HomeMy WebLinkAboutShoring Plan(OGGINS 8 SONS. INC. Name
PH. (303) 791 -9911 FAX(303)791-0967 _
CAISSON DRILLING PROJECT:
EARTH RETENTION
TIE BACK ANCHORS SUBJECT:
PROJECT NO.: s
DATE:
W xZ.— w�, t= �i 6 C 4"ti Lr'1 vV.1Z..1• `.. C w (� ire z.: �`— fl� <._ S7La_ Ci —4 "� Y 4,� j —� �. (y �'tr'7"C- .•'[.r�'�
TbK I DS :4q 1 -p A-rt --r7 zr-u ')-2 -2-
4-
St -7 Z
i
i
q
0 0
UJ Z7 vl— 0 u 1 G.. L� u �. �+ '1w
i Ea
c L Ll a T iZ i� ✓ c "i t i. _ v •-1 c_: T `- E-�°-
1-A C rc>trl_U�ti "L�
0
0-
O
M
J
0
O
O
�11f
L
i
EKsS�r7 -tip Ewov�c�w;'.�. -L..
COGGINS & SO
i
NS, INC.
Caisson Drilling, Excavation Shoring, Tieback Anchors
EARTH RETENTION CALCULATIONS
INDEX
PROJECT NO. - 5117
PROJECT: FOUR SEASONS
for
ITEM NO.
DESCRIPTION
PAGES
1
SOILS
S1.0-S1.2
2
"RISA -21)" ANALYSIS OF 7' -0" CANTILEVER
S2.0-S2.4
3
"RISA -21)" ANALYSIS OF 10' -0" CANTILEVER
S3.0-S3.4
4
"RISA -21)" ANALYSIS OF 13' -0" CANTILEVER
S4.0-S4.4
5
EXCEL CHECKS
S5.0-S5.2
6
"L -PILE 5.0" ANALYSIS T -0" EXPOSED - 8' -0" EMBED
S6.0-S6.6
7
"L -PILE 5.0" ANALYSIS 10' -0" EXPOSED -10' -0" EMBED
S7.0-S7.6
8
"L -PILE 5.0" ANALYSIS 13' -0" EXPOSED -12' -0" EMBED
S8.0-S8.6
APPENDIX "A", REFERENCE MATERIAL AND CODES
APPENDIX "B ". LAGGING DESIGN CRITERIA AND REFERENCES
COGGINS & SO
NS, INC.
Caisson Drilling, Excavation Shoring, Tieback Anchors
STRUCTURAL DESIGN CALCULATIONS
EARTH RETENTION SYSTEM RECEIVED
for
PROJECT NO. - 5117
PROJECT DESCRIPTION: EARTH RETENTION
FOUR SEASONS HOTELS AND RESORTS
Prepared for
CLIENT: LAYTON CONSTRUCTION COMPANY
ADDRESS: 9090 SOUTH SANDY PARKWAY
CITY: SANDY STATE: UTAH 84070
TEL: 801-568-9090 FAX: 801-569-5450
r�� 0 REG/
•.M- °.
.�m.
o .Roo
Vs�
Prepared By:
JOHN H. HART, P.E.
COGGINS & SONS, INC.
DATE: August 28, 2006
AUG 31 nffi
The Layton CompanjeS
9512 Titan Park Circle - Littleton, Colorado 80125,p (303) 791 -9911 - FAX (303) 791 -0967
(OGGINS &
SONS INC.
Name
PH. (303)791 -9911
FAX(303)791-0967
64ISSON DRILLING
PROJECT:
EARTH RETENTION
TIE BACKANCHORS
SUBJECT:
q (o
PROJECT NO.: ` `
DATE: U / `'- / v (_
s4.e
0
_ .2--
Company COGGINS AND SONS, INC. Aug 28, 2006
Designer JOHN H. HART, PE 10:14 AM
Job Number: 5117 FOUR SEASONS Checked By:
Hot Rolled Steel Properties
s
I nhal F rlren r- rt—n Ki..
1
A36 Gr.36
29000
_ .._.
• 11154
.3
....... '— I I
.65
UVII-JILYIK/W-01
.49
TIe10 KSI
36
2
A572 Gr.50
29000
11154
.3
.65
.49
50
3
A992
29000
11154
.3
.65
.49
50
4
A500 Gr.42
29000
11154
.3
.65
.49
42
5
A500 Gr.46
29000
11154
.3
.65
.49
46
Hot Rolled Steel Section Sets
1 A I W 14X30 I Wide Flange Beam A572 Gr.50 T ical 8.85 19.6 291
Hot Rolled Steel Design Parameters
Cm Cb Out s... In
Joint Coordinates and Temperatures
I nhPl Y rffl
1
N1
+_0
0
7.
161U r
2
N2
0
0
Joint Boundary Conditions
Joint Label X [k /in] Y fk/inl Rotationn [k-ft/ ra Footing
1 N2 Reaction Reaction Reaction
Member Primary Data
LGUe1 1 w111[ i uanl Koiate a bectlon /6na a Desi n List Type Material Desi n Rules
1 M1 N1 N2 HR1A Wide Flan a Beam A572 Gr.50 Typical
Member Distributed Loads (BLC 1 : SOIL)
Member Label Direction Start Ma nitude k/ft ... End Ma nitude k/ft d... Start Location ft %I End Location ft
1 M 1 X 0 1 -2.3 1 0 1 0
Joint Loads and Enforced Displacements
Joint Label L D M Direction Ma nitude k k -ft in rad k's ^2 /ft
No Data to Print ...
Member Point Loads
Member Label Direction Ma nitude k k -ft Location ft
No Data to Print ...
RISA -2D Version 6.5 [C: \ ... \... \My Documents \2006JOBS \5117FOURSEASONS \7 FT HEIGHT.r2d] Page 1
Company COGGINS AND SONS, INC. Aug 28, 2006
Designer JOHN H. HART, PE 10:14 AM
Job Number: 5117 FOUR SEASONS Checked By:
0 Basic Loa d Cases
1�
x
Load Combination Design
Description ASIF CD ABIF Service Hot Rolled Cold Formed Wood Concrpte Fnntinnc
Load Combinations
Description Solve PD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor RI C Factnr RI r Farfnr RI r G.,. +nr
Joint Deflections (By Combination)
1
1
- -
N 1
-. 043
1 I, �
0
R5Ldtiul 4
2
1
N2
0
0
,9e-4
Joint Reactions
1
1
N2
8.05
- .211
IVI K-I
L l
- 18.783
2
1
Totals:
8.05
-.211
0
3
1
COG MY
X: 0
Y: 3.5
3
Member Section Deflections
I r KA--k— I ok-1 C-
1
1
-
M 1
- --
1
0
-.043
i ' v rauv
1960.012
2
2
2
0
-.0.17
4937.869
3
.67
3
3
0
0
NC
Member Section Forces
I r RA--k— I -k-1 C'-
1
1
M1
1
0
n
0
1vI V.I IVI I1 n-Il
0
2
2
2
-.105
-2.012
2.348
3
.67
3
3
-.211
-8.05
18.783
Member Section Stresses
I r: RA. —K-r I oK-1 C.. n..:..ln_..a
1
1
- - -
M1
---
1
- -
0
0
nog f
0
W�L UVI lull lul MW
0
2
2
-.012
-.539
1 -.67
.67
3
3
-.024
-2.154
-5.36
5.36
RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006J0BS \5117F0U RSEASONS \7 FT HEIGHT.r2d] Page 2
Company COGGINS AND SONS, INC. Aug 28, 2006
Designer JOHN H. HART, PE 10:14 AM
Job Number : 5117 FOUR SEASONS Checked By:
Member A/SC ASD Steel Code Checks (By Combination)
LL; Member Shape UC Max Loc ft Shear UC Loc ft Fa ksi Ft ksi Fb ksi Cb Cm E n
1 1 M1 W14X30 .179 7 .108 7 28.836 30 30 1.75 .85 H2 -1
RISA -2D Version 6.5 [C: \... \ ... \My Documents \2006JOBS \5117FOURSEASONS \7 FT HEIGHT.r2d] Page 3
0
Company COGGINS AND SONS, INC. Aug 28, 2006
Designer JOHN H. HART, PE 10:27 AM
Job Number: 5117 FOUR SEASONS Checked By:
Hot Rolled Steel Properties
I nhPl H -11
1
A36 Gr.36
29000
11154
3
"'G" .65C° r
vens.49itr's
YIe36ksi
2
A572 Gr.50
29000
11154
.3
.65
.49
50
3
A992
29000
11154
.3
.65
.49
50
4
A500 Gr.42
29000
11154
.3
.65
.49
42
5
A500 Gr.46
29000
11154
.3
.65
.49
46
Hot Rolled Steel Section Sets
Laoel Ana a uesl n List Type Material Desi n Rules A in2 190 270 i... 1(0, 180 in4
1 HR1A W16X50 I Wide Flange Beam A572 Gr.50 I Typical 14.7 37.2 659
Hot Rolled Steel Design Parameters
Joint Coordinates and Temperatures
I ahpl v rwi
1
N1
0
1t
10
i "I lip r
0
2
N2
0
0
0
Joint Boundary Conditions
Member Primary Data
�Qucf 1 JVIIIt J Jum[ mmmemew sectlonibna a Uesi n List T e Material Design Rules
1 M1 N1 N2 I I HR1A Wide Flan a _Beam A572Gr.501 Tvpical
Member Distributed Loads (BLC 1 : SOIL)
Member Label Direction Start Manitude[k /ft,... End Macinitude(k /ft.d... Start Locationfft -W Fnd I nratinnrft 0i1
Joint Loads and Enforced Displacements
Joint Label L D M Direction Magnitude(k.k -ft in.rad k's ^2 /ft]
Member Point Loads
Member Label Direction Ma nitude k k -ft Location ft
No Data to Print ..
RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \10 FT HEIGHT.r2d] Page 4
Al
Company COGGINS AND SONS, INC. Aug 28, 2006
Designer JOHN H. HART, PE 10:27 AM
Job Number: 5117 FOUR SEASONS Checked By:
Basic Load Cases
L1 I SOIL I EPL 1
Load Combination Design
CANTILEVER
Load Combinations
Description Solve PD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor RI C Fartnr
Joint Deflections (Bv Combination)
If, I_:_ I ..1...I
1
1
- - --
N 1
-.122
0
mutation raa
1.162e -3
2
1
N2
0
p
U
Joint Reactions
1
1
- -
N2
18.5
n
-. 5
IVIC. K -1i
- 61.667
2
1
Totals:
18.5
- 5
0 -
3
1
COG (ft):
X: 0
Y: 5
3
Member Section Deflections
1
1
M 1
1
0
-.122
984.07
2
2
2
0 -
-.048
2505:068
3
1.141
3
3
0
0
NC
Member Section Forces
1
1
M1
1
• O.
v I... n
H7
IVIU1114 K-1[
0
2
2
2
-.25
x:625
7:708
3
1.141
3
3
-.5
-18.5
61.667
Member Section Stresses
1 r Momhcr I nK.1
1
1
M1
1
0
=0
1 u wvI l n l mol
DUE DCI IIUII I K51
2
2
-.017
1 -:749
1 -1.141
1.141
3
3
-.034
1 -2.994
1 -9.129
9.129
RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \10 FT HEIGHT.r2d] Page 5
11
Company COGGINS AND SONS, INC. Aug 28, 2006
Designer JOHN H. HART, PE 10:27 AM
Job Number: 5117 FOUR SEASONS Checked By:
Member A/SC ASD Steel Code Checks (By Combination)
LC Member Shape UC Max Locfftl Shear UC Locfftl Fafksi] Ftfksil Fbfksil Cb Cm Eqn
j i i ivi i vv un5u 305 1 10 150 1 10 1 28 515 30 30 _F1,75 85 H2 1
RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \10 FT HEIGHT.r2d] Page 6
Company COGGINS AND SONS, INC. Aug 28, 2006
Designer JOHN H. HART, PE 10:38 AM
Job Number: 5117 FOUR SEASONS Checked By:
Hot Rolle e
Rolled Steel Properties
I ahpl G rLail C rt-1 u..
