary Data LGUe1 1 w111[ i uanl Koiate a bectlon /6na a Desi n List Type Material Desi n Rules 1 M1 N1 N2 HR1A Wide Flan a Beam A572 Gr.50 Typical Member Distributed Loads (BLC 1 : SOIL) Member Label Direction Start Ma nitude k/ft ... End Ma nitude k/ft d... Start Location ft %I End Location ft 1 M 1 X 0 1 -2.3 1 0 1 0 Joint Loads and Enforced Displacements Joint Label L D M Direction Ma nitude k k -ft in rad k's ^2 /ft No Data to Print ... Member Point Loads Member Label Direction Ma nitude k k -ft Location ft No Data to Print ... RISA -2D Version 6.5 [C: \ ... \... \My Documents \2006JOBS \5117FOURSEASONS \7 FT HEIGHT.r2d] Page 1 Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:14 AM Job Number: 5117 FOUR SEASONS Checked By: 0 Basic Loa d Cases 1� x Load Combination Design Description ASIF CD ABIF Service Hot Rolled Cold Formed Wood Concrpte Fnntinnc Load Combinations Description Solve PD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor RI C Factnr RI r Farfnr RI r G.,. +nr Joint Deflections (By Combination) 1 1 - - N 1 -. 043 1 I, � 0 R5Ldtiul 4 2 1 N2 0 0 ,9e-4 Joint Reactions 1 1 N2 8.05 - .211 IVI K-I L l - 18.783 2 1 Totals: 8.05 -.211 0 3 1 COG MY X: 0 Y: 3.5 3 Member Section Deflections I r KA--k— I ok-1 C- 1 1 - M 1 - -- 1 0 -.043 i ' v rauv 1960.012 2 2 2 0 -.0.17 4937.869 3 .67 3 3 0 0 NC Member Section Forces I r RA--k— I -k-1 C'- 1 1 M1 1 0 n 0 1vI V.I IVI I1 n-Il 0 2 2 2 -.105 -2.012 2.348 3 .67 3 3 -.211 -8.05 18.783 Member Section Stresses I r: RA. —K-r I oK-1 C.. n..:..ln_..a 1 1 - - - M1 --- 1 - - 0 0 nog f 0 W�L UVI lull lul MW 0 2 2 -.012 -.539 1 -.67 .67 3 3 -.024 -2.154 -5.36 5.36 RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006J0BS \5117F0U RSEASONS \7 FT HEIGHT.r2d] Page 2 Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:14 AM Job Number : 5117 FOUR SEASONS Checked By: Member A/SC ASD Steel Code Checks (By Combination) LL; Member Shape UC Max Loc ft Shear UC Loc ft Fa ksi Ft ksi Fb ksi Cb Cm E n 1 1 M1 W14X30 .179 7 .108 7 28.836 30 30 1.75 .85 H2 -1 RISA -2D Version 6.5 [C: \... \ ... \My Documents \2006JOBS \5117FOURSEASONS \7 FT HEIGHT.r2d] Page 3 0 Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:27 AM Job Number: 5117 FOUR SEASONS Checked By: Hot Rolled Steel Properties I nhPl H -11 1 A36 Gr.36 29000 11154 3 "'G" .65C° r vens.49itr's YIe36ksi 2 A572 Gr.50 29000 11154 .3 .65 .49 50 3 A992 29000 11154 .3 .65 .49 50 4 A500 Gr.42 29000 11154 .3 .65 .49 42 5 A500 Gr.46 29000 11154 .3 .65 .49 46 Hot Rolled Steel Section Sets Laoel Ana a uesl n List Type Material Desi n Rules A in2 190 270 i... 1(0, 180 in4 1 HR1A W16X50 I Wide Flange Beam A572 Gr.50 I Typical 14.7 37.2 659 Hot Rolled Steel Design Parameters Joint Coordinates and Temperatures I ahpl v rwi 1 N1 0 1t 10 i "I lip r 0 2 N2 0 0 0 Joint Boundary Conditions Member Primary Data �Qucf 1 JVIIIt J Jum[ mmmemew sectlonibna a Uesi n List T e Material Design Rules 1 M1 N1 N2 I I HR1A Wide Flan a _Beam A572Gr.501 Tvpical Member Distributed Loads (BLC 1 : SOIL) Member Label Direction Start Manitude[k /ft,... End Macinitude(k /ft.d... Start Locationfft -W Fnd I nratinnrft 0i1 Joint Loads and Enforced Displacements Joint Label L D M Direction Magnitude(k.k -ft in.rad k's ^2 /ft] Member Point Loads Member Label Direction Ma nitude k k -ft Location ft No Data to Print .. RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \10 FT HEIGHT.r2d] Page 4 Al Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:27 AM Job Number: 5117 FOUR SEASONS Checked By: Basic Load Cases L1 I SOIL I EPL 1 Load Combination Design CANTILEVER Load Combinations Description Solve PD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor RI C Fartnr Joint Deflections (Bv Combination) If, I_:_ I ..1...I 1 1 - - -- N 1 -.122 0 mutation raa 1.162e -3 2 1 N2 0 p U Joint Reactions 1 1 - - N2 18.5 n -. 5 IVIC. K -1i - 61.667 2 1 Totals: 18.5 - 5 0 - 3 1 COG (ft): X: 0 Y: 5 3 Member Section Deflections 1 1 M 1 1 0 -.122 984.07 2 2 2 0 - -.048 2505:068 3 1.141 3 3 0 0 NC Member Section Forces 1 1 M1 1 • O. v I... n H7 IVIU1114 K-1[ 0 2 2 2 -.25 x:625 7:708 3 1.141 3 3 -.5 -18.5 61.667 Member Section Stresses 1 r Momhcr I nK.1 1 1 M1 1 0 =0 1 u wvI l n l mol DUE DCI IIUII I K51 2 2 -.017 1 -:749 1 -1.141 1.141 3 3 -.034 1 -2.994 1 -9.129 9.129 RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \10 FT HEIGHT.r2d] Page 5 11 Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:27 AM Job Number: 5117 FOUR SEASONS Checked By: Member A/SC ASD Steel Code Checks (By Combination) LC Member Shape UC Max Locfftl Shear UC Locfftl Fafksi] Ftfksil Fbfksil Cb Cm Eqn j i i ivi i vv un5u 305 1 10 150 1 10 1 28 515 30 30 _F1,75 85 H2 1 RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \10 FT HEIGHT.r2d] Page 6 Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:38 AM Job Number: 5117 FOUR SEASONS Checked By: Hot Rolle e Rolled Steel Properties I ahpl G rLail C rt-1 u.. 1 A36 Gr.36 29000 11154 .3 acid %ica r .65 uensll KM'6 .49 Yieitl kSi 36 2 A572 Gr.50 29000 11154 :3 65; _` 49 50 3 A992 29000 11154 .3 .65 .49 50 4 A500 Gr.42 29000 11154 3 .65 .49 42 5 A500 Gr.46 29000 11154 .3 .65 .49 46 Hot Rolled Steel Section Sets ._ _. .., 1 HR1A W18X60 Wide Flange Beam A572 Gr.50 T ical 17.6 50.1 984 Hot Rolled Steel Desion Parameters Label Shape Length[ft] Lb- outfftl Lb -infftl Lcomp top[ I-comp botf K out Kin Cm Cb Out s... In swav Joint Coordinates and Temperatures I nhcl v rai 1 N1 0 13 1 enlP IN 0 2 N2 0 0 -0 Joint Boundary Conditions Joint Label X k /in Y fk/inl Rotation k -ft/rad Footin 1 N2 Reaction Reaction Reaction Member Primary Data I 1 I M1 I N1 I N2 I HR1A I Wide Fianoe Beam A572 Gr.50 Tvnirtal Member Distributed Loads (BLC 1 : SOIL) Member Label Direction Start Magnitudefk /ft,... End Magnitudefk /ft.d... Start Locationfft -%1 Fnd I nratinnrft 0/1 Joint Loads and Enforced Displacements Joint Label L D M Direction Ma nitude k k -ft in rad k *SA 2 /ft No Data to Print ... Member Point Loads Member Label Direction Ma nitude k k -ft Location ft No Data to Print ... RISA -2D Version 6.5 [C: \... \ ... \My Documents \2006JOBS \5117FOURSEASONS \13 FT HEIGHT.r2d] Page 7 Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:38 AM Job Number : 5117 FOUR SEASONS Checked By: Basic Load Cases Point S4- Load Combination Design Description ASIF CD _ ABIF Service Hot Rolled Cold FnrmM wrwl Load Combinations Description Solve PD... SR.._ BLC Factor BLC Factor BLC Factor BLC Factor RI C Factor R1 r. PnMnr RI r Gam, f— 01 r . . Joint Deflections (By Combination) 1 1 N1 -.252 0 raa 1.894e -3 2 1 N2 > 0:; p 0 Joint Reactions 1 1 N2 26.65 I j.1 -.779 ML K-11 - 115.483 2 1 Totals: 26:65 -:779 0 3 1 COG (ft): X: 0 Y: 6.5 3 Member Section Deflections I r Mamhar I nhal Q— „ r...i 1 1 - -- - - M 1 --- 1 0 -.252 11 u v r% LLIV 618.4 2 2 2 0 - :098 1 1584.837 _ 3 1.605 3 3 0 0 NC Member Section Forces I r. Mamhar I nhal Q— A..:.dnn 1 1 M1 - 1 --- 0 --Jn l 0 VIIIOIR K-IL 0 2 2 2 -.389 _ 6662 =L 14.435 3 1.605 3 3 -.779 -26.65 1 115.483 Member Section Stresses I r Mamhar I h.1 Qo.. 1 1 M1 - 1 0 0 IVIII nJ1 0 UVl L�GIIU III KAI 0 2 2 -.022 -.88 -1.605 1.605 3 3 -.044 -3.521 1 - 12.844 12.844 RISA -2D Version 6.5 [C: \... \ ... \My Documents \2006JOBS \5117FOURSEASONS \13 FT HEIGHT.r2d] Page 8 Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:38 AM Job Number : 5117 FOUR SEASONS Checked By: Member A /SC ASD Steel Code Checks B v Combination) LC Member Shape UC Max Loc ft Shear UC Loc ft Fa ksi Ft ksi Fb ksi Cb Cm Eqn 1 1 M 1 W 18X60 .430 13 176 13 28 208 30 30 1.75 85 H2-1 RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \13 FT HEIGHT.r2d] Page 9 FOUR SEASONS - SB1 - S62 USE 37H WITH 9' SPACING LOAD PER TOTAL BEAM BEAM FOOT HEIGHT INERTIA SECTION I K/FT FT (in ^4 in ^3 2.3 7 291 1 42 EXCAVA. LOAD M. MOMENT CANT. SECTION MOQUL-US K (Kt)in ^3 8 :19 S HEIGHT (FT) 7 RECOMMENDED SHAPE MUM USE SHAPE W1 4x30 ANTICIPATED DEFLECTION (in) 0.038 CODE CHECK 0.179 NOTE: INPUT CALC. OUTPUT BEAM. PROPERTIES BEAM S, in ^3 l in ^4 W 1430 42 291 W 16x45 73 586 W 16x50 81 659 W 18x60 108 984 W 18x65 117 1 1070 W 18x71 127 1170 W 18x76 146 1330 FOUR SEASONS - SB3 - S65 USE 37H WITH 10' SPACING LOAD PER TOTAL BEAM BEAM FOOT HEIGHT INERTIA SECTION K/FT FT (in ^4 (in ^3 3.7 10 659 81 EXCAVA. LOAD MOMENT CANT. SECTION = MODWIUS K (K-A 19 62 25 HEIGHT (FT) 10 RECOMMENDED SHAPE W14X30 USE SHAPE W16x50 ANTICIPATED DEFLECTION (in) 0.112 CODE CHECK 0.305 NOTE: INPUT - CALC. OUTPUT BEAM PROPERTIES BEAM.. 5 in"3 = I in ^4 W14x30 42 291 W 16x45 73 586 W 16x50 81 659 W 18x60 108 984 W 18x65 117 1070 W 18x71 127 1170 W18x76 146 1330 FOUR,SEASONS- S66 -S67 USE 37H WITH 8.5' SPACING LOAD PER TOTAL BEAM BEAM FOOT HEIGHT INERTIA SECTION K/FT FT in A4 iti ^3 4.1 13 984 108 EXCAVA. LOAD V MOMENT CANT_. SECTION MODULUS K K-ft inA3 27 115 46 HEIGHT (FT) 13 RECOMMENDED SHAPE W16x45 USE SHAPE W18x60 ANTICIPATED DEFLECTION (in) 0.236 CODE CHECK 0.428 NOTE: INPUT CALC. OUTPUT J l BEAM "PROPERTIES BEAM' Sin "3 I in ^4 W 14x30 42 291 W 16x45 73 586 W 16x50 81 659 W 18x60 108 984 W 18x65 117 1070 W 18x71 127 1170 W 18x76 146 1330 J l u s r c v c C u C C F N c c O r C V C m m G C, cc C L C J I w O 0 N O O i M O O O C n � 0 LW m � w IX 0 w co n > X w ti D i i i 1111 _fill fill Q0 Z £ b 5 9 L 8 (7}) y;daa (ui) UORDOUGG peaH -Gild v ci v Y V V 0 0 R O O O fl- K