Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Shoring Plan
0 PERMIT BOOKLET UPDATES Layton 9090 South Sand Parkway Y CONSTRUCTING WITN INTEGRITY Salt Lake City, UT 84070 (801) 568 -9090 • FAX (801) 569 -5450 Date: 10 -25 -06 Building Permit: B06 -0196 UPDATES FOR G & E PERMIT BOOKLET: Add the following information: New / Replace Existing Please insert Structural Design Calculations for Earth Retention System information into the Shoring Calculation section. If there are any questions please let me know. Thank you. N r COGGINS & SO Caisson Drilling, Excavation Shoring, Tieback Anchors STRUCTURAL DESIGN CALCULATIONS EARTH RETENTION SYSTEM for PROJECT NO. - 5117 PROJECT DESCRIPTION: EARTH RETENTION FOUR SEASONS HOTELS AND RESORTS Prepared for CLIENT: LAYTON CONSTRUCTION COMPANY ADDRESS: 9090 SOUTH SANDY PARKWAY CITY: SANDY STATE: UTAH 84070 TEL: 801-568-9090 FAX: 801-569-5450 e-�p0 REC.'/ T b Ili • Prepared By: JOHN H. HART, P.E. COGGINS & SONS, INC. DATE: JUNE 15, 2006 RECEIVED i 'I 9, 2006 �1rG�i1 construction ? .� —., ., �;'• `.' ,- o f ` ,M i A,1419 � Ir 4R f.RRMN::_, ice.. GpA^"++ t t ['i (( :4 f5�s f, ri per w EWEEiC!'4... Eris lli °�Lt °l i.. � �.i ANDt��, I'�v F'a r� F:..... .. �(-,��. i�: ?3t :,1:4Y !Si'�` t� euf. ii �- :�; :.. j- E 7 1.3YS , ,:,, f t ; r1 M i, t., yam, 3 t .....— - ..... -. - -_ DWEE 9512 Titan Park Circle - Littleton, Colorado 80125 - (303) 791 -9911 - FAX (303) 791 -0967 http : / /cogginsandsons.uswestdex.com ` FJ' COGGINS & SO Caisson Drilling, Excavation Shoring, Tieback Anchors EARTH RETENTION CALCULATIONS INDEX for PROJECT NO. - 5117 PROJECT: FOUR SEASONS ITEM NO. I DESCRIPTION I PAGES 1 SOILS S1.0 2 "SNAIL" ANALYSIS OF COLUMN #32 SOIL NAIL WALL (TEMP.) S2.0-S2.7 3 "SNAIL" ANALYSIS OF COLUMN #38 SOIL NAIL WALL (TEMP.) S3.0-S3.7 4 "SNAIL" ANALYSIS OF COLUMN #46 SOIL NAIL WALL (TEMP.) S4.0-S4.9 5 "SNAIL" ANALYSIS OF COLUMN #115 SOIL NAIL WALL (TEMP.) S5.0-S5.8 6 "SNAIL" ANALYSIS OF COLUMN #159 SOIL NAIL WALL (TEMP.) S6.0-S6.6 6 "SNAIL" ANALYSIS OF 10 ROWS SOIL NAIL WALL (TEMP.) S7.0-S7.7 6 "SNAIL" ANALYSIS OF 9 ROWS SOIL NAIL WALL (TEMP.) S8.0-S8.7 7 "SNAIL" ANALYSIS OF 8 ROWS SOIL NAIL WALL (TEMP.) S9.0-S9.6 8 "SNAIL" ANALYSIS OF 7 ROWS SOIL NAIL WALL (TEMP.) S10.0-S10.6 9 "SNAIL" ANALYSIS OF 6 ROWS SOIL NAIL WALL (TEMP.) S11.0 - S11.6 10 "SNAIL" ANALYSIS OF 5 ROWS SOIL NAIL WALL (TEMP.) S12.0-S12.6 11 "SNAIL" ANALYSIS OF 4 ROWS SOIL NAIL WALL (TEMP.) S13.0 - S13.4 12 "SNAIL" ANALYSIS OF 3 ROWS SOIL NAIL WALL (TEMP.) S14.0 -S14.4 13 IFACING DESIGN S15.0 APPENDIX "A", REFERENCE MATERIAL AND CODES 9512 Titan Park Circle • Littleton, Colorado 80125 • (303) 791 -9911 • FAX (303) 791 -0967 httD :Hcoaainsandsons.uswestdex.com %GGINS & SONS, INC. Name ���'- PH. FAX(303)797-0967 I- s DRILLING PROJECT: C;�— co.-. co.-. EARTH RETENTION SUBJECT: CTIE BACKANCHORS k 17 -xc{ -7-UA. '.LL 2 L51 C:1 'bl4b % kl)- Ic- ,&u5- V r, 47 -�vLL2 vLt PL-,.- 0,- -�. S P, r 0 cn— S 'Fo y C V-ovvu 0 L'o ATc cp IF o 0 C-) C-j 0 PROJECT NO.: DATE: (� I —. El E* T-0GGINS & SONS, INC. Name �� -` PH. (303)791-9977 FAX(303)797-0967 CAISSON DRILLING PROJECT: EARTH RETENTION TIE BACKANCHORS SUBJECT: PROJECT NO.: DATE: (.. / PROJECT TITLE: FOUR SEASONS Date: 06-13-2006 SnailWin 3.10 File: FOURSERS32 Minimum Factor of Safety 2.24 40.0 ft Behind Wall Crest At Wall Toe FS= 65.0 Hips— GAM PHI COH BIG pef deg psf psi Scale 10 ft File: FOURSEAS32 Page - 1 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * CALIFORNIA DEPARTMENT OF TRANSPORTATION * ENGINEERING SERVICE CENTER * DIVISION OF MATERIALS AND FOUNDATIONS * Office of Roadway Geotechnical Engineering * Date: 06 -13 -2006 Time: 10:38:55 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Project Identification - FOUR SEASONS --- - - - - -- WALL GEOMETRY --- - - - - -- Vertical Wall Height = 17.0 ft Wall Batter = 0.0 degree Angle Length (Deg) (Feet) First Slope from Wallcrest. = 0.0 5.0 Second Slope from 1st slope. = 90.0 14.0 Third Slope from 2nd slope. = 0.0 80.0 Fourth Slope from 3rd slope. = 0.0 0.0 Fifth Slope from 3rd slope. = 0.0 0.0 Sixth Slope from 3rd slope. = 0.0 0.0 Seventh Slope Angle. = 0.0 --- - - - - -- SLOPE BELOW THE WALL --- - - - - -- There is NO SLOPE BELOW THE TOE of the wall --- - - - - -- SURCHARGE --- - - - - -- There is NO SURCHARGE imposed on the system. --- - - - - -- OPTION #1 --- - - - - -- Factored Punching shear, Bond & Yield Stress are used. Unit Friction Soil Weight Angle Layer (Pcf) (Degree) 1 130.0 34.0 * Bond Stress also depe A& - SOIL PARAMETERS -- Cohesion Bond* Intercept Stress (Psf) (Psi) 0.0 20.0 nds on BSF Factor in Coord: XS1 (ft) 0.0 Option .nates of Boundary YS1 XS2 YS2 (ft) (ft) (ft) 0.0 0.0 0.0 #5 when enabled. u 1#1 File: FOURSEAS32 --- - - - - -- WATER SURFACE --- - -- - -- NO Water Table defined for this problem. --- - - - - -- SEARCH LIMIT --- - - - - -- The Search Limit is from 0.0 to 40.0 ft You have chosen NOT TO LIMIT the search of failure planes to specific nodes. --- - - - - -- REINFORCEMENT PARAMETERS --- - - - - -- Number of Reinforcement Levels = 6 Horizontal Spacing = 7.0 ft Yield Stress of Reinforcement = 45.0 ksi Diameter of Grouted Hole = 6.0 in Punching Shear = 65.0 kips ---- - - - - -- (Varying Reinforcement Parameters) --- - - - - -- Vertical Bar Level Length Inclination Spacing Diameter Bond Stress (ft) (degrees) (ft) (in) Factor 1 30.0 15.0 11.0 1.13 1.00 2 30.0 15.0 4.0 1.13 1.00 3 30.0 15.0 4.0 1.13 1.00 4 30.0 15.0 6.5 1.25 1.00 5 30.0 15.0 5.0 1.25 1.00 6 30.0 15.0 5.0 1.25 1.00 Page - 2 File: FOURSEAS32 MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH (ft) ANGLE LENGTH (deg) (ft) (ft) (deg) Toe 2.788 4.0 54.8 2.1 79.6 15.6 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 0.000 Ksi 3 = 0.000 Ksi 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 2 2.469 8.0 52.3 7.8 82.6 25.0 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 3 2.288 12.0 40.7 9.5 79.0 25.3 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) Page - 3 File: FOURSEAS32 MINIMUM SAFETY FACTOR DISTANCE LOWER FAILURE BEHIND PLANE WALL TOE ANGLE LENGTH (ft) (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) NODE 4 2.319 16.0 37.8 10.1 72.1 26.1 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 5 2.417 20.0 37.8 10.1 64.2 27.6 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = .45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 6 2.412 24.0 0.0 4.8 58.2 36.5 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) Page - 4 File: FOURSEAS32 MINIMUM SAFETY FACTOR DISTANCE LOWER FAILURE BEHIND PLANE WALL TOE ANGLE LENGTH (ft) (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) NODE 7 2.451 28.0 0.0 5.6 54.1 38.2 Reinf. Stress at Level 1 = 34.563 Ksi (Pullout controls...) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 8 2.431 32.0 0.0 6.4 50.4 40.2 Reinf. Stress at Level 1 = 22.636 Ksi (Pullout controls...) 2 = 35.379 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 9 2.363 36.0 0.0 7.2 47.1 42.3 Reinf. Stress at Level 1 = 11.236 Ksi (Pullout controls...) 2 = 25.255 Ksi (Pullout controls...) 3 = 39.275 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) Page - 5 U File: FOURSEAS32 MINIMUM SAFETY FACTOR NODE10 DISTANCE LOWER FAILURE BEHIND PLANE WALL TOE ANGLE LENGTH (ft) (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 2.239 40.0 0.0 4.0 40.7 47.5 Reinf. Stress at Level 1 = 5.313 Ksi (Pullout controls...) 2 = 22.005 Ksi (Pullout controls...) 3 = 38.698 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) Page - 6 ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * For Factor of Safety = 1.0 * Maximum Average Reinforcement Working Force: * 19.231 Kips /level ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** w Z J o! w CL 0 W _a 8172 - - - - 8170 - - - 8168 - - - - 8166 - - - 8164 - - - - 8162 - - - - 8160 8158 - - - - 8156 - - -- �'�0 - - -- 8154 - - 8152 - - - - 8150 - - - - 8148 - - - 8146 - - - - -, 8144 - - - - 8142 - - - - 8140 - - 11' -2" 8138 - - 8136 - - - - -J 8134 - - - - 8132 - - - - -- 8130 - - - - 8128 - - - - -- 8126 - - - V- » 8124 - - - - 8122 - - - - - w Z J D a 0 _ _ 8172 ---8170 _ _ I - 8168 (4) - 4" E C. CONDUITS (VERIFY IN FlELD) 8166 24" STORM INVERT 8158.21) 8164 / , r _ _ - - 8162 SHOTCRETE _ 8160 _ - - - 8158 _ _____8156 - 8154 _ - - - 8152 _ - - - 8150 _ - - 8148 _ - - - 8146 OLUMN - _ _ _ 8144 _____8142 _— _ - _ - - - 8140 _ _ - - - 8138 - 8136 !'a'so _ _ _ _ 8134 i GROUT COLUMN- _ _ 8132 !p.sw - _ _ - - 8130 - - - 8128 �' — _ _ _ - 8124 - 8122 CROSS SECTION AT NAIL 38 2,-02) SCALE. 1/8 I�. 0 �_ W Z to a ass I < $ goo z a Oa O UD O �a -rn 0�0 co 4 U7 ~� N ONraOo grn�Ia U Z U) Z O S U 00 Z cl 04 a � � n UCa k D11o. N0. p XBS li r Page - 1 File: FOURSEAS38 * CALIFORNIA DEPARTMENT OF TRANSPORTATION �- ENGINEERING SERVICE CENTER * DIVISION OF MATERIALS AND FOUNDATIONS * Office of Roadway Geotechnical Engineering * Date: 06 -13 -2006 Time: 10:58:55 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Project Identification - FOUR SEASONS --------- WALL GEOMETRY - --- - -- = Vertical Wall Height 10.7 ft = 0.0 degree Wall Batter Angle Length (Deg) (Feet) - First Slope from Wallcrest. 0.0 7.0 _ Second Slope from 1st slope. = 89.9 11.5 Third Slope from 2nd slope. = 0.0 7.0 Fourth Slop = 0.0 60.0 e from 3rd slope. = 90.0 10.5 Fifth Slope from 3rd slope. = 0 0 0.0 Sixth Slope from 3rd slope. = 0.0 Seventh Slope Angle. --------- SLOPE BELOW THE WA --------- There is NO SLOPE BELOW THE TOE of the wall - SURCHARGE -- --- - - -- There is NO SURCHARGE imposed on the system. -- OPTION #1 --- -- -- -- Factored Punching shear, Bond & Yield Stress are used. Unit Friction Soil Weight Angle Layer (Pcf) (Degree) 1 130.0 34.0 * Bond Stress also depe - SOIL PARAMETERS - -- Cohesion Bond* Intercept Stress (Psf) (Psi) 0.0 20.0 nds on BSF Factor in Coordi XS1 (ft) 0.0 Option nates of Boundary YS1 XS2 YS2 (ft) (ft) (ft) 0.0 0.0 0.0 #5 when enabled. Page - 2 File: FOURSEAS38 --- - - - - -- WATER SURFACE - - - - -- ID NO Water Table defined for this problem. --- - - - - -- SEARCH LIMIT --- - ----- The Search Limit is from 0.0 to 60.0 ft You have chosen NOT TO LIMIT the search of failure planes to specific nodes- --------- REINFORCEMENT PARAMETERS --- - -- --- Number of Reinforcement Levels = 6 Horizontal Spacing = 7.0 ft Yield Stress of Reinforcement = 45.0 ksi Diameter of Grouted Hole = 6.0 in Punching Shear = 65.0 kips ---- - - - - -- (Varying Reinforcement Parameters) --- - - - --- Vertical Bar Level Length Inclination Spacing Diameter Bond Stress (ft) (degrees) (ft) (in) Factor 1 30.0 15.0 22.0 1.00 1.00 2 30.0 15.0 4.0 1.00 1.00 3 30.0 15.0 7.0 1.13 1.00 4 30.0 15.0 5.5 1.13 1.00 5 30.0 15.0 8.0 1.25 1.00 6 30.0 15.0 4.7 1.25 1.00 NODE 2 12.0 0.0 7.2 77.8 22.7 3.333 Reinf. Stress at Level 1 = 0.000 Ksi 0.000 Ksi Page - 3 File: FOURSEAS38 2 = 3 = 45.000 Ksi (Yield Stress DISTANCE LOWER FAILURE UPPER FAILURE J P, MINIMUM BEHIND PLANE PLANE SAFETY WALL TOE ANGLE LENGTH ANGLE LENGTH FACTOR (ft) (deg) (ft) (deg) (ft) MINIMUM 6.0 26.9 4.7 78.1 8.7 Toe 4.051 SAFETY BEHIND OE PLANE ANGLE LENGTH Reinf. Stress at Level 1 = 0.000 Ksi 0.000 Ksi 2 = NODE 3 18 0 0.0 7.2 3 = 0.000 Ksi 3.344 4 = 5 = 0.000 Ksi 45.000 Ksi (Yield Stress controls.) Reinf. Stress at Level 1 = 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE ANGLE LENGTH ANGLE LENGTH FACTOR WA(ft)OE NODE 2 12.0 0.0 7.2 77.8 22.7 3.333 Reinf. Stress at Level 1 = 0.000 Ksi 0.000 Ksi 2 = 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND OE PLANE ANGLE LENGTH ANdGeLgE LENGTH FACTOR WALL NODE 3 18 0 0.0 7.2 71.7 34.4 3.344 Reinf. Stress at Level 1 = 45.000 Ksi (Yield (Yield Stress controls.) Stress controls.) 2 = 3 = 45.000 Ksi 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) E* NODE 9 2.647 24.0 0.0 12.0 69.8 34.8 Reinf. Stress at Level 1 = 42.507 Ksi (Pullout controls...) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 5 2.170 30.0 0.0 12.0 61.1 37.3 Reinf. Stress at -' Page 4 File: FOURSEAS38 (Pullout controls...) 2 = MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE w, �- SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH 45.000 Ksi (ft) (deg) (ft) (deg) (ft) NODE 9 2.647 24.0 0.0 12.0 69.8 34.8 Reinf. Stress at Level 1 = 42.507 Ksi (Pullout controls...) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 5 2.170 30.0 0.0 12.0 61.1 37.3 Reinf. Stress at Level 1 = 16.917 Ksi (Pullout controls...) 2 = 28.369 Ksi (Pullout controls...) 3 = 38.249 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 6 1.908 36.0 0.0 7.2 48.6 43.6 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 16.154 Ksi (Pullout controls...) 3 = 36.283 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) Page - 5 File: FOURSEAS38 MINIMUM SAFETY FACTOR DISTANCE LOWER FAILURE BEHIND PLANE WALL TOE ANGLE LENGTH (ft) (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) NODE 7 42 0 0.0 12.6 48.0 44.0 1.830 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 0.000 Ksi 3 = 14.669 Ksi (Pullout controls...) 4 = 33.459 Ksi (Pullout controls...) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER PL FAILURE SAFETY BEHIND PLANE FACTOR WALL TOE AN LENGTH LE G H ANGLE H g, LENGT NODE 8 48.0 0 0 9.6 40.4 50.4 1.825 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 0.000 Ksi 3 = 10.869 Ksi (Pullout controls...) 4 = 34.033 Ksi (Pullout controls...) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALftjOE ANdeLgE LENGTH ANdGeLgE LENGTH NODE 9 0.0 108 37.1 54.2 1.845 54.0 . Reinf. Stress at Level 1 = 0.000 Ksi 2 = 0.000 Ksi 3 = 0.000 Ksi 4 = 24.573 Ksi (Pullout controls...) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) , t... Page - 6 File: FOURSEAS38 UPPER FAILURE MINIMUM DISTANCE LOWER FAILURE BEHIND PLANE PLANE IND SAFETY ANGLE LENGTH ANGLE LENGTH FACTOR WALL TOE (deg) (ft) (deg) (ft) (ft) NODE10 0.0 12.0 34.2 58.1 1.931 60.0 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 0.000 Ksi 3 = 0.000 Ksi 4 = 15.647 Ksi (Pullout controls...) 5 = 44.861 Ksi (Pullout controls...) 6 45.000 Ksi (Yield Stress controls.) * For Factor of Safety = 1.0 Force: * Maximum Average Reinforcement Working 12.380 Kips /level ************************************ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1 u4*-7-jj &SONS INS : COGGINS Name � PROJECT NO.: PH. (303) 791 -9911 FAX (303) 791 0967 PROJECT: CAISSON DRILLING DATE: .ARTH RETENTION SUBJECT: TIE BACK ANCHORS -T a /� - e e 8132 - - _ 8130 - - - - 8128 - - _ 8126 - - - _ 8124 - 8122 - _ _ - 8134 - - _ _ 8132 8130 _ - 1 _ _ 8128 -_ 8126 - - _ 8124 _ _ 8122 44 0 � z � 1 a 0� .0 � Za I. o voo�' N �V,g�' zo to, U 70 '10 0 0 4 g m to CL V Z Z Y i Z_U9 O r XBS —X w z w z 8134 - J J C� LJ 0 _ _ 8172 - - _ _ - -� _ _ 8170 8172 - -CL _ 9'_— _ - �- - I - _ - (VERIFY IN FIELD) 8168 8166 8170 - - -�( - 4- EDUITS _ _ 8168 - _ 5-1H - 24 STORM 8160.5 7) - _ $164 _ 8166 - _ - - SHOTCRETE _ _ $162 8164 EXISTING SCORPIO - _ \ � _ - - - �gNSFORMER PAD _ 16 $160 suILDINC _ - 8162 PROVIDED 2 L � - -'� -3 _ 1 - _ BAE efaB.so _ _ 8158 TOS 8159. - 8160- B�-Alpl I - 8156 - 8158 - - - - I8154,e0 _ - I - GROUT COLUMN 8154 $152 8156 - -�- - _ _ - - 8154 - - _ - 8150 _ 8152 - _ MICROPILE _ _ - 8148 8150 - - - - - - $146 8148 - - _ _ 8146 - - 1 i� - - _ _ _ 8142 8144 - - _ - 8140 8142 - - -_ �— _ _ - 8138 8140 - L NAIL _ _ - -- - _ _ - 8136 8132 - - _ 8130 - - - - 8128 - - _ 8126 - - - _ 8124 - 8122 - _ _ - 8134 - - _ _ 8132 8130 _ - 1 _ _ 8128 -_ 8126 - - _ 8124 _ _ 8122 44 0 � z � 1 a 0� .0 � Za I. o voo�' N �V,g�' zo to, U 70 '10 0 0 4 g m to CL V Z Z Y i Z_U9 O r XBS —X nP. Zvi _ - 8136 8134 - - _ _ - 8134 - - _ _ 8132 8130 _ - 1 _ _ 8128 -_ 8126 - - _ 8124 _ _ 8122 44 0 � z � 1 a 0� .0 � Za I. o voo�' N �V,g�' zo to, U 70 '10 0 0 4 g m to CL V Z Z Y i Z_U9 O r XBS —X COGGINS & SONS-.= - °INC. Name k' . PH. (303) 791 -9911 FAX (303) 791 -0967 PROJECT: CAISSON DRILLING EARTH RETENTION SUBJECT: TIE BACK ANCHORS '! r T CoL.V r.A S @ G ( 6 / o c- K-lrt Z S VL- 19,6 g s c-Il7 PROJECT NO.:__-- DATE: (, /IT / v6 C- 2= 3.7- V- U = y�J C� c ova( COI�u nn�5 t "Z,, —I c"o Cc-Z- lt..-. Fo 1a�r(, N � %n� Acc:..i `T o SGott••- P.t. —C7 C- 2= 3.7- V- U = 0 Date: 06 -13 -2006 SnailWin 3.18 Minimum Factor of Safety = 1.59 48.0 ft Behind wall Crest At Wall Toe H. 31.0 ft 1� File: FOURSEASSCORP LEGEND: PS= 65.0 Kips FY- 45.0 Hsi Sh= 7.0 ft Sv =. 5.0 ft GAM PHI COH SIG. sf Psi 1 130.0 d34 p 0 20.0 Scale = 10 ft ® Surcharge File: FOURSEASSCORP ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * CALIFORNIA DEPARTMENT OF TRANSPORTATION * ENGINEERING SERVICE CENTER * DIVISION OF MATERIALS AND FOUNDATIONS * Office of Roadway Geotechnical Engineering * Date: 06 -13 -2006 Time: 09:22:04 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Project Identification - FOUR SEASONS --- - - - - -- WALL GEOMETRY --- ---- -- = Vertical Wall Height 31.0 ft = 1.0 degree Wall Batter Angle Length (Deg) (Feet) First Slope from Wallcrest. = 0.0 15.0 Second Slope from lst slope. = 89.9 9.0 0.0 50.0 Third Slope from 2nd slope. = = 0 0 0.0 _ Fourth Slope from 3rd slope. 0 0 0.0 Fifth Slope from 3rd slope. = 0 0 0.0 Sixth Slope from 3rd slope. = 0.0 Seventh Slope Angle. - - SLOPE BELOW THE WALL --- ---- -- There is NO SLOPE BELOW THE TOE of the wall --------- SURCHARGE --- --- - -- THE SURCHARGES IMPOSED ON THE SYSTEM ARE: Begin Surcharge - Distance from toe 30.0 ft - 50.0 ft End Surcharge - Distance from toe _ 1000.0 psf /ft Loading Intensity - Begin = 1000.0 psf /ft Loading Intensity - End OPTION #1 --- ---- -- Factored Punching shear, Bond & Yield Stress are used. Unit Friction Soil Weight Angle Layer (Pcf) (Degree) 1 130.0 34.0 * Bond Stress also depe EIN SOIL PARAMETERS - -- Cohesion Bond* Intercept Stress (Psf) (Psi) 0.0 20.0 nds on BSF Factor in Coordi XS1 (ft) 0.0 Option nates of Boundary YS1 XS2 YS2 (ft) (ft) (ft) 0.0 0.0 0.0 #5 when enabled. Page - 1 File: FOURSEASSCOR --- - - - - -- WATER SURFACE - - --- -- NO Water Table defined for this problem. --------- SEARCH LIMIT - --- -- The Search Limit is from 0.0 to 60.0 ft You have chosen NOT TO LIMIT the search of failure planes to specific nodes. --------- REINFORCEMENT PARAMETER ---- -- = 6 Number of Reinforcement Levels = 7.0 ft Horizontal Spacing - 45.0 ksi Yield Stress of Reinforcement = 6.0 in Diameter of Grouted Hole = 65.0 kips Punching Shear 0 Page - 2 Reinforcement Parameters) -- -- - - - -- ---- - - - - -- (Varying Vertical Bar Diameter Bond Stress Level Length Inclination Spacing (ft) (in) Factor (ft) (degrees) 1.25 1.00 1 35.0 15.0 5.0 1.25 1.00 2 35.0 15.0 1.25 1.00 3 35.0 15.0 5.0 1.25 1.00 4 35.0 15.0 1.25 1.00 5 35.0 15.0 5.0 1.25 1.00 6 35.0 15.0 0 Page - 2 File: FOURSEASSCORP FAILURE UPPER FAILURE MINIMUM DISTANCE BE HIND LOWER PLANE PLANE ANGLE LENGTH SAFETY C FACTOR WALL TOE ANGLE LENGTH (deg) (ft) (deg) (ft) 68.8 6.6 81.7 25.1 Toe 2.017 6.0 = 45.000 Ksi (Yield Stress controls.) R einf. Stres s at Level 1 2 = 45.000 Ksi (Yield Stress controls.) controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress LOWER FAILURE UPPER FAILURE CE DISTANCE PLANE PLANE SAFETY BEHIND TOE ANGLE LENGTH ANGLE LENGTH FACTOR WALL (ft) (deg) NODE 2 12.0 61.5 17.6 76.9 15.9 1.968 1 = 45.000 Ksi (Yield Stress controls.) Reinf. Stre ss at Level 2 = 45.000 Ksi (Yield Stress controls.) controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 95.000 Ksi (Yield Stress DISTANCE LOWER FAILURE UPPER FAILURE DISTA PLANE MINIMUM SAFETY BEHIND PLANE H ANGLE LENGTH LEfe) FACTOR WALL TOE (deg) (ft) (deg ) (ft) NODE 3 18.0 57,8 23.6 74.9 20.7 1.878 1 = 45.000 Ksi (Yield Stress controls.) Reinf. Stress at Level 2 = 95.000 Ksi (Yield Stress controls.) controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress Page - 3 File: FOURSEASSCORP MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) NODE 4 48.0 21.5 68.2 25.8 1."183 24.0 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) controls.) 