1
A36 Gr.36
29000
11154
.3
acid %ica r
.65
uensll KM'6
.49
Yieitl kSi
36
2
A572 Gr.50
29000
11154
:3
65; _`
49
50
3
A992
29000
11154
.3
.65
.49
50
4
A500 Gr.42
29000
11154
3
.65
.49
42
5
A500 Gr.46
29000
11154
.3
.65
.49
46
Hot Rolled Steel Section Sets
._ _. ..,
1 HR1A W18X60 Wide Flange Beam A572 Gr.50 T ical 17.6 50.1 984
Hot Rolled Steel Desion Parameters
Label Shape Length[ft] Lb- outfftl Lb -infftl Lcomp top[ I-comp botf K out Kin Cm Cb Out s... In swav
Joint Coordinates and Temperatures
I nhcl v rai
1
N1
0
13
1 enlP IN
0
2
N2
0
0
-0
Joint Boundary Conditions
Joint Label X k /in Y fk/inl Rotation k -ft/rad Footin
1 N2 Reaction Reaction Reaction
Member Primary Data
I 1 I M1 I N1 I N2 I HR1A I Wide Fianoe Beam A572 Gr.50 Tvnirtal
Member Distributed Loads (BLC 1 : SOIL)
Member Label Direction Start Magnitudefk /ft,... End Magnitudefk /ft.d... Start Locationfft -%1 Fnd I nratinnrft 0/1
Joint Loads and Enforced Displacements
Joint Label L D M Direction Ma nitude k k -ft in rad k *SA 2 /ft
No Data to Print ...
Member Point Loads
Member Label Direction Ma nitude k k -ft Location ft
No Data to Print ...
RISA -2D Version 6.5 [C: \... \ ... \My Documents \2006JOBS \5117FOURSEASONS \13 FT HEIGHT.r2d] Page 7
Company COGGINS AND SONS, INC. Aug 28, 2006
Designer JOHN H. HART, PE 10:38 AM
Job Number : 5117 FOUR SEASONS Checked By:
Basic Load Cases
Point
S4-
Load Combination Design
Description ASIF CD _ ABIF Service Hot Rolled Cold FnrmM wrwl
Load Combinations
Description Solve PD... SR.._ BLC Factor BLC Factor BLC Factor BLC Factor RI C Factor R1 r. PnMnr RI r Gam, f— 01 r . .
Joint Deflections (By Combination)
1
1
N1
-.252
0
raa
1.894e -3
2
1
N2 >
0:;
p
0
Joint Reactions
1
1
N2
26.65
I j.1
-.779
ML K-11
- 115.483
2
1
Totals:
26:65
-:779
0
3
1
COG (ft):
X: 0
Y: 6.5
3
Member Section Deflections
I r Mamhar I nhal Q— „ r...i
1
1
- -- - -
M 1
---
1
0
-.252
11 u v r% LLIV
618.4
2
2
2
0
- :098
1 1584.837 _
3
1.605
3
3
0
0
NC
Member Section Forces
I r. Mamhar I nhal Q— A..:.dnn
1
1
M1
-
1
---
0
--Jn l
0
VIIIOIR K-IL
0
2
2
2
-.389
_ 6662 =L
14.435
3
1.605
3
3
-.779
-26.65
1 115.483
Member Section Stresses
I r Mamhar I h.1 Qo..
1
1
M1
-
1
0
0
IVIII nJ1
0
UVl L�GIIU III KAI
0
2
2
-.022
-.88
-1.605
1.605
3
3
-.044
-3.521
1 - 12.844
12.844
RISA -2D Version 6.5 [C: \... \ ... \My Documents \2006JOBS \5117FOURSEASONS \13 FT HEIGHT.r2d] Page 8
Company COGGINS AND SONS, INC. Aug 28, 2006
Designer JOHN H. HART, PE 10:38 AM
Job Number : 5117 FOUR SEASONS Checked By:
Member A /SC ASD Steel Code Checks B
v Combination)
LC Member Shape UC Max Loc ft Shear UC Loc ft Fa ksi Ft ksi Fb ksi Cb Cm Eqn
1 1 M 1 W 18X60 .430 13 176 13 28 208 30 30 1.75 85 H2-1
RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \13 FT HEIGHT.r2d] Page 9
FOUR SEASONS - SB1 - S62
USE 37H WITH 9' SPACING
LOAD PER
TOTAL
BEAM
BEAM
FOOT
HEIGHT
INERTIA
SECTION
I
K/FT
FT
(in ^4
in ^3
2.3
7
291 1
42
EXCAVA.
LOAD M.
MOMENT
CANT.
SECTION
MOQUL-US
K
(Kt)in
^3
8
:19
S
HEIGHT (FT)
7
RECOMMENDED SHAPE
MUM
USE SHAPE
W1 4x30
ANTICIPATED DEFLECTION (in)
0.038
CODE CHECK
0.179
NOTE:
INPUT
CALC.
OUTPUT
BEAM. PROPERTIES
BEAM
S, in ^3
l in ^4
W 1430
42
291
W 16x45
73
586
W 16x50
81
659
W 18x60
108
984
W 18x65
117 1
1070
W 18x71
127
1170
W 18x76
146
1330
FOUR SEASONS - SB3 - S65
USE 37H WITH 10' SPACING
LOAD PER
TOTAL
BEAM
BEAM
FOOT
HEIGHT
INERTIA
SECTION
K/FT
FT
(in ^4
(in ^3
3.7
10
659
81
EXCAVA.
LOAD
MOMENT
CANT.
SECTION
= MODWIUS
K
(K-A
19
62
25
HEIGHT (FT)
10
RECOMMENDED SHAPE
W14X30
USE SHAPE
W16x50
ANTICIPATED DEFLECTION (in)
0.112
CODE CHECK
0.305
NOTE:
INPUT
- CALC.
OUTPUT
BEAM PROPERTIES
BEAM..
5 in"3 =
I in ^4
W14x30
42
291
W 16x45
73
586
W 16x50
81
659
W 18x60
108
984
W 18x65
117
1070
W 18x71
127
1170
W18x76
146
1330
FOUR,SEASONS- S66 -S67
USE 37H WITH 8.5' SPACING
LOAD PER
TOTAL
BEAM
BEAM
FOOT
HEIGHT
INERTIA
SECTION
K/FT
FT
in A4
iti ^3
4.1
13
984
108
EXCAVA.
LOAD V
MOMENT
CANT_.
SECTION
MODULUS
K
K-ft
inA3
27
115
46
HEIGHT (FT)
13
RECOMMENDED SHAPE
W16x45
USE SHAPE
W18x60
ANTICIPATED DEFLECTION (in)
0.236
CODE CHECK
0.428
NOTE:
INPUT
CALC.
OUTPUT
J l
BEAM "PROPERTIES
BEAM'
Sin "3
I in ^4
W 14x30
42
291
W 16x45
73
586
W 16x50
81
659
W 18x60
108
984
W 18x65
117
1070
W 18x71
127
1170
W 18x76
146
1330
J l
u
s
r
c
v
c
C
u
C
C
F
N
c
c
O r
C
V C
m
m
G
C,
cc C
L C
J
I
w
O
0
N
O
O
i
M
O
O
O
C
n
�
0
LW
m
�
w
IX
0
w
co
n
>
X
w
ti
D
i
i
i
1111 _fill
fill
Q0 Z £ b 5 9 L 8
(7}) y;daa
(ui) UORDOUGG peaH -Gild
v ci v Y V V
0
0
R
O
O
O
fl-
K
c� I
C
O `-'
U-) L
w
Im
C
m
J
m
0
IL
V-
C)
N
O
r
U
D
w
m
2
w
bo
0
w
O
a-
x
w
D
L L'L
L 6•n R'n i'n a•n c•n Wn o
n �•„
(ui) UORDOUGG peaH -Gild
v ci v Y V V
0
0
R
O
O
O
fl-
K
c� I
C
O `-'
U-) L
w
Im
C
m
J
m
0
IL
V-
C)
N
O
r
U
r
7HEIGHT.lpo
LPILE Plus for windows, version 5.0 (5.0.1)
Analysis of individual Piles and Drilled Shafts
Subjected to Lateral Loading Using the p -y Method
(c) Copyrigght ENSOFT, Inc., 1985 -2004
A11 Rights Reserved
This program is licensed to:
JOHN H. HART
COGGINS
Path
to
file locations:
C: \Documents and Settings \COGGINS AND SONS \My
Documents \2006JOBS \5117FOURSEASONS\
Name
of
input data file:
7HEIGHT.Ipd
Name
of
output file:
7HEIGHT.Ipo
Name
of
plot output file:
7HEIGHT.Ipp
Name
of
runtime file:
7HEIGHT.lpr
------------------------------------------------------------------------------
Time and Date of Analysis
------------------------------------------------------------------------ - - - - --
Date: August 28, 2006 Time: 10:51: 4
------------------------------------------------------------------------------
Problem Title
------------------------------------------------------------------------ - - - - --
FOUR SEASONS - 7' EXPSOED (8' EMBED)
------------------------------------------------------------------------------
Program Options
------------------------------------------------------------------------ - - - - --
Units Used in Computations - US Customary Units, inches, pounds
Basic Program Options:
Analysis Type 1:
- Computation of Lateral Pile Response Using User - specified Constant EI
Computation Options:
- Only internally- generated p -y curves used in analysis
- Analysis does not use p -y multipliers (individual pile or shaft action only)
- Analysis assumes no shear resistance at pile tip
- Analysis includes automatic computation of pile -top deflection vs.
pile embedment length
- No computation of foundation stiffness matrix elements
- output pile response for full length of pile
- Analysis assumes no soil movements acting on pile
- No additional p -y curves to be computed at user - specified depths
Solution Control Parameters:
Page 1
7HEIGHT.Ipo
- Number of pile increments = 48
- Maximum number of iterations allowed = 100
- Deflection tolerance for convergence = 1.0000E -05
- Maximum allowable deflection = 1.0000E +02
in
in
Printing Options:
- values of pile -head deflection, bending moment, shear force, and
soil reaction are printed for full length of pile.
- Printing Increment (spacing of output points) = 1
------------------------------------------------------------------------------
Pile Structural Properties and Geometry
------------------------------------------------------------------------ - - - - --
Pile Length = 96.00 in
Depth of ground surface below top of pile = .00 in
Slope angle of ground surface = .00 deg.
Structural properties of pile defined using 2 points
Point
Depth
Pile Moment of
Pile Modulus of
x
Diameter Inertia
Area Elasticity
in
in in * *4
Sq.in lbs /Sq.in
- - - -- ---
1
- - - - -- -----
0.0000
- - - - -- ---- - - - - --
24.000 16577.0000
---- - - - - -- ----- - - - - --
452.0000 32122019.000
2
96.0000
24.000 16577.0000
452.0000 32122019.000
------------------------------------------------------------------------------
Soil and Rock Layering
Information
------------------------------------------------------------------------------
The soil
profile is modelled using 1 layers
Layer 1
is sand, p -y
criteria by API RP -2A,
1987
Distance
from top of
pile to top of layer
= .000 in
Distance
from top of
ppile to bottom of layer
= 96.000 in
p -y subgrade modulus
k for top of soil layer
= 250.000 lbs /in * *3
p -y subgrade modulus
k for bottom of layer
= 250.000 lbs /in * *3
(Depth of lowest layer extends .00 in below pile tip)
------------------------------------------------------------------------------
Effective unit weight of soil vs. Depth
------------------------------------------------------------------------ - - - - --
Distribution of effective unit weight of soil with depth
is defined using 2 points
Point Depth x Eff. unit weight
No. in lbs /in * *3
- - - -- ---- - - - - -- ----------------
1 .00 .07500
2 96.00 .07500
------------------------------------------------------------------------------
Shear Strength of Soils
it: - ------------------------------------------------------------------------------
Page 2
7HEIGHT.lpo
Distribution of shear strength parameters with depth
defined using 2 points
Point Depth X Cohesion c Angle of Friction E50 or RQD
No. in lbs /in * *2 Deg. k_rm %
- - - -- -- - - - - -- ---- - - - - -- ------------ - - - - -- - - - - -- - - - - --
1 .000 .00000 34.00 - - - - -- - - - - --
2 96.000 .00000 34.00 - - - - -- - - - - --
Notes:
(1) Cohesion = uniaxial compressive strength for rock materials.
(2) values of E50 are repported for clay strata.
(3) Default values will be generated for E50 when input values are 0.