c� I C O `-' U-) L w Im C m J m 0 IL V- C) N O r U D w m 2 w bo 0 w O a- x w D L L'L L 6•n R'n i'n a•n c•n Wn o n �•„ (ui) UORDOUGG peaH -Gild v ci v Y V V 0 0 R O O O fl- K c� I C O `-' U-) L w Im C m J m 0 IL V- C) N O r U r 7HEIGHT.lpo LPILE Plus for windows, version 5.0 (5.0.1) Analysis of individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p -y Method (c) Copyrigght ENSOFT, Inc., 1985 -2004 A11 Rights Reserved This program is licensed to: JOHN H. HART COGGINS Path to file locations: C: \Documents and Settings \COGGINS AND SONS \My Documents \2006JOBS \5117FOURSEASONS\ Name of input data file: 7HEIGHT.Ipd Name of output file: 7HEIGHT.Ipo Name of plot output file: 7HEIGHT.Ipp Name of runtime file: 7HEIGHT.lpr ------------------------------------------------------------------------------ Time and Date of Analysis ------------------------------------------------------------------------ - - - - -- Date: August 28, 2006 Time: 10:51: 4 ------------------------------------------------------------------------------ Problem Title ------------------------------------------------------------------------ - - - - -- FOUR SEASONS - 7' EXPSOED (8' EMBED) ------------------------------------------------------------------------------ Program Options ------------------------------------------------------------------------ - - - - -- Units Used in Computations - US Customary Units, inches, pounds Basic Program Options: Analysis Type 1: - Computation of Lateral Pile Response Using User - specified Constant EI Computation Options: - Only internally- generated p -y curves used in analysis - Analysis does not use p -y multipliers (individual pile or shaft action only) - Analysis assumes no shear resistance at pile tip - Analysis includes automatic computation of pile -top deflection vs. pile embedment length - No computation of foundation stiffness matrix elements - output pile response for full length of pile - Analysis assumes no soil movements acting on pile - No additional p -y curves to be computed at user - specified depths Solution Control Parameters: Page 1 7HEIGHT.Ipo - Number of pile increments = 48 - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E -05 - Maximum allowable deflection = 1.0000E +02 in in Printing Options: - values of pile -head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (spacing of output points) = 1 ------------------------------------------------------------------------------ Pile Structural Properties and Geometry ------------------------------------------------------------------------ - - - - -- Pile Length = 96.00 in Depth of ground surface below top of pile = .00 in Slope angle of ground surface = .00 deg. Structural properties of pile defined using 2 points Point Depth Pile Moment of Pile Modulus of x Diameter Inertia Area Elasticity in in in * *4 Sq.in lbs /Sq.in - - - -- --- 1 - - - - -- ----- 0.0000 - - - - -- ---- - - - - -- 24.000 16577.0000 ---- - - - - -- ----- - - - - -- 452.0000 32122019.000 2 96.0000 24.000 16577.0000 452.0000 32122019.000 ------------------------------------------------------------------------------ Soil and Rock Layering Information ------------------------------------------------------------------------------ The soil profile is modelled using 1 layers Layer 1 is sand, p -y criteria by API RP -2A, 1987 Distance from top of pile to top of layer = .000 in Distance from top of ppile to bottom of layer = 96.000 in p -y subgrade modulus k for top of soil layer = 250.000 lbs /in * *3 p -y subgrade modulus k for bottom of layer = 250.000 lbs /in * *3 (Depth of lowest layer extends .00 in below pile tip) ------------------------------------------------------------------------------ Effective unit weight of soil vs. Depth ------------------------------------------------------------------------ - - - - -- Distribution of effective unit weight of soil with depth is defined using 2 points Point Depth x Eff. unit weight No. in lbs /in * *3 - - - -- ---- - - - - -- ---------------- 1 .00 .07500 2 96.00 .07500 ------------------------------------------------------------------------------ Shear Strength of Soils it: - ------------------------------------------------------------------------------ Page 2 7HEIGHT.lpo Distribution of shear strength parameters with depth defined using 2 points Point Depth X Cohesion c Angle of Friction E50 or RQD No. in lbs /in * *2 Deg. k_rm % - - - -- -- - - - - -- ---- - - - - -- ------------ - - - - -- - - - - -- - - - - -- 1 .000 .00000 34.00 - - - - -- - - - - -- 2 96.000 .00000 34.00 - - - - -- - - - - -- Notes: (1) Cohesion = uniaxial compressive strength for rock materials. (2) values of E50 are repported for clay strata. (3) Default values will be generated for E50 when input values are 0. (4) RQD and k_rm are reported only for weak rock strata. ------------------------------------------------------------------------------ Loading Type ------------------------------------------------------------------------ - - - - -- Static loading criteria was used for computation of p -y curves ------------------------------------------------------------------------------ Pile -head Loading and Pile -head Fixity Conditions ------------------------------------------------------------------------ - - - - -- Number of loads specified = 1 Load case Number 1 Pile -head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 8000.000 lbs Bending moment at pile head = 228000.000 in -lbs Axial load at pile head = .000 lbs Non -zero moment at pile head for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment) condition. ------------------------------------------------------------------------------ Computed values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 ------------------------------------------------------------------------ - - - - -- Pile -head boundary conditions are shear and Moment (BC Type 1) specified shear force at pile head = 8000.000 lbs Specified bending moment at pile head = 228000.000 in -lbs Specified axial load at pile head = .000 lbs Non -zero moment for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment )condition. Depth Deflect. Moment Shear Slope Total Soil Res X y M V S Stress p in in lbs -in lbs Rad. lbs /in * *2 lbs /in Page 3 7HEIGHT.lpo 0.000 .098856 228000.0001 8000.0000 - .001436 165.0480 0.0000 2.000 .095985 244000.0000 7968.2698 - .001435 176.6303 - 31.7302 4.000 .093117 259873.0791 7872.3541 - .001434 188.1207 - 64.1855 6.000 .090250 275489.4163 7711.3567 - .001433 199.4253 - 96.8119 8.000 .087386 290718.5058 7485.4216 - .001432 210.4495 - 129.1231 10.000 .084524 305431.1027 7195.6010 - .001431 221.0999 - 160.6975 12.000 .081664 319500.9099 6843.7305 - .001429 231.2850 - 191.1731 14.000 .078806 332806.0249 6432.3157 - .001428 240.9165 - 220.2418 16.000 .075951 345230.1726 5964.4309 - .001427 249.9102 - 247.6429 18.000 .073099 356663.7486 5443.6311 - .001426 258.1869 - 273.1569 20.000 .070249 367004.6969 4873.8747 - .001424 265.6727 - 296.5995 22.000 .067402 376159.2472 4259.4585 - .001423 272.2996 - 317.8167 24.000 .064558 384042.5309 3604.9620 - .001421 278.0063 - 336.6799 26.000 .061716 390579.0951 2915.2000 - .001420 282.7381 - 353.0821 28.000 .058878 395703.3310 2195.1837 - .001418 286.4475 - 366.9342 30.000 .056042 399359.8300 1450.0872 - .001417 289.0944 - 378.1623 32.000 .053210 401503.6799 685.2205 - .001415 290.6463 - 386.7045 34.000 .050381 402100.7118 - 93.9935 - .001414 291.0785 - 392.5095 36.000 .047554 401127.7057 - 882.0375 - .001412 290.3742 - 395.5344 38.000 .044731 398572.5619 - 1673.3148 - .001411 288.5245 - 395.7429 40.000 .041911 394434.4466 - 2462.1620 - .001409 285.5289 - 393.1043 42.000 .039093 388723.9140 - 3242.8585 - .001408 281.3951 - 387.5922 44.000 .036279 381463.0126 - 4009.6343 - .001407 276.1390 - 379.1835 46.000 .033467 372685.3769 - 4756.6754 - .001405 269.7849 - 367.8576 48.000 .030658 362436.3109 - 5478.1284 - .001404 262.3657 - 353.5954 50.000 .027852 350772.8635 - 6168.1028 - .001402 253.9226 - 336.3791 52.000 .025049 337763.8998 - 6820.6731 - .001401 244.5054 - 316.1913 54.000 .022248 323490.1710 - 7429.8793 - .001400 234.1728 - 293.0149 56.000 .019449 308044.3827 - 7989.7270 - .001399 222.9917 - 266.8328 58.000 .016653 291531.2631 - 8494.1880 - .001398 211.0379 - 237.6282 60.000 .013859 274067.6307 - 8937.2012 - .001396 198.3961 - 205.3851 62.000 .011067 255782.4581 - 9312.6766 - .001395 185.1595 - 170.0903 64.000 .008277 236816.9243 - 9614.5543 - .001395 171.4305 - 131.7874 66.000 .005489 217324.2408 - 9836.7229 - .001394 157.3198 - 90.3812 68.000 .002702 197470.0326 - 9973.0230 - .001393 142.9475 - 45.9189 70.000 - 8.27E -05 177432.1487 - 10017.4947 - .001392 128.4422 1.4472 72.000 - .002866 157400.0537 - 9964.4768 - .001392 113.9410 51.5707 74.000 - .005649 137574.2416 - 9808.5931 - .001391 99.5892 104.3129 76.000 - .008431 118165.6812 - 9544.7366 - .001391 85.5395 159.5436 78.000 - .011211 99395.2951 - 9168.0514 - .001390 71.9517 217.1417 80.000 - .013991 81493.4755 - 8673.9140 - .001390 58.9927 276.9958 82.000 - .016771 64699.6390 - 8057.9145 - .001390 46.8357 339.0038 84.000 - .019549 49261.8177 - 7315.8378 - .001389 35.6604 403.0728 86.000 - .022328 35436.2877 - 6443.6463 - .001389 25.6521 469.1187 88.000 - .025106 23487.2324 - 5437.4622 - .001389 17.0023 537.0654 90.000 - .027884 13686.4390 - 4293.5521 - .001389 9.9075 606.8447 92.000 - .030662 6313.0242 - 3008.3124 - .001389 4.5700 678.3950 94.000 - .033440 1653.1893 - 1578.2560 - .001389 1.1967 751.6614 96.000 - .036218 0.0000 0.0000 - .001389 0.0000 826.5946 output verification: Computed forces and moments are within specified convergence limits. Output Summary for Load Case No. 1: r - -- Pile -head deflection = .09885554 in - Computed slope at pile head = - .00143557 Maximum bending moment = 402100.712 lbs -in Maximum shear force = - 10017.495 lbs Depth of maximum bending moment = 34.000 in Page 4 S -_ t? , 47- 3 1,14 OL H 7HEIGHT.lpo Depth of maximum shear force = 70.000 in Number of iterations = 8 Number of zero deflection points = 1 ------------------------------------------------------------------------------ summary of Pile -head Response ------------------------------------------------------------------------ - - - - -- Definition of symbols for pile -head boundary conditions: y = pile -head displacment, in M = pile -head moment, lbs -in V = pile -head shear force, lbs S = pile -head slope, radians R = rotational stiffness of pile -head, in- lbs /rad BC Boundary Boundary Axial Pile Head Maximum Maximum Type Condition Condition Load Deflection Moment shear 1 - - -- ------ - - 2 lbs in in -lbs lbs - - -- 1 V= 8000.000 ------ - - - - -- ----- M= 2.28E +05 - - - - -- 0.0000 ----- - - - - -- .098856 ----- - - - - -- 402100.7118 ----- - - - - -- - 10017.4947 ------------------------------------------------------------------------------ Pile -head Deflection vs. Pile Length ------------------------------------------------------------------------ - - - - -- Boundary Condition Type 1, Shear and Moment Shear = Moment = Axial Load = Pile Length in 96.000 91.200 86.400 81.600 76.800 72.000 67.200 8000. 1 b 228000. in -lbs 0. lbs Pile Head Deflection in .09885554 .11485786 .13652818 .16796563 .21933787 .32829055 1.15334747 The analysis ended normally. Maximum Moment in -lbs 402100.712 394733.239 387951.693 381955.206 376985.117 373911.974 372954.226 Maximum shear lbs - 10017.495 - 10387.984 - 10846.134 - 11437.515 - 12254.293 - 13552.637 - 17039.276 Page 5 e e e NONE-] MEN .- M st t r Q. G1 'A� rl- EMEL-2 Lateral Deflection (in) -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 n_ 1 R n 1 R e e e 0 m 0 c c O v � y o d �v CN 2 V? � o CL N O T7 O 0 10 20 30 40 50 60 Pile Length (in) 1 1 , 1,, , I , , Iv 10' EXPOSED - 10' EMBED 70 80 90 100 110 120 J 10HT.1po LPILE Plus for windows, version 5.0 (5.0.1) Analysis of individual Piles and Drilled Shafts Subjected to Lateral Loading using the p -y Method (c) Copyrigght ENSOFT, Inc., 1985 -2004 A11 Rights Reserved This program is licensed to: JOHN H. HART COGGINS Path to file locations: C: \Documents and Settings \COGGINS AND SONS \My Documents \2006JOBS \5117FOURSEASONS\ Name of input data file: 10HT.lpd Name of output file: 10HT.lpo Name of plot output file: 10HT.lpp Name of runtime file: 10HT.lpr ------------------------------------------------------------------------------ Time and Date of Analysis ------------------------------------------------------------------------ - - - - -- Date: August 28, 2006 Time: 10:54: 6 ---------------------------------------- Problem Title ------------------------------------------------------------------------ - - - - -- FOUR SEASONS - 10' EXPSOED (10' EMBED) ------------------------------------------------------------------------------ Program options ------------------------------------------------------------------------ - - - - -- Units used in Computations - US Customary Units, inches, pounds Basic Program Options: Analysis Type 1: - Computation of Lateral Pile Response using user - specified Constant EI Computation Options: - Only internally - generated p -y curves used in analysis - Analysis does not use p -y multipliers (individual pile or shaft action only) - Analysis assumes no shear resistance at pile tip - Analysis includes automatic computation of pile -top deflection vs. pile embedment length - No computation of foundation stiffness matrix elements - output pile response for full length of pile - Analysis assumes no soil movements acting on pile - No additional p -y curves to be computed at user - specified depths Solution Control Parameters: Page 1 r �7 > - Number of pile increments lOHT.lpo = 40 IID - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E -05 in - Maximum allowable deflection = 1.0000E +02 in Printing Options: - values of pile -head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (spacing of output points) = 1 ------------------------------------------------------------------------------ Pile Structural Properties and Geometry ------------------------------------------------------------------------ - - - - -- Pile Length = 120.00 in Depth of ground surface below top of pile = .00 in Slope angle of ground surface = .00 deg. Structural properties of pile defined using 2 points Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Elasticity in in in * *4 Sq.in lbs /Sq.in - - - -- --- - - - - -- ----- 1 0.0000 - - - - -- ---- - - - - -- 24.000 16945.0000 ---- - - - - -- ----- - - - - -- 452.0000 32122019.000 2 120.0000 24.000 16945.0000 452.0000 32122019.000 ------------------------------------------------------------------------------ Soil and Rock Layering Information ------------------------------------------------------------------------------ The soil profile is modelled using 1 layers Layer 1 is sand, p -y criteria by API RP -2A, 1987 Distance from top of pile to top of layer = .000 in Distance from top of to bottom of layer = 120.000 in p -y subgrade modulus vile k for top of soil layer = 250.000 lbs /in * *3 p -y subgrade modulus k for bottom of layer = 250.000 lbs /in * *3 (Depth of lowest layer extends .00 in below pile tip) ------------------------------------------------------------------------------ Effective unit weight of Soil vs. Depth ------------------------------------------------------------------------ - - - - -- Distribution of effective unit weight of soil with depth is defined using 2 points Point Depth x Eff. unit weight No. in lbs /in * *3 - - - -- ---- - - - - -- ---------------- 1 .00 .07500 2 120.00 .07500 ------------------------------------------------------------------------------ shear Strength of soils ------------------------------------------------------------------------------ Page 2 I 10HT.1po Distribution of shear strength parameters with depth defined using 2 points Point Depth x Cohesion c Angle of Friction E50 or RQD No. in lbs /in * *2 Deg. k_rm - - - -- -- - - - - -- ---- - - - - -- ------------ - - - - -- - - - - -- - - - - -- 1 .000 .00000 34.00 - - - - -- - - - - -- 2 120.000 .00000 34.00 - - - - -- - - - - -- Notes: (1) Cohesion = uniaxial compressive strength for rock materials. (2) values of E50 are repported for clay strata. (3) Default values will be generated for E50 when input values are 0. (4) RQD and k_rm are reported only for weak rock strata. ------------------------------------------------------------------------------ Loading Type ------------------------------------------------------------------------ - - - - -- static loading criteria was used for computation of p -y curves ------------------------------------------------------------------------------ Pile -head Loading and Pile -head Fixity conditions ------------------------------------------------------------------------ - - - - -- Number of loads specified = 1 Load Case Number 1 Pile -head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 19000.000 lbs Bending moment at pile head = 744000.000 in -lbs Axial load at pile head = .000 lbs Non -zero moment at pile head for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment) condition. ------------------------------------------------------------------------------ Computed values of Load Distribution and Deflection for Lateral Loading for Load case Number 1 ------------------------------------------------------------------------ - - - - -- Pile -head boundary conditions are shear and Moment (BC Tyyppe 1) Specified shear force at pile head = 19000.000 lbs specified bending moment at pile head = 744000.000 in -lbs specified axial load at pile head = .000 lbs Non -zero moment for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment )condition. Depth Deflect. Moment Shear Slope Total Soil Res x p in in lbs -in lbs Rad. lbs /ins *2 lbs /in Page 3 Output Summary for Load Case No. 1: Pile -head deflection Computed slope at pile head Maximum bending moment Maximum shear force Depth of maximum bending moment Depth of maximum shear force Number of iterations Number of zero deflection points .19365165 in = I u i .:4 - - .00227360 - - -- - - - - - -- 1287888.877 lbs -in _ - 26466.822 lbs 42.000 in 90.000 in li = q 2 at }a Page 4 'j t LV -', -_3 �� ,_ 13 l _ � vL 10HT.1po 0.000 --- - - - - -- .193652 ----- - - - - -- 744000.0000 ----- - - - - -- ----- 19000.0000 - - - - -- ----- - .002274 - - - - -- ----- 526.8811 - - - - -- 0.0000 3.000 .186837 800999.9999 18916.7178 - .002269 567.2470 - 55.5215 6.000 .180036 857500.3067 18658.7326 - .002265 607.2590 - 116.4687 9.000 .173248 912952.3954 18212.1057 - .002260 646.5287 - 181.2826 12.000 .166476 966772.9407 17567.5696 - .002255 684.6430 - 248.4081 15.000 .159720 1.018E +06 16720.4482 - .002249 721.1740 - 316.3394 18.000 .152981 1.067E +06 15670.4553 - .002243 755.6888 - 383.6559 21.000 .146259 1.112E +06 14421.4012 - .002237 787.7584 - 449.0468 24.000 .139556 1.154E +06 12980.8417 - .002231 816.9660 - 511.3261 27.000 .132872 1.190E +06 11359.6961 - .002225 842.9146 - 569.4376 30.000 .126207 1.222E +06 9571.8584 - .002218 865.2338 - 622.4542 33.000 .119563 1.248E +06 7633.8187 - .002211 883.5858 - 669.5723 36.000 .112939 1.268E +06 5564.3058 - .002204 897.6702 - 710.1030 39.000 .106337 1.281E +06 3383.9585 - .002197 907.2287 - 743.4618 42.000 .099755 1.288E +06 1115.0299 - .002190 912.0488 - 769.1573 45.000 .093195 1.288E +06 - 1218.8763 - .002183 911.9665 - 786.7802 48.000 .086656 1.281E +06 - 3593.0356 - .002176 906.8697 - 795.9927 51.000 .080138 1.266E +06 - 5981.8021 - .002169 896.6996 - 796.5183 54.000 .073641 1.245E +06 - 8358.7784 - .002162 881.4528 - 788.1326 57.000 .067165 1.216E +06 - 10696.9600 - .002155 861.1828 - 770.6551 60.000 .060709 1.181E +06 - 12968.8552 - .002149 836.0010 - 743.9417 63.000 .054272 1.138E +06 - 15146.5841 - .002142 806.0776 - 707.8776 66.000 .047855 1.090E +06 - 17235.6659 - .002136 771.6425 - 684.8436 69.000 .041455 1.035E +06 - 19230.3160 - .002130 732.8425 - 644.9231 72.000 .035072 974241.6465 - 21079.5447 - .002125 689.9321 - 587.8960 75.000 .028706 908357.4804 - 22732.5724 - .002120 643.2747 - 514.1225 78.000 .022354 837846.2119 - 24140.4417 - .002115 593.3405 - 424.4571 81.000 .016016 763514.8300 - 25257.3160 - .002110 540.7010 - 320.1258 84.000 .009691 686302.3157 - 26041.3913 - .002106 486.0211 - 202.5910 87.000 .003377 607266.4823 - 26455.4106 - .002103 430.0500 - 73.4219 90.000 - .002926 527569.8523 - 26466.8218 - .002100 373.6110 65.8144 93.000 - .009221 448465.5518 - 26047.6488 - .002097 317.5914 213.6343 96.000 - .015509 371283.9596 - 25174.1594 - .002095 262.9335 368.6920 99.000 - .021790 297420.5956 - 23826.4078 - .002093 210.6254 529.8090 102.000 - .028067 228325.5126 - 21987.7195 - .002092 161.6941 695.9832 105.000 - .034339 165494.2787 - 19644.1672 - .002090 117.1987 866.3850 108.000 - .040609 110460.5095 - 16784.0747 - .002090 78.2252 1040.3434 111.000 - .046877 64789.8307 - 13397.5669 - .002089 45.8824 1217.3285 114.000 - .053144 30075.1082 - 9476.1778 - .002089 21.2984 1396.9309 117.000 - .059411 7932.7639 - 5012.5180 - .002089 5.6178 1578.8423 120.000 - .065677 0.0000 0.0000 - .002089 0.0000 1762.8364 Output verification: Computed forces and moments are within specified convergence limits. Output Summary for Load Case No. 1: Pile -head deflection Computed slope at pile head Maximum bending moment Maximum shear force Depth of maximum bending moment Depth of maximum shear force Number of iterations Number of zero deflection points .19365165 in = I u i .:4 - - .00227360 - - -- - - - - - -- 1287888.877 lbs -in _ - 26466.822 lbs 42.000 in 90.000 in li = q 2 at }a Page 4 'j t LV -', -_3 �� ,_ 13 l _ � vL 10HT.Ipo ------------------------------------------------------------------------------ Summary of Pile -head Response ------------------ - - - - -- Definition of symbols for pile -head boundary conditions: y = pile -head displacment, in M = pile-head moment, lbs -in v = pile -head shear force, lbs S = pile -head slope, radians R = rotational stiffness of pile -head, in- lbs /rad BC Boundary Boundary Axial Pile Head Maximum Maximum Type Condition Condition Load Deflection Moment shear 1 2 lbs in in -lbs lbs - - -- ------ - - - - -- 1 v= 19000.000 ------ - - - - -- ----- M= 7.44E +05 - - - - -- 0.0000 ----- - - - - -- .1937 ----- - - - - -- 1.288E +06 ----- - - - - -- - 26466.8218 ------------------------------------------------------------------------------ Pile -head Deflection vs. Pile Length ------------------------------------------------------------------------ - - - - -- Boundary Condition Type 1, Shear and Moment shear = 19000. lbs Moment = 744000. in -lbs Axial Load = 0. lbs Pile Pile Head Maximum Length Deflection Moment in in in -lbs ----- - - - - -- 120.000 ------ - - - - -- ------ - - - - -- .19365165 1287888.877 114.000 .24391931 1275405.942 108.000 .34003824 1266646.430 102.000 .70733377 1263397.291 The analysis ended normally. Maximum Shear lbs - 26466.822 - 28164.907 - 30638.496 - 35421.296 Page 5 0 N M LO v r Q d W O r r r N r M r e e Lateral Deflection (in) -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 v 13' EXPOSED - 12' EMBED ? r e e e LC 0 Lq 0 U) v 0 v 0 LJO C � o c 0 V M 41 O d LO V N O d a o LO 0 0 0 0 0 v 13' EXPOSED - 12' EMBED 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 Pile Length (in) C�? 13HEIGHT.Ipo LPILE Plus for Windows, version 5.0 (5.0.1) Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading using the p -y Method (c) Copyrigght ENSOFT, Inc., 1985 -2004 A11 Rights Reserved This program is licensed to: JOHN H. HART COGGINS Path to file locations: C: \Documents and Settings \COGGINS AND SONS \My Documents \2006JOBS \5117FOURSEASONS\ Name of input data file: 13HEIGHT.Ipd Name of output file: 13HEIGHT.lpo Name of plot output file: 13HEIGHT.Ipp Name of runtime file: 13HEIGHT.lpr ------------------------------------------------------------------------------ Time and Date of Analysis ------------------------------------------------------------------------ - - - - -- Date: August 28, 2006 Time: 12:32:32 ------------------------------------------------------------------------------ Problem Title ------------------------------------------------------------------------ - - - - -- FOUR SEASONS - 13' EXPSOED (12' EMBED) ------------------------------------------------------------------------------ Program options ------------------------------------------------------------------------ - - - - -- units used in Computations - us Customary units, inches, pounds Basic Program options: Analysis Type 1: - Computation of Lateral Pile Response Using User - specified Constant EI Computation Options: - Only internally - generated p -y curves used in analysis - Analysis does not use p -y multipliers (individual pile or shaft action only) - Analysis assumes no shear resistance at pile tip - Analysis includes automatic computation of pile -top deflection vs. pile embedment length - No computation of foundation stiffness matrix elements - output pile response for full length of pile - Analysis assumes no soil movements acting on pile - No additional p -y curves to be computed at user - specified depths Solution Control Parameters: Page 1 13HEIGHT.1p0 - Number of pile increments = 52 - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E -05 in - Maximum allowable deflection = 1.0000E +02 in Printing options: - values of pile -head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (spacing of output points) = 1 ------------------------------------------------------------------------------ Pile structural Properties and Geometry ------------------------------------------------------------------------ - - - - -- Pile Length = 156.00 in pile to top of layer = Depth of ground surface below top of pile = .00 in 156.000 slope angle of ground surface = .00 deg. structural properties of pile defined using 2 points Point Depth Pile Moment of Pile Modulus of x Diameter Inertia Area Elasticity in in in" *4 Sq.in lbs /Sq.in - - - -- 1 --- - - - - -- ----- 0.0000 - - - - -- 24.000 ---- - - - - -- 17270.0000 ---- - - - - -- 452.0000 ----- - - - - -- 32122019.000 2 156.0000 24.000 17270.0000 452.0000 32122019.000 ------------------------------------------------------------------------------ soil and Rock Layering Information ------------------------------------------------------------------------ - - - - -- The soil profile is modelled using 1 layers Layer 1 is sand, p -y criteria by API RP -2A, 1987 Distance from top of pile to top of layer = .000 in Distance from top of ppile to bottom of layer = 156.000 in p -y subgrade modulus k for top of soil layer = 250.000 lbs /in * *3 p -y subgrade modulus k for bottom of layer = 250.000 lbs /in * *3 (Depth of lowest layer extends .00 in below pile tip) ------------------------------------------------------------------------------ Effective unit weight of soil vs. Depth ------------------------------------------------------------------------ - - - - -- Distribution of effective unit weight of soil with depth is defined using 2 points Point Depth x Eff. unit weight No. in lbs /in * *3 - - - -- ---- - - - - -- ---------------- 1 .00 .07500 2 156.00 .07500 ------------------------------------------------------------------------------ shear Strength of soils --------------------------------------------- Page 2 Notes: (1) Cohesion = uniaxial compressive strength for rock materials. (2) values of E50 are repported for clay strata. (3) Default values will be generated for E50 when input values are 0. (4) RQD and k_rm are reported only for weak rock strata. ------------------------------------------------------------------------------ Loading Type ------------------------------------------------------------------------ - - - - -- Static loading criteria was used for computation of p -y curves ------------------------------------------------------------------------------ Pile -head Loading and Pile -head Fixity conditions ------------------------------------------------------------------------ - - - - -- Number