3 = 45.000 Ksi (Yield Stress 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) DISTANCE LOWER FAILURE UPPER FAILURE MINIMUM PLANE PLANE SAFETY BEHIND ANGLE FACTOR WALL TOE LE LEN ft AdegE LENGTH (ft) (deg) ( ) NODE 5 46.8 21.9 58.0 28.3 1.745 30.0 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi 6 = 45.000 Ksi (Yield Stress controls.) LOWER FAILURE UPPER FAILURE MINIMUM DISTANCE PLANE PLANE SAFETY BEHIND FACTOR WALL TOE ANGLE LENGTH ANGLE LE G (ft) (deg) (ft) NODE 6 36.0 39.8 18,E 52.4 35.4 1.644 Level 1 = 43.224 Ksi (Pullout controls...) controls.) Reinf. Stress at 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress Page - 4 File: FOURSEASSCORP N-- NODE 7 MINIMUM SAFETY FACTOR DISTANCE LOWER FAILURE BEHIND PLANE WALL TOE ANGLE LENGTH (ft) (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 1.602 42.0 34.2 35.6 57.8 23.6 Reinf. Stress at Level 1 = 15.540 Ksi (Pullout controls...) 2 = 34.440 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 8 1.586 48.0 26.6 26.8 49.4 36.9 Reinf. Stress at Level 1 = 10.643 Ksi (Pullout controls...) 2 = 23.944 Ksi (Pullout controls...) 3 = 37.245 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 9 1.642 54.0 30.7 31.4 41.6 36.1 Reinf. Stress at Level 1 = 8.609 Ksi (.Pullout controls...) 2 = 25.105 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) 4'= 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 1� Page - 5 4 . File: FOURSEASSCORP MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) NODE10 1.693 60.0 26.6 26.8 37.9 45.6 Reinf. Stress at Level 1 = 0.681 Ksi (Pullout controls...) 2 = 18.929 Ksi (Pullout controls...) 3 = 37.177 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * For Factor of Safety = 1.0 * Maximum Average Reinforcement Working Force: * 28.916 Kips /level ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 1� Page - 6 rn u (OGGINS SSONS, INC. Name PH. (303) 791 -9911 FAX(303)797-0967 CAISSON DRILLING PROJECT: EARTH RETENTION G, oss s rcar•.5 TIE BACK ANCHORS SUBJECT: 'art I PROJECT NO.: DATE: 6 1-iv COGGINS & SUNS, INC. Name :'. PH. (303) 791 -9911 FAX(303)797-0967 CAISSON DRILLING PROJECT: EARTH RETENTION << TIE BACKANCHORS SUBJECT: r i t 6, vt LXT c o t. v V—vs t= i PROJECT NO.: DATE: ` 0 � =- z -, — ;,13 1 b V- - Qs - �w, �a .4 C 3 -t--> Wz�,tr APnt--e 5- r% uvv?�oV -0 To 7-OP 2VvJ -rd 2-G70 Z IPS a C 1A I _i{�� T+� z43. l� rLCPr 2 L -[ t-� ) — 1� e N PROJECT TITLE: FOUR SEASONS Date: 06-13-2006 SnailWin 3.10 File: FOURSEASCONT Minimum Factor of Safety 1.31 20.0 ft Behind Wall Crest At Wall Toe H= 45.0 f t LEGEND: PC= 65.0 Kips FY= 45.0 Hsi Sh= ft Sv= Uaries GAM PHI COH SIG pcE deg psf psi 1 130.0 34 0 20.0 Scale 10 ft [r7 HP 1� File: FOURSEASCANT ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * CALIFORNIA DEPARTMENT OF TRANSPORTATION * ENGINEERING SERVICE CENTER * DIVISION OF MATERIALS AND FOUNDATIONS * Office of Roadway Geotechnical Engineering * Date: 06 -13 -2006 Time: 10:28:59 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Project Identification - FOUR SEASONS --- - - - - -- WALL GEOMETRY --- - - - - -- Vertical Wall Height = 45.0 ft Wall Batter = 0.0 degree Angle Length (Deg) (Feet) First Slope from Wallcrest. = 0.0 100.0 Second Slope from 1st slope. = 0.0 0.0 Third Slope from 2nd slope. = 0.0 0.0 Fourth Slope from 3rd slope. = 0.0 0.0 Fifth Slope from 3rd slope. = 0.0 0.0 Sixth Slope from 3rd slope. = 0.0 0.0 Seventh Slope Angle. = 0.0 --- - - - - -- SLOPE BELOW THE WALL --- - - - - -- There is NO SLOPE BELOW THE TOE of the wall --- - - - - -- SURCHARGE --- - - - - -- There is NO SURCHARGE imposed on the system. --- - - - - -- OPTION #1 --- - - - - -- Factored Punching shear, Bond & Yield Stress are used. Unit Friction Soil Weight Angle Layer (Pcf) (Degree) 1 130.0 34.0 * Bond Stress also depe - SOIL PARAMETERS --- - - - - -- Cohesion Bond* Coord Intercept Stress XS1 (Psf) (Psi) (ft) 0.0 20.0 0.0 ads on BSF Factor in Option Lnates of Boundary YS1 XS2 YS2 (ft) (ft) (ft) 0.0 0.0 0.0 #5 when enabled. Page - 1 3 File: FOURSEASCANT --- - - - - -- WATER SURFACE --- - - - - -- NO Water Table defined for this problem. --- - - - - -- SEARCH LIMIT --- - - - - -- The Search Limit is from 0.0 to 40.0 ft You have chosen NOT TO LIMIT the search of failure planes to specific nodes. --- - - - - -- REINFORCEMENT PARAMETERS --- - - - - -- Number of Reinforcement Levels = 8 Horizontal Spacing = 7.0 ft Yield Stress of Reinforcement = 45.0 ksi Diameter of Grouted Hole = 6.0 in Punching Shear = 65.0 kips ---- - - - - -- (Varying Reinforcement Parameters) --- - - - - -- Vertical Bar Level Length Inclination Spacing Diameter Bond Stress (ft) (degrees) (ft) (in) Factor 1 40.0 15.0 12.0 1.25 1.00 2 40.0 15.0 3.0 1.25 1.00 3 40.0 15.0 3.0 1.25 1.00 4 40.0 15.0 5.0 1.25 1.00 5 40.0 15.0 5.0 1.25 1.00 6 40.0 15.0 5.0 1.25 1.00 7 40.0 15.0 5.0 1.25 1.00 8 40.0 15.0 5.0 1.25 1.00 Page - 2 "':77 , r� u 0 File: FOURSEASCANT MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH controls.) (ft) (deg) (ft) (deg) (ft) Toe 1.777 4.0 81.6 27.3 89.9 18.0 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 2 1.468 8.0 70.4 14.3 84.2 31.7 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 3 1.354 12.0 65.0 19.9 82.4 27.2 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) Page - 3 C File: FOURSEASCANT MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) NODE 4 LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) 1.317 16.0 63.5 25.1 78. Reinf. Stress at Level 1 = 45.000 Ksi (Yield 2 = 45.000 Ksi (Yield 3 = 45.000 Ksi (Yield 4 = 45.000 Ksi (Yield 5 = 45.000 Ksi (Yield 6 = 45.000 Ksi (Yield 7 = 45.000 Ksi (Yield 8 = 45.000 Ksi (Yield MINIMUM DISTANCE LOWER FAILURE SAFETY BEHIND PLANE FACTOR WALL TOE ANGLE LENGTH (ft) (deg) (ft) NODE 5 UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) D 23.0 Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 1.315 20.0 60.9 20.6 69.7 28.8 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 6 1.337 24.0 61.9 51.0 89.9 0.0 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.). 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) Page - 4 r. u u D9 File: FOURSEASCANT MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 7 1.366 28.0 58.1 53.0 89. Reinf. Stress at Level 1 = 45.000 Ksi (Yield 2 = 45.000 Ksi (Yield 3 = 45.000 Ksi (Yield 4 = 45.000 Ksi (Yield 5 = 45.000 Ksi (Yield 6 = 45.000 Ksi (Yield 7 = 45.000 Ksi (Yield 8 = 45.000 Ksi (Yield MINIMUM DISTANCE LOWER FAILURE SAFETY BEHIND PLANE FACTOR WALL TOE ANGLE LENGTH (ft) (deg) (ft) NODE 8 a 0.0 Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 1.409 32.0 54.6 55.2 89.9 0.0 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 9 1.465 36.0 51.3 57.6 89.9 0.0 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) Page - 5 ,� �- -J H 0 0 File: FOURSEASCANT MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE10 1.529 40.0 48.4 60.2 89.9 0.0 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * For Factor of Safety = 1.0 * Maximum Average Reinforcement Working Force: * 39.843 Kips /level ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Page - 6 [•7 50-7 Lt COSil N S & SONS. IN(. N.m. -- PH. (303) 791 -9911 FAX (303) 791 -0967 CAISSON DRILLING PROJECT: EARTH RETENTION TIEBACKANCHORS SUBJECT: OL-, SIb2,o0 so- `. i C+A�-cLlv.z S" 1l-`1 o i�-t At -TC7P 3? 4 11 = �1b2 -$lsS` � -7 f; GJ�ouT Goc vwi�JS C& ? -o' O r W pn-i p 1.c-l' 00 skoE of Gut,JUVi I n �- 1 1b PROJECT NO.: s- i t -7 DATE: S (- • C-> CUM-INS 8 SONS. INC gym. 7-, - -. PH. (303) 791 -9911 FAX(303)797-0967 CAISSON DRILLING PROJECT: EARTH RETENTION TIEBACKANCHORS SUBJECT: .4 A Z � 3 4 W rL -t- LI -ei C &-. '� % 2' S Lti d V i PROJECT NO.: DATE: 's a, l 1� 1#1 PROJECT TITLE- FOUR SEASONS -M RIM Date: 06-15 -2006 Snailgin 3.10 File: FOURS Elk SCULUERT Minimum Factor of Safety = 2.42 8.0 ft Behind Wall Crest At Wall Toe LEGEND: PS= 65.0 Hips H= 16.0 ft FY= 45.0 Ks i Sh= 5.0 ft Sv= 4.5 ft GAM PHI COH SIG pcf deg psf psi 1 130.0 34 0 20.0 Scale = io ft File: FOURSEASCULVERT Page - 1 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * CALIFORNIA DEPARTMENT OF TRANSPORTATION * (� * ENGINEERING SERVICE CENTER * DIVISION OF MATERIALS AND FOUNDATIONS * Office of Roadway Geotechnical Engineering * Date: 06 -15 -2006 Time: 09:13:25 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Project Identification - FOUR SEASONS --- - - - - -- WALL GEOMETRY --- - - - - -- Vertical Wall Height = 16.0 ft Wall Batter = 0.0 degree Angle Length (Deg) (Feet) First Slope from Wallcrest. = 33.0 6.0 Second Slope from 1st slope. = 0.0 80.0 Third Slope from 2nd slope. = 0.0 0.0 Fourth Slope from 3rd slope. = 0.0 0.0 Fifth Slope from 3rd slope. = 0.0 0.0 Sixth Slope from 3rd slope. = 0.0 0.0 Seventh Slope Angle. = 0.0 --- - - - - -- SLOPE BELOW THE WALL --- - - - - -- There is NO SLOPE BELOW THE TOE of the wall - - - - - -- SURCHARGE --- - - - - -- There is NO SURCHARGE imposed on the system. --- - - - - -- OPTION #1 --- - - - - -- Factored Punching shear, Bond & Yield Stress are used. --- - - - - -- SOIL PARAMETERS --- - - - - -- Unit Friction Cohesion Bond* Coordinates of Boundary Soil Weight Angle Intercept Stress XS1 YS1 XS2 YS2 Layer (Pcf) (Degree) (Psf) (Psi) (ft) (ft) (ft) (ft) 1 130.0 34.0 0.0 20.0 0.0 0.0 0.0 0.0 * Bond Stress also depends on BSF Factor in Option #5 when enabled. �i 0 File: FOURSEASCULVERT --- - - - - -- WATER SURFACE --- - - - - -- NO Water Table defined for this problem. --- - - - - -- SEARCH LIMIT --- - - - - -- The Search Limit is from 0.0 to 40.0 ft You have chosen NOT TO LIMIT the search of failure planes to specific nodes. --- - - - - -- REINFORCEMENT PARAMETERS --- - - - - -- Number of Reinforcement Levels = 3 Horizontal Spacing = 5.0 ft Yield Stress of Reinforcement = 45.0 ksi Diameter of Grouted Hole = 6.0 in Punching Shear = 65.0 kips ---- - - - - -- (Varying Reinforcement Parameters) --- - - - - -- Vertical Bar Level Length Inclination Spacing Diameter Bond Stress (ft) (degrees) (ft) (in) Factor 1 20.0 15.0 4.0 1.00 1.00 2 20.0 15.0 4.5 1.00 1.00 3 20.0 15.0 4.5 1.00 1.00 Page - 2 r J File: FOURSEASCULVERT DISTANCE LOWER FAILURE BEHIND PLANE WALL TOE ANGLE LENGTH (ft) (deg) (ft) 4.0 57.2 2.2 UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 80.5 17.0 Reinf. Stress at MINIMUM 45.000 Ksi (Yield SAFETY controls.) FACTOR 2 = 45.000 Ksi (Yield Stress Toe 2.458 DISTANCE LOWER FAILURE BEHIND PLANE WALL TOE ANGLE LENGTH (ft) (deg) (ft) 4.0 57.2 2.2 UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 80.5 17.0 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 2 2.422 8.0 25.7 4.4 77.0 17.8 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 3 2.790 12.0 28.2 4.1 64.2 19.3 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 4 3.320 16.0 31.1 3.7 53.6 21.6 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 5 3.828 20.0 25.7 4.4 47.3 23.6 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE 0 SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 6 4.081 24.0 0.0 9.6 53.2 24.1 Reinf. Stress at Level 1 = 22.948 Ksi (Pullout controls...) Page - 3 NODE 8 3.489 32.0 0.0 9.6 40.7 29.5 Reinf. Stress at Level 1 = 8.119 Ksi (Pullout controls...) 2 = 31.906 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 9 3.284 36.0 0.0 10.8 37.4 31.7 Reinf. Stress at Level 1 = 0.000 Ksi 0 2 = 24.196 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE10 3.407 40.0 6.9 16.1 35.8 29.6 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 12.047 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * For Factor of Safety = 1.0 * Maximum Average Reinforcement Working Force: * 12.435 Kips /level ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 0 Ste. 6 nsL �-r_u: iouz controls... - �� 3 = 45.000 Ksl (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 7 3.886 28.0 0.0 8.4 44.5 27.5 Reinf. Stress at Level 1 = 18.637 Ksi (Pullout controls...) 2 = 40.088 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 8 3.489 32.0 0.0 9.6 40.7 29.5 Reinf. Stress at Level 1 = 8.119 Ksi (Pullout controls...) 2 = 31.906 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 9 3.284 36.0 0.0 10.8 37.4 31.7 Reinf. Stress at Level 1 = 0.000 Ksi 0 2 = 24.196 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE10 3.407 40.0 6.9 16.1 35.8 29.6 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 12.047 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * For Factor of Safety = 1.0 * Maximum Average Reinforcement Working Force: * 12.435 Kips /level ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 0 Ste. 6 Date: 06 -13 -2006 Snai14lin 3.18 Minimum Factor of Safety = 1.36 18.0 ft Behind Wall Crest At Wall Toe H= 49.0 R Scale = 10 ft File: FOURSERMEOVS -3 LEGEND: PS= 65.0 Hips FY = 45.0 Ks Sh= 7.0 ft Sv= Uaries GAM PHI COH SIG pcf deg psf psi 1 130.0 34 0 20.0 File: FOURSEAS10ROWS Page - 1 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * CALIFORNIA DEPARTMENT OF TRANSPORTATION * ENGINEERING SERVICE CENTER * DIVISION OF MATERIALS AND FOUNDATIONS * Office of Roadway Geotechnical Engineering * Date: 06 -13 -2006 Time: 12:15:48 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Project Identification - FOUR SEASONS --- - - - - -- WALL GEOMETRY --- - - - - -- Vertical Wall Height = 49.0 ft Wall Batter = 0.0 degree Angle Length (Deg) (Feet) First Slope from Wallcrest. = 0.0 100.0 Second Slope from 1st slope. = 0.0 0..0 Third Slope from 2nd slope. = 0.0 0.0 Fourth Slope from 3rd slope. = 0.0 0.0 Fifth Slope from 3rd slope. = 0.0 0.0 Sixth Slope from 3rd slope. = 0.0 0.0 Seventh Slope Angle. = 0.0 --- - - - - -- SLOPE BELOW THE WALL --- - - - - -- There is NO SLOPE BELOW THE TOE of the wall --- - - - - -- SURCHARGE --- - - - - -- There is NO SURCHARGE imposed on the system. --- - - - - -- OPTION #1 --- - - - - -- Factored Punching shear, Bond & Yield Stress are used. Unit Friction Soil Weight Angle Layer (Pcf) (Degree) 1 130.0 34.0 * Bond Stress also depe N11 - SOIL PARAMETERS -- Cohesion Bond* Intercept Stress (Psf) (Psi) 0.0 20.0 nds on BSF Factor in Coord: XS1 (ft) 0.0 Option Lnates of Boundary YS1 XS2 YS2 (ft) (ft) (ft) 0.0 0.0 0.0 #5 when enabled. File: FOURSEAS10ROWS --- - - - - -- WATER SURFACE --- - - - - -- NO Water Table defined for this problem. --- - - - - -- SEARCH LIMIT --- - - - - -- The Search Limit is from 0.0 to 60.0 ft You have chosen NOT TO LIMIT the search of failure planes to specific nodes. --- - - - - -- REINFORCEMENT PARAMETERS --- - - - - -- Number of Reinforcement Levels = 10 Horizontal Spacing = 7.0 ft Yield Stress of Reinforcement = 45.0 ksi Diameter of Grouted Hole = 6.0 in Punching Shear = 65.0 kips ---- - - - - -- (Varying Reinforcement Parameters) --- - - - - -- Vertical Bar Level Length Inclination Spacing Diameter Bond Stress (ft) (degrees) (ft) (in) Factor 1 40.0 15.0 3.0 1.25 1.00 2 40.0 15.0 4.5 1.25 1.00 3 40.0 15.0 4.5 1.25 1.00 4 40.0 15.0 5.0 1.25 1.00 5 40.0 15.0 5.0 1.25 1.00 6 40.0 15.0 5.0 1.25 1.00 7 40.0 15.0 5.0 1.25 1.00 8 40.0 15.0 5.0 1.25 1.00 9 40.0 15.0 5.0 1.25 1.00 10 40.0 15.0 5.0 1.25 1.00 0 Page - 2 n u �01 File: FOURSEAS10ROWS MINIMUM SAFETY FACTOR Toe 1.643 DISTANCE LOWER FAILURE BEHIND PLANE WALL TOE ANGLE LENGTH (ft) (deg) (ft) 6.0 78.5 30.0 Reinf. Stress at Level 1 = 45.000 Ksi (Yield 2 = 45.000 Ksi (Yield 3 = 45.000 Ksi (Yield 4 = 45.000 Ksi (Yield 5 = 45.000 Ksi (Yield 6 = 45.000 Ksi (Yield 7 = 45.000 Ksi (Yield 8 = 45.000 Ksi (Yield 9 = 45.000 Ksi (Yield 10 = 45.000 Ksi (Yield MINIMUM DISTANCE LOWER FAILURE SAFETY BEHIND PLANE FACTOR WALL TOE ANGLE LENGTH (ft) (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) .-.2 Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) NODE 2 1.374 12.0 66.8 21.3 83.0 29.6 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 45.000 Ksi (Yield Stress controls.) Page - 3 n u rn. u File: FOURSEAS10ROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) NODE 3 60.3 33.9 69.8 20.9 Reinf. Stress at Level 1 1.363 18.0 63.9 32.7 79.6 19.9 Stress Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 4 1.382 24.0 60.3 33.9 69.8 20.9 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 45.000 Ksi (Yield Stress controls.) Page - 4 D*1 File: FOURSEAS10ROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) NODE 5 LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 1.432 30.0 58.5 57.5 89.9 0.0 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND Stress PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 6 1.479 36.0 53.7 60.8 89.9 0.0 Reinf. Stress at Level 1 = 39.691 Ksi (Pullout controls...) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 45.000 Ksi (Yield Stress controls.) Page - 5 E* File: FOURSEAS10ROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) NODE 7 41.8 51.5 56.9 17.6 Reinf. Stress at Level 1 = 0.000 Ksi 1.485 42.0 45.6 48.0 60.3 16.9 Ksi Reinf. Stress at Level 1 = 14.123 Ksi (Pullout controls...) 2 = 24.563 Ksi (Pullout controls...) = 45.000 3 = 37.889 Ksi (Pullout controls...) (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) h9O_ ., 1.473 48.0 41.8 51.5 56.9 17.6 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 11.058 Ksi (Pullout controls...) 3 = 25.848 Ksi (Pullout controls...) 4 = 42.282 Ksi (Pullout controls...) 5 = 45.000 Ksi.(Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 45.000 Ksi (Yield Stress controls.) Page - 6 E# Ew File: FOURSEAS10ROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) NODE 9 LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 1.476 54.0 42.2 72.9 89.9 0.0 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 12.703 Ksi (Pullout controls...) 3 = 27.315 Ksi (Pullout controls...) 4 = 43.550 Ksi (Pullout controls...) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE10 1.492 60.0 39.2 77.5 89.9 0.0 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 1.430 Ksi (Pullout controls...) 3 = 17.264 Ksi (Pullout controls...) 4 = 34.857 Ksi (Pullout controls...) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 45.000 Ksi (Yield Stress controls.) ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * For Factor of Safety = 1.0 * Maximum Average Reinforcement Working Force: * 37.664 Kips /level ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Page - 7 7- -TMTM Date: 06-13-2006 SnailVin 3.10 File: FOURSERS9ROVS Minimum Factor of Safety = 1.37 18.0 ft Behind Wall Crest At Wall Toe H= 46.0 f LEGEND: PS= 65.0 Hips FY= 45.0 Hsi Sh= 7.0 Et Sv= Uaries GAM PHI COH SIG pef deg psf psi 1 130.0 34 0 20.0 Scale = 10 ft File: FOURSEAS9ROWS ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * CALIFORNIA DEPARTMENT OF TRANSPORTATION * ENGINEERING SERVICE CENTER * DIVISION OF MATERIALS AND FOUNDATIONS * Office of Roadway Geotechnical Engineering * Date: 06 -13 -2006 Time: 12:18:09 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Project Identification - FOUR SEASONS --- - - - - -- WALL GEOMETRY --- - - - - -- Vertical Wall Height = 46.0 ft Wall Batter = 0.0 degree Angle Length (Deg) (Feet) First Slope from Wallcrest. = 0.0 100.0 Second Slope from 1st slope. = 0.0 0.0 Third Slope from 2nd slope. = 0.0 0.0 Fourth Slope from 3rd slope. = 0.0 0.0 Fifth Slope from 3rd slope. = 0.0 0.0 Sixth Slope from 3rd slope. = 0.0 0.0 Seventh Slope Angle. = 0.0 --- - - - - -- SLOPE BELOW THE WALL --- - - - - -- There is NO SLOPE BELOW THE TOE of the wall --- - - - - -- SURCHARGE --- - - - - -- There is NO SURCHARGE imposed on the system. --- - - - - -- OPTION #1 --- - - - - -- Factored Punching shear, Bond & Yield Stress are used. --- - - - - -- SOIL PARAMETERS --- - - - - -- Unit Friction Cohesion Bond* Coordinates of Boundary Soil Weight Angle Intercept Stress XS1 Y51 XS2 YS2 Layer (Pcf). (Degree) (Psf) (Psi) (ft) (ft) (ft) (ft) 1 130.0 34.0 0.0 20.0 0.0 0.0 0.0 0.0 * Bond Stress also depends on BSF Factor in Option #5 when enabled. Page - 1 File: FOURSEAS9ROWS --- - - - - -- WATER SURFACE --- - - - - -- NO Water Table defined for this problem. --- - - - - -- SEARCH LIMIT --- - - - - -- The Search Limit is from 0.0 to 60.0 ft You have chosen NOT TO LIMIT the search of failure planes to specific nodes. --- - - - - -- REINFORCEMENT PARAMETERS --- - - - - -- Number of Reinforcement Levels = 10 Horizontal Spacing = 7.0 ft Yield Stress of Reinforcement = 45.0 ksi Diameter of Grouted Hole = 6.0 in Punching Shear = 65.0 kips ---- - - - - -- (Varying Reinforcement Parameters) --- - - - - -- Vertical Bar Level Length Inclination Spacing Diameter Bond Stress (ft) (degrees) (ft) (in) Factor 1 40.0 15.0 3.0 1.25 1.00 2 40.0 15.0 5.6 1.25 1.00 3 40.0 15.0 5.6 1.25 1.00 4 40.0 15.0 5.0 1.25 1.00 5 40.0 15.0 5.0 1.25 1.00 6 40.0 15.0 5.0 1.25 1.00 7 40.0 15.0 5.0 1.25 1.00 8 40.0 15.0 5.0 1.25 1.00 9 40.0 15.0 5.0 1.25 1.00 10 0.0 0.0 0.0 0.00 0.00 Page - 2 File: FOURSEAS9ROWS MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY FACTOR BEHIND WALL TOE PLANE ANGLE LENGTH PLANE ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) Toe 1.673 6.0 77.7 28.2 89.9 18.4 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi,(Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 0.000 Ksi MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 2 1.412 12.0 65.5 20.2 82.6 27.8 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 0.000 Ksi Page - 3 0 K� File: FOURSEAS9ROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) NODE 3 LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 1.373 18.0 62.4 31.1 78.9 18.7 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) = 45.000 2 = 45.000 Ksi (Yield Stress controls.) Ksi 3 = 45.000 Ksi (Yield Stress controls.) (Yield 4 = 45.000 Ksi (Yield Stress controls.) Stress 5 = 45.000 Ksi (Yield Stress controls.) controls.) 6 = 45.000 Ksi (Yield Stress controls.) 8 7 = 45.000 Ksi (Yield Stress controls.) = 45.000 8 = 45.000 Ksi (Yield Stress controls.) Ksi 9 = 45.000 Ksi (Yield Stress controls.) 10 = 0.000 Ksi MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 4 1.414 24.0 59.2 37.5 70.8 14.6 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 0.000 Ksi Page - 4 0 Nk E* File: FOURSEAS9ROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) NODE 5 LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 1.481 30.0 56.9 54.9 89.9 0.0 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 0.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 6 1.545 36.0 52.0 58.4 89.9 0.0 Reinf. Stress at Level 1 = 41.288 Ksi (Pullout controls...) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 0.000 Ksi Page - 5 1H File: FOURSEAS9ROWS MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 7 1.580 42.0 47.6 62.3 89.9 0.0 Reinf. Stress at Level 1 = 27.071 Ksi (Pullout controls...) 2 = 42.749 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 0.000 Ksi MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 8 1.595 48.0 43.8 66.5 89.9 0.0 Reinf. Stress at Level 1 = 13.631 Ksi (Pullout controls...) 2 = 31.060 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 0.000 Ksi Page - 6 D]w File: FOURSEAS9ROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) NODE 9 LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 1.600 54.0 40.4 70.9 89.9 0.0 Reinf. Stress at Level 1 = 0.906 Ksi (Pullout controls...) 3 2 = 19.991 Ksi (Pullout controls...) 5 3 = 39.077 Ksi (Pullout controls...) 7 4 = 45.000 Ksi (Yield Stress controls.) 9 5 = 45.000 Ksi (Yield Stress controls.) * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 6 = 45.000 Ksi (Yield Stress controls.) Reinforcement Working Force: 7 = 45.000 Ksi (Yield Stress controls.) * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 0.000 Ksi MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deq) (ft) NODE10 1.644 60.0 37.5 75.6 89.9 0.0 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 9.497 Ksi (Pullout controls...) 3 = 30.154 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) 9 = 45.000 Ksi (Yield Stress controls.) 10 = 0.000 Ksi ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * For Factor of Safety = 1.0 * Maximum Average Reinforcement Working Force: * 0.000 Kips /level ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Page - 7 Date: 06 -13 -2006 SnailYin 3.10 Minimum Factor of Safety = 1.80 15.0 ft Behind wall Crest At Wall Toe File: FOURSEASBROWS H= 37.0 f LEGEND: PS= 65.0 Hips FY= 45.0 Hsi Sh= 7.0 ft Sv= Uaries GAM PHI COH SIG pcf deg psf psi 1 130.0 34 0 20.0 Scale = 10 ft E* File: FOURSEASBROWS ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** CALIFORNIA DEPARTMENT OF TRANSPORTATION * ENGINEERING SERVICE CENTER * DIVISION OF MATERIALS AND FOUNDATIONS * Office of Roadway Geotechnical Engineering * Date: 06 -13 -2006 Time: 12:21:15 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Project Identification - FOUR SEASONS --- - - - - -- WALL GEOMETRY --- - - - - -- Vertical Wall Height = 37.0 ft Wall Batter = 0.0 degree Angle Length (Deg) (Feet) First Slope from Wallcrest. = 0.0 100.0 Second Slope from 1st slope. = 0.0 0.0 Third Slope from 2nd slope. = 0.0 0.0 Fourth Slope from 3rd slope. = 0.0 0.0 Fifth Slope from 3rd slope. = 0.0 0.0 Sixth Slope from 3rd slope. = 0.0 0.0 Seventh Slope Angle. = 0.0 --- - - - - -- SLOPE BELOW THE WALL --- - - - - -- There is NO SLOPE BELOW THE TOE of the wall --- - - - - -- SURCHARGE --- - - - - -- There is NO SURCHARGE imposed on the system. --- - - - - -- OPTION #1 --- - - - - -- Factored Punching shear, Bond & Yield Stress are used. --- - - - - -- SOIL PARAMETERS --- - - - - -- Unit Friction Cohesion Bond* Coordinates of Boundary Soil Weight Angle Intercept Stress XS1 YS1 XS2 YS2 Layer (Pcf) (Degree) (Psf) (Psi) (ft) (ft) (ft) (ft) 1 130.0 34.0 0.0 20.0 0.0 0.0 0.0 0.0 * Bond Stress also depends on BSF Factor in Option #5 when enabled. EIP Page - 1 C'�" '? File: FOURSEASBROWS --- - - - - -- WATER SURFACE --- - - - - -- NO Water Table defined for this problem. --- - - - - -- SEARCH LIMIT --- - - - - -- The Search Limit is from 0.0 to 50.0 ft You have chosen NOT TO LIMIT the search of failure planes to specific nodes. --- - - - - -- REINFORCEMENT PARAMETERS --- - - - - -- Number of Reinforcement Levels = 8 Horizontal Spacing = 7.0 ft Yield Stress of Reinforcement = 45.0 ksi Diameter of Grouted Hole = 6.0 in Punching Shear = 65.0 kips ---- - - - - -- (Varying Reinforcement Parameters) --- - - - - -- Vertical Bar Level Length Inclination Spacing Diameter Bond Stress (ft) (degrees) (ft) (in) Factor 1 35.0 15.0 2.3 1.25 2 35.0 15.0 3.8 1.25 3 35.0 15.0 3.8 1.25 4 35.0 15.0 5.0 1.25 5 35.0 15.0 5.0 1.25 6 35.0 15.0 5.0 1.25 7 35.0 15.0 5.0 1.25 8 35.0 15.0 5.0 1.25 -N 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Page - 2 File: FOURSEASBROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) Toe 2.048 5.0 LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) 80.1 26.3 UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 87.4 11.1 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) Ksi 2 = 45.000 Ksi (Yield Stress controls.) (Yield 3 = 45.000 Ksi (Yield Stress controls.) Stress 4 = 45.000 Ksi (Yield Stress controls.) controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 6 = 45.000 Ksi (Yield Stress controls.) = 45.000 7 = 45.000 Ksi (Yield Stress controls.) Ksi 8 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 2 1.839 10.0 67.9 16.0 79.8 22.6 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 3 1.802 15.0 57.0 22.1 80.8 18.7 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) ,E* Page - 3 0 N] File: FOURSEASBROWS MINIMUM SAFETY FACTOR DISTANCE LOWER FAILURE BEHIND PLANE WALL TOE ANGLE LENGTH (ft) (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) NODE 4 1.936 20.0 54.2 27.4 74.9 15.3 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 2 = 45.000 Ksi (Yield Stress controls.) (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) Ksi 4 = 45.000 Ksi (Yield Stress controls.) =. 45.000 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 5 2.105 25.0 51.8 28.3 63.1 16.6 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 6 2.232 30.0 42.8 32.7 67.9 16.0 Reinf. Stress at Level 1 = 29.001 Ksi (Pullout controls...) 2 = 34.235 Ksi (Pullout controls...) 3 = 42.103 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 =. 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) Page - 4 41' .. File: FOURSEAS8ROWS MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 7 2.177 35.0 38.4 35.7 64.7 16.4 Reinf. Stress at Level 1 = 14.206 Ksi (Pullout controls...) 2 = 20.213 Ksi (Pullout controls...) 3 = 31.275 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 8 2.095 40.0 34.8 38.9 61.6 16.8 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 6.635 Ksi (Pullout controls...) 3 = 21.202 Ksi (Pullout controls...) 4 = 41.044 Ksi (Pullout controls...) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 9 2.046 45.0 34.4 32.7 45.8 25.8 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 10.707 Ksi (Pullout controls...) 3 = 21.752 Ksi (Pullout controls...) 4 = 40.253 Ksi (Pullout controls...) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7.= 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) E* Page - 5 E* File: FOURSEASBROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) NODE10 2.026 50.0 31.7 35.2 42.8 27.2 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 0.514 Ksi (Pullout controls...) 3 = 12.510 Ksi (Pullout controls...) 4 = 33.377 Ksi (Pullout controls...) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) 8 = 45.000 Ksi (Yield Stress controls.) ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * For Factor of Safety = 1.0 * Maximum Average Reinforcement Working Force: * 26.821 Kips /level ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Page - 6 ..�. FOUR SEASONS Date: 06 -13 -2006 Sna i 1g i n 3.10 File : FOURSEAMOVS Minimum Factor of Safety = 1.99 10.0 ft Behind Wall Crest At Wall Tee H= 33.0 f LEGEND: PS= 65.0 Hips FY = 45.0 Hs i Sh= 7.0 ft Sv= Uaries GAM PHI COH SIG pcf deg psf psi 1 130.0 34 0 20.0 Scale = 10 ft C7 DO] File: FOURSEAS7ROWS ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * CALIFORNIA DEPARTMENT OF TRANSPORTATION * ENGINEERING SERVICE CENTER * DIVISION OF MATERIALS AND FOUNDATIONS * Office of Roadway Geotechnical Engineering * Date: 06 -13 -2006 Time: 12:25:04 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Project Identification - FOUR SEASONS --- - - - - -- WALL GEOMETRY --- - - - - -- Vertical Wall Height = 33.0 ft Wall Batter = 0.0 degree Angle Length (Deg) (Feet) First Slope from Wallcrest. = 0.0 100.0 Second Slope from 1st slope. = 0.0 0.0 Third Slope from 2nd slope. = 0.0 0.0 Fourth Slope from 3rd slope. = 0.0 0.0 Fifth Slope from 3rd slope. = 0.0 0.0 Sixth Slope from 3rd slope. = 0.0 0.0 Seventh Slope Angle. = 0.0 --- - - - - -- SLOPE BELOW THE WALL --- - - - - -- There is NO SLOPE BELOW THE TOE of the wall --- - - - - -- SURCHARGE --- - - - - -- There is NO SURCHARGE imposed on the system. --- - - - - -- OPTION #1 --- - - - - -- Factored Punching shear, Bond & Yield Stress are used. Unit Friction Soil Weight Angle Layer (Pcf) (Degree) 1 130.0 34.0 * Bond Stress also depe - SOIL PARAMETERS -- Cohesion Bond* Intercept Stress (Psf) (Psi) 0.0 20.0 ads on BSF Factor in Coord XS1 (ft) 0.0 Option inates of Boundary YS1 XS2 YS2 (ft) (ft) (ft) 0.0 0.0 0.0 #5 when enabled. Page - 1 c 1 CP" � _ File: FOURSEAS7ROWS Page - 2 --- - - - - -- WATER SURFACE --- - - - - -- S(0,� NO Water Table defined for this problem. --- - - - - -- SEARCH LIMIT --- - - - - -- E* The Search Limit is from 0.0 to 50.0 ft You have chosen NOT TO LIMIT the search of failure planes to specific nodes. - - - - - -- REINFORCEMENT PARAMETERS --- - - - - -- Number of Reinforcement Levels = 7 Horizontal Spacing = 7.0 ft Yield Stress of Reinforcement = 45.0 ksi Diameter of Grouted Hole = 6.0 in Punching Shear = 65.0 kips ---- - - - - -- (Varying Reinforcement Parameters) --- - - - - -- Vertical Bar Level Length Inclination Spacing Diameter Bond Stress (ft) (degrees) (ft) (in) Factor 1 30.0 15.0 3.0 1.25 1.00 2 30.0 15.0 3.5 1.25 1.00 3 30.0 15.0 3.5 1.25 1.00 4 30.0 15.0 5.0 1.25 1.00 5 30.0 15.0 5.0 1.25 1.00 6 30.0 15.0 5.0 1.25 1.00 7 30.0 15.0 5.0 1.25 1.00 0 File: FOURSEAS7ROWS MINIMUM SAFETY FACTOR Toe 2.159 DISTANCE LOWER FAILURE BEHIND PLANE WALL TOE ANGLE LENGTH (ft) (deg) (ft) 5.0 75.8 20.4 UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 89.9 13.2 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) Ksi 2 = 45.000 Ksi (Yield Stress controls.) (Yield 3 = 45.000 Ksi (Yield Stress controls.) Stress 4 = 45.000 Ksi (Yield Stress controls.) controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 6 = 45.000 Ksi (Yield Stress controls.) = 45.000 7 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 2 1.985 10.0 52.9 8.3 79. Reinf. Stress at Level 1 = 45.000 Ksi (Yield 2 = 45.000 Ksi (Yield 3 = 45.000 Ksi (Yield 4 = 45.000 Ksi (Yield 5 = 45.000 Ksi (Yield 6 = 45.000 Ksi (Yield 7 = 45.000 Ksi (Yield MINIMUM DISTANCE LOWER FAILURE SAFETY BEHIND PLANE FACTOR WALL TOE ANGLE LENGTH (ft) (deg) (ft) NODE 3 3 26.9 Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 2.107 15.0 47.7 13.4 75.4 23.9 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) Page - 3 S ( v. ? 1� File: FOURSEAS7ROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) NODE 4 LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) Page - 4 UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 2.300 20.0 44.7 14.1 66.6 25.2 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) Ksi 2 = 45.000 Ksi (Yield Stress controls.) 4 3 = 45.000 Ksi (Yield Stress controls.) Ksi 4 = 45.000 Ksi (Yield Stress controls.) 7 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 5 2.290 25.0 41.3 30.0 79.3 13.4 Reinf. Stress at Level 1 = 21.853 Ksi (Pullout controls...) 2 = 24.260 Ksi (Pullout controls...) 3 = 34.127 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) 1►wT9_ 2.219 30.0 34.5 29.1 70.0 17.6 Reinf. Stress at Level 1 = 10.058 Ksi (Pullout controls...) 2 = 14.484 Ksi (Pullout controls...) 3 = 18.910 Ksi (Pullout controls...) 4 = 38.693 Ksi (Pullout controls...) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) E0 File: FOURSEAS7ROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) NODE 7 LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 2.139 35.0 35.3 34.3 62.1 14.9 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 6.873 Ksi (Pullout controls...) 3 = 20.572 Ksi (Pullout controls...) 4 = 40.141 Ksi (Pullout controls...) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 8 2.040 40.0 34.5 29.1 45.9 23.0 Reinf. Stress at Level 1 = 0.000 Ksi 2 2 = 8.513 Ksi (Pullout controls...) 3 3 = 18.794 Ksi (Pullout controls...) 4 4 = 38.693 Ksi (Pullout controls...) 5 5 = 45.000 Ksi (Yield Stress controls.) 6 6 = 45.000 Ksi (Yield Stress controls.) 7 7 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 9 2.034 45.0 31.4 31.6 42.5 24.4 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 0.000 Ksi 3 = 10.737 Ksi (Pullout controls...) 4 = 32.445 Ksi (Pullout controls...) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) Page - 5 e E4# File: FOURSEAS7ROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) NODE10 LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) Page - 6 UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 2.079 50.0 33.4 59.9 89.9 0.0 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 1.604 Ksi (Pullout controls...) 3 = 15.998 Ksi (Pullout controls...) 4 = 36.562 Ksi (Pullout controls...) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) 7 = 45.000 Ksi (Yield Stress controls.) ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * For Factor of Safety = 1.0 * Maximum Average Reinforcement Working Force: * 24.487 Kips /level ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 0 PROJFCT TITLE FOUR SEASONS a. Date: 06 -13 -2006 Sna i 1N in 3.18 File: FOURSEAS6ROVS Minimum Factor of Safety = 1.83 10.0 ft Behind Wall Crest At Wall Toe H= 32.0 ft LEGEND: PS= 65.0 Hips FY= 45.0 Hs i .� Sh= 7.0 ft Sv= Uaries GAM PHI COH SIG pcf deg psf psi 1 130.0 34 0 20.0 IL Scale = 10 ft File: FOURSEAS6ROWS Page - 1 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * CALIFORNIA DEPARTMENT OF TRANSPORTATION * ENGINEERING SERVICE CENTER * (( * DIVISION OF MATERIALS AND FOUNDATIONS * Office of Roadway Geotechnical Engineering * Date: 06 -13 -2006 Time: 12:30:57 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Project Identification - FOUR SEASONS --- - - - - -- WALL GEOMETRY --- - - - - -- Vertical Wall Height = 32.0 ft Wall Batter = 0.0 degree Angle Length (Deg) (Feet) First Slope from Wallcrest. = 0.0 100.0 Second Slope from lst slope. = 0.0 0.0 Third Slope from 2nd slope. = 0.0 0.0 Fourth Slope from 3rd slope. = 0.0 0.0 Fifth Slope from 3rd slope. = 0.0 0.0 Sixth Slope from 3rd slope. = 0.0 0.0 Seventh Slope Angle. = 0.0 --- - - - - -- SLOPE BELOW THE WALL --- - - - - -- There is NO SLOPE BELOW THE TOE of the wall --- - - - - -- SURCHARGE --- - - - - -- There is NO SURCHARGE imposed on the system. --- - - - - -- OPTION #1 --- - - - - -- Factored Punching shear, Bond & Yield Stress are used. Unit Friction Soil Weight Angle Layer (Pcf) (Degree) 1 130.0 34.0 * Bond Stress also depe NAM, - SOIL PARAMETERS -- Cohesion Bond* Intercept Stress (Psf) (Psi) 0.0 20.0 ads on BSF Factor in Coord XS1 (ft) 0.0 Option Lnates of Boundary YS1 XS2 YS2 (ft) (ft) (ft) 0.0 0.0 0.0 #5 when enabled. File: FOURSEAS6ROWS --- - - - - -- WATER SURFACE --- - - - - -- NO Water Table defined for this problem. -- - - - - - -- SEARCH LIMIT --- - - - - -- The Search Limit is from 0.0 to 50.0 ft You have chosen NOT TO LIMIT the search of failure planes to specific nodes. --- - - - - -- REINFORCEMENT PARAMETERS --- - - - - -- Number of Reinforcement Levels = 6 Horizontal Spacing = 7.0 ft Yield Stress of Reinforcement = 45.0 ksi Diameter of Grouted Hole = 6.0 in Punching Shear = 65.0 kips ---- - - - - -- (Varying Reinforcement Parameters) --- - - - - -- Vertical Bar Level Length Inclination Spacing Diameter Bond Stress (ft) (degrees) (ft) (in) Factor 1 2 30.0 30.0 15.0 15.0 3.1 5.4 1.25 1.25 1.00 1.00 3 30.0 15.0 5.0 1.25 1.00 4 30.0 15.0 5.0 1.25 1.00 5 30.0 15.0 5.0 1.25 1.00 6 30.0 15.0 5.0 1.25 1.00 Page - 2 File: FOURSEAS6ROWS MINIMUM SAFETY FACTOR Toe 1.999 DISTANCE LOWER FAILURE BEHIND PLANE WALL TOE ANGLE LENGTH (ft) (deg) (ft) 5.0 72.6 3.4 UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 82.1 29.1 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) Reinf. Stress at Level 1 2 = 45.000 Ksi (Yield Stress controls.) controls.) 