(4) RQD and k_rm are reported only for weak rock strata.
------------------------------------------------------------------------------
Loading Type
------------------------------------------------------------------------ - - - - --
Static loading criteria was used for computation of p -y curves
------------------------------------------------------------------------------
Pile -head Loading and Pile -head Fixity Conditions
------------------------------------------------------------------------ - - - - --
Number of loads specified = 1
Load case Number 1
Pile -head boundary conditions are Shear and Moment (BC Type 1)
Shear force at pile head = 8000.000 lbs
Bending moment at pile head = 228000.000 in -lbs
Axial load at pile head = .000 lbs
Non -zero moment at pile head for this load case indicates the pile -head
may rotate under the applied pile -head loading, but is not a free -head
(zero moment) condition.
------------------------------------------------------------------------------
Computed values of Load Distribution and Deflection
for Lateral Loading for Load Case Number 1
------------------------------------------------------------------------ - - - - --
Pile -head boundary conditions are shear and Moment (BC Type 1)
specified shear force at pile head = 8000.000 lbs
Specified bending moment at pile head = 228000.000 in -lbs
Specified axial load at pile head = .000 lbs
Non -zero moment for this load case indicates the pile -head may rotate under
the applied pile -head loading, but is not a free -head (zero moment )condition.
Depth Deflect. Moment Shear Slope Total Soil Res
X y M V S Stress p
in in lbs -in lbs Rad. lbs /in * *2 lbs /in
Page 3
7HEIGHT.lpo
0.000
.098856
228000.0001
8000.0000
- .001436
165.0480
0.0000
2.000
.095985
244000.0000
7968.2698
- .001435
176.6303
- 31.7302
4.000
.093117
259873.0791
7872.3541
- .001434
188.1207
- 64.1855
6.000
.090250
275489.4163
7711.3567
- .001433
199.4253
- 96.8119
8.000
.087386
290718.5058
7485.4216
- .001432
210.4495
- 129.1231
10.000
.084524
305431.1027
7195.6010
- .001431
221.0999
- 160.6975
12.000
.081664
319500.9099
6843.7305
- .001429
231.2850
- 191.1731
14.000
.078806
332806.0249
6432.3157
- .001428
240.9165
- 220.2418
16.000
.075951
345230.1726
5964.4309
- .001427
249.9102
- 247.6429
18.000
.073099
356663.7486
5443.6311
- .001426
258.1869
- 273.1569
20.000
.070249
367004.6969
4873.8747
- .001424
265.6727
- 296.5995
22.000
.067402
376159.2472
4259.4585
- .001423
272.2996
- 317.8167
24.000
.064558
384042.5309
3604.9620
- .001421
278.0063
- 336.6799
26.000
.061716
390579.0951
2915.2000
- .001420
282.7381
- 353.0821
28.000
.058878
395703.3310
2195.1837
- .001418
286.4475
- 366.9342
30.000
.056042
399359.8300
1450.0872
- .001417
289.0944
- 378.1623
32.000
.053210
401503.6799
685.2205
- .001415
290.6463
- 386.7045
34.000
.050381
402100.7118
- 93.9935
- .001414
291.0785
- 392.5095
36.000
.047554
401127.7057
- 882.0375
- .001412
290.3742
- 395.5344
38.000
.044731
398572.5619
- 1673.3148
- .001411
288.5245
- 395.7429
40.000
.041911
394434.4466
- 2462.1620
- .001409
285.5289
- 393.1043
42.000
.039093
388723.9140
- 3242.8585
- .001408
281.3951
- 387.5922
44.000
.036279
381463.0126
- 4009.6343
- .001407
276.1390
- 379.1835
46.000
.033467
372685.3769
- 4756.6754
- .001405
269.7849
- 367.8576
48.000
.030658
362436.3109
- 5478.1284
- .001404
262.3657
- 353.5954
50.000
.027852
350772.8635
- 6168.1028
- .001402
253.9226
- 336.3791
52.000
.025049
337763.8998
- 6820.6731
- .001401
244.5054
- 316.1913
54.000
.022248
323490.1710
- 7429.8793
- .001400
234.1728
- 293.0149
56.000
.019449
308044.3827
- 7989.7270
- .001399
222.9917
- 266.8328
58.000
.016653
291531.2631
- 8494.1880
- .001398
211.0379
- 237.6282
60.000
.013859
274067.6307
- 8937.2012
- .001396
198.3961
- 205.3851
62.000
.011067
255782.4581
- 9312.6766
- .001395
185.1595
- 170.0903
64.000
.008277
236816.9243
- 9614.5543
- .001395
171.4305
- 131.7874
66.000
.005489
217324.2408
- 9836.7229
- .001394
157.3198
- 90.3812
68.000
.002702
197470.0326
- 9973.0230
- .001393
142.9475
- 45.9189
70.000
- 8.27E -05
177432.1487
- 10017.4947
- .001392
128.4422
1.4472
72.000
- .002866
157400.0537
- 9964.4768
- .001392
113.9410
51.5707
74.000
- .005649
137574.2416
- 9808.5931
- .001391
99.5892
104.3129
76.000
- .008431
118165.6812
- 9544.7366
- .001391
85.5395
159.5436
78.000
- .011211
99395.2951
- 9168.0514
- .001390
71.9517
217.1417
80.000
- .013991
81493.4755
- 8673.9140
- .001390
58.9927
276.9958
82.000
- .016771
64699.6390
- 8057.9145
- .001390
46.8357
339.0038
84.000
- .019549
49261.8177
- 7315.8378
- .001389
35.6604
403.0728
86.000
- .022328
35436.2877
- 6443.6463
- .001389
25.6521
469.1187
88.000
- .025106
23487.2324
- 5437.4622
- .001389
17.0023
537.0654
90.000
- .027884
13686.4390
- 4293.5521
- .001389
9.9075
606.8447
92.000
- .030662
6313.0242
- 3008.3124
- .001389
4.5700
678.3950
94.000
- .033440
1653.1893
- 1578.2560
- .001389
1.1967
751.6614
96.000
- .036218
0.0000
0.0000
- .001389
0.0000
826.5946
output verification:
Computed
forces and
moments are
within specified convergence limits.
Output Summary
for
Load Case No.
1:
r - --
Pile -head
deflection
= .09885554
in
-
Computed
slope at pile head
= - .00143557
Maximum bending
moment
= 402100.712
lbs -in
Maximum shear
force
= - 10017.495
lbs
Depth of
maximum bending moment
=
34.000 in
Page
4
S -_ t?
, 47-
3
1,14
OL
H
7HEIGHT.lpo
Depth of maximum shear force = 70.000 in
Number of iterations = 8
Number of zero deflection points = 1
------------------------------------------------------------------------------
summary of Pile -head Response
------------------------------------------------------------------------ - - - - --
Definition of symbols for pile -head boundary conditions:
y = pile -head displacment, in
M = pile -head moment, lbs -in
V = pile -head shear force, lbs
S = pile -head slope, radians
R = rotational stiffness of pile -head, in- lbs /rad
BC Boundary
Boundary
Axial
Pile Head
Maximum
Maximum
Type Condition
Condition
Load
Deflection
Moment
shear
1
- - -- ------ - -
2
lbs
in
in -lbs
lbs
- - --
1 V= 8000.000
------ - - - - -- -----
M= 2.28E +05
- - - - --
0.0000
----- - - - - --
.098856
----- - - - - --
402100.7118
----- - - - - --
- 10017.4947
------------------------------------------------------------------------------
Pile -head Deflection vs. Pile Length
------------------------------------------------------------------------ - - - - --
Boundary Condition Type 1, Shear and Moment
Shear =
Moment =
Axial Load =
Pile
Length
in
96.000
91.200
86.400
81.600
76.800
72.000
67.200
8000. 1 b
228000. in -lbs
0. lbs
Pile Head
Deflection
in
.09885554
.11485786
.13652818
.16796563
.21933787
.32829055
1.15334747
The analysis ended normally.
Maximum
Moment
in -lbs
402100.712
394733.239
387951.693
381955.206
376985.117
373911.974
372954.226
Maximum
shear
lbs
- 10017.495
- 10387.984
- 10846.134
- 11437.515
- 12254.293
- 13552.637
- 17039.276
Page 5
e e e
NONE-]
MEN .-
M
st
t
r
Q.
G1
'A�
rl-
EMEL-2
Lateral Deflection (in)
-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 n_ 1 R n 1 R
e e e
0
m
0
c
c
O
v �
y o
d
�v
CN
2 V?
� o
CL
N
O
T7
O
0
10 20 30 40 50 60
Pile Length (in)
1 1 , 1,, , I , , Iv 10' EXPOSED - 10' EMBED
70 80 90 100 110 120
J
10HT.1po
LPILE Plus for windows, version 5.0 (5.0.1)
Analysis of individual Piles and Drilled Shafts
Subjected to Lateral Loading using the p -y Method
(c) Copyrigght ENSOFT, Inc., 1985 -2004
A11 Rights Reserved
This program is licensed to:
JOHN H. HART
COGGINS
Path
to
file locations:
C: \Documents and Settings \COGGINS AND SONS \My
Documents \2006JOBS \5117FOURSEASONS\
Name
of
input data file:
10HT.lpd
Name
of
output file:
10HT.lpo
Name
of
plot output file:
10HT.lpp
Name
of
runtime file:
10HT.lpr
------------------------------------------------------------------------------
Time and Date of Analysis
------------------------------------------------------------------------ - - - - --
Date: August 28, 2006 Time: 10:54: 6
----------------------------------------
Problem Title
------------------------------------------------------------------------ - - - - --
FOUR SEASONS - 10' EXPSOED (10' EMBED)
------------------------------------------------------------------------------
Program options
------------------------------------------------------------------------ - - - - --
Units used in Computations - US Customary Units, inches, pounds
Basic Program Options:
Analysis Type 1:
- Computation of Lateral Pile Response using user - specified Constant EI
Computation Options:
- Only internally - generated p -y curves used in analysis
- Analysis does not use p -y multipliers (individual pile or shaft action only)
- Analysis assumes no shear resistance at pile tip
- Analysis includes automatic computation of pile -top deflection vs.
pile embedment length
- No computation of foundation stiffness matrix elements
- output pile response for full length of pile
- Analysis assumes no soil movements acting on pile
- No additional p -y curves to be computed at user - specified depths
Solution Control Parameters:
Page 1
r
�7 >
- Number of pile increments lOHT.lpo = 40
IID - Maximum number of iterations allowed = 100
- Deflection tolerance for convergence = 1.0000E -05 in
- Maximum allowable deflection = 1.0000E +02 in
Printing Options:
- values of pile -head deflection, bending moment, shear force, and
soil reaction are printed for full length of pile.
- Printing Increment (spacing of output points) = 1
------------------------------------------------------------------------------
Pile Structural Properties and Geometry
------------------------------------------------------------------------ - - - - --
Pile Length = 120.00 in
Depth of ground surface below top of pile = .00 in
Slope angle of ground surface = .00 deg.
Structural properties of pile defined using 2 points
Point Depth
Pile Moment of
Pile Modulus of
X
Diameter Inertia
Area Elasticity
in
in in * *4
Sq.in lbs /Sq.in
- - - -- --- - - - - -- -----
1 0.0000
- - - - -- ---- - - - - --
24.000 16945.0000
---- - - - - -- ----- - - - - --
452.0000 32122019.000
2 120.0000
24.000 16945.0000
452.0000 32122019.000
------------------------------------------------------------------------------
Soil and Rock Layering
Information
------------------------------------------------------------------------------
The soil profile is
modelled using 1 layers
Layer 1 is sand, p -y criteria by API RP -2A,
1987
Distance from top of
pile to top of layer
= .000 in
Distance from top of
to bottom of layer
= 120.000 in
p -y subgrade modulus
vile
k for top of soil layer
= 250.000 lbs /in * *3
p -y subgrade modulus
k for bottom of layer
= 250.000 lbs /in * *3
(Depth of lowest layer extends .00 in below pile tip)
------------------------------------------------------------------------------
Effective unit weight of Soil vs. Depth
------------------------------------------------------------------------ - - - - --
Distribution of effective unit weight of soil with depth
is defined using 2 points
Point Depth x Eff. unit weight
No. in lbs /in * *3
- - - -- ---- - - - - -- ----------------
1 .00 .07500
2 120.00 .07500
------------------------------------------------------------------------------
shear Strength of soils
------------------------------------------------------------------------------
Page 2
I
10HT.1po
Distribution of shear strength parameters with depth
defined using 2 points
Point Depth x Cohesion c Angle of Friction E50 or RQD
No. in lbs /in * *2 Deg. k_rm
- - - -- -- - - - - -- ---- - - - - -- ------------ - - - - -- - - - - -- - - - - --
1 .000 .00000 34.00 - - - - -- - - - - --
2 120.000 .00000 34.00 - - - - -- - - - - --
Notes:
(1) Cohesion = uniaxial compressive strength for rock materials.