of loads specified = 1 Load Case Number 1 Pile -head boundary conditions are Shear and Moment (BC Type 1) shear force at pile head' = 27000.000 lbs Bending moment at pile head = 1380000.000 in -lbs Axial load at pile head = .000 lbs Non -zero moment at pile head for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment) condition. ------------------------------------------------------------------------------ Computed values of Load Distribution and Deflection for Lateral Loading for Load case Number 1 ------------------------------------------------------------------------ - - - - -- Pile -head boundary conditions are shear and Moment (BC T e 1) specified shear force at pile head = 27000.000 lbs specified bending moment at pile head = 1380000.000 in -lbs Specified axial load at pile head = .000 lbs Non -zero moment for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment )condition. Depth Deflect. Moment shear slope Total Soil Res X y M V S Stress p in in lbs -in lbs Rad. lbs /in * *2 lbs /in Page 3 13HEIGHT.lpo Distribution of shear strength parameters with depth defined using 2 points Point Depth x cohesion c Angle of Friction E50 or RQD No. in lbs /in * *2 Deg. k_rm % - - - -- 1 -- - - - - -- .000 ---- - - - - -- .00000 ------------ - - - - -- - - - - -- - - - - -- 34.00 - - - - -- - - - - -- 2 156.000 .00000 34.00 - - - - -- - - - - -- Notes: (1) Cohesion = uniaxial compressive strength for rock materials. (2) values of E50 are repported for clay strata. (3) Default values will be generated for E50 when input values are 0. (4) RQD and k_rm are reported only for weak rock strata. ------------------------------------------------------------------------------ Loading Type ------------------------------------------------------------------------ - - - - -- Static loading criteria was used for computation of p -y curves ------------------------------------------------------------------------------ Pile -head Loading and Pile -head Fixity conditions ------------------------------------------------------------------------ - - - - -- Number of loads specified = 1 Load Case Number 1 Pile -head boundary conditions are Shear and Moment (BC Type 1) shear force at pile head' = 27000.000 lbs Bending moment at pile head = 1380000.000 in -lbs Axial load at pile head = .000 lbs Non -zero moment at pile head for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment) condition. ------------------------------------------------------------------------------ Computed values of Load Distribution and Deflection for Lateral Loading for Load case Number 1 ------------------------------------------------------------------------ - - - - -- Pile -head boundary conditions are shear and Moment (BC T e 1) specified shear force at pile head = 27000.000 lbs specified bending moment at pile head = 1380000.000 in -lbs Specified axial load at pile head = .000 lbs Non -zero moment for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment )condition. Depth Deflect. Moment shear slope Total Soil Res X y M V S Stress p in in lbs -in lbs Rad. lbs /in * *2 lbs /in Page 3 i7. 13HEIGHT.Ipo -- - - - - -- 0.000 --- - - - - -- .158685 ----- - - - - -- 1.380E +06 ----- - - - - -- ----- 27000.0000 - - - - -- ----- - .001595 - - - - -- ----- 958.8882 - - - - -- 0.0000 3.000 .153912 1.461E +06 26918.3121 - .001587 1015.1708 - 54.4586 6.000 .149162 1.542E +06 26666.2625 - .001579 1071.1128 - 113.5745 9.000 .144437 1.621E +06 26232.2619 - .001571 1126.3446 - 175.7593 12.000 .139738 1.699E +06 25609.3135 - .001562 1180.4772 - 239.5396 15.000 .135067 1.775E +06 24794.6197 - .001552 1233.1118 - 303.5896 18.000 .130424 1.848E +06 23789.1189 - .001542 1283.8479 - 366.7443 21.000 .125812 1.917E +06 22597.0018 - .001532 1332.2906 - 428.0004 24.000 .121231 1.983E +06 21225.2402 - .001522 1378.0566 - 486.5073 27.000 .116681 2.045E +06 19683.1502 - .001511 1420.7803 - 541.5527 30.000 .112165 2.101E +06 17982.0005 - .001500 1460.1172 - 592.5471 33.000 .107684 2.153E +06 16134.6710 - .001488 1495.7487 - 639.0059 36.000 .103237 2.198E +06 14155.3628 - .001476 1527.3840 - 680.5330 39.000 .098825 2.238E +06 12059.3557 - .001464 1554.7635 - 716.8051 42.000 .094450 2.271E +06 9862.8137 - .001452 1577.6604 - 747.5563 45.000 .090112 2.297E +06 7582.6333 - .001440 1595.8823 - 772.5640 48.000 .085811 2.316E +06 5236.3352 - .001427 1609.2730 - 791.6348 51.000 .081548 2.328E +06 2841.9984 - .001415 1617.7130 - 804.5897 54.000 .077322 2.333E +06 418.2427 - .001402 1621.1215 - 811.2474 57.000 .073135 2.331E +06 - 2015.7338 - .001390 1619.4567 - 811.4035 60.000 .068985 2.321E +06 - 4440.0434 - .001377 1612.7177 - 804.8029 63.000 .064873 2.304E +06 - 6833.8941 - .001365 1600.9458 - 791.0976 66.000 .060798 2.280E +06 - 9231.6122 - .001352 1584.2267 - 807.3811 69.000 .056760 2.249E +06 - 11666.3014 - .001340 1562.4585 - 815.7450 72.000 .052759 2.210E +06 - 14113.6406 - .001328 1535.5890 - 815.8145 75.000 .048793 2.164E +06 - 16548.4219 - .001316 1503.6176 - 807.3731 78.000 .044863 2.111E +06 - 18945.0065 - .001304 1466.5973 - 790.3499 81.000 .040967 2.050E +06 - 21277.7331 - .001293 1424.6344 - 764.8011 84.000 .037104 1.983E +06 - 23521.2663 - .001282 1377.8887 - 730.8876 87.000 .033273 1.909E +06 - 25650.8758 - .001272 1326.5724 - 688.8520 90.000 .029473 1.829E +06 - 27642.6474 - .001262 1270.9482 - 638.9958 93.000 .025703 1.743E +06 - 29473.6288 - .001252 1211.3280 - 581.6585 96.000 .021961 1.652E +06 - 31121.9165 - .001243 1148.0703 - 517.2000 99.000 .018246 1.557E +06 - 32566.6948 - .001234 1081.5782 - 445.9855 102.000 .014557 1.457E +06 - 33788.2334 - .001226 1012.2972 - 368.3736 105.000 .010890 1.354E +06 - 34767.8555 - .001218 940.7124 - 284.7079 108.000 .007246 1.248E +06 - 35487.8834 - .001211 867.3472 - 195.3107 111.000 .003622 1.141E +06 - 35931.5688 - .001205 792.7606 - 100.4796 114.000 1.70E -05 1.033E +06 - 36083.0152 - .001199 717.5456 -.4847 117.000 - .003572 924416.5509 - 35927.0954 - .001194 642.3277 104.4312 120.000 - .007145 817105.2050 - 35449.3701 - .001189 567.7627 214.0523 123.000 - .010706 711720.3303 - 34636.0082 - .001185 494.5364 328.1889 126.000 - .014254 609289.1559 - 33473.7123 - .001181 423.3625 446.6750 129.000 - .017793 510878.0564 - 31949.6503 - .001178 354.9819 569.3663 132.000 - .021324 417591.2538 - 30051.3939 - .001176 290.1618 696.1380 135.000 - .024848 330569.6932 - 27766.8638 - .001174 229.6952 826.8820 138.000 - .028366 250990.0709 - 25084.2837 - .001172 174.3996 961.5047 141.000 - .031881 180063.9908 - 21992.1406 - .001171 125.1168 1099.9241 144.000 - .035392 119037.2276 - 18479.1525 - .001170 82.7126 1242.0679 147.000 - .038902 69189.0758 - 14534.2442 - .001170 48.0758 1387.8710 150.000 - .042410 31831.7626 - 10146.5283 - .001169 22.1182 1537.2730 153.000 - .045918 8309.9062 - 5305.2938 - .001169 5.7741 1690.2167 156.000 - .049426 0.0000 0.0000 - .001169 0.0000 1846.6458 output verification: computed forces and moments are within specified convergence limits. Output Summary for Load case No. 1: Pile -head deflection = .15868541 in Page 4 13HEIGHT.lp0 - -- _. 10 Computed slope at pile head = - .00159498 Maximum bending moment = 2333064.025 lbs -in Maximum shear force = - 36083.015 lbs Depth of maximum bending moment = 54.000 in Depth of maximum shear force = 114.000 in , Number of iterations = 11 Number of zero deflection points = 1 ------------------------------------------------------------------------------ summary of Pile -head Response ------------------------------------------------------------------------ - - - - -- Definition of symbols for pile -head boundary conditions: y = pile -head displacment, in M = pile -head moment, lbs -in v = pile -head shear force, lbs S = pile -head slope, radians R = rotational stiffness of pile -head, in- lbs /rad BC Boundary Boundary Axial Pile Head Maximum Maximum Type condition Condition Load Deflection Moment Shear 1 2 lbs in in -lbs lbs 1 v= 27000.000 M= 1.38E +06 0.0000 .1587 2.333E +06 - 36083.0152 -------------- - - - - -- ----- - - - - -- --------------- ---------------------Pile-head Deflection vs. Pile Length Boundary condition Type 1, shear and Moment Shear = 27000. lbs Moment = 1380000. in -lbs Axial Load = 0. lbs Pile Pile Head Maximum Maximum Length Deflection Moment shear in in in -lbs lbs ----- - - - - -- 156.000 ------ - - - - -- .15868541 ------ - - - - -- 2333064.025 ------ - - - - -- - 36083.015 148.200 .18796687 2303795.329 - 38042.217 140.400 .23419204 2279511.906 - 40577.081 132.600 .32191147 2262146.038 - 44328.411 124.800 .59355185 2255406.123 - 51243.334 The analysis ended normally. Page 5 APPENDIX "A" REM RE, NCE MATE' AND CODE, AWN S I SHORING DESIGN REFERENCE DOCUMENTS & BIBLIOGRAPHY II• REFERENCE DESIGN CODES AND STANDARDS COGGINS & SONS, INC., SHORING DESIGN REFERENCE MATERIALS APRIL 16, 2002, BY STANLEY H. SMITH, PE AND JOHN H. HART, PE SHORING DESIGN REFERENCE DOCUMENTS & BIBLIOGRAPHY 1) PECK, HANSON & THORNBURN, "FOUNDATION ENGINEERING ", SECOND EDITION, 1973. 2) GROUND ANCHORS AND ANCHORED SYSTEMS, GEOTECHNICAL ENGINEERING CIRCULAR NO. 4, FHWA OFFICE OF BRIDGE TECHNOLOGY, JUNE 1999. 3) JOSEPH E. BOWLES, "FOUNDATION ANALYSIS AND DESIGN', FOURTH AND FIFTH EDITIONS, 1988 & 1996. 4) BRAJA M. DAS, "PRINCIPLES OF FOUNDATION ENGINEERING ", SECOND EDITION, 1990. 5) HOLTZ AND KOVACS, "AN INTRODUCTION TO GEOTECHNICAL ENGINEERING ", 1981. 