3 = 45.000 Ksi (Yield Stress controls.) Stress 4 = 45.000 Ksi (Yield Stress controls.) (Yield 5 = 45.000 Ksi (Yield Stress controls.) Ksi 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deQ) (ft) NODE 2 1.835 10.0 66.4 17.5 79. Reinf. Stress at Level 1 = 45.000 Ksi (Yield 2 = 45.000 Ksi (Yield 3 = 45.000 Ksi (Yield 4 = 45.000 Ksi (Yield 5 = 45.000 Ksi (Yield 6 = 45.000 Ksi (Yield MINIMUM DISTANCE LOWER FAILURE SAFETY BEHIND PLANE FACTOR WALL TOE ANGLE LENGTH (ft) (deg) (ft) NODE 3 4 16.3 Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 1.925 15.0 58.0 22.6 76.8 13.1 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) Page - 3 H File: FOURSEAS6ROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) NODE 4 LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 2.064 20.0 50.2 25.0 72.6 13.4 9.9 Reinf. Stress at Level 1 = 43.572 Ksi (Pullout controls...) (Pullout 2 = 45.000 Ksi (Yield Stress controls.) (Pullout 3 = 45.000 Ksi (Yield Stress controls.) (Yield 4 = 45.000 Ksi (Yield Stress controls.) (Yield 5 = 45.000 Ksi (Yield Stress controls.) (Yield 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 5 2.173 25.0 44.9 31.7 75.4 9.9 Reinf. Stress at Level 1 = 24.284 Ksi (Pullout controls...) 2 = 39.610 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 6 2.156 30.0 43.0 32.8 58.0 11.3 Reinf. Stress at Level 1 = 18.856 Ksi (Pullout controls...) 2 = 35.933 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) Page - 4 File: FOURSEAS6ROWS 40.0 32.6 23.7 43.8 27.7 Reinf. Stress at Level 1 = Page - 5 MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE S tl SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH 4 (ft) (deg) (ft) (deg) (ft) NODE 7 5 5 = 2.096 35.0 31.4 24.6 53.9 23.8 Reinf. Stress at Level 1 = 6.066 Ksi (Pullout controls...) MINIMUM 2 = 18.637 Ksi (Pullout controls...) SAFETY 3 = 30.277 Ksi (Pullout controls...) FACTOR 4 = 45.000 Ksi (Yield Stress controls.) LENGTH ANGLE LENGTH 5 = 45.000 Ksi (Yield Stress controls.) (deg) 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 8 2.058 40.0 32.6 23.7 43.8 27.7 Reinf. Stress at Level 1 = 0.880 Ksi (Pullout controls...) 2 2 = 17.663 Ksi (Pullout controls...) 3 3 = 33.203 Ksi (Pullout controls...) 4 4 = 45.000 Ksi (Yield Stress controls.) 5 5 = 45.000 Ksi (Yield Stress controls.) 6 6 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 9 2.098 45.0 30.7 31.4 41.6 24.1 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 6.673 Ksi (Pullout controls...) 3 = 28.546 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) C•7 rn. LM File: FOURSEAS6ROWS MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE10 2.145 50.0 32.6 59.4 89.9 0.0 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 11.813 Ksi (Pullout controls...) 3 = 32.830 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) 6 = 45.000 Ksi (Yield Stress controls.) ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * For Factor of Safety = 1.0 * Maximum Average Reinforcement Working Force: * 26.842 Kips /level ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Page - 6 Date: 06 -13 -2006 Snailgin 3.18 Minimum Factor of Safety = 1.73 10.0 ft Behind Wall Crest At Wall Toe File: FOURSEAS52OVS S t -z' o LEGEND: H= 27.0 ft PS= 65.0 Kips FY= 45.0 Ksi- Sh= 7.0 ft Sv= 5.0 ft GAM PHI COH SIG pcf deg psf psi 1 130.0 34 0 20.0 Scale = 10 ft E# As File: FOURSEAS5ROWS ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * CALIFORNIA DEPARTMENT OF TRANSPORTATION * ENGINEERING SERVICE CENTER * DIVISION OF MATERIALS AND FOUNDATIONS * Office of Roadway Geotechnical Engineering * Date: 06 -13 -2006 Time: 12:32:51 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Project Identification - FOUR SEASONS --- - - - - -- WALL GEOMETRY --- - - - - -- Vertical Wall Height = 27.0 ft Wall Batter = 0.0 degree Angle Length (Deg) (Feet) First Slope from Wallcrest. = 0.0 . 100.0 Second Slope from lst slope. = 0.0 0.0 Third Slope from 2nd slope. = 0.0 0.0 Fourth Slope from 3rd slope. = 0.0 0.0 Fifth Slope from 3rd slope. = 0.0 0.0 . Sixth Slope from 3rd slope. = 0.0 0.0 Seventh Slope Angle. = 0.0 --- - - - - -- SLOPE BELOW THE WALL --- - - - - -- There is NO SLOPE BELOW THE TOE of the wall --- - - - - -- SURCHARGE --- - - - - -- There is NO SURCHARGE imposed on the system. --- - - - - -- OPTION #1 --- - - - - -- Factored Punching shear, Bond & Yield Stress are used. --- - - - - -- SOIL PARAMETERS --- - - - - -- Unit Friction Cohesion Bond* Coordinates of Boundary Soil Weight Angle Intercept Stress XS1 YS1 XS2 YS2 Layer (Pcf) (Degree) (Psf) (Psi) (ft) (ft) (ft) (ft) 1 130.0 34.0 0.0 20.0 0.0 0.0 0.0 0.0 * Bond Stress also depends on BSF Factor in Option #5 when enabled. Page - 1 3 �1, File: FOURSEAS5ROWS --- - - - - -- WATER SURFACE --- - - - - -- NO Water Table defined for this problem. --- - - - - -- SEARCH LIMIT --- - - - - -- The Search Limit is from 0.0 to 50.0 ft You have chosen NOT TO LIMIT the search of failure planes to specific nodes. --- - - - - -- REINFORCEMENT PARAMETERS --- - - - - -- Number of Reinforcement Levels = 5 Horizontal Spacing = 7.0 ft Yield Stress of Reinforcement = 45.0 ksi Diameter of Grouted Hole = 6.0 in Punching Shear = 65.0 kips ---- - - - - -- (Varying Reinforcement Parameters) --- - - - - -- Vertical Bar Level Length Inclination Spacing Diameter Bond Stress (ft) (degrees) (ft) (in) Factor 1 25.0 15.0 3.5 1.13 1.00 2 25.0 15.0 5.0 1.13 1.00 3 25.0 15.0 5.0 1.13 1.00 4 25.0 15.0 5.0 1.13 1.00 5 25.0 15.0 5.0 1.13 1.00 E* Page - 2 14 File: FOURSEAS5ROWS MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (Yield (ft) (deg) (ft) (deg) (ft) Toe 1.797 5.0 53.5 3.4 83.0 24.5 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 4 2 = 45.000 Ksi (Yield Stress controls.) controls.) 3 = 45.000 Ksi (Yield Stress controls.) Stress 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 2 1.728 10.0 63.7 18.1 79. Reinf. Stress at Level 1 = 45.000 Ksi (Yield 2 = 45.000 Ksi (Yield 3 = 45.000 Ksi (Yield 4 = 45.000 Ksi (Yield 5 = 45.000 Ksi (Yield MINIMUM DISTANCE LOWER FAILURE SAFETY BEHIND PLANE FACTOR WALL TOE ANGLE LENGTH (ft) (deg) (ft) 5 11.0 Stress controls.) Stress controls.) Stress controls.) Stress controls.) Stress controls.) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) NODE 3 1.866 15.0 50.2 14.1 69.7 17.3 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) Page - 3 5 t'2. , File: FOURSEASSROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) NODE 4 2.013 20.0 47.2 14.7 58.3 19.0 Reinf. Stress at Level 1 = 41.654 Ksi (Pullout controls...) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 5 2.022 25.0 37.6 22.1 60.9 15.4 Reinf. Stress at Level 1 = 19.223 Ksi (Pullout controls...) 2 = 30.615 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 6 1.998 30.0 36.9 22.5 48.4 18.1 Reinf. Stress at Level 1 = 11.457 Ksi (Pullout controls...) 2 = 28.370 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) Page - 4 0 [7 ,E* File: FOURSEAS5ROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) NODE 7 LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 1.998 35.0 30.1 16.2 42.0 28.3 Reinf. Stress at Level 1 = 0.822 Ksi (Pullout controls...) 2 = 20.993 Ksi (Pullout controls...) 3 = 41.163 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 8 2.025 40.0 26.9 17.9 38.2 30.5 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 11.103 Ksi (Pullout controls...) 3 = 33.424 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 9 2.067 45.0 24.2 19.7 35.0 33.0 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 1.821 Ksi (Pullout controls...) 3 = 26.160 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) Page - 5 File: FOURSEAS5ROWS MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) NODE10 LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 2.154 50.0 28.4 56.8 89.9 0.0 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 5.893 Ksi (Pullout controls...) 3 = 35.051 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) 5 = 45.000 Ksi (Yield Stress controls.) ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * For Factor of Safety = 1.0 * Maximum Average Reinforcement Working Force: * 22.650 Kips /level ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Page - 6 H Date: 06 -13 -2006 SnailUin 3.18 Minimum Factor of Safety = 1.67 10.0 ft Behind Mall Crest At Wall Tae H= 22.0 ft �01 Scale = 10 ft File- F0URSERS42OVS s I 's , c7 LEGEND: PS= 65.0 Hips FY= 45.0 Hsi Sh= 7.0 ft Sv= 5.0 ft GAM PHI COH SIG pcf deg psf psi 1 130.0 34 0 20.0 File: FOURSEAS4ROWS ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * CALIFORNIA DEPARTMENT OF TRANSPORTATION * ENGINEERING SERVICE CENTER * DIVISION OF MATERIALS AND FOUNDATIONS * Office of Roadway Geotechnical Engineering * Date: 06 -13 -2006 Time: 12:34:41 Project Identification - FOUR SEASONS --- - - - - -- WALL GEOMETRY --- - - - - -- Vertical Wall Height = 22.0 ft Wall Batter = 0.0 degree Angle Length (Deg) (Feet) First Slope from Wallcrest. = 0.0 100.0 Second Slope from 1st slope. = 0.0 0.0 Third Slope from 2nd slope. = 0.0 0.0 Fourth Slope from 3rd slope. = 0.0 0.0 Fifth Slope from 3rd slope. = 0.0 0.0 Sixth Slope from 3rd slope. = 0.0 0.0 Seventh Slope Angle. = 0.0 --- - - - - -- SLOPE BELOW THE WALL---- - - - - -- There is NO SLOPE BELOW THE TOE of the wall --- - - - - -- SURCHARGE --- - - - - -- There is NO SURCHARGE imposed on the system. --- - - - - -- OPTION #1 --- - - - - -- Factored Punching shear, Bond & Yield Stress are used. --- - - - - -- SOIL PARAMETERS --- - - - - -- Unit Friction Cohesion Bond* Coordinates of Boundary Soil Weight Angle Intercept Stress XS1 YS1 XS2 YS2 Layer (Pcf) (Degree) (Psf) (Psi) (ft) (ft) (ft) (ft) 1 130.0 34.0 0.0 20.0 0.0 0.0 0.0 0.0 * Bond Stress also depends on BSF Factor in Option #5 when enabled. Page - 1 File: FOURSEAS4ROWS --- - - - - -- WATER SURFACE --- - - - - -- NO Water Table defined for this problem. --- - - - - -- SEARCH LIMIT --- - - - - -- The Search Limit is from 0.0 to 50.0 ft You have chosen NOT TO LIMIT the search of failure planes to specific nodes. --- - - - - -- REINFORCEMENT PARAMETERS --- - - - - -- Number of Reinforcement Levels = 4 Horizontal Spacing = 7.0 ft Yield Stress of Reinforcement = 45.0 ksi Diameter of Grouted Hole = 6.0 in Punching Shear = 65.0 kips ---- - - - - -- (Varying Reinforcement Parameters) --- - - - - -- Vertical Bar Level Length Inclination Spacing Diameter Bond Stress (ft) (degrees) (ft) (in) Factor 1 20.0 15.0 3.0 1.00 1.00 2 20.0 15.0 5.0 1.00 1.00 3 20.0 15.0 5.0 1.00 1.00 4 20.0 15.0 5.0 1.00 1.00 Page - 2 'r, " . -L- File: FOURSEAS4ROWS Level 1 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH controls.) (ft) (deg) (ft) (deg) (ft) Toe 1.716 5.0 69.3 7.1 80.8 15.6 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) Level 1 = 3 = 45.000 Ksi (Yield Stress controls.) 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH WALL TOE (ft) (deg) (ft) (deg) (ft) NODE 2 1.666 10.0 54.0 13.6 79.7 11.2 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 3 = 45.000 Ksi (Yield Stress controls.) 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 3 1.835 15 -0 46.3 15.2 67.8 11.9 Reinf. Stress at Level 1 = 41.184 Ksi (Pullout controls...) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 4 1.903 20.0 39.5 10.4 52.1 19.5 Reinf. Stress at Level 1 = 28.068 Ksi (Pullout controls...) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 5 1.837 25.0 37.0 21.9 49.6 11.6 Reinf. Stress at Level 1 = 6.248 Ksi (Pullout controls...) 2 = 33.531 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) Page - 3 <T NODE 6 - -_— NODE 7 1.924 35.0 32.2 41.3 89.9 0.0 Reinf. Stress at 1.838 30.0 36.3 37.2 89.9 0.0 III Reinf. Stress at Level 1 = 2.045 Ksi (Pullout controls...) 45.000 Ksi (Yield Stress controls.) MINIMUM 2 = 31.822 Ksi (Pullout controls...) PLANE PLANE FACTOR 3 = 45.000 Ksi (Yield Stress controls.) I� NODE 8 4 = 45.000 Ksi (Yield Stress controls.) Reinf. Stress at MINIMUM DISTANCE LOWER FAILURE 2 = UPPER FAILURE (ft) SAFETY BEHIND PLANE 4 = PLANE MINIMUM FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH FACTOR WALL TOE (ft) (deg) (ft) (deg) (ft) NODE 7 1.924 35.0 32.2 41.3 89.9 0.0 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 22.079 Ksi (Pullout controls...) 2 = 3 = 45.000 Ksi (Yield Stress controls.) controls...) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH DISTANCE (ft) (deg) (ft) (deg) (ft) NODE 8 BEHIND PLANE 2.021 40.0 20.1 12.8 32.2 33.1 Reinf. Stress at Level 1 = 0.000 Ksi LENGTH 2 = 1.175 Ksi (Pullout controls...) (ft) 3 = 34.432 Ksi (Pullout controls...) (deg) (ft) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 9 2.152 45.0 26.1 50.1 89.9 0.0 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 4.893 Ksi (Pullout controls...) 3 = 44.288 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE10 2.248 50.0 23.7 5 Reinf. Stress at Level 1 = 0.000 2 = 0.000 3 = 39.391 4 = 45.000 4.6 89.9 0.0 Ksi Ksi Ksi (Pullout controls...) Ksi (Yield Stress controls.) For Factor of Safety = 1.0 * Maximum Average Reinforcement Working Force: * 19.045 Kips /level ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ('2, 4r- 0 Date: 06 -13 -2006 Snailgin 3.10 File: FOURSERS32OVS 114 ,J Minimum Factor of Safety = 2.21 3.0 ft Behind Wall Crest At Wall Toe LEGEND: PS= 65.0 ]tips H= 16.0 ft FY= 45.0 Hsi Sh= 7.0 ft Su= 5.0 ft GAM PHI COH SIG pcf deg psf psi 1 130.0 34 0 20.0 Scale = 10 ft 0 File: FOURSEAS3ROWS ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * CALIFORNIA DEPARTMENT OF TRANSPORTATION * ENGINEERING SERVICE CENTER * DIVISION OF MATERIALS AND FOUNDATIONS * Office of Roadway Geotechnical Engineering * Date: 06 -13 -2006 Time: 12:36:15 ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Project Identification - FOUR SEASONS --- - - - - -- WALL GEOMETRY --- - - - - -- Vertical Wall Height = 16.0 ft Wall Batter = 0.0 degree Angle Length (Deg) (Feet) First Slope from Wallcrest. = 0.0 100.0 Second Slope from lst slope. = 0.0 0.0 Third Slope from 2nd slope. = 0.0 0.0 Fourth Slope from 3rd slope. = 0.0 0.0 Fifth Slope from 3rd slope. = 0.0 0.0 Sixth Slope from 3rd slope. = 0.0 0.0 Seventh Slope Angle. = 0.0 --- - - - - -- SLOPE BELOW THE WALL - - - -- There is NO SLOPE BELOW THE TOE of the wall --- - - - - -- SURCHARGE --- - - - - -- There is NO SURCHARGE imposed on the system. --- - - - - -- OPTION #1 --- - - - - -- Factored Punching shear, Bond & Yield Stress are used. Unit Soil Weight Layer (Pcf) 1 130.0 * Bond Stress n Friction Angle (Degree) 34.0 also depe - SOIL PARAMETERS - Cohesion Bond* Intercept Stress (Psf) (Psi) 0.0 20.0 ads on BSF Factor in Coordinates of Boundary XS1 YS1 XS2 YS2 (ft) (ft) (ft) (ft) 0.0 0.0 0.0 0.0 Option #5 when enabled. Page - 1 File: FOURSEAS3ROWS --- - - - - -- WATER SURFACE --- - - - - -- NO Water Table defined for this problem. --- - - - - -- SEARCH LIMIT --- - - - - -- The Search Limit is from 0.0 to 30.0 ft You have chosen NOT TO LIMIT the search of failure planes to specific nodes. --- - - - - -- REINFORCEMENT PARAMETERS --- - - - - -- Number of Reinforcement Levels = 3 Horizontal Spacing = 7.0 ft Yield Stress of Reinforcement = 45.0 ksi Diameter of Grouted Hole = 6.0 in Punching Shear = 65.0 kips ---- - - - - -- (Varying Reinforcement Parameters) --- - - - - -- Vertical Bar Level Length Inclination Spacing Diameter Bond Stress (ft) (degrees) (ft) (in) Factor 1 18.0 15.0 3.0 1.00 1.00 2 18.0 15.0 5.0 1.00 1.00 3 18.0 15.0 5.0 1.00 1.00 Page - 2 14 , -L- File: FOURSEAS3ROWS MINIMUM SAFETY FACTOR Toe 2.209 DISTANCE LOWER FAILURE BEHIND PLANE WALL TOE ANGLE LENGTH (ft) (deg) (ft) 3.0 60.6 1.8 UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) 81.7 14.6 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 38.739 Ksi (Pullout controls...) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (deg) (ft) (deg) (ft) (ft) (deg) (ft) (deg) (ft) NODE 2 2.219 6.0 56.7 7.7 79.4 9.8 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 38.739 Ksi (Pullout controls...) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (deg) (ft) (deg) (ft) (ft) (deg) (ft) (deg) (ft) NODE 3 3.253 15.0 24.6 11.5 68.1 12.1 Reinf. Stress at 2.616 9.0 49.8 8.4 69.4 10.3 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) DISTANCE BEHIND 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH Reinf. Stress at (ft) (deg) (ft) (deg) (ft) NODE 4 Page - 3 ri 2.964 12.0 41.6 14.4 79.4 6.5 Reinf. Stress at Level 1 = 38.739 Ksi (Pullout controls...) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 5 3.253 15.0 24.6 11.5 68.1 12.1 Reinf. Stress at Level 1 = 29.415 Ksi (Pullout controls...) 2 = 40.230 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM SAFETY DISTANCE BEHIND LOWER FAILURE UPPER FAILURE PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 6 3.217 18.0 24.0 11.8 57.3 13.3 Reinf. Stress at Level 1 = 21.925 Ksi (Pullout controls...) Page - 3 ri 3 = 45.000 Ksi (Yield Stre.s.s=uontrols.) NODE 8 3.154 24.0 14.9 12.4 46.8 17.5 Reinf. Stress at MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE 2 = SAFETY BEHIND PLANE PLANE 45.000 Ksi (Yield Stress FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH UPPER FAILURE SAFETY (ft) (deg) (ft) (deg) (ft) FACTOR NODE 7 ANGLE LENGTH ANGLE LENGTH (ft) 3.231 21.0 24.6 11.5 46.8 15.4 Reinf. Stress at Level 1 = 16.999 Ksi (Pullout controls...) 2 = 39.339 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 8 3.154 24.0 14.9 12.4 46.8 17.5 Reinf. Stress at Level 1 = 2.701 Ksi (Pullout controls...) 2 = 25.042 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 9 3.021 27.0 16.5 11.3 38.3 20.6 Reinf. Stress at Level 1 = 0.355 Ksi (Pullout controls...) 2 = 28.535 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE10 3.050 30.0 14'.9 12.4 35.4 22.1 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 22.470 Ksi (Pullout controls...) 3 = 45.000 Ksi (Yield Stress controls.) ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * For Factor of Safety = 1.0 * Maximum Average Reinforcement Working Force: * 13.267 Kips /level ************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ❑i FOUR SEASONS - FACING DESIGN NAIL HEAD SERVICE LOAD Ff (p g. 97) 0.7 Ka (SLOPE ACCOUNTED) 0.300 HEIGHT OF WALL (11) 58 IN-SITU DENSITY (p 125 HORIZONTAL SPACING 7 VERTICAL SPACING (ft) 5 NAWanVICE§`OAD,(rJ 7 60 K FROM CALC I FLEXURE STRENGTH VERTICAL SPACING (ft) 5 HOR. SPACING (ft) 7 MESH 4 WALER BARS (dIa4n) ( 11 0.75 VERTICAL REIN. (dis4n) (11 0.63 ADDITIONAL VERT. REIN. (clla4n)(I) 0.63 WALL THICK in 7 GROUT HOLE in 4 BEARING PLATE 10 STEEL GRADE (psi) 60000 SHCTCRETE (psi) 4000 Cf (Table 4.2 pg. 89) 1.50 NAIL HEAD STRENGTH FACTOR 0.70 ----------- C! Table 42 Pa. 89) 1.5 A s o, 3 4 4.0 1 4,0__ 0;44,, - 10 T- 0.5 HORIZONTAL DIRECTION As NEQY(irgi -.s-*.4, a1 n, As' (pQSy0rflll")l;%;*�* ;6M SOIL NAIL NUT ANCHOR THICKNESS S- NAIL LOAD (Kips) 'dim e (IN) M&V.0JAEAD!6FRffl- BEARING PLATE DEVELOPED LENGTH VERTICAL BARS WALER BARS OUTSIDE DIA IN PL FOR ASSUMED PLATE SOIL NAIL NUT ANCHOR THICKNESS S- NAIL LOAD (Kips) 'dim e (IN) 'dim bw (IN) (INCHES) 60 1.5 1 1.38 1 0.5 DEVELOPED LENGTH VERTICAL BARS WALER BARS AASHTO SPECIFICATIONS OSU CE 8311 11:00i jLd �—b SPUC CIf_f 4TH 0—n)M N'ROWTV-S.? SEE j1.5(Ldb).