(2) values of E50 are repported for clay strata.
(3) Default values will be generated for E50 when input values are 0.
(4) RQD and k_rm are reported only for weak rock strata.
------------------------------------------------------------------------------
Loading Type
------------------------------------------------------------------------ - - - - --
static loading criteria was used for computation of p -y curves
------------------------------------------------------------------------------
Pile -head Loading and Pile -head Fixity conditions
------------------------------------------------------------------------ - - - - --
Number of loads specified = 1
Load Case Number 1
Pile -head boundary conditions are Shear and Moment (BC Type 1)
Shear force at pile head = 19000.000 lbs
Bending moment at pile head = 744000.000 in -lbs
Axial load at pile head = .000 lbs
Non -zero moment at pile head for this load case indicates the pile -head
may rotate under the applied pile -head loading, but is not a free -head
(zero moment) condition.
------------------------------------------------------------------------------
Computed values of Load Distribution and Deflection
for Lateral Loading for Load case Number 1
------------------------------------------------------------------------ - - - - --
Pile -head boundary conditions are shear and Moment (BC Tyyppe 1)
Specified shear force at pile head = 19000.000 lbs
specified bending moment at pile head = 744000.000 in -lbs
specified axial load at pile head = .000 lbs
Non -zero moment for this load case indicates the pile -head may rotate under
the applied pile -head loading, but is not a free -head (zero moment )condition.
Depth Deflect. Moment Shear Slope Total Soil Res
x p
in in lbs -in lbs Rad. lbs /ins *2 lbs /in
Page 3
Output Summary for Load Case No. 1:
Pile -head deflection
Computed slope at pile head
Maximum bending moment
Maximum shear force
Depth of maximum bending moment
Depth of maximum shear force
Number of iterations
Number of zero deflection points
.19365165 in = I u i .:4 -
- .00227360 - - -- - - - - - --
1287888.877 lbs -in
_ - 26466.822 lbs
42.000 in
90.000 in
li = q 2 at }a
Page 4
'j t LV -', -_3 �� ,_
13 l _ � vL
10HT.1po
0.000
--- - - - - --
.193652
----- - - - - --
744000.0000
----- - - - - -- -----
19000.0000
- - - - -- -----
- .002274
- - - - -- -----
526.8811
- - - - --
0.0000
3.000
.186837
800999.9999
18916.7178
- .002269
567.2470
- 55.5215
6.000
.180036
857500.3067
18658.7326
- .002265
607.2590
- 116.4687
9.000
.173248
912952.3954
18212.1057
- .002260
646.5287
- 181.2826
12.000
.166476
966772.9407
17567.5696
- .002255
684.6430
- 248.4081
15.000
.159720
1.018E +06
16720.4482
- .002249
721.1740
- 316.3394
18.000
.152981
1.067E +06
15670.4553
- .002243
755.6888
- 383.6559
21.000
.146259
1.112E +06
14421.4012
- .002237
787.7584
- 449.0468
24.000
.139556
1.154E +06
12980.8417
- .002231
816.9660
- 511.3261
27.000
.132872
1.190E +06
11359.6961
- .002225
842.9146
- 569.4376
30.000
.126207
1.222E +06
9571.8584
- .002218
865.2338
- 622.4542
33.000
.119563
1.248E +06
7633.8187
- .002211
883.5858
- 669.5723
36.000
.112939
1.268E +06
5564.3058
- .002204
897.6702
- 710.1030
39.000
.106337
1.281E +06
3383.9585
- .002197
907.2287
- 743.4618
42.000
.099755
1.288E +06
1115.0299
- .002190
912.0488
- 769.1573
45.000
.093195
1.288E +06
- 1218.8763
- .002183
911.9665
- 786.7802
48.000
.086656
1.281E +06
- 3593.0356
- .002176
906.8697
- 795.9927
51.000
.080138
1.266E +06
- 5981.8021
- .002169
896.6996
- 796.5183
54.000
.073641
1.245E +06
- 8358.7784
- .002162
881.4528
- 788.1326
57.000
.067165
1.216E +06
- 10696.9600
- .002155
861.1828
- 770.6551
60.000
.060709
1.181E +06
- 12968.8552
- .002149
836.0010
- 743.9417
63.000
.054272
1.138E +06
- 15146.5841
- .002142
806.0776
- 707.8776
66.000
.047855
1.090E +06
- 17235.6659
- .002136
771.6425
- 684.8436
69.000
.041455
1.035E +06
- 19230.3160
- .002130
732.8425
- 644.9231
72.000
.035072
974241.6465
- 21079.5447
- .002125
689.9321
- 587.8960
75.000
.028706
908357.4804
- 22732.5724
- .002120
643.2747
- 514.1225
78.000
.022354
837846.2119
- 24140.4417
- .002115
593.3405
- 424.4571
81.000
.016016
763514.8300
- 25257.3160
- .002110
540.7010
- 320.1258
84.000
.009691
686302.3157
- 26041.3913
- .002106
486.0211
- 202.5910
87.000
.003377
607266.4823
- 26455.4106
- .002103
430.0500
- 73.4219
90.000
- .002926
527569.8523
- 26466.8218
- .002100
373.6110
65.8144
93.000
- .009221
448465.5518
- 26047.6488
- .002097
317.5914
213.6343
96.000
- .015509
371283.9596
- 25174.1594
- .002095
262.9335
368.6920
99.000
- .021790
297420.5956
- 23826.4078
- .002093
210.6254
529.8090
102.000
- .028067
228325.5126
- 21987.7195
- .002092
161.6941
695.9832
105.000
- .034339
165494.2787
- 19644.1672
- .002090
117.1987
866.3850
108.000
- .040609
110460.5095
- 16784.0747
- .002090
78.2252
1040.3434
111.000
- .046877
64789.8307
- 13397.5669
- .002089
45.8824
1217.3285
114.000
- .053144
30075.1082
- 9476.1778
- .002089
21.2984
1396.9309
117.000
- .059411
7932.7639
- 5012.5180
- .002089
5.6178
1578.8423
120.000
- .065677
0.0000
0.0000
- .002089
0.0000
1762.8364
Output verification:
Computed
forces and
moments are
within specified convergence limits.
Output Summary for Load Case No. 1:
Pile -head deflection
Computed slope at pile head
Maximum bending moment
Maximum shear force
Depth of maximum bending moment
Depth of maximum shear force
Number of iterations
Number of zero deflection points
.19365165 in = I u i .:4 -
- .00227360 - - -- - - - - - --
1287888.877 lbs -in
_ - 26466.822 lbs
42.000 in
90.000 in
li = q 2 at }a
Page 4
'j t LV -', -_3 �� ,_
13 l _ � vL
10HT.Ipo
------------------------------------------------------------------------------
Summary of Pile -head Response
------------------ - - - - --
Definition of symbols for pile -head boundary conditions:
y = pile -head displacment, in
M = pile-head moment, lbs -in
v = pile -head shear force, lbs
S = pile -head slope, radians
R = rotational stiffness of pile -head, in- lbs /rad
BC Boundary
Boundary
Axial
Pile Head
Maximum
Maximum
Type Condition
Condition
Load
Deflection
Moment
shear
1
2
lbs
in
in -lbs
lbs
- - -- ------ - - - - --
1 v= 19000.000
------ - - - - -- -----
M= 7.44E +05
- - - - --
0.0000
----- - - - - --
.1937
----- - - - - --
1.288E +06
----- - - - - --
- 26466.8218
------------------------------------------------------------------------------
Pile -head Deflection vs. Pile Length
------------------------------------------------------------------------ - - - - --
Boundary Condition Type 1, Shear and Moment
shear =
19000. lbs
Moment =
744000. in -lbs
Axial Load =
0. lbs
Pile
Pile Head Maximum
Length
Deflection Moment
in
in in -lbs
----- - - - - --
120.000
------ - - - - -- ------ - - - - --
.19365165 1287888.877
114.000
.24391931 1275405.942
108.000
.34003824 1266646.430
102.000
.70733377 1263397.291
The analysis
ended normally.
Maximum
Shear
lbs
- 26466.822
- 28164.907
- 30638.496
- 35421.296
Page 5
0
N
M
LO
v
r
Q
d
W
O
r
r
r
N
r
M
r
e e
Lateral Deflection (in)
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
v 13' EXPOSED - 12' EMBED
? r
e e e
LC
0
Lq
0
U)
v
0
v
0
LJO
C �
o
c
0
V M
41 O
d LO
V N
O
d
a o
LO
0
0
0
0
0
v 13' EXPOSED - 12' EMBED
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Pile Length (in)
C�?
13HEIGHT.Ipo
LPILE Plus for Windows, version 5.0 (5.0.1)
Analysis of Individual Piles and Drilled Shafts
Subjected to Lateral Loading using the p -y Method
(c) Copyrigght ENSOFT, Inc., 1985 -2004
A11 Rights Reserved
This program is licensed to:
JOHN H. HART
COGGINS
Path
to
file locations:
C: \Documents and Settings \COGGINS AND SONS \My
Documents \2006JOBS \5117FOURSEASONS\
Name
of
input data file:
13HEIGHT.Ipd
Name
of
output file:
13HEIGHT.lpo
Name
of
plot output file:
13HEIGHT.Ipp
Name
of
runtime file:
13HEIGHT.lpr
------------------------------------------------------------------------------
Time and Date of Analysis
------------------------------------------------------------------------ - - - - --
Date: August 28, 2006 Time: 12:32:32
------------------------------------------------------------------------------
Problem Title
------------------------------------------------------------------------ - - - - --
FOUR SEASONS - 13' EXPSOED (12' EMBED)
------------------------------------------------------------------------------
Program options
------------------------------------------------------------------------ - - - - --
units used in Computations - us Customary units, inches, pounds
Basic Program options:
Analysis Type 1:
- Computation of Lateral Pile Response Using User - specified Constant EI
Computation Options:
- Only internally - generated p -y curves used in analysis
- Analysis does not use p -y multipliers (individual pile or shaft action only)
- Analysis assumes no shear resistance at pile tip
- Analysis includes automatic computation of pile -top deflection vs.
pile embedment length
- No computation of foundation stiffness matrix elements
- output pile response for full length of pile
- Analysis assumes no soil movements acting on pile
- No additional p -y curves to be computed at user - specified depths
Solution Control Parameters:
Page 1
13HEIGHT.1p0
- Number of pile increments = 52
- Maximum number of iterations allowed = 100
- Deflection tolerance for convergence = 1.0000E -05 in
- Maximum allowable deflection = 1.0000E +02 in
Printing options:
- values of pile -head deflection, bending moment, shear force, and
soil reaction are printed for full length of pile.
- Printing Increment (spacing of output points) = 1
------------------------------------------------------------------------------
Pile structural Properties and Geometry
------------------------------------------------------------------------ - - - - --
Pile
Length
=
156.00 in
pile to top of layer =
Depth
of ground surface below
top of pile =
.00 in
156.000
slope
angle of ground
surface
=
.00 deg.
structural
properties
of pile
defined using
2 points
Point
Depth
Pile
Moment of
Pile
Modulus of
x Diameter
Inertia
Area
Elasticity
in
in
in" *4
Sq.in
lbs /Sq.in
- - - --
1
--- - - - - -- -----
0.0000
- - - - --
24.000
---- - - - - --
17270.0000
---- - - - - --
452.0000
----- - - - - --
32122019.000
2
156.0000
24.000
17270.0000
452.0000
32122019.000
------------------------------------------------------------------------------
soil and Rock Layering Information
------------------------------------------------------------------------ - - - - --
The soil profile is modelled using 1 layers
Layer 1 is sand, p -y
criteria by API RP -2A, 1987
Distance from top of
pile to top of layer =
.000
in
Distance from top of
ppile to bottom of layer =
156.000
in
p -y subgrade modulus
k for top of soil layer =
250.000
lbs /in * *3
p -y subgrade modulus
k for bottom of layer =
250.000
lbs /in * *3
(Depth of lowest layer extends .00 in below pile tip)
------------------------------------------------------------------------------
Effective unit weight of soil vs. Depth
------------------------------------------------------------------------ - - - - --
Distribution of effective unit weight of soil with depth
is defined using 2 points
Point Depth x Eff. unit weight
No. in lbs /in * *3
- - - -- ---- - - - - -- ----------------
1 .00 .07500
2 156.00 .07500
------------------------------------------------------------------------------
shear Strength of soils
---------------------------------------------
Page 2
Notes:
(1) Cohesion = uniaxial compressive strength for rock materials.