6) ROBERT M. KOERNER, "DESIGNING WITH GEOSYNTHETICS ", THIRD EDITION, 1994. 7) NAVFAC 7.0 1, "SOIL MECHANICS ", SEPTEMBER, 1986 8) NAVFAC 7.02, "FOUNDATIONS AND EARTH STRUCTURES ", SEPTEMBER, 1986 9) HANNA, "FOUNDATIONS IN TENSION — GROUND ANCHORS ". 10) FHWA/RD- 82/047, "TIEBACKS ", JULY 1982. 11) PTI, "POST- TENSIONING MANUAL", FIFTH EDITION, 1997. 12) PTI, "RECOMMENDATIONS FOR PRESTRESSED ROCK AND SOIL ANCHORS ", THIRD EDITION, 1996. 13) ASCE, "SERVICEABILITY OF EARTH RETAINING STRUCTURES ", GSP #42,1994. 14) FHWA, FHWA -RD -75 -128, "LATERAL SUPPORT SYSTEMS AND UNDERPINNING", APRIL 1976, VOLUMES I, II, IIL 15) ASCE, GEOTECHMCAL SPECIAL PUBICATION NO. 74, "GUIDELINES OF ENGINEERING PRACTICE FOR BRACED AND TIED -BACK EXCAVATIONS ". 16) CHEN & ASSOCIATES, "DESIGN OF LATERALLY LOADED PIERS ", 1983. 17) ALAN MACNAB, "EARTH RETENTION SYSTEMS HANDBOOK ", 2002. SOIL NAMING REFERENCE DOCUMENTS & BIBLIOGRAPHY 1) ASCE, "SOIL NAILING AND REINFORCED SOIL WALLS ", 1992. 2) FHWA/GOLDER PUBLICATION # FHWA- SA- 96-069, "MANUAL FOR DESIGN AND CONSTRUCTION MONITORING OF SOIL NAIL WALLS ", NOVEMBER 1996. 3) ASCE, "GROUND IMPROVEMENT / GROUND REINFORCEMENT / GROUND TREATMENT' SPECIAL PUBLICATION #69, JULY 1997. 4) XANTHAKOS, ABRAMSON & BRUCE, "GROUND CONTROL AND WROVEMENT', 1994. SOFTWARE 1) CALIFORNIA DOT, "SNAIL PROGRAM", VERSION 2.11 -PC VERSION. 2) RISA TECHNOLOGIES, "RISA -21) VERSION 4.0, RAPID INTERACTIVE STRUCTURAL ANALYSIS - 2D, FRAME ANALYSIS. 3) GEO -SLOPE International Ltd., "SLOPEIW ", VERSION 5 REFERENCE DOCUMENTS 1) AMERICAN INSTITUTE OF STEEL CONSTRUCTION, "MANUAL OF STEEL CONSTRUCTION — ALLOWABLE STRESS DESIGN', NINTH EDITION, 1989 2) AMERICAN INSTITUTE OF STEEL CONSTRUCTION, "MANUAL OF STEEL CONSTRUCTION — LOAD AND RESISTANCE FACTOR DESIGN', THIRD EDITION, 2001 3) ACI 381- 99/318R -99, "BUILDING CODE AND COMMENTARY ", 1999. 4) ANSI/ASCE 7 -95, "MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES ". 5) ACI, "BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 -99) AND COMMENTARY (ACI 318R -99). 6) ANSIlAF &PA NDS- 1997, "NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION'. 7) ASCE, "STANDARD FOR LOAD AND RESISTANCE FACTOR DESIGN (LRFD) FOR ENGINEERED WOOD CONSTRUCTION'. APPENDIX "B" LAGGING DESIGN CRITERIA & REFERENCES COGGINS & SO Caisson Drilling, Excavation Shoring, Tieback Anchors TIMBER LAGGING DESIGN CRITERIA AND REFERENCES Updated July 21, 2003 The design of lagging is primarily based upon experience and semi- empirical relationships rather than by any rigorous analysis. Coggin & Sons, Inc. have been utilizing thick rough sawn #2 Douglas fir lumber for many years as lagging. The %Z" diameter SAE Grade 2 lagging anchor bolts have been in use since 1994. This design has been implemented successfully for numerous projects. From our experience, we have determined the #2 Douglas fir can easily span 9' -0" in most soil condition. On occasion, the #2 Douglas fir can span 10' -0" in appropriate soils without any failure problems. We have used 9' -0" typical spacing for numerous projects ranging from 10 %0" to 45' -0" deep without any problems. Please see figures 1 through 3 for examples of our 9'-0" spacing at various depths. The criteria followed for lagging design is from three sources: "Earth Retention Systems Handbook ", FHWA Publication No. IF -99 -016, "Ground Anchors and Anchored Systems", June 1999 and FHWA -RD -75 -128, "Lateral Support Systems and Underpinning ", April 1976, Volumes I, II, & III). All of these documents indicate the timber lagging should not be designed, but rather based on experience and semi - empirical rules. Goldberg has assembled a table in his report to the FHWA 1976 suggesting lagging thicknesses for various types of soils (a copy can be seen in Table 1). If a design analysis is attempted, it is suggested from the three references listed previously to design the lagging for a soil pressure equal to 50 percent of the apparent earth pressure. Coggin & Son, Inc. experience indicates this is conservative in many cases because of the "hard to estimate" arching affect behind the shoring wall. In addition, we believe that most lagging will deflect to the point where the retained soils will arch between the soldier piles and relieve the pressure on the lagging. Once a point of equilibrium is reached, the deflection will stop. The following two pages show results for estimated lagging design. In addition, excerpts from the above- mentioned references and steel stud / #2 Douglas Fir strengths are shown. 9512 Titan Park Circle • Littleton, Colorado 80125 • (303) 791 -9911 • FAX (303) 791 -0967 hftp://cogginsandsons.uswestdex.com FOUR SEASONS LAGGING DESIGN GIVEN: SOIL TYPE: SAND AND.COBBLES DESIGN PRESSURE (X)(h) (psf): 37 EXCAVATION DEPTH (ft): 13 SOLDIER BEAM SPACING (ft): 85 CLEAR SPAN (ft); 65 BOARD HEIGHT (in): 12 BOARD THICK (in): 3 FLEX. STRESS OF #2 DOUGLAS FIR (psi): 1200 FIND: BENDING STRESS 1 COMPUTE MOMENT I M = w *(I "2 ))`/ 8 w s 240:5 ft mt- 6.5 ' M' ft - # 1270 " 2 COMPUTE SECTION MODULUS I S = ,b* h "2 / 6 bin) = 12 h. n) 3 S (in ^3) _ 18. 3 COMPUTE BENDING. STRESS,. fb =`M/S fb (psi) = 1 847 e e e SOLDIER BEAM 2 CHANNELS 3/1 E PL 3/8" x 3" W/ 5/8" DIA. HOLE PLAN VIEW OF TYPICAL SHORING AND LAGGING 3" TIMBER LAGGING 1. STUD WELDED TO CHANNEL s ° - i, . hw :!.}• {� a -o-� .sue.- 'r rx� "� t .t ." �� } - �� - Mill S —�.•�^ -mss �' y-e -�i... l -- �• .E '�� �tS „ytCS'•Q -. j[Y'�"�.StS i � i ^i � - �g�'`�y ' �,..+� � _ _ i� •• � � .--�. e,, f ' J'�,.,�a�tv" - .r'�°��• � � �3V':s�` � � �-'L .may' � ' �f` � _ _ :� � S W 3 L �� j 'Sk 5'.,'� t 4 -. ,t 4 f y iC � `f _ � � � t� � - - _ � � �. . � �_ jt �( �_.s1�I ice.— 1 _ �'.. _... .__. .� j[-- F_ —.(r _ _� _ -` ... - -' e — �- s ? �` - � i _ _ 'e ___ ��\ ' _ �sp�. .. __ � '�:x � _. __ i _ _ K s4�Yi y -_ _ _ t s i_ { .. �, � ��'.�'. -. t. __ q��; � s �c3'_ ���f ��` Cam. '� �, - -- -f v. �,_. b r ,..�,�, �. ._ -_ 'pEp{t'ER �IUSEUMOFirn)�/5+ "y �; AK 01, � gal # - C z j �� ii i- f,,.q�- .i ✓mss _ � _ / "a >' { • _ - rr . - - r; IT At Yy f 14 DENVER MUSEUM CLEAN, SAND 26' - 0" TO 28' - 0" EXCAVATION 9' - 0" BEAM SPACING -[Z-- 'k YL (-' Z F 1 - ` i FM Pam L41 5#1 Table 12. Recommended thickness of temporary timber lagging (after FHWA -RD -75 -130, 1976) �01 -rA G : 82 Soil Description Unified Soil Depth - Recommended thickness of lagging (roughcut) for clear spans of: Classification (m) COMPETENT 1.5 m 1.8 m 2.1 m 2.4 m 2.7 m 3.0 m SOILS Silt or fine sand and silt ML, SM -ML above water table Sands and gravels GW, GP, GM, 0-8 50 mm 75 mm 75 mm 75 mm 100 mm 100 mm (medium dense to dense) GS, SW, SP, SM Clays (stiff to very stiff); CL, CH 8-18 75 In' m 75 mm 75 mm 100 mm 100 mm 125 mm non - fissured Clays, medium CL, CH consistency and 7H <5 S„ DIFFICULT SOILS Sand and silty sand (loose) SW, SP, SM Clayey sands (medium SC 0-8 75 mm 75 mm 75 mm 100 mm 100 mm 125 mm dense to dense) below water table Clay, heavily CL, CH 8-18 75 mm 75 mm 100 mm 100 mm 125 mm 125 nun overconsolidated, fissured Cohesionless silt or fine ML, SM -SL sand and silt below water table POTENTIALLY DANGEROUS Soft clays�I-I >5 CL, CH 0 - 5 75 mm 75 mm 100 mm 125 mm --------- SOILS S. Slightly plastic silts below ML 5 - 8 75 mm 100 mm 125 mm 150 mm --- - - - - -- ........ water table Clayey Sands (loose), SC 8 -11 100 mm 125 mm 150 mm --- - - - - -- --- - - - - -- --- - - - - -- below water table Notes: 1) In the category of "potentially dangerous soils ", use of soldier beam and lagging wall systems is questionable. 2) The values shown are based on construction grade lumber. 3) Local experience may take precedence over recommended values in this table. -rA G : 82 r- 0 )ical raker footing. for making the footings deep and narrow are many. Deeper and that there is less chance that the footing will interfere with the installations in the base of the excavation such as building foot - plumbing lines, etc. By making the footing deep, it is easier to :ant passive pressure to resist the lateral load of the footing (Fig - tdition, deep narrow footings can be conveniently developed by against neat earth excavations without any forming.. The foot - the width of the backhoe bucket. \N, . , ,. . •• • • aker load -is restrained by inclined footing. Usin 'n methods outlined in Peck, Hanson & Thorburn for calculating the capac nclined footings, the size of the raker footing can be developed. In cohesive soils, the unit bearing capacity of the footing is defined as q = cNeq where q is the ultimate bearing strength c is cohesion Neq is the bearing capacity factor (see Figure 11.11) In cohesionless soils the ultimate bearing capacity of the footing is q = % ByNyq where B is the inclined length of the footing bearing surface y is the unit weight of soil Nyq is the bearing capacity factor (see Figure 11.11) An alternative design method used to resist the lateral load place...,...,....,, footings in softer soils involves the development of the capacity of the footing through adhesion between the sidewalls of the deep narrow concrete footing. Very large frictional areas exist which can carry significant load (Area ABC on Figure 11.9). 