(In) Svdre +72 (in): polssons I S 0 c I C E -, LT W( in 94— ratio Ir 141 0.3 .1 -,07 , .5% �fq , Q , ', DEVELOPED LENGTH VERTICAL BARS WALER BARS AASHTO SPECIFICATIONS OSU CE 8311 11:00i jLd �—b SPUC CIf_f 4TH 0—n)M N'ROWTV-S.? j1.5(Ldb).(In) Svdre +72 (in): I S 0 c I C E -, LT W( in 94— DEVELOPED LENGTH VERTICAL BARS WALER BARS 11:00i jLd �—b SPUC CIf_f 4TH 0—n)M C MESH j1.5(Ldb).(In) Svdre +72 (in): I S 0 c I C E -, LT W( in 94— COGGINS & SONS, INC., SHORING DESIGN REFERENCE MATERIALS JOHN H. HART, PE EARTH RETENTION REFERENCE DOCUMENTS & BIBLIOGRAPHY 1) PECK, HANSON & THORNBURN, "FOUNDATION ENGINEERING ", SECOND EDITION, 1973. 2) GROUND ANCHORS AND ANCHORED SYSTEMS, GEOTECHNICAL ENGINEERING CIRCULAR NO. 4, FHWA OFFICE OF BRIDGE TECHNOLOGY, JUNE 1999. 3) JOSEPH E. BOWLES, "FOUNDATION ANALYSIS AND DESIGN ", FOURTH AND FIFTH EDITIONS, 1988 & 1996. 4) BRAJA M. DAS, "PRINCIPLES OF FOUNDATION ENGINEERING ", SECOND EDITION, 1990. 5) HOLTZ AND KOVACS, "AN INTRODUCTION TO GEOTECHNICAL ENGINEERING ", 1981. 6) ROBERT M. KOERNER, "DESIGNING WITH GEOSYNTHETICS ", THIRD EDITION, 1994. 7) NAVFAC 7.01, "SOIL MECHANICS ", SEPTEMBER, 1986 8) NAVFAC 7.02, "FOUNDATIONS AND EARTH STRUCTURES ", SEPTEMBER, 1986 9) HANNA, "FOUNDATIONS IN TENSION - GROUND ANCHORS ". 10) FHWA/RD- 82/047, "TIEBACKS ", JULY 1982. 11) PTI, "POST- TENSIONING MANUAL", FIFTH EDITION, 1997. 12) PTI, "RECOMMENDATIONS FOR PRESTRESSED ROCK AND SOIL ANCHORS ", THIRD EDITION, 1996. 13) ASCE, "SERVICEABILITY OF EARTH RETAINING STRUCTURES ", GSP #42,1994. 14) FHWA, FHWA -RD -75 -128, "LATERAL SUPPORT SYSTEMS AND UNDERPINNING ", APRIL 1976, VOLUMES I, II, III. 15) ASCE, GEOTECHNICAL SPECIAL PUBICATION NO. 74, "GUIDELINES OF ENGINEERING PRACTICE FOR BRACED AND TIED -BACK EXCAVATIONS ". 16) ALAN MACNAB, "EARTH RETENTION SYSTEMS HANDBOOK", 2002. SOIL NAILING REFERENCE DOCUMENTS & BIBLIOGRAPHY 1) ASCE, "SOIL NAILING AND REINFORCED SOIL WALLS ", 1992. 2) FHWA/GOLDER PUBLICATION # FHWA- SA- 96- 069, "MANUAL FOR DESIGN AND CONSTRUCTION MONITORING OF SOIL NAIL WALLS ", NOVEMBER 1996. 3) ASCE, "GROUND IMPROVEMENT / GROUND REINFORCEMENT / GROUND TREATMENT' SPECIAL PUBLICATION #69, JULY 1997. 4) XANTHAKOS, ABRAMSON & BRUCE, "GROUND CONTROL AND IMPROVEMENT', 1994. 5) FHWA -IF -03 -017 " GEOTECHNICAL ENGINEERING CIRCULAR NO. 7-SOIL NAIL WALLS ", MARCH 2003 SOFTWARE 1) CALIFORNIA DOT, "SNAIL PROGRAM ", VERSION 2.11 -PC VERSION. 2) RISA TECHNOLOGIES, "RISA -2D VERSION 4.0, RAPID INTERACTIVE STRUCTURAL ANALYSIS - 2D, FRAME ANALYSIS. 3) GEO -SLOPE INTERNATIONAL, "SLOPE-)F', VERSION 5.17 OTHER REFERENCE DOCUMENTS & BIBLIOGRAPHY 1) AMERICAN INSTITUTE OF STEEL CONSTRUCTION, "MANUAL OF STEEL CONSTRUCTION - ALLOWABLE STRESS DESIGN ", NINTH EDITION, 1989 2) AMERICAN INSTITUTE OF STEEL CONSTRUCTION, "MANUAL OF STEEL CONSTRUCTION - LOAD AND RESISTANCE FACTOR DESIGN ", THIRD EDITION, 2001 3) ACI 381- 99/318R -99, "BUIDING CODE AND COMMENTARY ", 1999. 4) ANSI/ASCE 7 -95, "MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES ". 0 5) ACI, "BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 -99) AND COMMENTARY (ACI 318R -99). 6) ANSI/AF &PA NDS- 1997, "NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION ". COGGINS 8 50 pkc (Ar To ITEM EM `1:1 111 Caisson Drilling, Excavation Shearing, Tieback Anchors Mr. Doug Carley October 16, 2006 Layton Construction 9090 South Sandy Parkway Sandy, Utah 84070 Re: Four Seasons - Utility Conflicts Dear Mr. Carley, The following will provide information regarding our design approach and the diligence, which Coggins and Sons adheres to in integrating existing utilities into our earth retention design. At this time the type of system proposed for this project is a reinforced shotcrete wall with soil nail anchors. Before our proposal is assembled, our engineers perform a complete design, including calculations, and quantities required for the system that will be installed. The design approach includes interpreting data provided in the soil investigation, structural, civil, and architectural drawings, and utilizing one or more computer analysis programs. The programs used for this particular project include, Snail, this program is a soil nail wall design and analysis program developed by the California Department of Transportation. We have used this program on numerous successfully completed projects in the past and have found it to be an excellent method of designing reinforced soil -nail walls. We also utilize a program called Slope/W for additional slope stability analysis. This program is considered "state of the art" by most in the geotechnical field, and provides further confirmation of the design, and required safety factors. Additionally, this project has been designed and will be installed following criteria as out lined in the Federal Highway Administration Manual (FHWA) for soil -nail wall design and construction. Once construction plans have been completed, layout of the future structure and earth retention wall will be accomplished in the field. During this same time period utility locates will be performed to determine every utility that lies within our construction area. H Page 2 Utility Conflicts Ho Based on the utility locates, our field supervisor will then determine which utilities can be readily surveyed with accurate horizontal dimensions (tied to building grid layout) as well as vertical elevations. For any utilities, which this information cannot accurately be determined, potholing will be required. Potholing will be performed utilizing a vacuum method. This method is performed by pressured water and suction of materials, so no damage occurs to the utility. As each utility is located, location survey will be performed, again both horizontally and vertically tied to building grids. This procedure will be performed for all utilities with in our work area. This survey information will be assembled by our supervisor and transmitted to Coggins and Sons staff engineer. The engineer will then cut cross - sections reflecting the relationship of the future soil nails and existing utilities. These cross sections will be "cut" as often as necessary to assure utilities will not be disturbed, interrupted or damaged. If, during the cross - section process it is determined that there is interference between soil - nails and utilities, our engineer will provide design modifications, which may include, adjustments in soil -nail elevation, location, or angle of inclination, to eliminate the conflict. The process described above has worked very well for Coggins and Sons on many projects through out Colorado and the Rocky Mountain region, including the Sonnenalp and One Willow Bridge in the town of Vail. We are confident that this procedure will work just as well on this project. Please feel free to call if you require further clarification of the process described above. Sincerely, Larry Coggins u Caisson Drilling, Excavation Shoring, Tieback Anchors August 30, 2006 RECEIVED Layton Construction Company, Inc. 9090 South Sandy Parkway A� + =; 3 1 ; v,. Sandy, UT 84070 The Layton Companies Attention: Doug Carley Subject: AMEC Earth Retention Review We have reviewed AMEC's earth retention review report dated June 30, 2006. In general, we agree with their comments and appreciated their review effort. AMEC's summary determined two deficiencies. We have revised our earth retention design to strengthen the deficiencies. In lieu of a mieropile cantilever system, we have switched to a soldier beam and lagging cantilever system. Please find attached revised calculations and earth retention drawings reflecting changes. If you have any questions, please feel free to call. Sincerely, O•RE� S p ; ••;j�V DE'••Tc� 0 o t ti7•- 0 •o t plr. John H. Hart, PE- 9512 Titan Park Circle • Littleton, Colorado 80125 • (303) 791 -9911 • FAX (303) 791 -0967 COGGINS & SC h rs n Drilling, Excavation Shoring, Tieback Anc o Catsso RAL DESIGN CALCULATIONS STRUCTU EARTH RETENT ION SYSTEM RECEIVED for PROJECT NO. - 5117 PROJECT DESCRIPTION: EARTH RETENTION FOUR SEASONS HOTELS AND RESORTS Prepared for AUG 3 1 2006 The Layton Companies 0— 'ENT: LAYTON CONSTRUCTION COMPANY ADDRESS: 9090 SOUTH SANDY P g4070Y CITY: SANDY STATE: UTAH TEL: 801 -568 -9090 FAX: 801-569-5450 J,SCQId� Prepared By: JOHN H. HART, P.E. COGGINS & SONS, INC. DATE: August 28, 2006 ° i ittiaton. Colorado 80125 • (303) 791 -9911 • FAX (303) 791-0967 COGGINS & SO i NS, INC. Caisson Drilling, Excavation Shoring, Tieback Anchors EARTH RETENTION CALCULATIONS INDEX for 11 PROJECT NO. - 5117 PROJECT: FOUR SEASONS DESCRIPTION PAGES ITEM NO. S-S1.2 1 SOILS S2.0-S2.4 2 "RISA -2D" ANALYSIS OF i -0" CANTILEVER S3.0-S3.4 3 "RISA -2D" ANALYSIS OF 10' -0" CANTILEVER S4.0-S4.4 4 "RISA -2D" ANALYSIS OF 13' -0" CANTILEVER S5.0-S5.2 XUtL CHECKS 0 - S6.6 6 "L -PILE 5.0" ANAL "oiza .'-0" EXPOSED - 8' -0" EMBED 0 - S7.6 7 "L -PILE 5.0" ANALYSIS 10' -0" EXPOSED -10' -0 " EMBED S8.0-S8.6 8 "L -PILE 5.0" ANALYSIS 13' -0" EXPOSED -12' -0" EMBED APPENDIX "A ", REFERENCE MATERIAL AND CODES APPENDIX "B ". LAGGING DESIGN CRITERIA AND REFERENCES 11 COGGINS & S SoMirs-L. INC. N Name t�A� PH. (3031791 -99 PROJECT. CAISSON DRILLING s o �s CIRTH RETENTION SUBJECT: IE BACK ANCHORS Sk -7 -�- ->' -e Sc- u ✓vc- 22 2voS�_ Vi VJ l�l V S r 1 N E t-Ol- l_ o w1-'ty I �4 9 U O l 5 ACS U 0 u G 0 ' O O 0612 V i 11 S� c\,C> SII --I PROJECT NO.:__ -- DATE: S e o C- LA f1.11' Cj ✓� 17 t7, (OGGINS & SONS INC. -`� Name 1 PH. (303) 791 -9911 FAX (303) 791-0967 PROJECT: CAISSON DRILLING ARTH RETENTION SUBJECT: TIE BACK ANCHORS PROJECT NO.: DATE: s 4 .t- ��� MR - ----1 = -) COGGINS AND SONS, IN JOHN H. HART, PE_ 5117 FOUR SEASONS Aug 28, 2006 at 10:14 AM ----- i� 7 FT HEIGHT.r2d a --- - ----- --- o TCOGGINS AI AND SONS, INC JOHN H. HART. PE 5117 -------- r� FOUR SEASONS Aug 28, 2006 at 10:14 AM 7 FT HEIGHT.r2d R Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:14 AM Job Number: 5117 FOUR SEASONS Checked By: Hot Rolled Steel Properties G rkeil r; flesh Nu Tharm f11FF, Fl rl4-.ncitvrk /ff ^31 Yialrlfkcil 1 A36 Gr.36 29000 11154 .3 .65 .49 36 2 A572 Gr.50 29000 11154 .3 .65 .49 50 3 A992 29000 11154 .3 .65 .49 50 4 A500 Gr.42 29000 11154 .3 .65 .49 42 5 A500 Gr.46 29000 11154 .3 .65 .49 46 Hot Rolled Steel Section Sets Label Shape Desi n List Type Material Design Rules A Fin2j 190 270 i... I 0 180 in 1 HR1 A W 14X30 Wide Flange Beam A572 Gr.50 Typical 8.85 19.6 291 Hot Rolled Steel Design Parameters Label Shape Length[ft] Lb-out ft Lb-infftl Lcom to ...Lcom bot ... K -out K -in Cm Cb Out s... In sway 1 M1 HR1A 7 1 Joint Coordinates and Temperatures t_nhel X fftl Y fftl TemD fFl 1 N1 0 7 0 2 N2 0 0 0 Joint Boundary Conditions Joint Label X k /in Y [k/inl Ratationfk-ftJradl Footing 1 N2 Reaction F Reaction Reaction Member Primary Data Label I Joint J Joint Rotated Section/Shape Design List Type Material Desi n Rules 1 M1 I N1 N2 I HR1A Wide Flange I Beam A572 Gr.50 Typical Member Distributed Loads (BLC 1 : SOIL) Member Label Direction Start Ma nitude k/ft ... End Ma nitude k/ft d... Start Location ft % End Location ft 1 M 1 X 0 -2.3 1 0 1 0 Joint Loads and Enforced Displacements Joint Label L D M Direction Ma nitude k k -ft in rad k`s ^2 /ft No Data to Print ... Member Point Loads Member Label Direction Ma nitude k k -ft Location ft No Data to Print ... RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \7 FT HEIGHT.r2d] Page 1 E* r, Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:14 AM Job Number : 5117 FOUR SEASONS Checked By: Basic Load Cases BLC Description Cateqory X Gravity Y Gravitv Joint Point Distributed 1 SOIL EPL I 1 1 1 1 T-1 Load Combination Design Descri tion ASIF CD ABIF Service Hot Rolled Cold Formed Wood Concrete Footin s 1 1 CANTILEVER Yes Load Combinations Description Solve PD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1 ICANTILEVERIYesl I I 1 I 1 Joint Deflections (By Combination) LC Joint Label X finl Y finl Rotation rad 1 1 N1 -.043 0 5.609e -4 2 1 N2 0` <0 0 Joint Reactions Its] loint Label X rkl Y rkl MZ rk -ftl 1 1 1 N2 8.05 -211 - 18.783 2 1 Totals: 8.05 -:211 0 3 1 COG (ft): X: 0 Y: 3.5 3 Member Section Deflections LC Member Label Sec x rinl v [in] (n) Uv Ratio 1 I 1 I M 1 1 0 -.043 1960.012 2 2 2 0 -.01.7 4937.869. 3 .67 3 3 0 0 NC Member Section Forces LC Member Label Sec Axial k Shear[kl Moment k -ft 1 1 M1 1 0 0 0 2 2 2 -.105 -2.012 2.348 3 .67 3 3 -.211 -8.05 18.783 Member Section Stresses LC Member Label Sec Axialrksil Shearrksil Top Bendingrksil Bot Bendinqrksil 1 1 M1 1 0 0 0 0 2 2 -.012 -.539 -.67 .67 3 3 -.024 -2.154 -5.36 5.36 RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \7 FT HEIGHT.r2d] Page 2 L..... Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:14 AM Job Number : 5117 FOUR SEASONS Checked By: 0 Member RISC ASD Steel Code Checks (By Combination H LC Member Shape UC Max Loc[ftl Shear UC Loc[ftl Fafksil Ftfksil Fbfksil Cb Cm E n 1 1 1 M1 W14X30 1 .179 1 7 1 .108 1 7 1 28.836 30 1 30 1.75 1 .85 1 H2 -1 RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \7 FT HEIGHT.r2d] Page 3 'At A 1#1 m T WaW IC 1. G—.EAP COGGINS AND SONS, INC JOHN H. HART, PE 5117 FOUR SEASONS Aug 28, 2006 at 10:26 AM 10 FT HEIGHT.r2d Z. A A ---- ----- ---- i FOUR SEASONS Aug 28, 2006 at 10:27 AM 10 FT HEIGHT.r2d li Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:27 AM Job Number : 5117 FOUR SEASONS Checked By: Hot Rolled Steel Properties I nhol F recd r; rkcil Nil Therm AlPS P r)Pnsitvfk /ft ^31 YIPldrksil 1 A36 Gr.36 29000 11154 .3 .65 .49 36 2 A572 Gr.50 29000 11154 .3 .65 .49 50 3 A992 29000 11154 .3 .65 .49 50 4 A500 Gr.42 29000 11154 .3 .65 .49 42 5 A500 Gr.46 29000 11154 .3 .65 .49 46 Hot Rolled Steel Section Sets Label Shape Design List Type Material Desi n Rules A fin2l 190 270 i... 1(0,180) fin4 1 HR1A W16X50 I Wide Flange Beam A572 Gr.50 I Typical 14.7 37.2 1 659 Hot Rolled Steel Design Parameters Label Sha a Length[ft] Lb-out[ft] Lb-infftl Lcomp to ... Lcomp bot ... K -out K -in Cm Cb Out s... In sway Ill M1 IFIRiAl 101 1 Joint Coordinates and Temperatures I nhol X fftt Y MI Temn fR 1 I N1 0 10 0 2 1 N2 0 0 0 Joint Boundary Conditions Joint Label X fklinl Y f khril Rotation[k-ft/radl Footing 1 N2 Reaction Reaction Reaction Member Primary Data Label I Joint J Joint Rotate de Section/Shape Design List Type Material Desi n Rules 1 M1 N1 N2 I I HR1A Wide Flange I Beam I A572 Gr.50 I Typical Member Distributed Loads (BLC 1 : SOIL) Member Label Direction Start Ma nitude k/ft ... End Ma nitude k/ft d... Start Locationfft,%l End Location ft 1 M 1 X 0 1 -3.7 1 0 1 0 Joint Loads and Enforced Displacements Joint Label L D M Direction Ma nitude k k -ft in rad k's ^2 /ft No Data to Print ... Member Point Loads Member Label Direction Ma nitude k k -ft Location ft No Data to Print ... RISA -2D Version 6.5 [C: \ ... \... \My Documents \2006JOBS \5117FOURSEASONS \10 FT HEIGHT.r2d] Page 4 ❑+i R Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:27 AM Job Number: 5117 FOUR SEASONS Checked By: Basic Load Cases BLC Description Cateaory X Gravity Y Gravity Joint Point Distributed 1 SOIL EPL I I I 1 Load Combination Design Descri tion ASIF CD ABIF Service Hot Rolled Cold Formed Wood Concrete Footin s 1 ICANTILEVERI I I I I Yes Load Combinations Description Solve PD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1 ICANTILEVERIYesl I I 1 1 1 Joint Deflections (By Combination) I C Joint Lahel X fin'! Y fin'! Rotation fradl 1 1 N1 -.122 0 1.162e -3 2 1 N2'' ;-0. Z- .0 Joint Reactions LC Joint Label X fkl Y fkl MZ fk -ftl 1 1 N2 18.5 -.5 - 61.667 2 1 T- otals: Z- .0 3 1 COG (ft): X: 0 Y: 5 3 Member Section Deflections LC Member Label Sec x finl v finl (n) Uv Ratio 1 1 M 1 1 0 -.122 984.07 2 2 Z- .0 =:048 ':2WS 068 3 1.141 3 3 0 0 NC Member Section Forces LC Member Label Sec Axialfkl Shearfkl Momentfk -ftl 1 1 M1 1 0 0 0 2 2 2 -25 .:4:625 7.708 3 1.141 3 3 -.5 -18.5 61.667 Member Section Stresses LC Member Label Sec Axialfksil Shearrksil Too Bendinafksil Bot Bendinafksil 1 1 M1 1 0 0 0 0 2 2 -:017 -:749 -1.141 1.141 3 3 -.034 -2.994 -9.129 9.129 RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \10 FT HEIGHT.r2d] Page 5 0 S? Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:27 AM Job Number: 5117 FOUR SEASONS Checked By: Member RISC ASD Steel Code Checks ( B Y Combination LC Member Shape UC Max Loc[ftl Shear UC Loc ft Fafksil FtFksil Fbfksil Cb Cm E n 1 1 1 M1 W16X50 1 .305 1 10 1 .150 1 10 1 28.515 30 1 30 1.75 1 .85 1 H2 -1 RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \10 FT HEIGHT.r2d] Page 6 I i 1=r7 4 . IsO LC . C�NIRE�E0. , Rnirw blC f. CTNREVEN COGGINS AND SONS, I JOHN H. HART, PE 5117 FOUR SEASONS Aug 28, 2006 at 10:37 AM 13 FT HEIGHT.r2d N, i m S = ( I1 . , � , C -Q L-/.. -I j w tv3 X (mv S = 10$ .144, FOUR SEASONS Aug 28, 2006 at 10:38 AM 13 FT HEIGHT.r2d IL_J Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:38 AM Job Number : 5117 FOUR SEASONS Checked By: Hot Rolled Steel Properties I nhal F rkcil r rksil Nu Therm f\1 FR Fl I)ensitvrk /ft ^31 Yieldrksil 1 A36 Gr.36 29000 11154 .3 .65 .49 36 2 A572 =Gr:50 29000 11154`- i3 65:: 49 50. 3 A992 29000 11154 .3 .65 .49 50 4 A500 Gr:42 29000 -42 5 A500 Gr.46 29000 11154 .3 .65 .49 46 Hot Rolled Steel Section Sets Label Shape Desi n List Type Material Design Rules A fin2l 190 270 i...1 0,180 Fin4l 1 HR1A W18X60 I Wide Flange I Beam I A572 Gr.501 Typical 17.6 50.1 1 984 Hot Rolled Steel Design Parameters Label Shape Length[ft] Lb-out[ft] Lb-in[ft] Lcom to ... Lcomp bot ... K -out K -in Cm Cb Out s... In sway 1 M1 HR1A 1 13 1 1 Joint Coordinates and Temperatures I nhpl X rftl Y rftl Temn IR 1 N1 0 13 0 Joint Boundary Conditions Joint Label X fkiinl Y [k/inl Rotation k -ft/rad Footing 1 I N2 Reaction I Reaction Reaction Member Primary Data Label I Joint J Joint Rotated Section/Shape Design List Tvpe Material Desi n Rules 1 M1 N1 N2 HR1A Wide Flange I Beam I A572Gr.50 I Typical Member Distributed Loads (BLC 1 : SOIL) Member Label Direction Start Ma nitude k/ft ... End Ma nitude k/ft d... Start Location ft % End Location ft % 1 M 1 X 0 -4.1 0 0 Joint Loads and Enforced Displacements Joint Label L D M Direction Ma nitude k k -ft in rad Va /ft No Data to Print ... Member Point Loads Member Label Direction Maqnitude[k,k-ft1 Location ft No Data to Print ... RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \13 FT HEIGHT.r2d] Page 7 r U S4-. Company COGGINS AND SONS, INC. Aug 28, 2006 Designer JOHN H. HART, PE 10:38 AM Job Number: 5117 FOUR SEASONS Checked By: Basic Load Cases BLC Description Category X Gravity Y Gravitv Joint Point Distributed 1 SOIL EPL I I 1 1 Load Combination Design Descri tion ASIF CD ABIF Service Hot Rolled Cold Formed Wood Concrete Footin s 1 CANTILEVER I I I I I Yes Load Combinations Descri tion Solve PD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1 CANTILEVER Yes 1 1 Joint Deflections (By Combination) I C .mint Lahel X finl Y finl Rotation fradl 1 1 N1 -.252 0 1.894e -3 2 1 N .': 0 U 0. Joint Reactions LC Joint Label X fkl Y fkl MZ fk -ftl 1 1 N2 26.65 -.779 - 115.483 2 1 Totals: :389 3 1 COG (ft): X: 0 Y: 6.5 3 Member Section Deflections LC Member Label Sec x finl v fin'! (n) Uv Ratio 1 1 M 1 1 0 -.252 618.4 2 2 2 :389 -Z98- 1584:837 .:... 