(2) values of E50 are repported for clay strata.
(3) Default values will be generated for E50 when input values are 0.
(4) RQD and k_rm are reported only for weak rock strata.
------------------------------------------------------------------------------
Loading Type
------------------------------------------------------------------------ - - - - --
Static loading criteria was used for computation of p -y curves
------------------------------------------------------------------------------
Pile -head Loading and Pile -head Fixity conditions
------------------------------------------------------------------------ - - - - --
Number of loads specified = 1
Load Case Number 1
Pile -head boundary conditions are Shear and Moment (BC Type 1)
shear force at pile head' = 27000.000 lbs
Bending moment at pile head = 1380000.000 in -lbs
Axial load at pile head = .000 lbs
Non -zero moment at pile head for this load case indicates the pile -head
may rotate under the applied pile -head loading, but is not a free -head
(zero moment) condition.
------------------------------------------------------------------------------
Computed values of Load Distribution and Deflection
for Lateral Loading for Load case Number 1
------------------------------------------------------------------------ - - - - --
Pile -head boundary conditions are shear and Moment (BC T e 1)
specified shear force at pile head = 27000.000 lbs
specified bending moment at pile head = 1380000.000 in -lbs
Specified axial load at pile head = .000 lbs
Non -zero moment for this load case indicates the pile -head may rotate under
the applied pile -head loading, but is not a free -head (zero moment )condition.
Depth Deflect. Moment shear slope Total Soil Res
X y M V S Stress p
in in lbs -in lbs Rad. lbs /in * *2 lbs /in
Page 3
13HEIGHT.lpo
Distribution of
shear strength
parameters with depth
defined
using 2
points
Point
Depth x
cohesion c
Angle of Friction E50 or RQD
No.
in
lbs /in * *2
Deg. k_rm %
- - - --
1
-- - - - - --
.000
---- - - - - --
.00000
------------ - - - - -- - - - - -- - - - - --
34.00 - - - - -- - - - - --
2
156.000
.00000
34.00 - - - - -- - - - - --
Notes:
(1) Cohesion = uniaxial compressive strength for rock materials.
(2) values of E50 are repported for clay strata.
(3) Default values will be generated for E50 when input values are 0.
(4) RQD and k_rm are reported only for weak rock strata.
------------------------------------------------------------------------------
Loading Type
------------------------------------------------------------------------ - - - - --
Static loading criteria was used for computation of p -y curves
------------------------------------------------------------------------------
Pile -head Loading and Pile -head Fixity conditions
------------------------------------------------------------------------ - - - - --
Number of loads specified = 1
Load Case Number 1
Pile -head boundary conditions are Shear and Moment (BC Type 1)
shear force at pile head' = 27000.000 lbs
Bending moment at pile head = 1380000.000 in -lbs
Axial load at pile head = .000 lbs
Non -zero moment at pile head for this load case indicates the pile -head
may rotate under the applied pile -head loading, but is not a free -head
(zero moment) condition.
------------------------------------------------------------------------------
Computed values of Load Distribution and Deflection
for Lateral Loading for Load case Number 1
------------------------------------------------------------------------ - - - - --
Pile -head boundary conditions are shear and Moment (BC T e 1)
specified shear force at pile head = 27000.000 lbs
specified bending moment at pile head = 1380000.000 in -lbs
Specified axial load at pile head = .000 lbs
Non -zero moment for this load case indicates the pile -head may rotate under
the applied pile -head loading, but is not a free -head (zero moment )condition.
Depth Deflect. Moment shear slope Total Soil Res
X y M V S Stress p
in in lbs -in lbs Rad. lbs /in * *2 lbs /in
Page 3
i7.
13HEIGHT.Ipo
-- - - - - --
0.000
--- - - - - --
.158685
----- - - - - --
1.380E +06
----- - - - - -- -----
27000.0000
- - - - -- -----
- .001595
- - - - -- -----
958.8882
- - - - --
0.0000
3.000
.153912
1.461E +06
26918.3121
- .001587
1015.1708
- 54.4586
6.000
.149162
1.542E +06
26666.2625
- .001579
1071.1128
- 113.5745
9.000
.144437
1.621E +06
26232.2619
- .001571
1126.3446
- 175.7593
12.000
.139738
1.699E +06
25609.3135
- .001562
1180.4772
- 239.5396
15.000
.135067
1.775E +06
24794.6197
- .001552
1233.1118
- 303.5896
18.000
.130424
1.848E +06
23789.1189
- .001542
1283.8479
- 366.7443
21.000
.125812
1.917E +06
22597.0018
- .001532
1332.2906
- 428.0004
24.000
.121231
1.983E +06
21225.2402
- .001522
1378.0566
- 486.5073
27.000
.116681
2.045E +06
19683.1502
- .001511
1420.7803
- 541.5527
30.000
.112165
2.101E +06
17982.0005
- .001500
1460.1172
- 592.5471
33.000
.107684
2.153E +06
16134.6710
- .001488
1495.7487
- 639.0059
36.000
.103237
2.198E +06
14155.3628
- .001476
1527.3840
- 680.5330
39.000
.098825
2.238E +06
12059.3557
- .001464
1554.7635
- 716.8051
42.000
.094450
2.271E +06
9862.8137
- .001452
1577.6604
- 747.5563
45.000
.090112
2.297E +06
7582.6333
- .001440
1595.8823
- 772.5640
48.000
.085811
2.316E +06
5236.3352
- .001427
1609.2730
- 791.6348
51.000
.081548
2.328E +06
2841.9984
- .001415
1617.7130
- 804.5897
54.000
.077322
2.333E +06
418.2427
- .001402
1621.1215
- 811.2474
57.000
.073135
2.331E +06
- 2015.7338
- .001390
1619.4567
- 811.4035
60.000
.068985
2.321E +06
- 4440.0434
- .001377
1612.7177
- 804.8029
63.000
.064873
2.304E +06
- 6833.8941
- .001365
1600.9458
- 791.0976
66.000
.060798
2.280E +06
- 9231.6122
- .001352
1584.2267
- 807.3811
69.000
.056760
2.249E +06
- 11666.3014
- .001340
1562.4585
- 815.7450
72.000
.052759
2.210E +06
- 14113.6406
- .001328
1535.5890
- 815.8145
75.000
.048793
2.164E +06
- 16548.4219
- .001316
1503.6176
- 807.3731
78.000
.044863
2.111E +06
- 18945.0065
- .001304
1466.5973
- 790.3499
81.000
.040967
2.050E +06
- 21277.7331
- .001293
1424.6344
- 764.8011
84.000
.037104
1.983E +06
- 23521.2663
- .001282
1377.8887
- 730.8876
87.000
.033273
1.909E +06
- 25650.8758
- .001272
1326.5724
- 688.8520
90.000
.029473
1.829E +06
- 27642.6474
- .001262
1270.9482
- 638.9958
93.000
.025703
1.743E +06
- 29473.6288
- .001252
1211.3280
- 581.6585
96.000
.021961
1.652E +06
- 31121.9165
- .001243
1148.0703
- 517.2000
99.000
.018246
1.557E +06
- 32566.6948
- .001234
1081.5782
- 445.9855
102.000
.014557
1.457E +06
- 33788.2334
- .001226
1012.2972
- 368.3736
105.000
.010890
1.354E +06
- 34767.8555
- .001218
940.7124
- 284.7079
108.000
.007246
1.248E +06
- 35487.8834
- .001211
867.3472
- 195.3107
111.000
.003622
1.141E +06
- 35931.5688
- .001205
792.7606
- 100.4796
114.000
1.70E -05
1.033E +06
- 36083.0152
- .001199
717.5456
-.4847
117.000
- .003572
924416.5509
- 35927.0954
- .001194
642.3277
104.4312
120.000
- .007145
817105.2050
- 35449.3701
- .001189
567.7627
214.0523
123.000
- .010706
711720.3303
- 34636.0082
- .001185
494.5364
328.1889
126.000
- .014254
609289.1559
- 33473.7123
- .001181
423.3625
446.6750
129.000
- .017793
510878.0564
- 31949.6503
- .001178
354.9819
569.3663
132.000
- .021324
417591.2538
- 30051.3939
- .001176
290.1618
696.1380
135.000
- .024848
330569.6932
- 27766.8638
- .001174
229.6952
826.8820
138.000
- .028366
250990.0709
- 25084.2837
- .001172
174.3996
961.5047
141.000
- .031881
180063.9908
- 21992.1406
- .001171
125.1168
1099.9241
144.000
- .035392
119037.2276
- 18479.1525
- .001170
82.7126
1242.0679
147.000
- .038902
69189.0758
- 14534.2442
- .001170
48.0758
1387.8710
150.000
- .042410
31831.7626
- 10146.5283
- .001169
22.1182
1537.2730
153.000
- .045918
8309.9062
- 5305.2938
- .001169
5.7741
1690.2167
156.000
- .049426
0.0000
0.0000
- .001169
0.0000
1846.6458
output verification:
computed
forces and
moments are
within specified convergence limits.
Output Summary
for
Load case No.
1:
Pile -head
deflection
= .15868541 in
Page
4
13HEIGHT.lp0 - -- _.
10 Computed slope at pile head = - .00159498
Maximum bending moment = 2333064.025 lbs -in
Maximum shear force = - 36083.015 lbs
Depth of maximum bending moment = 54.000 in
Depth of maximum shear force = 114.000 in ,
Number of iterations = 11
Number of zero deflection points = 1
------------------------------------------------------------------------------
summary of Pile -head Response
------------------------------------------------------------------------ - - - - --
Definition of symbols for pile -head boundary conditions:
y = pile -head displacment, in
M = pile -head moment, lbs -in
v = pile -head shear force, lbs
S = pile -head slope, radians
R = rotational stiffness of pile -head, in- lbs /rad
BC Boundary Boundary Axial Pile Head Maximum Maximum
Type condition Condition Load Deflection Moment Shear
1 2 lbs in in -lbs lbs
1 v= 27000.000 M= 1.38E +06 0.0000 .1587 2.333E +06 - 36083.0152
-------------- - - - - -- ----- - - - - --
---------------
---------------------Pile-head Deflection vs. Pile Length
Boundary condition Type 1,
shear and Moment
Shear =
27000. lbs
Moment =
1380000. in -lbs
Axial Load =
0. lbs
Pile
Pile Head
Maximum
Maximum
Length
Deflection
Moment
shear
in
in
in -lbs
lbs
----- - - - - --
156.000
------ - - - - --
.15868541
------ - - - - --
2333064.025
------ - - - - --
- 36083.015
148.200
.18796687
2303795.329
- 38042.217
140.400
.23419204
2279511.906
- 40577.081
132.600
.32191147
2262146.038
- 44328.411
124.800
.59355185
2255406.123
- 51243.334
The analysis ended normally.
Page 5
APPENDIX "A"
REM RE, NCE MATE' AND CODE,
AWN
S
I SHORING
DESIGN REFERENCE DOCUMENTS & BIBLIOGRAPHY
II• REFERENCE DESIGN CODES AND STANDARDS
COGGINS & SONS, INC., SHORING DESIGN REFERENCE MATERIALS
APRIL 16, 2002, BY STANLEY H. SMITH, PE AND JOHN H. HART, PE
SHORING DESIGN REFERENCE DOCUMENTS & BIBLIOGRAPHY
1) PECK, HANSON & THORNBURN, "FOUNDATION ENGINEERING ", SECOND EDITION, 1973.