11.8 LAGGING A large body of opinion holds that timber lagging should not be designed. This thought comes from observations that most lagging will simply deflect to the point where the retained soils will arch between the soldier piles and relieve the pressure on the lagging. Once a point of equilibrium is reached, it is argued, that deflection will stop. Excavations of depths to 60 feet (18 m) with lagging thickness of 3 inches (75 mm) and spans of 10 feet (3 m) have performed well. Excavations to 110 feet (33.5 m) with 4 inch (100 mm) lagging and 9 foot (2.7 m) bays have similarly performed satisfactorily. The designer should be cautioned that this principle does not hold in soft clays where arching is minimal or nonexistent. It should also be pointed out that in these types of materials, timber lagging, soldier pile and lagging is often not recommended at all. That being said, there is a great desire on the part of many plan checkers to have some rational mathematical method of designing timber lagging. Goldberg Zoino in their report to the FHWA in 1976 (listed in the Bibliography) produced a chart of suggested lagging thicknesses which is accepted by some as sufficient for design purposes (see Table 11.1). 1� 0 W N J 0 I .. c ►+ c m Yc' M Q R. P 0 .d n n N 7 n ro () R CL (D m o m w 0� O —0o cNn O 0 00 0 TABLE 11.1 Goldberg Zoino Chart (Courtesy of the Federal Highway Administration) S 0 yH ii W 0. v I d F a a O O 0 an z Q H O � 7 n N m O A � Q R CL rn W o m m fo `� 0 o Values of Ncq N A Os Note: In the category of "potentially dangerous guile ". use of lagging is questionable. Recommended Thickne ses of unified for Meer Spans of: Sell Dsscrlption Magnification Depth S. 6' 7'. 5. 4'. 10' Silts or Sae sand and gilt ML abaro water table SM_ML Sands and gravel. (medium OW. GP, CM, 0' to 25' 2" 7" 1" 7" 4" 4" . douse to dense). , Cc. Sty. SP. St4 Clays (etta to very stiff): CL. CH 25' to 60' 1" 1" 3'. 4" 4" S" am- fissured. . Cars, medium cantle- CL, CH tency and JH < S. Se Sands and silty Sand.. Sty. SP, SSl (loose). . Carey Sands (medium Sc 0' to. Z5, !" )" '3' 4" 4" S" dense 10 dense) below Mater tabs. Clays. heavilr'owr- CL. CH ZS' to 60' 3' 7" 4" 4" S" S. consolidated fissured. . . Cohenionless Silt or"* M14 Sbl-ML gaud and am below water table. Soft clays I > S: CL. CH 0' to 1S' S" 3.. 4^ S. -- -- Slightly PI& atlte ML 15' to ZS' Z" 4" S" 6., _- below wer ,&blo. at Clayey sands (loose). Sc 25' to' S5' 4" S" 6" below water table. Note: In the category of "potentially dangerous guile ". use of lagging is questionable. Z 2 A In 0 F a m N M C O Ei b b 0 y N N ° A ti rrw�w _J w _y 1 w Q. cd a b o 0 0 �, n cd 0 b O o b w 0 ... a o, v H w y O .b0 w ti w ca � t1�y+ w � i- O E q Z w y C b •y 4. ,J' y w b° �O Co O O ba O 0 •Cud of U O ." .ca -a. w v .�.1 3 b � o C q a� y . y cz %: .r ° CS 00 A v� lu 'd w ^* o a ao > y d Z e° ch ` �0 q N vi M b' U .y h b h 'D �p •8 d ` Oai 'Z% r N R. oy w Qa ' r. c��° 4 4ca on e+ • Co : N�0 L- 0 ul Q 1:1 E �o v N a N C9 b w 1 ° a�i O oc cd a b o 0 0 �, n .° oo�y c a°i c� w 0 b 004 y oao Ob �'. , Nb >,0 4 2 H w y O .b0 f o�_ 0 cd co � • o� 0 a o.ti a .w ° y w b° O vii a� u ° ,A y V of U O ." .ca -a. 3 b � o O 1„1 y . a o ^' oo Cr. 'O Q U cd cC vi C 00 N •CO Cc C13 cd .L1^ O w ^* o a ao w O y d Z e° ch ` y O' c� c`d N � ° N ¢41S y � N 3vcd a00H Q y d 4. y �w-0 a ` oo� w � cl y as ; oy w Qa ' r. c��° 4 4ca on e+ • Co : Q. .0 cn .� W ° y Q w a O y P W a O a a z w 0 rn c L L Q rn c 0 LL 'a m &o m �m C E o Q, Ti 0 m N u w .y O oC C4 u 3� y O u � 'S C C O . a m v u 0 c a� y� a W N u 'd � c �V C7 � W0 m a. E co w c W N ar3 q. y y bo O b Ei °� a ti N H b °�° op O O wO 0 B N Q O V 3 `O 'o a cV p3q N H A•�PO o a= a' ti a >, o U ai O b d h O O O •ca °°3•c 'or°�o .> „ b � d c'0 00 3 op 0 C cd •N. .0 c �Uao� E o � a .,...� 0. ,�• 4u c3 u � O °a 4) 06 3 aO°i 'v o N LLI N. Q ° cc .r' y •�� Cd N 04 �b❑C4 a b o b > y to 3 O N a. IL v a .c ;= �n �b E, N anti °' o H v v 'cop 04 0 i� 45 N a+. w O �o . rMr W ✓`� '� rn c L L Q rn c 0 LL 'a m &o m �m C E o Q, Ti 0 m N u w .y O oC C4 u 3� y O u � 'S C C O . a m v u 0 c a� y� a W N u 'd � c �V C7 � W0 m a. E co w c W N ar3 q. y y bo O b Ei °� a ti N H b O ' E C •b O O wO 0 cV p3q N H VJ y S u N Z y o a= a' ti a >, o w u °' o 9 '0 v h O O O •ca e' OO cd :+ Q y .> „ b o� o 00 3 op 0 C c �Uao� E L b °' o .,...� 0. ,�• 4u c3 u � O °a 4) 06 3 aO°i 'v o N ° C7 .r' y •�� Cd N 04 �b❑C4 a b o b > y to 3 O N rn c L L Q rn c 0 LL 'a m &o m �m C E o Q, Ti 0 m N u w .y O oC C4 u 3� y O u � 'S C C O . a m v u 0 c a� y� a W N u 'd � c �V C7 � W0 m a. E co w c W N .7 :9 US.Department of transportation Federpl hv+icii± Administration wu. 1-1•tVVA -I1--99 -015 JUNE 1999 OfTuc . OP BRIDGE. TE=CHNOLOGY 400 $FVg'NTfi STREET, $W WASHINGTON, DC 20590 .GEQT-TCNMG4L ENGIlVEff0G CIRC",,No, 4 For permanent walls and temporary walls that are considered critical, an allowable bending stress in the soldier beam, K, of 0.55 Fy, where Fr is the yield stress of the steel, is recommended. Steel sheet -pile and soldier beams are commonly either Grade 36 (Fy = 248 MPa) or Grade 50 (Fy = 345 MPa). For temporary SOE walls, a 20 percent increase in the allowable stress may be allowed for Positive wall bending moments between anchor locations; no allowable stress increase is recommended for negative wall bending movements at the anchor locations. The required section modulus Sq, is calculated as: Srq _ Mme` (Equation 22) Standard SI units are S(mm3), M. (W-m), and Fb (MPa). In most cases, several available steel sections will typically meet this requirement. The actual wall section selected will be'based on contractor /owner preference, cost, constructability, and details of the anchor /wall connection. When designing permanent anchored walls in relatively uniform competent materials, it is usually only necessary to check the final stage of construction provided that: (1) the ground can develop adequate passive resistance below the excavation to support the wall; (2) apparent earth pressure diagrams are used to assess the loading on the wall; and (3) there is minimal over excavation below each anchor level (FHWA -RD -97 -130, 1998). For cases where there are large concentrated surcharges or berms at the ground surface, it is prudent to check wall bending moments for the initial cantilever stage (i.e., stage just prior to installation and lock -off of uppermost anchor). Where the final excavation height is not the most critical condition, designers commonly use a staged construction analysis where the maximum wall bending moment, wall deflections, and wall embedment depth are evaluated for several stages of construction. An analysis is required for this case since the maximum beading moment may occur at an intermediate stage of constriction (i.e., before the final excavation depth is reached). Intermediate construction stages may be critical when: (1) triangular earth pressure diagrams are used to design the wall; (2) the excavation extends significantly below an anchor level prior to stressing that anchor, (3) a cutoff wall is used to maintain the water level behind the wall; (4) the soil below the �ottom of the excavation is wear resulting in active earth pressures that are greater than available resistance provided by the too of the wall; and (5) structures am located near the wall. SA.2 Design of Lagging for Temporary Support The thickness of temporary timber lagging for soldier beam and lagging walls is based primarily on experience or semi - empirical rules. Table 12 presents recommended thicknesses of construction grade lumber for temporary timber lagging. For temporary SOB walls, contractors may use other lagging thicknesses provided they can demonstrate good performance of the lagging thickness for walls constructed in similar ground. Permanent timber lagging has been used in lieu of a concrete face to carry permanent wall loads. For Permanent applications, the timber grade and dimensions should be designed according to structural guidelines. Several problems may exist for permanent timber lagging including: (1) need to provide fire protection for the lagging; (2) limited service life for timber, and (3) difficulty in providing 81 0 PB 257 Report No. FNWk= RO.15.128 LATERAL SUPPORT SYSTEMS AND UNDERPINNING VOL I. Design and Construction D. T. Goldberg, W. E. laworski, and- M. 0. Gordon April 1916 Final Report This document is available to the public hough the National Technical Information Service, Springfield, Virginia 22161 NATIONAL TEQJI'�!ICAL Prepared for INFORMATION SERVICE i I.S. Df1ARTMERf Of COYNftCE SPRI16f1E1D. YA 21161 FEDERAL HIGHWAY ADMINISTRATION Offices of Research & Development, .p ent; Washington, D.C. 20590 L�' 9932 Wood La. in 9.32.1 Wood Materials _ United States is common wood used for lagging in the construction grade lumber, rough -cut. Struc- tural stress- graded lumber may be specified though seldom used. Preferred Woods are Douglas Fir nr c,,.,..