3 1.605 3 3 0 0 NC Member Section Forces I Member I -ahel Sec Axialfkl Shearfkl Momentfk -ftl 1 1 M1 1 0 0 0 2 2 2 :389 =6:662 14.435 3 1.605 3 3 -.779 -26.65 115.483 Member Section Stresses LC Member Label Sec Axialfksil Shearfksil Too Bendinarksil Bot Bendinarksil 1 1 M1 1 0 0 0 0 2 2 -.022 -:88 =1:605 1.605 3 3 -.044 -3.521 - 12.844 12.844 RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \13 FT HEIGHT.r2d] Page 8 0 Company COGGINS AND SONS, INC. Designer JOHN H. HART, PE Job Number: 5117 FOUR SEASONS Aug 28, 2006 10:38 AM Checked By: Member A /SC ASD Steel Code Checks B Y Combination) LC Member ShaDe UC Max Locrffl Rhaar I IC I ncrffl Farlrcil mn—n ctirt-;1 r1ti rl_ RISA -2D Version 6.5 [C: \ ... \ ... \My Documents \2006JOBS \5117FOURSEASONS \13 FT HEIGHT.r2d] Page 9 H u FOUR SEASONS - SB1 - SB2 USE 37H WITH 9' SPACING LOAD PER TOTAL BEAM BEAM FOOT HEIGHT INERTIA SECTION I K/FT FT (in ^4 W13 2.3 7 291 1 42 EXCAVA. LOAD V MOMENT CANT. SECTION- MODULUS K K -ft in` ^3 8 19 W 16x45 HEIGHT (FT) 7 RECOMMENDED SHAPE MUM USE SHAPE WUX30 ANTICIPATED DEFLECTION (in) 0.038 CODE CHECK 0.179 NOTE: INPUT CALC. EEEIOUTP -BEAM P_ ROPERTIES SEAM_' S in'3 I -in ^4 W 1430 42 291 W 16x45 73 586 W 16x50 81 659 W 18x60 108 984 W 18x65 117 1070 W 18x71 127 1170 W 18x76 146 1330 FOUR SEASONS-- S133 - S135 USE 37H WITH 10' SPACING LOAD PER TOTAL BEAM BEAM FOOT HEIGHT INERTIA SECT-ION (K/FT) (FT) flW14) (ir 03) 3.7 10 1 659 81 EXCAVA. LOAD M. MOMENT CANT. SECTION MODULUS .%l (K). 4) W 14x30 19 62 '25, HEIGHT (FT) to RECOMMENDED SHAPE W14X30 USE SHAPE W16x5O ANTICIPATED DEFLECTION (in) 12' CODE CHECK 0305 1 1*1 NOTE: JINPUT CALC. JOUTPUT BEA M PROPERTIES ,. =S BEAM;''-S 4) W 14x30 42 291 W 16x45 73 586 W 16x50 81 659 W IWO 108 984 W 18x65 117 1070 W 18x71 127 1170 W 18x76 146 1330 1� 11 LOAD PER TOTAL BEAM 'BEAM FOOT HEIGHT INERTIA SECTION K/FT FT in ^4 'irt ^3 4.1 13 984 108 EXCAVA. .LOAD V MOMENT CANT...:- SECTION MODULUS . K Ks 1, jnn3 27 115 46' HEIGHT (FT) _ 13 RECOMMENDED SHAPE WISX45 USE SHAPE W1 '8X60 ANTICIPATED D.EFL-ECTION (in) -0:236 CODE, CHECK 0:428 NOTE: INPUT CALC. OUTPUT :BEAM PROPERTIES BEAM: S m ^3 I WF4 W 14x30 42 291 W 16x45 73 586 W 16x50 81 659 W 18x60 108 984 W 18x65 117 1070 W 18x71 127 1170 W 18x76 146 1330 e e e MENSTI M t .r CL CD 0 v LO MEN.� ti Lateral Deflection (in) 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 v T EXPOSED - V EMBED 5`• r e e e N r O OR O O C O V O CD o d -p u? l4 O d 2 d a o 0 N O 17 O v 7' EXPOSED - 8' EMBED 10 20 30 40 50 60 70 80 90 100 Pile Length (in) fig 7HEIGHT.lpo LPILE Plus for Windows, version 5.0 (5 0 1) Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading using the p -y Method (c) Copyrigght ENSOFT, Inc., 1985 -2004 A11 Rights Reserved This program is licensed to: JOHN H. HART COGGINS Path to file locations: C: \Documents and Settings \COGGINS AND SONS \My Documents \20063OBS \5117FOURSEASONS\ Name of input data file: 7HEIGHT.lpd Name of output file: 7HEIGHT.lpo Name of plot output file: 7HEIGHT.Ipp Name of runtime file: 7HEIGHT.lpr ------------------------------------------------------------------------------ Time and Date of Analysis ------------------------------------------------------------------------ - - - - -- Date: August 28, 2006 Time: 10:51: 4 ------------------------------------------------------------------------------ Problem Title ------------------------------------------------------------------------ - - - - -- FOUR SEASONS - 7' EXPSOED (8' EMBED) ------------------------------------------------------------------------------ Program Options ------------------------------------------------------------------------ - - - - -- Units Used in Computations - US Customary units, inches, pounds Basic Program Options: Analysis Type l: - Computation of Lateral Pile Response using User- specified Constant EI Computation Options: - only internally- generated p -y curves used in analysis - Analysis does not use p -y multipliers (individual pile or shaft action only) - Analysis assumes no shear resistance at pile tip - Analysis includes automatic computation of pile -top deflection vs. pile embedment length - No computation of foundation stiffness matrix elements - output pile response for full length of pile - Analysis assumes no soil movements acting on pile - No additional p -y curves to be computed at user - specified depths Solution Control Parameters: Page 1 7HEIGHT.lpo - Number of pile increments = 48 - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E -05 in - Maximum allowable deflection = 1.0000E +02 in Printing Options: - values of pile -head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (spacing of output points) = 1 ------------------------------------------------------------------------------ Pile Structural Properties and Geometry ------------------------------------------------------------------------ - - - - -- Pile Length = 96.00 in Depth of ground surface below top of pile = .00 in slope angle of ground surface = .00 deg. Structural properties of pile defined using 2 points Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Elasticity in in in * *4 sq.in lbs /Sq.in - - - -- --- - - - - -- 1 0.0000 ------ - - - - -- 24.000 ---- - - - - -- 16577.0000 ---- - - - - -- 452.0000 ----- - - - - -- 32122019.000 2 96.0000 24.000 16577.0000 452.0000 32122019.000 ------------------------------------------------------------------------------ soil and Rock Layering Information ------------------------------------------------------------------------ - - - - -- The soil profile is modelled using 1 layers Layer 1 is sand, p -y criteria by API RP -2A, 1987 Distance from top of pile to top of layer = .000 in Distance from top of ppile to bottom of layer = 96.000 in p -y subgrade modulus k for top of soil layer = 250.000 lbs /in * *3 p -y subgrade modulus k for bottom of layer = 250.000 lbs /in * *3 (Depth of lowest layer extends .00 in below pile tip) ------------------------------------------------------------------------------ Effective unit weight of soil vs. Depth ------------------------------------------------------------------------ - - - - -- Distribution of effective unit weight of soil with depth is defined using 2 points Point Depth x Eff. unit weight No. in lbs /in * *3 - - - -- ---- - - - - -- ---------------- 1 .00 .07500 2 96.00 .07500 ------------------------------------------------------------------------- - - - - -' shear strength of soils ------------------------------------------------------------------- Page 2 Notes: (1) Cohesion = uniaxial compressive strength for rock materials. (2) values of E50 are repported for clay strata. (3) Default values will be generated for E50 when input values are 0. (4) RQD and k_rm are reported only for weak rock strata. ------------------------------------------------------------------------------ Loading Type ------------------------------------------------------------------------ - - - - -- Static loading criteria was used for computation of p -y curves ------------------------------------------------------------------------------ Pile -head Loading and Pile -head Fixity Conditions ------------------------------------------------------------------------ - - - - -- Number of loads specified = 1 Load Case Number 1 Pile -head boundary conditions are shear and Moment (BC Type 1) Shear force at pile head = 8000.000 lbs Bending moment at pile head = 228000.000 in -lbs Axial load at pile head = .000 lbs Non -zero moment at pile head for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment) condition. ------------------------------------------------------------------------------ computed values of Load Distribution and Deflection for Lateral Loading for Load case Number 1 ------------------------------------------------------------------------ - - - - -- Pile -head boundary conditions are shear and Moment (BC Type 1) 7HEIGHT.Ipo Distribution of shear strength parameters with depth defined using 2 points 228000.000 in -lbs Point Depth X Cohesion c Angle of Friction E50 or RQD No. in lbs /in * *2 Deg. k_rm - - - -- 1 -- - - - - -- .000 ---- - - - - -- .00000 ------------ - - - - -- - - - - -- - - - - -- 34.00 - - - - -- - - - - -- 2 96.000 .00000 34.00 - - - - -- - - - - -- Notes: (1) Cohesion = uniaxial compressive strength for rock materials. (2) values of E50 are repported for clay strata. (3) Default values will be generated for E50 when input values are 0. (4) RQD and k_rm are reported only for weak rock strata. ------------------------------------------------------------------------------ Loading Type ------------------------------------------------------------------------ - - - - -- Static loading criteria was used for computation of p -y curves ------------------------------------------------------------------------------ Pile -head Loading and Pile -head Fixity Conditions ------------------------------------------------------------------------ - - - - -- Number of loads specified = 1 Load Case Number 1 Pile -head boundary conditions are shear and Moment (BC Type 1) Shear force at pile head = 8000.000 lbs Bending moment at pile head = 228000.000 in -lbs Axial load at pile head = .000 lbs Non -zero moment at pile head for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment) condition. ------------------------------------------------------------------------------ computed values of Load Distribution and Deflection for Lateral Loading for Load case Number 1 ------------------------------------------------------------------------ - - - - -- Pile -head boundary conditions are shear and Moment (BC Type 1) Specified shear force at pile head = 8000.000 lbs specified bending moment at pile head = 228000.000 in -lbs specified axial load at pile head = .000 lbs Non -zero moment for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment )condition. Depth Deflect. Moment shear Slope Total Soil Res X y M v s Stress p in in lbs -in lbs Rad. lbs /in * *2 lbs /in Page 3 - - - -- --- - - - - -- ----- - - - - -- 7HEIGHT.lpo ----- - - - - -- ----- - - - - -- ----- - - - - -- ----- - - - - -- -- - 0.000 .098856 228000.0001 8000.0000 - .001436 165.0480 0.0000 2.000 .095985 244000.0000 7968.2698 - .001435 176.6303 - 31.7302 4.000 .093117 259873.0791 7872.3541 - .001434 188.1207 - 64.1855 6.000 .090250 275489.4163 7711.3567 - .001433 199.4253 - 96.8119 8.000 .087386 290718.5058 7485.4216 - .001432 210.4495 - 129.1231 10.000 .084524 305431.1027 7195.6010 - .001431 221.0999 - 160.6975 12.000 .081664 319500.9099 6843.7305 - .001429 231.2850 - 191.1731 14.000 .078806 332806.0249 6432.3157 - .001428 240.9165 - 220.2418 16.000 .075951 345230.1726 5964.4309 - .001427 249.9102 - 247.6429 18.000 .073099 356663.7486 5443.6311 - .001426 258.1869 - 273.1569 20.000 .070249 367004.6969 4873.8747 - .001424 265.6727 - 296.5995 22.000 .067402 376159.2472 4259.4585 - .001423 272.2996 - 317.8167 24.000 .064558 384042.5309 3604.9620 - .001421 278.0063 - 336.6799 26.000 .061716 390579.0951 2915.2000 - .001420 282.7381 - 353.0821 28.000 .058878 395703.3310 2195.1837 - .001418 286.4475 - 366.9342 30.000 .056042 399359.8300 1450.0872 - .001417 289.0944 - 378.1623 32.000 .053210 401503.6799 685.2205 - .001415 290.6463 - 386.7045 34.000 .050381 402100.7118 - 93.9935 - .001414 291.0785 - 392.5095 36.000 .047554 401127.7057 - 882.0375 - .001412 290.3742 - 395.5344 38.000 .044731 398572.5619 - 1673.3148 - .001411 288.5245 - 395.7429 40.000 .041911 394434.4466 - 2462.1620 - .001409 285.5289 - 393.1043 42.000 .039093 388723.9140 - 3242.8585 - .001408 281.3951 - 387.5922 44.000 .036279 381463.0126 - 4009.6343 - .001407 276.1390 - 379.1835 46.000 .033467 372685.3769 - 4756.6754 - .001405 269.7849 - 367.8576 48.000 .030658 362436.3109 - 5478.1284 - .001404 262.3657 - 353.5954 50.000 .027852 350772.8635 - 6168.1028 - .001402 253.9226 - 336.3791 52.000 .025049 337763.8998 - 6820.6731 - .001401 244.5054 - 316.1913 54.000 .022248 323490.1710 - 7429.8793 - .001400 234.1728 - 293.0149 56.000 .019449 308044.3827 - 7989.7270 - .001399 222.9917 - 266.8328 58.000 .016653 291531.2631 - 8494.1880 - .001398 211.0379 - 237.6282 60.000 .013859 274067.6307 - 8937.2012 - .001396 198.3961 - 205.3851 62.000 .011067 255782.4581 - 9312.6766 - .001395 185.1595 - 170.0903 64.000 .008277 236816.9243 - 9614.5543 - .001395 171.4305 - 131.7874 66.000 .005489 217324.2408 - 9836.7229 - .001394 157.3198 - 90.3812 68.000 .002702 197470.0326 - 9973.0230 - .001393 142.9475 - 45.9189 70.000 - 8.27E -05 177432.1487 - 10017.4947 - .001392 128.4422 1.4472 72.000 - .002866 157400.0537 - 9964.4768 - .001392 113.9410 51.5707 74.000 - .005649 137574.2416 - 9808.5931 - .001391 99.5892 104.3129 76.000 - .008431 118165.6812 - 9544.7366 - .001391 85.5395 159.5436 78.000 - .011211 99395.2951 - 9168.0514 - .001390 71.9517 217.1417 80.000 - .013991 81493.4755 - 8673.9140 - .001390 58.9927 276.9958 82.000 - .016771 64699.6390 - 8057.9145 - .001390 46.8357 339.0038 84.000 - .019549 49261.8177 - 7315.8378 - .001389 35.6604 403.0728 86.000 - .022328 35436.2877 - 6443.6463 - .001389 25.6521 469.1187 88.000 - .025106 23487.2324 - 5437.4622 - .001389 17.0023 537.0654 90.000 - .027884 13686.4390 - 4293.5521 - .001389 9.9075 606.8447 92.000 - .030662 6313.0242 - 3008.3124 - .001389 4.5700 678.3950 94.000 - .033440 1653.1893 - 1578.2560 - .001389 1.1967 751.6614 96.000 - .036218 0.0000 0.0000 - .001389 0.0000 826.5946 Output verification: Computed forces and moments are within specified convergence limits. Output summary for Load Case No. 1: Pile -head deflection Computed slope at pile head Maximum bending moment Maximum shear force Depth of maximum bending moment ,.0 40�.�✓07t1- �. -,-- 09885554 in = '� _ - .00143557 c,C) a = 402100.712 lbs -in _ - 10017.495 lbs = 34.000 in Page 4 l r � ,.0 Depth of maximum shear force = Number of iterations = Number of zero deflection points = 7HEIGHT.lpo 70.000 in 8 1 ------------------------------------------------------------------------------ summary of Pile -head Response ------------------------------------------------------------------------ - - - - -- Definition of symbols for pile -head boundary conditions: y = pile -head displacment, in M = pile -head moment, lbs -in v = pile -head shear force, lbs S = pile -head slope, radians R = rotational stiffness of pile -head, in- lbs /rad BC Boundary Boundary Axial Pile Head Maximum Maximum Type Condition condition Load Deflection Moment Shear 1 2 lbs in in -lbs lbs - - -- ------ - - - - -- 1 v= 8000.000 ------ - - - - -- ----- M= 2.28E +05 - - - - -- 0.0000 ----- - - - - -- .098856 ----- - - - - -- 402100.7118 ----- - - - - -- - 10017.4947 ------------------------------------------------------------------------------ Pile -head Deflection vs. Pile Length ------------------------------------------------------------------------ - - - - -- Boundary condition Type 1, Shear and Moment Shear = 8000. lbs Moment = 228000. in -lbs Axial Load = 0. lbs Pile Pile Head Maximum Maximum Length Deflection Moment Shear in in in -lbs lbs ----- - - - - -- 96.000 ------ - - - - -- ------ .09885554 - - - - -- 402100.712 ------ - - - - -- - 10017.495 91.200 .11485786 394733.239 - 10387.984 86.400 .13652818 387951.693 - 10846.134 81.600 .16796563 381955.206 - 11437.515 76.800 .21933787 376985.117 - 12254.293 72.000 .32829055 373911.974 - 13552.637 67.200 1.15334747 372954.226 - 17039.276 The analysis ended normally. 0 Page e e e Lateral Deflection (in) 0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 MEN �� N M s c. d ❑ un NNIM-A ti momr-I MENFM v 10' EXPOSED - 10' EMBED 0 �.i a 0 C li-E L u 9'0 9'0 £'0 (ui) u01138980 peaH-alld Z'0 4'0 O N r O r r O O 0 O ti C O O Z C d J d IL O O Cl) O N O r W m 2 W O r i W 0 CL x w 0 D L u 9'0 9'0 £'0 (ui) u01138980 peaH-alld Z'0 4'0 O N r O r r O O 0 O ti C O O Z C d J d IL O O Cl) O N O r 10HT.1po LPILE Plus for Windows, version 5.0 (5 0 1) Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading using the p -y Method (c) Copyright ENSOFT, Inc., 1985 -2004 All Rights Reserved This program is licensed to: JOHN H. HART COGGINS Path to file locations: C: \Documents and Settings \COGGINS AND SONS \My Documents \2006JOBS \5117FOURSEASONS\ Name of input data file: 10HT.lpd Name of output file: 10HT.lpo Name of plot output file: 10HT.lpp Name of runtime file: 10HT.lpr ------------------------------------------------------------------------------ Time and Date of Analysis ------------------------------------------------------------------------ - - - - -- Date: August 28, 2006 Time: 10:54: 6 ------------------------------------------------------------------------------ Problem Title ------------------------------------------------------------------------ - - - - -- FOUR SEASONS - 10' EXPSOED (10' EMBED) ------------------------------------------------------------------------------ Program Options ------------------------------------------------------------------------ - - - - -- Units Used in Computations - us Customary Units, inches, pounds Basic Program Options: Analysis Type 1: - Computation of Lateral Pile Response Using User - specified Constant EI Computation Options: - Only internally- generated p -y curves used in analysis - Analysis does not use p -y multipliers (individual pile or shaft action only) - Analysis assumes no shear resistance at pile tip - Analysis includes automatic computation of pile -top deflection vs. pile embedment length - No computation of foundation stiffness matrix elements - Output pile response for full length of pile - Analysis assumes no soil movements acting on pile - No additional p -y curves to be computed at user - specified depths Solution Control Parameters: Page 1 10HT.1po - Number of pile increments = 40 - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E -05 in - Maximum allowable deflection = 1.0000E +02 in Printing Options: - values of pile -head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (spacing of output points) = 1 ------------------------------------------------------------------------------ Pile Structural Properties and Geometry ------------------------------------------------------------------------ - - - - -- Pile Length = 120.00 in Depth of ground surface below top of pile = .00 in slope angle of ground surface = .00 deg. Structural properties of pile defined using 2 points Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Elasticity in in in * *4 Sq.in lbs /Sq.in - - - -- --- - - - - -- 1 0.0000 ----- - - - - -- 24.000 ---- - - - - -- 16945.0000 ---- - - - - -- 452.0000 ----- - - - - -- 32122019.000 2 120.0000 24.000 16945.0000 452.0000 32122019.000 ------------------------------------------------------------------------------ soil and Rock Layering Information ------------------------------------------------------------------------ - - - - -- The soil profile is modelled using 1 layers Layer 1 is sand, p -y criteria by API RP -2A, 1987 Distance from top of pile to top of layer = .000 in Distance