2) GROUND ANCHORS AND ANCHORED SYSTEMS, GEOTECHNICAL ENGINEERING CIRCULAR
NO. 4, FHWA OFFICE OF BRIDGE TECHNOLOGY, JUNE 1999.
3) JOSEPH E. BOWLES, "FOUNDATION ANALYSIS AND DESIGN', FOURTH AND FIFTH EDITIONS,
1988 & 1996.
4) BRAJA M. DAS, "PRINCIPLES OF FOUNDATION ENGINEERING ", SECOND EDITION, 1990.
5) HOLTZ AND KOVACS, "AN INTRODUCTION TO GEOTECHNICAL ENGINEERING ", 1981.
6) ROBERT M. KOERNER, "DESIGNING WITH GEOSYNTHETICS ", THIRD EDITION, 1994.
7) NAVFAC 7.0 1, "SOIL MECHANICS ", SEPTEMBER, 1986
8) NAVFAC 7.02, "FOUNDATIONS AND EARTH STRUCTURES ", SEPTEMBER, 1986
9) HANNA, "FOUNDATIONS IN TENSION — GROUND ANCHORS ".
10) FHWA/RD- 82/047, "TIEBACKS ", JULY 1982.
11) PTI, "POST- TENSIONING MANUAL", FIFTH EDITION, 1997.
12) PTI, "RECOMMENDATIONS FOR PRESTRESSED ROCK AND SOIL ANCHORS ", THIRD EDITION,
1996.
13) ASCE, "SERVICEABILITY OF EARTH RETAINING STRUCTURES ", GSP #42,1994.
14) FHWA, FHWA -RD -75 -128, "LATERAL SUPPORT SYSTEMS AND UNDERPINNING", APRIL 1976,
VOLUMES I, II, IIL
15) ASCE, GEOTECHMCAL SPECIAL PUBICATION NO. 74, "GUIDELINES OF ENGINEERING
PRACTICE FOR BRACED AND TIED -BACK EXCAVATIONS ".
16) CHEN & ASSOCIATES, "DESIGN OF LATERALLY LOADED PIERS ", 1983.
17) ALAN MACNAB, "EARTH RETENTION SYSTEMS HANDBOOK ", 2002.
SOIL NAMING REFERENCE DOCUMENTS & BIBLIOGRAPHY
1) ASCE, "SOIL NAILING AND REINFORCED SOIL WALLS ", 1992.
2) FHWA/GOLDER PUBLICATION # FHWA- SA- 96-069, "MANUAL FOR DESIGN AND
CONSTRUCTION MONITORING OF SOIL NAIL WALLS ", NOVEMBER 1996.
3) ASCE, "GROUND IMPROVEMENT / GROUND REINFORCEMENT / GROUND TREATMENT'
SPECIAL PUBLICATION #69, JULY 1997.
4) XANTHAKOS, ABRAMSON & BRUCE, "GROUND CONTROL AND WROVEMENT', 1994.
SOFTWARE
1) CALIFORNIA DOT, "SNAIL PROGRAM", VERSION 2.11 -PC VERSION.
2) RISA TECHNOLOGIES, "RISA -21) VERSION 4.0, RAPID INTERACTIVE STRUCTURAL ANALYSIS -
2D, FRAME ANALYSIS.
3) GEO -SLOPE International Ltd., "SLOPEIW ", VERSION 5
REFERENCE DOCUMENTS
1) AMERICAN INSTITUTE OF STEEL CONSTRUCTION, "MANUAL OF STEEL CONSTRUCTION —
ALLOWABLE STRESS DESIGN', NINTH EDITION, 1989
2) AMERICAN INSTITUTE OF STEEL CONSTRUCTION, "MANUAL OF STEEL CONSTRUCTION —
LOAD AND RESISTANCE FACTOR DESIGN', THIRD EDITION, 2001
3) ACI 381- 99/318R -99, "BUILDING CODE AND COMMENTARY ", 1999.
4) ANSI/ASCE 7 -95, "MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES ".
5) ACI, "BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 -99) AND
COMMENTARY (ACI 318R -99).
6) ANSIlAF &PA NDS- 1997, "NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION'.
7) ASCE, "STANDARD FOR LOAD AND RESISTANCE FACTOR DESIGN (LRFD) FOR ENGINEERED
WOOD CONSTRUCTION'.
APPENDIX "B"
LAGGING DESIGN CRITERIA & REFERENCES
COGGINS & SO
Caisson Drilling, Excavation Shoring, Tieback Anchors
TIMBER LAGGING DESIGN CRITERIA AND REFERENCES
Updated July 21, 2003
The design of lagging is primarily based upon experience and semi- empirical
relationships rather than by any rigorous analysis. Coggin & Sons, Inc. have been
utilizing thick rough sawn #2 Douglas fir lumber for many years as lagging. The %Z"
diameter SAE Grade 2 lagging anchor bolts have been in use since 1994. This design has
been implemented successfully for numerous projects. From our experience, we have
determined the #2 Douglas fir can easily span 9' -0" in most soil condition. On occasion,
the #2 Douglas fir can span 10' -0" in appropriate soils without any failure problems. We
have used 9' -0" typical spacing for numerous projects ranging from 10 %0" to 45' -0"
deep without any problems. Please see figures 1 through 3 for examples of our 9'-0"
spacing at various depths.
The criteria followed for lagging design is from three sources: "Earth Retention Systems
Handbook ", FHWA Publication No. IF -99 -016, "Ground Anchors and Anchored
Systems", June 1999 and FHWA -RD -75 -128, "Lateral Support Systems and
Underpinning ", April 1976, Volumes I, II, & III). All of these documents indicate the
timber lagging should not be designed, but rather based on experience and semi - empirical
rules. Goldberg has assembled a table in his report to the FHWA 1976 suggesting
lagging thicknesses for various types of soils (a copy can be seen in Table 1).
If a design analysis is attempted, it is suggested from the three references listed
previously to design the lagging for a soil pressure equal to 50 percent of the apparent
earth pressure. Coggin & Son, Inc. experience indicates this is conservative in many
cases because of the "hard to estimate" arching affect behind the shoring wall. In
addition, we believe that most lagging will deflect to the point where the retained soils
will arch between the soldier piles and relieve the pressure on the lagging. Once a point
of equilibrium is reached, the deflection will stop.
The following two pages show results for estimated lagging design. In addition, excerpts
from the above- mentioned references and steel stud / #2 Douglas Fir strengths are shown.
9512 Titan Park Circle • Littleton, Colorado 80125 • (303) 791 -9911 • FAX (303) 791 -0967
hftp://cogginsandsons.uswestdex.com
FOUR SEASONS
LAGGING DESIGN
GIVEN:
SOIL TYPE:
SAND AND.COBBLES
DESIGN PRESSURE (X)(h) (psf):
37
EXCAVATION DEPTH (ft):
13
SOLDIER BEAM SPACING (ft):
85
CLEAR SPAN (ft);
65
BOARD HEIGHT (in):
12
BOARD THICK (in):
3
FLEX. STRESS OF #2
DOUGLAS FIR (psi):
1200
FIND:
BENDING STRESS
1 COMPUTE MOMENT I M = w *(I "2 ))`/ 8
w s
240:5
ft
mt-
6.5
' M' ft - #
1270 "
2 COMPUTE SECTION MODULUS I S = ,b* h "2 / 6
bin) =
12
h. n)
3
S (in ^3) _
18.
3 COMPUTE BENDING. STRESS,. fb =`M/S
fb (psi) = 1 847
e e e
SOLDIER BEAM
2 CHANNELS
3/1 E
PL 3/8" x 3"
W/ 5/8" DIA. HOLE
PLAN VIEW OF TYPICAL SHORING AND LAGGING
3" TIMBER LAGGING
1. STUD
WELDED TO CHANNEL
s ° -
i, .
hw
:!.}• {� a -o-� .sue.- 'r rx� "� t .t ." �� } - �� - Mill
S —�.•�^ -mss �' y-e -�i... l --
�• .E '�� �tS „ytCS'•Q -. j[Y'�"�.StS i � i ^i � - �g�'`�y ' �,..+� � _ _ i� •• � � .--�.
e,, f ' J'�,.,�a�tv" - .r'�°��• � � �3V':s�` � � �-'L .may' � ' �f`
�
_
_ :� � S W 3
L
��
j 'Sk 5'.,'� t 4 -. ,t 4 f y iC
� `f _
� � � t� �
-
-
_
�
� �.
.
� �_
jt �(
�_.s1�I ice.— 1
_
�'.. _... .__. .� j[-- F_ —.(r
_
_�
_ -`
... - -'
e —
�-
s ?
�`
- � i
_ _
'e ___
��\ '
_ �sp�. ..
__
�
'�:x � _.
__
i _ _
K
s4�Yi y
-_ _ _
t s
i_ { ..
�,
� ��'.�'.
-. t.
__
q��; � s
�c3'_ ���f ��` Cam.
'�
�,
- --
-f v. �,_.
b r ,..�,�, �. ._
-_
'pEp{t'ER �IUSEUMOFirn)�/5+ "y �;
AK
01, �
gal
# - C z j �� ii i- f,,.q�- .i ✓mss _ � _ / "a >'
{
• _ - rr .
-
-
r;
IT
At
Yy f
14
DENVER MUSEUM
CLEAN, SAND
26' - 0" TO 28' - 0" EXCAVATION
9' - 0" BEAM SPACING
-[Z-- 'k YL (-' Z
F
1
-
`
i FM
Pam
L41
5#1
Table 12. Recommended thickness of temporary timber lagging (after FHWA -RD -75 -130, 1976)
�01
-rA G :
82
Soil Description
Unified Soil
Depth
-
Recommended thickness of lagging (roughcut) for clear spans of:
Classification
(m)
COMPETENT
1.5 m
1.8 m
2.1 m
2.4 m
2.7 m 3.0 m
SOILS
Silt or fine sand and silt
ML, SM -ML
above water table
Sands and gravels
GW, GP, GM,
0-8
50 mm
75 mm
75 mm
75 mm
100 mm 100 mm
(medium dense to dense)
GS, SW, SP,
SM
Clays (stiff to very stiff);
CL, CH
8-18
75 In' m
75 mm
75 mm
100 mm
100 mm 125 mm
non - fissured
Clays, medium
CL, CH
consistency and 7H <5
S„
DIFFICULT
SOILS
Sand and silty sand (loose)
SW, SP, SM
Clayey sands (medium
SC
0-8
75 mm
75 mm
75 mm
100 mm
100 mm
125 mm
dense to dense) below
water table
Clay, heavily
CL, CH
8-18
75 mm
75 mm
100 mm
100 mm
125 mm
125 nun
overconsolidated, fissured
Cohesionless silt or fine
ML, SM -SL
sand and silt below water
table
POTENTIALLY
DANGEROUS
Soft clays�I-I >5
CL, CH
0 - 5
75 mm
75 mm
100 mm
125 mm
---------
SOILS
S.
Slightly plastic silts below
ML
5 - 8
75 mm
100 mm
125 mm
150 mm
--- - - - - --
........
water table
Clayey Sands (loose),
SC
8 -11
100 mm
125 mm
150 mm
--- - - - - --
--- - - - - --
--- - - - - --
below water table
Notes: 1) In the category of "potentially dangerous soils ", use of soldier beam and lagging wall systems is questionable.
2) The values shown are based on construction grade lumber.
3) Local experience may take precedence over recommended values in this table.
-rA G :
82
r-
0
)ical raker footing.
for making the footings deep and narrow are many. Deeper and
that there is less chance that the footing will interfere with the
installations in the base of the excavation such as building foot -
plumbing lines, etc. By making the footing deep, it is easier to
:ant passive pressure to resist the lateral load of the footing (Fig -
tdition, deep narrow footings can be conveniently developed by
against neat earth excavations without any forming.. The foot -
the width of the backhoe bucket.
\N,
. , ,. .
•• • •
aker load -is restrained by inclined footing.
Usin 'n methods outlined in Peck, Hanson & Thorburn for calculating
the capac nclined footings, the size of the raker footing can be developed.