�. _ -- �- -- mt,;,,L _� - -- Caisson Drilling, Excavation Shoring, Tieback Anchors August 30, 2006 RECEIVED Layton Construction Company, Inc. 9090 South Sandy Parkway ats+; - Sandy, UT 84070 The Layton Companie, Attention: Doug Carley Subject: AMEC Earth Retention Review We have reviewed AMEC's earth retention review report dated June 30, 2006. In general, we agree with their comments and appreciated their review effort. AMEC's summary determined two deficiencies. We have revised our earth retention design to strengthen the deficiencies. In lieu of a micropile cantilever system, we have switched to a soldier beam and lagging cantilever system. Please find attached revised calculations and earth retention drawings reflecting changes. If you have any questions, please feel free to call. Sincerely, O•REGSN . pal �. John H. Hart, PE- Table 3. Strength properties for typical grades of timber. Allowable Modulus of Wood Type and Grade Flexural Stress Elasticity fb, psi E, psi Douglas F- Larch, surfaced dry or surfaced green used at max. 19% M. C. Construction Select Structural 1200 1,500,000 2050 1,800,000 Douglas Fir - South, surfaced dry or surfaced green used at max. 19% M. C. Construction Select Structural 1150 1,100,000 1950 1,400,000 Northern Pine, surfaced at 15% moisture content, used at 1570 max. 19% M. C. Construction Select Structural 1050 1, 200, 000 1750 1,500,000 tu!�e rn P ine, surfaced at 15°j6 ture content K. D. used at 15% max. M. C. Construction Select Structural � 1300 1,500,000 2250 11900,000 Southern Pine, surfaced dry, used at max. 19% M. C. Construction Select Structural - 1200 1,400,000 2050 1,800,000 besPtr adail bleu coPY. T American Institute of Timber Construction, "Timber Construction Manual", 2nd Edition, Wiley, 1974. -119- aiagraxn but allows a 50 percent increase in G of stress graded 1 umber the allowable flexural . 9. 32.4 Recommended La in Thickness A table of reconvnended thicknesses has been developed and is presented as Table 4. Since the table h ed on the basis of construction grade lumber, adjustments been develop- for for stress- graded lumber, are required are t icall The so- called "competent soils,, shown herein Y either granular with relatively high angles of internal friction or stiff to very stiff clays. Y g are those with a ratio of Y Medium claps included in the table than 5, overburden stress to undrained strength of less -granular soils The category of "difficult soils'1 includes loose tendency to run , with low angles of internal friction and soils'having a when saturated. clays are also • HeavilY overconsolidated fissured included because they have a tendency to expaaad laterally-, especially in deep excavations. 9.33 Dis lacements and Loss of Ground 9.33.1 General are the soil in Important factors contributing to ground loss zones incnmediately behind the . of the lagging board itseU. gig and the IIexure loss caused b The following discussion concerns ground Particular the the inherent characteristics of soldier pile walls, in not deal techniques used in construction. will' overall deforniafaions of the ret)a. The discussion does m_ ass. 9. 33, 2 Deflection of La ib. in Table 4 will generall The lagging board thicknesses recommended Y maintain deflection to less than about 1 inch, 9. 38. 3 Overcut by effective Movements caused by overcut are best controlled backpacking ps�g of soil behind lagging. The most effective _ to rain the soil, into the space from frhe uppesid of of each laggUW board. . . If there is difficulty . Sion in terial r tY in obtaining sufficient cohe_ with fu _� rammed in this manner and /or there is concern j ashout from ground water action, the soil can be Mixed -120- -a as H0 i 0 04 CA f Table 4. Recommended thicknesses of wood lagging. Note: s la the category of "potentially dangerous sons "@ use of lagging is questionable. -121- Recommended Thicknesses of Description Hpti Unified - Classification Depth lagging (roughcut) for Clear Spans 5' 6' of: 7' Of 9' !O' SIlts or fine sand and silt ML M above water table SM -ML hSands t-„ and gravels (medium dense to dense). CW, Cps GM. 0' to 25' 2" 344 3" 3" 4" 4" Clays GC SW Slit SU , (stiff to very stiff): non- fissured. CL, CH 25' to 60' 3" 3" 3" 4" 4" S" 04 Clays, medium consis. CL CH U tency and 1fH 5. Su Sands and silty sands, SW. Sp, SM (loose). hdense Clayey sands (medium to dense) below SC 0' to 25' 3" 3" 3" 4" 4" S " H water table. pClays, J heathy over- consolidated tissnred. CL, CH 25' to 60' 3" 3" 4" 4" S" 5 « 9 Cohedouleas silt or fine, Ml.t SM -ML sand and sfk below water table. Soft clays If H > S. �. CL, CH 0' to 15 • 3" 3 « 4" 5" -- -- Slightly plastic silts below water table. ML 15' to ZS' 3" 4" 5" 6" -- -- 1 Clayey sands (loose). below water table. SC ZS' to 35'• 4" 5" 6" "- -- "- Note: s la the category of "potentially dangerous sons "@ use of lagging is questionable. -121- Sty:; a' ei WCNANICAL AND MAtER1AL REQUIREMENTS =FOft EXTERNALLY THREADED ► '' ' ' t FASTENERS- -.SAE J09 AUG83 i SAE atidard .ease 1.. and scat Toc(n,iul C..1.:uce. npp,,, d lasNw7 bltl, ekeewd, It,Isia,s arc Disisivn 2!, 111l.�— 1 , �. Sc*- -this SAE: St ndard clovers the tatcdlanial and ( i material re- _ NoTC: Previous iiiues tins stalidatd ads W remenls for =sled bolls o covered nuts, now corl screws, studs sems and U-W(s used 1n separately in SAE JS 95 (A 6dst1 IsJ -f►7). " aultkltritivt ttnd related indus(rks in sii es •to 1 % in, indwive. " . 1 - �: De rkatalialts ' �soms: Scsrtw and wa,ber i ea,bfie,. i Z.1 Desi6natloa Srsttsa. ;trades air;dcYi6xicd btzntNnbcrs tr1 ' U-bolts corcrrd by dlis SAE•Slandsrd are d,., wed Plisssardy b tl,e swpeasioll sticTeasing numbers represi•IIflinkreasing tensile strength . and by devil 'Aid wed -alms of :1lbolu as atds, fl1 may' Fer' ' i°t1 ptslposes, this standaid, beau or whole numbers when r✓ s rept'acnt: variatkWes at the 's w. *ter else Wald ufrd: ^• appeaa. ^U balls^ is also ill;- strength kve1.11te gradr igtutiats aft liven in.TaGk j.. tr"cnsliotlb "slice tint the ^ll•' = 2.2 Crudes —tldls an sitews am notarially a ' ups tsr stud, of else spine sdse� .- dKp;'a� kad 1,•�. S. 5.2, 7. g, and fl: i -S1uds arc twrmaur ava�ighhjt y c� -p-kt of i sl1Odd be detelwQ,sed H ssddk bad tests , 1,. 2; 4, 5. >l, and 8,1. C"1 5.1 is applicable to scmil which are I TAAU t-- WatANWAIL RECAMANal s AND IGOfftflCl IM MARKING /OR aOCTS, tt S= fEMf /lNlf tf itOliY, - I FUN a" folly Me ddne T..I sredtose*e of ( = facfie. • _ C. i set *r 4 s/ade, sane SAG, SWOW16 and slah I llaedaeof Na�daasl'. of*& /nut Towelli Yleld� ' ' Testae j 1 , . Of - No*d,1i1flsi t�ecd slloclalts s4ona: f east* aedr ! Rodcw.R poor h.dvds D� (slnee), (flea) (1fre") • (Sloe I Aenaallewe 'of At" ; Rec4wia 30H Mb Malt Osi,d. I11 psi Ago, ►d MM, Hal Mtn. 1d i MI,ti,'K MM, 11 , • 1 " sorts, ' - -' I S—'6, 1/4 Cm 1 -1/2. 33 0110% 60 000 36 000` 60 000 is 33 670 6100 Neel ! _ toll% 111 Mass Ve ! — _ strews, 53000 71000 37000 71000 111 ss too 1110((0 i ' '• slvdl aw 3/1 w 1 -1 /2 33 000 d0 000 36" 60 000 Is 33. — V0 gig = t 1 /116v 1 -1/2 as 000. 113.000 100000- 115000 10 331 (y pZ NO" t. — i H°iir i fW'4 Ili Ihry 1 as cob 120000 12000 120000 14 35! ! 1 :34 "p5 C34 - \T O+K 1 td 1 -1/2 71000 103000 61000 103000 11 35� I 50 C11 Cf0 : .1! t Ioll tin Nd. 6 d" 5/8 a3 000 120 000 t s, — -- — —� i 59 Se C25 CIOe i1. :pawl Nd. 6 Ili„ 1/2 ors 1/( 0" 1 6$000 120 000 12 000 120 000 14 331 36 C26 C36 •I ,,. 1. •- � 7e ' fols Spews 1 �4 0" 1.1/2 103 000 133 000 11300- - 133 000 12 35I SI ' e28 p4 I N. i' . _ i = _•.� t sofas. : !: - •. - - - � i / \ • ( i V,5 is!'s. 1A doss 1.1/2 120 000 -150000 130 000: 130 000 12 35, • I 38.6 03 (74 - = sows 120 000 150 000 130 000 150 000 w 33, — cat cue Nave es" sahl 1/1 Thn, 1 120000 150000 130000 150000 10 311 I 58.6 C33 ds = Spews i slrenpgl is *ell of N11k1, a Pemone"t set of 0.2% of it"t 4.0th eccs.s. ! e Grode�2 k *- *0* I"ItOd of rkW sken0lh at 0.2% offset. Iegoketoleala slwM vodr s (at "cis 111 11"99113 11 In Op* o* to WU and spews 6 in end shwtet in ka011% and to studs of all leh9da. for both and sclews bnpat Rw. d In. Grad _ Cx Grade 7 ?da S inalrn�of(heal laalad beras< ossemblr wK a horsf"ed washes h an occeptaWa wbstilula.:" ' t See "�a "d Iak a roll Ihread 'I *fact Deal kessh""t. . I 57 5 K washer head a eed Mi Ra=ga PMkK1l willsout ossembkd washers sf,aN have a core hardne+s tool eeceedmp Rockweil tole and a :when hartkta,s not ekleed:ng Rockwell � st Sems and sin.0 _ ,1 1 See (oalr,ate 2 e( leco; ocls wit6oul waders. INo1 orprica6k so nods er•rtolled and cross recess hood Prods. od 1 •Prod Idad tes4 Rc • i 9viram�nN in A.eso Grades onir oPP1Y to shess relieved Prodvclt. • 4.01 DICKMAN -HINES LUMBER COMPANY - P.O. BOX 6137, FEDERAL WAY, WA 98063 PHONE 263.838..6790 FAX 253838.366 9 Memo February 29, 2000 COGGINS & SONS DRILLING From: MIKE COOK 9512 TITAN PARK CIRCLE LITTLETON, CO 80126 Attn: LARRY PNQ : 3W?V l-m i FAXW3.791.OW Re: Bending Design Values for 3 x 12 The Adjusted Fb for Doug Fir # 2 is 1,250 Psi The Acgusted Fb for Hem Fir# 2 Is 1,175 Psi These figures reProSent the minimum design value apowed for straight # 2 Grade. In both cases the lumber provided is # 2 & Btr, with the amount of "better* varying from manufacturer to manufacturer. We know that the Hem -Fir from this manufacturer has all of the higher grades left in it, meaning that the percentage of #1 and Select Shucfural grades in the mix is higher than in the Doug Fir,--. -therefore, one can reasonably equate the overall strength of the two species to be very dose_ Fb (Exteme fiber in bending) to meet or exceed the abov 4fter- adjustments for size, rOPeWe member, and fgatwise use. Fb may be rounded to the nearest 25 or 50 paf increment according to ASTAf Designation: D 245 section 61. MIKE COOK t)Iclunan -Hines Lumber Co. TO /To -,I r-occ cx-0