In cohesive soils, the unit bearing capacity of the footing is defined as
q = cNeq
where q is the ultimate bearing strength
c is cohesion
Neq is the bearing capacity factor (see Figure 11.11)
In cohesionless soils the ultimate bearing capacity of the footing is
q = % ByNyq
where B is the inclined length of the footing bearing surface
y is the unit weight of soil
Nyq is the bearing capacity factor (see Figure 11.11)
An alternative design method used to resist the lateral load place...,...,....,,
footings in softer soils involves the development of the capacity of the footing
through adhesion between the sidewalls of the deep narrow concrete footing.
Very large frictional areas exist which can carry significant load (Area ABC on
Figure 11.9).
11.8 LAGGING
A large body of opinion holds that timber lagging should not be designed. This
thought comes from observations that most lagging will simply deflect to the
point where the retained soils will arch between the soldier piles and relieve the
pressure on the lagging. Once a point of equilibrium is reached, it is argued, that
deflection will stop.
Excavations of depths to 60 feet (18 m) with lagging thickness of 3 inches (75
mm) and spans of 10 feet (3 m) have performed well. Excavations to 110 feet
(33.5 m) with 4 inch (100 mm) lagging and 9 foot (2.7 m) bays have similarly
performed satisfactorily.
The designer should be cautioned that this principle does not hold in soft
clays where arching is minimal or nonexistent. It should also be pointed out that
in these types of materials, timber lagging, soldier pile and lagging is often not
recommended at all.
That being said, there is a great desire on the part of many plan checkers to
have some rational mathematical method of designing timber lagging. Goldberg
Zoino in their report to the FHWA in 1976 (listed in the Bibliography) produced
a chart of suggested lagging thicknesses which is accepted by some as sufficient
for design purposes (see Table 11.1).
1�
0
W
N
J
0
I ..
c ►+
c
m
Yc'
M
Q
R.
P
0
.d
n
n
N
7
n
ro
()
R
CL
(D
m o
m
w
0�
O
—0o cNn O
0 00 0
TABLE 11.1 Goldberg Zoino Chart (Courtesy of the Federal Highway Administration)
S
0
yH
ii
W
0.
v
I
d
F
a
a
O
O
0
an
z
Q H
O �
7
n N
m
O A
� Q
R
CL rn
W o
m
m
fo
`� 0 o
Values of Ncq
N A Os
Note:
In the category of "potentially dangerous guile ".
use of lagging is questionable.
Recommended Thickne ses of
unified
for Meer Spans of:
Sell Dsscrlption
Magnification
Depth
S.
6'
7'.
5.
4'.
10'
Silts or Sae sand and gilt
ML
abaro water table
SM_ML
Sands and gravel. (medium
OW. GP, CM,
0' to 25'
2"
7"
1"
7"
4"
4" .
douse to dense).
,
Cc. Sty. SP. St4
Clays (etta to very stiff):
CL. CH
25' to 60'
1"
1"
3'.
4"
4"
S"
am- fissured.
.
Cars, medium cantle-
CL, CH
tency and JH < S.
Se
Sands and silty Sand..
Sty. SP, SSl
(loose).
.
Carey Sands (medium
Sc
0' to. Z5,
!"
)"
'3'
4"
4"
S"
dense 10 dense) below
Mater tabs.
Clays. heavilr'owr-
CL. CH
ZS' to 60'
3'
7"
4"
4"
S"
S.
consolidated fissured.
.
.
Cohenionless Silt or"*
M14 Sbl-ML
gaud and am below water
table.
Soft clays I > S:
CL. CH
0' to 1S'
S"
3..
4^
S.
--
--
Slightly PI& atlte
ML
15' to ZS'
Z"
4"
S"
6.,
_-
below wer ,&blo.
at
Clayey sands (loose).
Sc
25' to' S5'
4"
S"
6"
below water table.
Note:
In the category of "potentially dangerous guile ".
use of lagging is questionable.
Z
2
A
In
0
F
a
m
N
M
C
O
Ei
b
b
0
y
N
N
°
A
ti
rrw�w
_J
w
_y 1
w
Q.
cd a b o
0 0
�, n
cd
0 b
O o
b w
0 ...
a
o,
v
H w y O .b0
w
ti w
ca �
t1�y+
w
�
i- O
E
q Z
w
y
C b
•y
4.
,J'
y w b°
�O
Co
O O
ba
O 0
•Cud
of U O ." .ca -a.
w
v
.�.1
3 b � o
C
q
a�
y .
y
cz
%:
.r °
CS
00
A
v�
lu
'd
w ^* o
a ao
>
y d Z
e° ch
`
�0
q
N vi
M
b' U
.y
h b
h
'D
�p •8
d
`
Oai
'Z% r
N
R.
oy
w Qa '
r. c��° 4
4ca
on
e+
•
Co :
N�0
L-
0
ul
Q
1:1
E
�o
v
N
a
N
C9
b w 1
° a�i
O oc
cd a b o
0 0
�, n
.° oo�y c a°i
c� w
0 b
004 y
oao
Ob �'. , Nb
>,0
4 2
H w y O .b0
f
o�_
0
cd co
� •
o�
0 a o.ti
a .w °
y w b°
O vii
a� u ° ,A y
V
of U O ." .ca -a.
3 b � o
O
1„1
y .
a
o ^' oo Cr. 'O
Q
U cd
cC vi
C 00 N •CO Cc C13 cd
.L1^ O
w ^* o
a ao
w O
y d Z
e° ch
`
y O'
c� c`d N �
° N ¢41S y � N
3vcd a00H
Q
y
d
4.
y
�w-0 a
`
oo�
w � cl
y
as ;
oy
w Qa '
r. c��° 4
4ca
on
e+
•
Co :
Q. .0
cn .�
W
°
y
Q
w
a
O
y
P
W
a
O
a
a
z
w
0
rn
c
L
L
Q
rn
c
0
LL
'a
m
&o
m
�m
C E
o Q,
Ti 0
m
N
u
w
.y
O
oC
C4
u
3�
y
O
u �
'S
C C
O .
a m
v
u
0 c
a�
y� a
W N
u 'd
� c
�V
C7 �
W0
m
a.
E
co
w
c
W
N
ar3 q. y y bo O b
Ei
°� a ti N H b
°�°
op
O
O wO
0
B N Q O V
3 `O 'o a
cV p3q
N H
A•�PO
o a= a'
ti a >,
o U
ai O b d
h
O O O
•ca
°°3•c
'or°�o
.> „ b
� d c'0
00
3 op 0 C
cd •N.
.0
c
�Uao� E
o � a
.,...� 0. ,�•
4u
c3 u � O
°a 4) 06
3 aO°i
'v o N
LLI
N. Q
°
cc
.r' y •�� Cd N
04
�b❑C4
a b o b >
y
to
3 O N
a.
IL
v
a .c
;=
�n
�b E, N
anti °' o
H v
v 'cop
04
0
i�
45 N a+.
w O �o .
rMr
W ✓`� '�
rn
c
L
L
Q
rn
c
0
LL
'a
m
&o
m
�m
C E
o Q,
Ti 0
m
N
u
w
.y
O
oC
C4
u
3�
y
O
u �
'S
C C
O .
a m
v
u
0 c
a�
y� a
W N
u 'd
� c
�V
C7 �
W0
m
a.
E
co
w
c
W
N
ar3 q. y y bo O b
Ei
°� a ti N H b
O ' E C
•b
O
O wO
0
cV p3q
N H
VJ
y S u N Z y
o a= a'
ti a >,
o w u °' o 9 '0 v
h
O O O
•ca
e' OO cd :+ Q y
.> „ b
o� o
00
3 op 0 C
c
�Uao� E
L b °' o
.,...� 0. ,�•
4u
c3 u � O
°a 4) 06
3 aO°i
'v o N
°
C7
.r' y •�� Cd N
04
�b❑C4
a b o b >
y
to
3 O N
rn
c
L
L
Q
rn
c
0
LL
'a
m
&o
m
�m
C E
o Q,
Ti 0
m
N
u
w
.y
O
oC
C4
u
3�
y
O
u �
'S
C C
O .
a m
v
u
0 c
a�
y� a
W N
u 'd
� c
�V
C7 �
W0
m
a.
E
co
w
c
W
N
.7
:9
US.Department
of transportation
Federpl hv+icii±
Administration
wu. 1-1•tVVA -I1--99 -015
JUNE 1999
OfTuc . OP BRIDGE. TE=CHNOLOGY
400 $FVg'NTfi STREET, $W
WASHINGTON, DC 20590
.GEQT-TCNMG4L ENGIlVEff0G CIRC",,No, 4
For permanent walls and temporary walls that are considered critical, an allowable bending stress in
the soldier beam, K, of 0.55 Fy, where Fr is the yield stress of the steel, is recommended. Steel
sheet -pile and soldier beams are commonly either Grade 36 (Fy = 248 MPa) or Grade 50 (Fy = 345
MPa). For temporary SOE walls, a 20 percent increase in the allowable stress may be allowed for
Positive wall bending moments between anchor locations; no allowable stress increase is
recommended for negative wall bending movements at the anchor locations. The required section
modulus Sq, is calculated as:
Srq _ Mme`
(Equation 22)
Standard SI units are S(mm3), M. (W-m), and Fb (MPa). In most cases, several available steel
sections will typically meet this requirement. The actual wall section selected will be'based on
contractor /owner preference, cost, constructability, and details of the anchor /wall connection.
When designing permanent anchored walls in relatively uniform competent materials, it is usually
only necessary to check the final stage of construction provided that: (1) the ground can develop
adequate passive resistance below the excavation to support the wall; (2) apparent earth pressure
diagrams are used to assess the loading on the wall; and (3) there is minimal over excavation below
each anchor level (FHWA -RD -97 -130, 1998). For cases where there are large concentrated
surcharges or berms at the ground surface, it is prudent to check wall bending moments for the initial
cantilever stage (i.e., stage just prior to installation and lock -off of uppermost anchor).
Where the final excavation height is not the most critical condition, designers commonly use a
staged construction analysis where the maximum wall bending moment, wall deflections, and wall
embedment depth are evaluated for several stages of construction. An analysis is required for this
case since the maximum beading moment may occur at an intermediate stage of constriction (i.e.,
before the final excavation depth is reached). Intermediate construction stages may be critical when:
(1) triangular earth pressure diagrams are used to design the wall; (2) the excavation extends
significantly below an anchor level prior to stressing that anchor, (3) a cutoff wall is used to maintain
the water level behind the wall; (4) the soil below the �ottom of the excavation is wear resulting in
active earth pressures that are greater than available resistance provided by the too of the wall; and
(5) structures am located near the wall.
SA.2 Design of Lagging for Temporary Support
The thickness of temporary timber lagging for soldier beam and lagging walls is based primarily on
experience or semi - empirical rules. Table 12 presents recommended thicknesses of construction
grade lumber for temporary timber lagging. For temporary SOB walls, contractors may use other
lagging thicknesses provided they can demonstrate good performance of the lagging thickness for
walls constructed in similar ground.
Permanent timber lagging has been used in lieu of a concrete face to carry permanent wall loads. For
Permanent applications, the timber grade and dimensions should be designed according to structural
guidelines. Several problems may exist for permanent timber lagging including: (1) need to provide
fire protection for the lagging; (2) limited service life for timber, and (3) difficulty in providing
81
0
PB 257
Report No. FNWk= RO.15.128
LATERAL SUPPORT SYSTEMS AND UNDERPINNING
VOL I. Design and Construction
D. T. Goldberg, W. E. laworski, and- M. 0. Gordon
April 1916
Final Report
This document is available to the public
hough the National Technical Information
Service, Springfield, Virginia 22161
NATIONAL TEQJI'�!ICAL
Prepared for INFORMATION SERVICE
i I.S. Df1ARTMERf Of COYNftCE
SPRI16f1E1D. YA 21161
FEDERAL HIGHWAY ADMINISTRATION
Offices of Research & Development,
.p ent;
Washington, D.C. 20590
L�'
9932 Wood La. in
9.32.1 Wood Materials
_ United States is common wood used for lagging in the construction grade lumber, rough -cut. Struc-
tural stress- graded lumber may be specified though seldom used.
Preferred Woods are Douglas Fir nr c,,.,..�. _ -- �- --
mt,;,,L _� - --
Caisson Drilling, Excavation Shoring, Tieback Anchors
August 30, 2006 RECEIVED
Layton Construction Company, Inc.
9090 South Sandy Parkway ats+; -
Sandy, UT 84070
The Layton Companie,
Attention: Doug Carley
Subject: AMEC Earth Retention Review
We have reviewed AMEC's earth retention review report dated June 30, 2006. In
general, we agree with their comments and appreciated their review effort. AMEC's
summary determined two deficiencies. We have revised our earth retention design to
strengthen the deficiencies. In lieu of a micropile cantilever system, we have switched to
a soldier beam and lagging cantilever system. Please find attached revised calculations
and earth retention drawings reflecting changes.
If you have any questions, please feel free to call.
Sincerely, O•REGSN
. pal
�.
John H. Hart, PE-
Table 3. Strength properties for
typical grades of timber.
Allowable
Modulus of
Wood Type and Grade
Flexural Stress
Elasticity
fb, psi
E, psi
Douglas F- Larch, surfaced
dry or surfaced green used at
max. 19% M. C.
Construction
Select Structural
1200
1,500,000
2050
1,800,000
Douglas Fir - South, surfaced
dry or surfaced green used at
max. 19% M. C.
Construction
Select Structural
1150
1,100,000
1950
1,400,000
Northern Pine, surfaced at 15%
moisture content, used at 1570
max. 19% M. C.
Construction
Select Structural
1050
1, 200, 000
1750
1,500,000
tu!�e rn P ine, surfaced at 15°j6
ture content K. D. used at
15% max. M. C.
Construction
Select Structural �
1300
1,500,000
2250
11900,000
Southern Pine, surfaced dry,
used at max. 19% M. C.
Construction
Select Structural -
1200
1,400,000
2050
1,800,000
besPtr adail bleu coPY.
T
American Institute of Timber Construction, "Timber Construction
Manual", 2nd Edition, Wiley, 1974.
-119-
aiagraxn but allows a 50 percent increase in
G of stress graded 1 umber the allowable flexural
.
9. 32.4 Recommended La
in Thickness
A table of reconvnended thicknesses has been
developed and is presented as Table 4. Since the table h
ed on the basis of construction grade lumber, adjustments been develop-
for for stress- graded lumber, are required
are t icall The so- called "competent soils,, shown herein
Y either granular with relatively high angles of internal
friction or stiff to very stiff clays. Y g
are those with a ratio of Y Medium claps included in the table
than 5, overburden stress to undrained strength of less
-granular soils The category of "difficult soils'1 includes loose
tendency to run ,
with low angles of internal friction and soils'having a
when saturated.
clays are also • HeavilY overconsolidated fissured
included because they have a tendency to expaaad laterally-,
especially in deep excavations.
9.33 Dis lacements and Loss of Ground
9.33.1 General
are the soil in Important factors contributing to ground loss
zones incnmediately behind the .
of the lagging board itseU. gig and the IIexure
loss caused b The following discussion concerns ground
Particular the the inherent characteristics of soldier pile walls, in
not deal techniques used in construction.
will' overall deforniafaions of the ret)a. The discussion does
m_ ass.
9. 33, 2 Deflection of La
ib.
in Table 4 will generall The lagging board thicknesses recommended
Y maintain deflection to less than about 1 inch,
9. 38. 3 Overcut
by effective Movements caused by overcut are best controlled
backpacking ps�g of soil behind lagging. The most effective
_ to rain the soil, into the space from frhe uppesid of of
each laggUW board. .
. If there is difficulty .
Sion in terial r tY in obtaining sufficient cohe_
with fu _� rammed in this manner and /or there is concern
j ashout from ground water action, the soil can be Mixed
-120-
-a
as
H0
i
0
04 CA
f
Table 4. Recommended thicknesses of wood lagging.
Note:
s
la the category of "potentially dangerous sons "@
use of lagging is questionable.
-121-
Recommended Thicknesses of
Description
Hpti
Unified
- Classification
Depth
lagging (roughcut) for Clear Spans
5' 6'
of:
7'
Of 9'
!O'
SIlts or fine sand and silt
ML
M
above water table
SM -ML
hSands
t-„
and gravels (medium
dense to dense).
CW, Cps GM.
0' to 25'
2"
344
3"
3" 4"
4"
Clays
GC SW Slit SU
,
(stiff to very stiff):
non- fissured.
CL, CH
25' to 60'
3"
3"
3"
4" 4"
S"
04
Clays, medium consis.
CL CH
U
tency and 1fH 5.
Su
Sands and silty sands,
SW. Sp, SM
(loose).
hdense
Clayey sands (medium
to dense) below
SC
0' to 25'
3"
3"
3"
4" 4"
S "
H
water table.
pClays,
J
heathy over-
consolidated tissnred.
CL, CH
25' to 60'
3"
3"
4"
4" S"
5 «
9
Cohedouleas silt or fine,
Ml.t SM -ML
sand and sfk below water
table.
Soft clays If H > S.
�.
CL, CH
0' to 15 •
3"
3 «
4"
5" --
--
Slightly plastic silts
below water table.
ML
15' to ZS'
3"
4"
5"
6" --
--
1
Clayey sands (loose).
below water table.
SC
ZS' to 35'•
4"
5"
6"
"- --
"-
Note:
s
la the category of "potentially dangerous sons "@
use of lagging is questionable.
-121-
Sty:;
a'
ei
WCNANICAL AND MAtER1AL REQUIREMENTS
=FOft EXTERNALLY THREADED ► '' ' '
t FASTENERS- -.SAE J09 AUG83 i SAE atidard
.ease 1.. and scat Toc(n,iul C..1.:uce. npp,,, d lasNw7 bltl, ekeewd, It,Isia,s arc Disisivn 2!, 111l.�— 1 , �.
Sc*- -this SAE: St ndard clovers the tatcdlanial and (
i material re- _ NoTC: Previous iiiues tins stalidatd ads
W remenls for =sled bolls o covered nuts, now corl
screws, studs sems and U-W(s used 1n separately in SAE JS 95 (A 6dst1 IsJ -f►7). "
aultkltritivt ttnd related indus(rks in sii es •to 1 % in, indwive. " . 1 - �: De rkatalialts '
�soms: Scsrtw and wa,ber i ea,bfie,. i Z.1 Desi6natloa Srsttsa. ;trades air;dcYi6xicd btzntNnbcrs tr1
' U-bolts corcrrd by dlis SAE•Slandsrd are d,., wed Plisssardy b tl,e swpeasioll sticTeasing numbers represi•IIflinkreasing tensile strength . and by devil
'Aid wed -alms of
:1lbolu as atds, fl1 may' Fer' ' i°t1 ptslposes, this standaid, beau or whole numbers when r✓ s rept'acnt: variatkWes at the 's
w. *ter else Wald ufrd: ^• appeaa. ^U balls^ is also ill;- strength kve1.11te gradr igtutiats aft liven in.TaGk j..
tr"cnsliotlb "slice tint the ^ll•' = 2.2 Crudes —tldls an sitews am notarially a
' ups tsr stud, of else spine sdse� .- dKp;'a� kad 1,•�. S. 5.2, 7. g, and fl: i -S1uds arc twrmaur ava�ighhjt y c�
-p-kt of
i sl1Odd be detelwQ,sed H ssddk bad tests , 1,. 2; 4, 5. >l, and 8,1. C"1 5.1 is applicable to scmil which are I
TAAU t-- WatANWAIL RECAMANal s AND IGOfftflCl IM MARKING /OR aOCTS, tt S= fEMf /lNlf tf itOliY, -
I
FUN a" folly Me ddne T..I sredtose*e of ( = facfie. • _
C.
i set *r 4 s/ade, sane SAG, SWOW16 and slah I llaedaeof Na�daasl'.
of*& /nut Towelli Yleld� ' ' Testae j 1 ,
. Of - No*d,1i1flsi t�ecd slloclalts s4ona: f east* aedr ! Rodcw.R
poor h.dvds D� (slnee), (flea) (1fre") • (Sloe I Aenaallewe 'of At" ; Rec4wia 30H Mb Malt Osi,d.
I11 psi Ago, ►d MM, Hal Mtn. 1d i MI,ti,'K MM, 11 ,
• 1 " sorts, ' - -'
I S—'6, 1/4 Cm 1 -1/2. 33 0110% 60 000 36 000` 60 000 is 33 670 6100 Neel
! _ toll% 111 Mass Ve ! — _
strews, 53000 71000 37000 71000 111 ss too 1110((0
i ' '• slvdl aw 3/1 w 1 -1 /2 33 000 d0 000 36" 60 000 Is 33. — V0 gig = t
1 /116v 1 -1/2 as 000. 113.000 100000- 115000 10 331 (y pZ NO" t. — i
H°iir i fW'4 Ili Ihry 1 as cob 120000 12000 120000 14 35! ! 1 :34 "p5 C34 - \T
O+K 1 td 1 -1/2 71000 103000 61000 103000 11 35� I 50 C11 Cf0
: .1! t Ioll tin Nd. 6 d" 5/8 a3 000 120 000 t
s, — -- — —� i 59 Se C25 CIOe
i1. :pawl Nd. 6 Ili„ 1/2
ors 1/( 0" 1 6$000 120 000 12 000 120 000 14 331 36 C26 C36
•I ,,. 1.
•- � 7e ' fols
Spews 1 �4 0" 1.1/2 103 000 133 000 11300- - 133 000 12 35I SI ' e28 p4 I
N.
i' .
_ i = _•.� t sofas. : !: - •. - - - � i / \ •
( i
V,5 is!'s. 1A doss 1.1/2 120 000 -150000 130 000: 130 000 12 35, • I 38.6 03 (74 -
=
sows 120 000 150 000 130 000 150 000 w 33, — cat cue
Nave
es" sahl 1/1 Thn, 1 120000 150000 130000 150000 10 311 I 58.6 C33 ds
= Spews i
slrenpgl is *ell of N11k1, a Pemone"t set of 0.2% of it"t 4.0th eccs.s.
! e Grode�2 k *- *0* I"ItOd of rkW sken0lh at 0.2% offset.
Iegoketoleala slwM vodr s (at "cis 111 11"99113 11 In Op* o* to WU and spews 6 in end shwtet in ka011% and to studs of all leh9da. for both and sclews bnpat Rw. d In. Grad
_ Cx
Grade 7 ?da S inalrn�of(heal laalad beras< ossemblr wK a horsf"ed washes h an occeptaWa wbstilula.:" '
t See "�a "d Iak a roll Ihread 'I *fact Deal kessh""t. .
I 57 5 K washer head a eed Mi Ra=ga PMkK1l willsout ossembkd washers sf,aN have a core hardne+s tool eeceedmp Rockweil tole and a :when hartkta,s not ekleed:ng Rockwell �
st Sems and sin.0 _ ,1
1 See (oalr,ate 2 e( leco; ocls wit6oul waders.
INo1 orprica6k so nods er•rtolled and cross recess hood Prods.
od 1
•Prod Idad tes4 Rc • i
9viram�nN in A.eso Grades onir oPP1Y to shess relieved Prodvclt.
• 4.01
DICKMAN -HINES LUMBER COMPANY
- P.O. BOX 6137, FEDERAL WAY, WA 98063
PHONE 263.838..6790 FAX 253838.366
9
Memo
February 29, 2000
COGGINS & SONS DRILLING From: MIKE COOK
9512 TITAN PARK CIRCLE
LITTLETON, CO 80126
Attn: LARRY
PNQ : 3W?V l-m i FAXW3.791.OW
Re: Bending Design Values for 3 x 12
The Adjusted Fb for Doug Fir # 2 is 1,250 Psi
The Acgusted Fb for Hem Fir# 2 Is 1,175 Psi
These figures reProSent the minimum design value apowed for straight # 2 Grade. In
both cases the lumber provided is # 2 & Btr, with the amount of "better* varying from
manufacturer to manufacturer. We know that the Hem -Fir from this manufacturer has
all of the higher grades left in it, meaning that the percentage of #1 and Select
Shucfural grades in the mix is higher than in the Doug Fir,--. -therefore, one can
reasonably equate the overall strength of the two species to be very dose_
Fb (Exteme fiber in bending) to meet or exceed the abov 4fter-
adjustments for size, rOPeWe member, and fgatwise use. Fb may
be rounded to the nearest 25 or 50 paf increment according to
ASTAf Designation: D 245 section 61.
MIKE COOK
t)Iclunan -Hines Lumber Co.
TO /To -,I r-occ cx-0