from top of ppile to bottom of layer = 120.000 in p -y subgrade modulus k for top of soil layer = 250.000 lbs /in * *3 p -y subgrade modulus k for bottom of layer = 250.000 lbs /in * *3 (Depth of lowest layer extends .00 in below pile tip) ------------------------------------------------------------------------------ Effective unit weight of Soil vs. Depth ------------------------------------------------------------------------ - - - - -- Distribution of effective unit weight of soil with depth is defined using 2 points Point Depth x Eff. unit weight No. in lbs /in* *3 - - - -- ---- - - - - -- ---------------- 1 .00 .07500 2 120.00 .07500 ------------------------------------------------------------------------------ Shear Strength of Soils ------------------------------------------------------- Page 2 Notes: (1) cohesion = uniaxial compressive strength for rock materials. (2) values of E50 are reported for clay strata. (3) Default values will be generated for E50 when input values are 0. (4) RQD and k_rm are reported only for weak rock strata. ------------------------------------------------------------------------------ Loading Type ------------------------------------------------------------------------ - - - - -- Static loading criteria was used for computation of p -y curves ------------------------------------------------------------------------------ Pile -head Loading and Pile -head Fixity Conditions ------------------------------------------------------------------------ - - - - -- Number of loads specified = 1 Load Case Number 1 Pile -head boundary conditions are shear and Moment (BC Type 1) Shear force at pile head = 19000.000 lbs Bending moment at pile head = 744000.000 in -lbs Axial load at pile head = .000 lbs Non -zero moment at pile head for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment) condition. ------------------------------------------------------------------------------ Computed values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 ------------------------------------------------------------------------ - - - - -- Pile -head boundary conditions are Shear and Moment (BC Type 1) 10HT.Ipo Distribution of shear strength parameters with depth defined using 2 points 744000.000 in -lbs Point Depth X Cohesion c Angle of Friction E50 or RQD No. in lbs /in * *2 Deg. k_rm - - - -- 1 -- - - - - -- .000 ---- - - - - -- .00000 ------------ - - - - -- - - - - -- - - - - -- 34.00 - - - - -- - - - - -- 2 120.000 .00000 34.00 - - - - -- - - - - -- Notes: (1) cohesion = uniaxial compressive strength for rock materials. (2) values of E50 are reported for clay strata. (3) Default values will be generated for E50 when input values are 0. (4) RQD and k_rm are reported only for weak rock strata. ------------------------------------------------------------------------------ Loading Type ------------------------------------------------------------------------ - - - - -- Static loading criteria was used for computation of p -y curves ------------------------------------------------------------------------------ Pile -head Loading and Pile -head Fixity Conditions ------------------------------------------------------------------------ - - - - -- Number of loads specified = 1 Load Case Number 1 Pile -head boundary conditions are shear and Moment (BC Type 1) Shear force at pile head = 19000.000 lbs Bending moment at pile head = 744000.000 in -lbs Axial load at pile head = .000 lbs Non -zero moment at pile head for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment) condition. ------------------------------------------------------------------------------ Computed values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 ------------------------------------------------------------------------ - - - - -- Pile -head boundary conditions are Shear and Moment (BC Type 1) specified shear force at pile head = 19000.000 1bs specified bending moment at pile head = 744000.000 in -lbs specified axial load at pile head = .000 lbs Non -zero moment for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment )condition. Depth Deflect. Moment shear Slope Total Soil Res X in y M v in lbs -in lbs S Stress Rad, lbs /in * *2 p lbs /in Page 3 ❑ E* 10HT.lpo 0.000 .193652 744000.0000 19000.0000 - .002274 526.8811 0.0000 3.000 .186837 800999.9999 18916.7178 - .002269 567.2470 - 55.5215 6.000 .180036 857500.3067 18658.7326 - .002265 607.2590 - 116.4687 9.000 .173248 912952.3954 18212.1057 - .002260 646.5287 - 181.2826 12.000 .166476 966772.9407 17567.5696 - .002255 684.6430 - 248.4081 15.000 .159720 1.018E +06 16720.4482 - .002249 721.1740 - 316.3394 18.000 .152981 1.067E +06 15670.4553 - .002243 755.6888 - 383.6559 21.000 .146259 1.112E +06 14421.4012 - .002237 787.7584 - 449.0468 24.000 .139556 1.154E +06 12980.8417 - .002231 816.9660 - 511.3261 27.000 .132872 1.190E +06 11359.6961 - .002225 842.9146 - 569.4376 30.000 .126207 1.222E +06 9571.8584 - .002218 865.2338 - 622.4542 33.000 .119563 1.248E +06 7633.8187 - .002211 883.5858 - 669.5723 36.000 .112939 1.268E +06 5564.3058 - .002204 897.6702 - 710.1030 39.000 .106337 1.281E +06 3383.9585 - .002197 907.2287 - 743.4618 42.000 .099755 1.288E +06 1115.0299 - .002190 912.0488 - 769.1573 45.000 .093195 1.288E +06 - 1218.8763 - .002183 911.9665 - 786.7802 48.000 .086656 1.281E +06 - 3593.0356 - .002176 906.8697 - 795.9927 51.000 .080138 1.266E +06 - 5981.8021 - .002169 896.6996 - 796.5183 54.000 .073641 1.245E +06 - 8358.7784 - .002162 881.4528 - 788.1326 57.000 .067165 1.216E +06 - 10696.9600 - .002155 861.1828 - 770.6551 60.000 .060709 1.181E +06 - 12968.8552 - .002149 836.0010 - 743.9417 63.000 .054272 1.138E +06 - 15146.5841 - .002142 806.0776 - 707.8776 66.000 .047855 1.090E +06 - 17235.6659 - .002136 771.6425 - 684.8436 69.000 .041455 1.035E +06 - 19230.3160 - .002130 732.8425 - 644.9231 72.000 .035072 974241.6465 - 21079.5447 - .002125 689.9321 - 587.8960 75.000 .028706 908357.4804 - 22732.5724 - .002120 643.2747 - 514.1225 78.000 .022354 837846.2119 - 24140.4417 - .002115 593.3405 - 424.4571 81.000 .016016 763514.8300 - 25257.3160 - .002110 540.7010 - 320.1258 84.000 .009691 686302.3157 - 26041.3913 - .002106 486.0211 - 202.5910 87.000 .003377 607266.4823 - 26455.4106 - .002103 430.0500 - 73.4219 90.000 - .002926 527569.8523 - 26466.8218 - .002100 373.6110 65.8144 93.000 - .009221 448465.5518 - 26047.6488 - .002097 317.5914 213.6343 96.000 - .015509 371283.9596 - 25174.1594 - .002095 262.9335 368.6920 99.000 - .021790 297420.5956 - 23826.4078 - .002093 210.6254 529.8090 102.000 - .028067 228325.5126 - 21987.7195 - .002092 161.6941 695.9832 105.000 - .034339 165494.2787 - 19644.1672 - .002090 117.1987 866.3850 108.000 - .040609 110460.5095 - 16784.0747 - .002090 78.2252 1040.3434 111.000 - .046877 64789.8307 - 13397.5669 - .002089 45.8824 1217.3285 114.000 - .053144 30075.1082 - 9476.1778 - .002089 21.2984 1396.9309 117.000 - .059411 7932.7639 - 5012.5180 - .002089 5.6178 1578.8423 120.000 - .065677 0.0000 0.0000 - .002089 0.0000 1762.8364 Output verification: Computed forces and moments are within specified convergence limits. Output Summary for Load Case No. 1: Pile -head deflection = .19365165 in _ LU 9 S5 computed slope at pile head = - .00227360 - Maximum bending moment = 1287888.877 lbs --in Maximum shear force = - 26466.822 lbs Depth of maximum bending moment = 42.000 in Depth of maximum shear force = 90.000 in Number of iterations = 14 _ A 2 �1 Number of zero deflection points = 1 - Page 4 W ------------------------------------------------------------------------------ Pile -head Deflection vs. Pile Length ------------------------------------------------------------------------ - - - - -- Boundary Condition Type 1, shear and Moment Shear = 19000. lbs 10HT.1po 744000. in -lbs ------------------------------------------------------------------------------ ------- - - - - -- Summary of Pile -head Response Pile Head Maximum Definition of symbols for pile -head boundary conditions: in in -lbs y = pile -head displacment, in 114.000 .24391931 1275405.942 M = pile -head moment, lbs -in 102.000 .70733377 1263397.291 v = pile -head shear force, lbs S = pile -head slope, radians R = rotational stiffness of pile -head, in- lbs /rad BC Boundary Boundary Axial Pile Head Maximum Maximum Type Condition Condition Load Deflection Moment Shear 1 2 lbs in in -lbs lbs - - -- 1 ------ - - - - -- ------ - - - - -- ----- v= 19000.000 M= 7.44E +05 - - - - -- ----- - - - - -- ----- 0.0000 .1937 - - - - -- ----- - - - - -- 1.288E +06 - 26466.8218 ------------------------------------------------------------------------------ Pile -head Deflection vs. Pile Length ------------------------------------------------------------------------ - - - - -- Boundary Condition Type 1, shear and Moment Shear = 19000. lbs Moment = 744000. in -lbs Axial Load = 0. lbs Pile Pile Head Maximum Length Deflection Moment in in in -lbs ----- - - - - -- 120.000 ------ - - - - -- ------ - - - - -- .19365165 1287888.877 114.000 .24391931 1275405.942 108.000 .34003824 1266646.430 102.000 .70733377 1263397.291 The analysis ended normally. Maximum Shear lbs - 26466.822 - 28164.907 - 30638.496 - 35421.296 Page 5 ❑Mt 0 N M d' O Q d ti CO m O r N r M L01 Lateral Deflection (in) lil -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 -f-Ill lilt lilt I III III I lilt III[ III I III[ lilt 11 11 lilt lilt lilt lilt III] ]III [111 11111 lilt X1 . v ED - 12' EMBED 13' EXPOS i i e e e LO 0 0 LO v 0 v 0 LO LO � M _ O C O U M � O d D � N � O G1 o. o 0 r 0 U) O 0 0 v 13' EXPOSED - 12' EMBED 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 Pile Length (in) C� 13HEIGHT.Ipo ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ LPILE Plus for windows, version 5.0 (5.0.1) Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading using the p -y Method (c) Copyrigght ENSOFT, Inc., 1985 -2004 A11 Rights Reserved This program is licensed to: JOHN H. HART COGGINS Path to file locations: C: \Documents and Settings \COGGINS AND SONS \My Documents \2006JOBS \5117FOURSEASONS\ Name of input data file: 13HEIGHT.lpd Name of output file: 13HEIGHT.lpo Name of plot output file: 13HEIGHT.lpp Name of runtime file: 13HEIGHT.Ipr ------------------------------------------------------------------------------ Time and Date of Analysis ------------------------------------------------------------------------ - - - - -- Date: August 28, 2006 Time: 12:32:32 ------------------------------------------------------------------------------ Problem Title ------------------------------------------------------------------------ - - - - -- FOUR SEASONS - 13' EXPSOED (12' EMBED) ------------------------------------------------------------------------------ Program Options ------------------------------------------------------------------------ - - - - -- Units used in Computations - us Customary units, inches, pounds Basic Program Options: Analysis Type 1: - Computation of Lateral Pile Response using User - specified Constant EI Computation Options: - Only internally - generated p -y curves used in analysis - Analysis does not use p -y multipliers (individual pile or shaft action only) - Analysis assumes no shear resistance at pile tip - Analysis includes automatic computation of pile -top deflection vs. pile embedment length - No computation of foundation stiffness matrix elements - output pile response for full length of pile - Analysis assumes no soil movements acting on pile - No additional p -y curves to be computed at user - specified depths 0 Solution Control Parameters: Page 1 13HEIGHT.Ipo - Number of pile increments = 52 - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E -05 in - Maximum allowable deflection = 1.0000E +02 in Printing Options: - values of pile -head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (spacing of output points) = 1 ------------------------------------------------------------------------------ Pile Structural Properties and Geometry ------------------------------------------------------------------------ - - - - -- Pile Length = 156.00 in Depth of ground surface below top of pile = .00 in slope angle of ground surface = .00 deg. Structural properties of pile defined using 2 points Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Elasticity in in in * *4 Sq.in lbs /Sq.in - - - -- --- - - - - -- 1 0.0000 ----- - - - - -- 24.000 ---- - - - - -- 17270.0000 ---- - - - - -- 452.0000 ----- - - - - -- 32122019.000 2 156.0000 24.000 17270.0000 452.0000 32122019.000 ------------------------------------------------------------------------------ Soil and Rock Layering Information -------------------------------------------------------=---------------- - - - - -- The soil profile is modelled using 1 layers Layer 1 is sand, p -y criteria by API RP -2A, 1987 Distance from top of pile to top of layer = .000 in Distance from top of ppile to bottom of layer = 156.000 in p -y subgrade modulus k for top of soil layer = 250.000 lbs /in * *3 p -y subgrade modulus k for bottom of layer = 250.000 lbs /in * *3 (Depth of lowest layer extends .00 in below pile tip) ------------------------------------------------------------------------------ Effective unit weight of Soil vs. Depth ------------------------------------------------------------------------ - - - - -- Distribution of effective unit weight of soil with depth is defined using 2 points Point Depth X Eff. unit weight No. in lbs /in * *3 - - - -- ---- - - - - -- ---------------- 1 .00 .07500 2 156.00 .07500 ------------------------------------------------------------------------------ shear Strength of Soils -------------------------------------------- Page 2 H 0 Notes: E50 or RQD k_rm (1) Cohesion = uniaxial compressive strength for rock materials. (2) values of E50 are repported for clay strata. (3) Default values will be generated for E50 when input values are 0. (4) RQD and k_rm are reported only for weak rock strata. ------------------------------------------------------------------------------ Loading Type ------------------------------------------------------------------------ - - - - -- static loading criteria was used for computation of p -y curves ------------------------------------------------------------------------------ Pile -head Loading and Pile -head Fixity Conditions ------------------------------------------------------------------------ - - - - -- Number of loads specified = 1 Load Case Number 1 Pile -head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 27000.000 lbs Bending moment at pile head = 1380000.000 in -lbs Axial load at pile head = .000 lbs Non -zero moment at pile head for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment) condition. ------------------------------------------------------------------------------ Computed values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 ------------------------------------------------------------------------ - - - - -- Pile -head boundary conditions are Shear and Moment (BC T 1) Specified shear force at pile head = 27000.000 lbs Specified bending moment at pile head = 1380000.000 in -lbs Specified axial load at pile head = .000 lbs Non -zero moment for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment )condition. Depth Deflect. Moment shear X y M V in in lbs -in lbs Page 3 Slope Total Soil Res S Stress Rad. lbs /in**2 lbs/in � ,4- 13 HEIGHT. Ipo Distribution of shear strength parameters with depth defined using 2 points Point Depth X Cohesion c Angle of Friction No. in lbs /in * *2 Deg. - - - -- 1 -- - - - - -- .000 ---- - - - - -- .00000 ------------------ 34.00 2 156.000 .00000 34.00 Notes: E50 or RQD k_rm (1) Cohesion = uniaxial compressive strength for rock materials. (2) values of E50 are repported for clay strata. (3) Default values will be generated for E50 when input values are 0. (4) RQD and k_rm are reported only for weak rock strata. ------------------------------------------------------------------------------ Loading Type ------------------------------------------------------------------------ - - - - -- static loading criteria was used for computation of p -y curves ------------------------------------------------------------------------------ Pile -head Loading and Pile -head Fixity Conditions ------------------------------------------------------------------------ - - - - -- Number of loads specified = 1 Load Case Number 1 Pile -head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 27000.000 lbs Bending moment at pile head = 1380000.000 in -lbs Axial load at pile head = .000 lbs Non -zero moment at pile head for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment) condition. ------------------------------------------------------------------------------ Computed values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 ------------------------------------------------------------------------ - - - - -- Pile -head boundary conditions are Shear and Moment (BC T 1) Specified shear force at pile head = 27000.000 lbs Specified bending moment at pile head = 1380000.000 in -lbs Specified axial load at pile head = .000 lbs Non -zero moment for this load case indicates the pile -head may rotate under the applied pile -head loading, but is not a free -head (zero moment )condition. Depth Deflect. Moment shear X y M V in in lbs -in lbs Page 3 Slope Total Soil Res S Stress Rad. lbs /in**2 lbs/in � ,4- Output Summary for Load Case No. 1: Pile -head deflection = .15868541 in Page 4 13HEIGHT.Ipo -- - - - - -- 0.000 --- - - - - -- .158685 -- --- - - - - -- 1.380E +06 ---- - - - - -- - --- 27000.0000 -- - - - - -- - .001595 -- - - - - -- --- ----- 958.8882 - - - - -- 0.0000 3.000 .153912 1.461E +06 26918.3121 - .001587 1015.1708 - 54.4586 6.000 .149162 1.542E +06 26666.2625 - .001579 1071.1128 - 113.5745 9.000 .144437 1.621E +06 26232.2619 - .001571 1126.3446 - 175.7593 12.000 .139738 1.699E +06 25609.3135 - .001562 1180.4772 - 239.5396 15.000 .135067 1.775E +06 24794.6197 - .001552 1233.1118 - 303.5896 18.000 .130424 1.848E +06 23789.1189 - .001542 1283.8479 - 366.7443 21.000 .125812 1.917E +06 22597.0018 - .001532 1332.2906 - 428.0004 24.000 .121231 1.983E +06 21225.2402 - .001522 1378.0566 - 486.5073 27.000 .116681 2.045E +06 19683.1502 - .001511 1420.7803 - 541.5527 30.000 .112165 2.101E +06 17982.0005 - .001500 1460.1172 - 592.5471 33.000 .107684 2.153E +06 16134.6710 - .001488 1495.7487 - 639.0059 36.000 .103237 2.198E +06 14155.3628 - .001476 1527.3840 - 680.5330 39.000 .098825 2.238E +06 12059.3557 - .001464 1554.7635 - 716.8051 42.000 .094450 2.271E +06 9862.8137 - .001452 1577.6604 - 747.5563 45.000 .090112 2.297E +06 7582.6333 - .001440 1595.8823 - 772.5640 48.000 .085811 2.316E +06 5236.3352 - .001427 1609.2730 - 791.6348 51.000 .081548 2.328E +06 2841.9984 - .001415 1617.7130 - 804.5897 54.000 .077322 2.333E +06 418.2427 - .001402 1621.1215 - 811.2474 57.000 .073135 2.331E +06 - 2015.7338 - .001390 1619.4567 - 811.4035 60.000 .068985 2.321E +06 - 4440.0434 - .001377 1612.7177 - 804.8029 63.000 .064873 2.304E +06 - 6833.8941 - .001365 1600.9458 - 791.0976 66.000 .060798 2.280E +06 - 9231.6122 - .001352 1584.2267 - 807.3811 69.000 .056760 2.249E +06 - 11666.3014 - .001340 1562.4585 - 815.7450 72.000 .052759 2.210E +06 - 14113.6406 - .001328 1535.5890 - 815.8145 75.000 .048793 2.164E +06 - 16548.4219 - .001316 1503.6176 - 807.3731 78.000 .044863 2.111E +06 - 18945.0065 - .001304 1466.5973 - 790.3499 81.000 .040967 2.050E +06 - 21277.7331 - .001293 1424.6344 - 764.8011 84.000 .037104 1.983E +06 - 23521.2663 - .001282 1377.8887 - 730.8876 87.000 .033273 1.909E +06 - 25650.8758 - .001272 1326.5724 - 688.8520 90.000 .029473 1.829E +06 - 27642.6474 - .001262 1270.9482 - 638.9958 93.000 .025703 1.743E +06 - 29473.6288 - .001252 1211.3280 - 581.6585 96.000 .021961 1.652E +06 - 31121.9165 - .001243 1148.0703 - 517.2000 99.000 .018246 1.557E +06 - 32566.6948 - .001234 1081.5782 - 445.9855 102.000 .014557 1.457E +06 - 33788.2334 - .001226 1012.2972 - 368.3736 105.000 .010890 1.354E +06 - 34767.8555 - .001218 940.7124 - 284.7079 108.000 .007246 1.248E +06 - 35487.8834 - .001211 867.3472 - 195.3107 111.000 .003622 1.141E +06 - 35931.5688 - .001205 792.7606 - 100.4796 114.000 1.70E -05 1.033E +06 - 36083.0152 - .001199 717.5456 -.4847 117.000 - .003572 924416.5509 - 35927.0954 - .001194 642.3277 104.4312 120.000 - .007145 817105.2050 - 35449.3701 - .001189 567.7627 214.0523 123.000 - .010706 711720.3303 - 34636.0082 - .001185 494.5364 328.1889 126.000 - .014254 609289.1559 - 33473.7123 - .001181 423.3625 446.6750 129.000 - .017793 510878.0564 - 31949.6503 - .001178 354.9819 569.3663 132.000 - .021324 417591.2538 - 30051.3939 - .001176 290.1618 696.1380 135.000 - .024848 330569.6932 - 27766.8638 - .001174 229.6952 826.8820 138.000 - .028366 250990.0709 - 25084.2837 - .001172 174.3996 961.5047 141.000 - .031881 180063.9908 - 21992.1406 - .001171 125.1168 1099.9241 144.000 - .035392 119037.2276 - 18479.1525 - .001170 82.7126 1242.0679 147.000 - .038902 69189.0758 - 14534.2442 - .001170 48.0758 1387.8710 150.000 - .042410 31831.7626 - 10146.5283 - .001169 22.1182 1537.2730 153.000 - .045918 8309.9062 - 5305.2938 - .001169 5.7741 1690.2167 156.000 - .049426 0.0000 0.0000 - .001169 0.0000 1846.6458 Output verification: Computed forces and moments are within specified convergence limits. Output Summary for Load Case No. 1: Pile -head deflection = .15868541 in Page 4 0 computed slope at pile head = Maximum bending moment = Maximum shear force = Depth of maximum bending moment = Depth of maximum shear force = Number of iterations = Number of zero deflection points = 13HEIGHT.lpo - .00159498 2333064.025 lbs -in - 36083.015 lbs 54.000 in 114.000 in 11 1 ------------------------------------------------------------------------------ summary of Pile -head Response ------------------------------------------------------------------------ - - - - -- Definition of symbols for pile -head boundary conditions: y = pile -head displacment, in M = pile -head moment, lbs -in V = pile -head shear force, lbs 5 = pile -head slope, radians R = rotational stiffness of pile -head, in- lbs /rad BC Boundary Boundary Axial Pile Head Maximum Maximum Type Condition Condition Load Deflection Moment shear 1 - - -- ------ 2 lbs in in -lbs lbs - - - - -- 1 v= 27000.000 ------ - - - - -- ----- M= 1.38E +06 - - - - -- 0.0000 ----- - - - - -- .1587 ----- - - - - -- 2.333E +06 ----- - - - - -- - 36083.0152 - ---------------------------------------------------- ---------------------Pile-head Deflection vs. Pile Length --------------------------------------------- - - - - -- Boundary Condition Type 1, shear and Moment shear = Moment = Axial Load = Pile Length in 156.000 148.200 140.400 132.600 124.800 27000. lbs 1380000. in -lbs 0. lbs Pile Head Deflection in .15868541 .18796687 .23419204 .32191147 .59355185 Maximum Moment in -lbs 2333064.025 2303795.329 2279511.906 2262146.038 2255406.123 The analysis ended normally. Maximum shear lbs - 36083.015 - 38042.217 - 40577.081 - 44328.411 - 51243.334 Page 5 APPENDIX "A" Alm REFERENCE MATERIAL AND CODES I. SHORING DESIGN REFERENCE DOCUMENTS &BIBLIOGRAPHY n• REFEIN CE DESIGN CODES AND STANDARDS f k' COGGINS & SONS, INC., SHORING DESIGN REFERENCE MATERIALS APRIL 16, 2002, BY STANLEY H. SMITH, PE AND JOHN H. HART, PE SHORING DESIGN REFERENCE DOCUMENTS & BIBLIOGRAPHY 1) PECK, HANSON & THORNBURN, "FOUNDATION ENGINEERING ", SECOND EDITION, 1973. 2) GROUND ANCHORS AND ANCHORED SYSTEMS, GEOTECHNICAL ENGINEERING CIRCULAR NO. 4, FHWA OFFICE OF BRIDGE TECHNOLOGY, JUNE 1999. 3) JOSEPH E. BOWLES, "FOUNDATION ANALYSIS AND DESIGN', FOURTH AND FIFTH EDITIONS, 1988 & 1996. 4) BRAJA M. DAS, "PRINCIPLES OF FOUNDATION ENGINEERING ", SECOND EDITION, 1990. 5) HOLTZ AND KOVACS, "AN INTRODUCTION TO GEOTECHNICAL ENGINEERING ", 1981. 6) ROBERT M. KOERNER, "DESIGNING WITH GEOSYNTHETICS ", THIRD EDITION, 1994. 7) NAVFAC 7.0 1, "SOIL MECHANICS ", SEPTEMBER, 1986 8) NAVFAC 7.02, "FOUNDATIONS AND EARTH STRUCTURES ", SEPTEMBER, 1986 9) HANNA, "FOUNDATIONS IN TENSION - GROUND ANCHORS ". 10) FHWA/RD- 82/047, "TIEBACKS ", JULY 1982. 11) PTI, "POST - TENSIONING MANUAL", FIFTH EDITION, 1997. 12) PTI, "RECOMMENDATIONS FOR PRESTRESSED ROCK AND SOIL ANCHORS ", THIRD EDITION, 1996. 13) ASCE, "SERVICEABILITY OF EARTH RETAINING STRUCTURES ", GSP #42, 1994. 14) FHWA, FHWA -RD -75 -128, "LATERAL SUPPORT SYSTEMS AND UNDERPINNING", APRIL 1976, VOLUMES I, II, UL 15) ASCE, GEOTECHNICAL SPECIAL PUBICATION NO. 74, "GUIDELINES OF ENGINEERING PRACTICE FOR BRACED AND TIED -BACK EXCAVATIONS ". 16) CHEN & ASSOCIATES, "DESIGN OF LATERALLY LOADED PIERS ", 1983. 17) ALAN MACNAB, "EARTH RETENTION SYSTEMS HANDBOOK ", 2002. SOIL NAILING REFERENCE DOCUMENTS & BIBLIOGRAPHY 1) ASCE, "SOIL NAILING AND REINFORCED SOIL WALLS ", 1992. 2) FHWA/GOLDER PUBLICATION # FHWA- SA- 96- 069, "MANUAL FOR DESIGN AND CONSTRUCTION MONITORING OF SOIL NAIL WALLS ", NOVEMBER 1996. 3) ASCE, "GROUND IMPROVEMENT / GROUND REINFORCEMENT / GROUND TREATMENT" SPECIAL PUBLICATION #69, JULY 1997. 4) XANTHAKOS, ABRAMSON & BRUCE, "GROUND CONTROL AND IMPROVEMENT', 1994. SOFTWARE 1) CALIFORNIA DOT, "SNAIL PROGRAM", VERSION 2.11 -PC VERSION. 2) RISA TECHNOLOGIES, "RISA -21) VERSION 4.0, RAPID INTERACTIVE STRUCTURAL ANALYSIS - 2D, FRAME ANALYSIS. 3) GEO -SLOPE International Ltd., "SLOPE/W ", VERSION 5 REFERENCE DOCUMENTS 1) AMERICAN INSTITUTE OF STEEL CONSTRUCTION, "MANUAL OF STEEL CONSTRUCTION - ALLOWABLE STRESS DESIGN', NINTH EDITION, 1989 2) AMERICAN INSTITUTE OF STEEL CONSTRUCTION, "MANUAL OF STEEL CONSTRUCTION - LOAD AND RESISTANCE FACTOR DESIGN', THIRD EDITION, 2001 3) ACI 381- 99/318R -99, "BUILDING CODE AND COMMENTARY ", 1999. 4) ANSI/ASCE 7 -95, "MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES ". 5) ACI, "BUIL,DING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 -99) AND COMMENTARY (ACI 318R -99). co 6) ANSUAF &PANDS- 1997, "NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION'. 7) ASCE, "STANDARD FOR LOAD AND RESISTANCE FACTOR DESIGN (LRFD) FOR ENGINEERED WOOD CONSTRUCTION'. APPENDIX "B" LAGGING DESIGN CRITERIA & REFERENCES Lil LL w1: �i• COGGINS & SO Caisson Drilling, Excavation Shoring, Tieback Anchors TIMBER LAGGING DESIGN CRITERIA AND REFERENCES Updated July 21, 2003 The design of lagging is primarily based upon experience and semi - empirical relationships rather than by any rigorous analysis. Coggins & Sons, Inc. have been utilizing thick rough sawn #2 Douglas fir lumber for many years as lagging. The %Z" diameter SAE Grade 2 lagging anchor bolts have been in use since 1994. This design has been implemented successfully for numerous projects. From our experience, we have determined the #2 Douglas fir can easily span 9' -0" in most soil conditions. On occasion, the #2 Douglas fir can span 10' -0" in appropriate soils without any failure problems. We have used 9' -0" typical spacing for numerous projects ranging from 10 %0" to 45' -0" deep without any problems. Please see figures 1 through 3 for examples of our 9'-0" spacing at various depths. The criteria followed for lagging design is from three sources: "Earth Retention Systems Handbook ", FHWA Publication No. IF -99 -016, "Ground Anchors and Anchored Systems ", June 1999 and FHWA -RD -75 -128, "Lateral Support Systems and Underpinning ", April 1976, Volumes I, II, & Ill). All of these documents indicate the timber lagging should not be designed, but rather based on experience and semi- empirical rules. Goldberg has assembled a table in his report to the FHWA 1976 suggesting lagging thicknesses for various types of soils (a copy can be seen in Table 1). If a design analysis is attempted, it is suggested from the three references listed previously to design the lagging for a soil pressure equal to 50 percent of the apparent earth pressure. Coggin & Sons, Inc. experience indicates this is conservative in many cases because of the "hard to estimate" arching affect behind the shoring wall. In addition, we believe that most lagging will deflect to the point where the retained soils will arch between the soldier piles and relieve the pressure on the lagging. Once a point of equilibrium is reached, the deflection will stop. The following two pages show results for estimated lagging design. In addition, excerpts from the above- mentioned references and steel stud / #2 Douglas Fir strengths are shown. 9512 Titan Park Circle - Littleton, Colorado 80125 - (303) 791 -9911 - FAX (303) 791 -0967 http : / /cogginsandsons.uswestdex.com FOUR SEASONS LAGGING DESIGN GIVEN: SOIL TYPE: SAND AND.COBBLES DESIGN-PRESSURE (X)(h) (psf): 37 EXCAVATION DEPTH (ft); 13 SOLDIER = BEAM - SPACING (ft): :85 CLEAR SPAR (ft).: g 5 BOARD HEIGHT-(in): 12 BOARD THIM(in): 3 FLEX. STRESS OF #2 DOUGLAS FIR (psi): 1200 FIND: BENDING STRESS 1) COMPUTE MOMENT M = (vii' I^2 )'/ 8 w , sf _. 24.0:5 . ft = . fi 5_ M :(fi - #) 1270 2) COMPUTE SECTION *MODULUS S :b *(h^2 )) / 6 bin) = 1 "2 .h, in = 3 S in ^3 = 18: 3 :COMPUTE BENDING STRESS. fb "'M/.S , lb" (psi) F1 847::: H e e e SOLDIER BEAM 2 CHANNELS 3/1 E PL 3/8" x 3" W/ 5/8" DIA. HOLE PLAN VIEW OF TYPICAL SHORING AND LAGGING 3" TIMBER LAGGING 1. STUD WELDED TO CHANNEL s�� pENVERlt1U_SEUMOFjVAI Vf(C flta4 -.. 4 t- s'tr�a I .. �i.� � � - r -�� � t • T ` ee gE+6 7 .-s f {"�� t�`yztt�� �- - •_ -%mss �..�� - , At I' f t 16, r In } 1 _ _ T� •E h - = 4 Fc _ _ T� •E h - = 4 e e Table 12. Recommended thickness of temporary timber lagging (after FFMA -RD -75 -130, 1976) Tl4 3 u: LM 82 Soil Description Unified Soil Depth Recommended thickness of lagging (roughcut) for Classification (m) clear spans of: COMPETENT 1.5m 1.8m 2.1m 2.4m 2.7m 3.Om SOILS Silt or fine sand and silt ML, SM -ML above water table Sands and gravels GW, GP, GM, 0-8 50 mm 75 mm 75 mm 75 mm 100 mm 100 (medium dense to dense) GS, SW, SP, mm SM Clays (stiff to very stiff); CL, CH 8-18 75 mm 75 nun 75 mm 100 mm 100 mm 125 mm non - fissured Clays, medium CL, CH consistency and YH <5 S. DIFFICULT SOILS Sand and silty sand (loose) SW, SP, SM Clayey sands (medium SC 0-8 75 mm 75 mm 75 mm 100 nun 100 mm 125 mm dense to dense) below water table Clay, heavily CL, CH 8-18 75 mm 75 min 100 nun 100 mm 125 mm 125 mm overconsolidated, fissured Cohesionless silt or fine ML, SM -SL sand and silt below water table POTENTIALLY DANGEROUS Soft clays-�fl >5 CL, CH 0-5 75 mm 75 nun 100 mm 125 mm --- - - - - -- -- - - - - -- SOILS S. Slightly plastic silts below ML 5 - 8 75 mm 100 mm 125 mm 150 mm --- - - - - -- -- - - - - -- water table Clayey Sands (loose), Sc 8 -11 100 mm 125 nun 150 mm --- - - - - -- --- - - - - -- --- - - - - -- below water table Notes: 1) In the category of "potentially dangerous soils ", use of soldier beam and lagging wall systems is questionable. 2) The values shown are based on construction grade lumber. 3) Local experience may take precedence over recommended values in this table. Tl4 3 u: LM 82 r A cal raker footing. :)r making the footings deep and narrow are many. Deeper and hat there is less chance that the footing will interfere with the istallations in the base of the excavation such as building foot - )lumbing lines, etc. By making the footing deep, it is easier to .nt passive pressure to resist the lateral load of the footing (Fig - lition, deep narrow footings can be conveniently developed by against neat earth excavations without any forming.. The foot - he width of the backhoe bucket. .. , .. , . r / \\ / \ :er load is restrained by inclined footing. Using an methods outlined in Peck, Hanson & Thorburn for calculating the capacii.� nclined footings, the size of the raker footing can be developed. In cohesive soils, the unit bearing capacity of the footing is defined as q = cNeq where q is the ultimate bearing strength c is cohesion Neq is the bearing capacity factor (see Figure 11.11) In cohesionless soils the ultimate bearing capacity of the footing is q = M ByNyq where B is the inclined length of the footing bearing surface y is the unit weight of soil N,,q is the bearing capacity factor (see Figure 11.11) An alternative design method used to resist the lateral load place.. ,,., .,,.,,,. footings in softer soils involves the development of the capacity of the footing through adhesion between the sidewalls of the deep narrow concrete footing. Very large frictional areas exist which can carry significant load (Area ABC on Figure 11.9). 11.8 LAGGING A large body of opinion holds that timber lagging should not be designed. This thought comes from observations that most lagging will simply deflect to the point where the retained soils will arch between the soldier piles and relieve the pressure on the lagging. Once a point of equilibrium is reached, it is argued, that deflection will stop. Excavations of depths to 60 feet (18 m) with lagging thickness of 3 inches (75 mm) and spans of 10 feet (3 m) have performed well. Excavations to 110 feet (33.5 m) with 4 inch (100 mm) lagging and 9 foot (2.7 m) bays have similarly performed satisfactorily. The designer should be cautioned that this principle does not hold in soft clays where arching is minimal or nonexistent. It should also be pointed out that in these types of materials, timber lagging, soldier pile and lagging is often not recommended at all. That being said, there is a great desire on the part of many plan checkers to have some rational mathematical method of designing timber lagging. Goldberg Zoino in their report to the FHWA in 1976 (listed in the Bibliography) produced a chart of suggested lagging thicknesses which is accepted by some as sufficient for design purposes (see Table 11.1). lil 0 W N J DE ry.. . o� m x n n 0 0 ao n 0 n x _+ N rn -+fh0 CA O Or.-- . .. N � O C) 7 fn O A 7 O R a CD m o (a co O O p O O O O W 11 TABLE 11.1 Goldberg Zoino Chart (Courtesy of the Federal Highway Administration) a zH h W 0. 0 U I e a -U. fa n O aC W zO�Tj C7 eYOI Values of Ncq 00 N A CA 7 0 N O 7 A O R a � fD O CD m m CO CA O Note: s In the category of "potentially dangerous sous ", use of LaUing is questionable. Recommended Thicknesses of tea Clear Soil D•*criptfon classification D� 5��°`�( t.. 0, Sots or Sae sand and silt ILL above water table SM -ML Sands and gravels (medico, GN, GP, CU. 0' to 25' 2" jot 3.. 3n 41. .411 dense to dense). - GC, SR, SP, SM Clays (atilt to very Stitt): CL, CH 25' to 60' 3" 3 "' 3" 4" 4" S" ' now - Assured. clay., wwdium canals- CL, CH tenet' and J < S. - Sande and silty scads, SM, SP, Std ' (loos*). - Clayey *"We (medium Sc . 0' to 25' 3" 3" '3" 4" 4" S" dense to dense) below . water able, clays, heavily over. Cl., CH 2S' to 60' 3" 3" 4" 4" $" S" consolidated fissured. Cobsgrograss silt or fine M14 St[ -ML sand end grit below water table. Solt clays -I ) S: Cl, CH 0' to 1S' 3" 3" 4. S" -- -- Slightly plastic ants AlL 15' to 25' ]" 4" S. 6" -- below water table. clayey sands (loose), Sc 2S' to 3S' 4" S" 6" below water table. Note: s In the category of "potentially dangerous sous ", use of LaUing is questionable. -1.. 322 EARTH RETENTION SYSTEMS or 0.2w 0.5W FIGURE 11.12 Lagging- pressure diagrams. For those who continue to insist on a mathematical method, two loading dia- grams are included as Figure 11.12 which are sometimes used. `w' is the unit soil pressure from apparent earth pressure or earth pressure theory diagrams. The rationale behind these lagging diagrams is a follows. The unit pressure predicted by the active pressure diagram should be modified to account for the incidence of arching in the soils. No actual research is known to have been performed to cre- ate these pressure diagrams, but no failures of lagging boards are recorded by their use either. 11.9 SOIL NAILING Soil nailing is always subject to some form of computer analysis. The following is a sample of the tvne of analvcic which ePVPra) .,F *I,...e,.,,.... :__A DESIGN ME Step 1. Determine the soil and dimension Step 2. Determine the density of nails rec mass. This is usually assumed to be a 6 fo Step 3. Select a number of failure surface, Step 4. For each failure surface, divide the; of slices, determine the added force require Step S. Determine the length of nail require added normal force to create equilibrium. U 18.4 to determine the length. Use the crii determine the design load. Note: The critical plane is not necessarily t Step 6. Given the location of the critical slip; of nail by adding the length of embedment ft q qs 20- EARTH RETENTION SYSTEMS 8.7 HYDROSTATIC PRESSURE Hydrostatic pressure is the force that is exerted on a shoring system by water that is retained behind the shoring system. As water is known to weigh 62.4 pcf (1 T /m3) and defined by the symbol yw, the pressure acting at any point on a shoring system which impounds water behind it is equal to the depth of the water X 62.4 pcf (1 T /m3 ). This impoundment will also have the effect of reducing the unit weight of soil to the buoyant weight (y) y='y- - 7w 8.8 ARCHING (8.4) Arching is that phenomenon in a soil which permits it to transfer load to points of rigidity similar to the way in which an arch bridge shifts its weight to its piers and abutments (see Figure 8.4). This phenomenon allows even cohesionless soils to stand temporarily between points of rigidity when unsupported, and sometimes allows the designer to reduce the design stresses acting on parts of the shoring system. Arching acts not only in the horizontal plane of the shoring wall, but also in the vertical (see Figure 8.5). It is most evident in cohesionless soils (sands and gravels) and approaches zero in soft, fine grained soils (clays). (OT (iT) Arching Deflection Required For Development of Soil Arching Result ant Earth Pressure FIGURE 8.4 Horizontal arching —note that the uniformly distributed load is redistributed and lil ENGINEERINO PROPERTIES OF RE. .iED SOUS FIGURE 8.5 Vertical arching. As deflection occurs between points of stiffness, load is reduced in mid span and increased at nodes of stiffness. wU. I-11 W A- If - -99 -015 11.5.[)epartment JUNE 1999 0( T(0MPOription O f� ICI♦. op BRIDGE, TI CHNOLOGy �edert��:HighWay 400.EIyTH STREET',W AdmtnistrdNon WASIU:NGTON, DC 20590 GEoMCIpVICAL ENOAWERWG CM CLUAR.NoA STRUCTURAL FOUNDATIONS Roadway SOIL & ROCK INSTABILITIES I MecnaNcatly StablUzed i r Earn wall \EARTH RETAINING I GROUND MODIFICA SYSTEMS TECHNIQUES La For permanent walls and temporary walls that are considered critical, an allowable bending stress in the soldier beam, Fb, of 0.55 Fy, where Fy is the yield stress of the steel, is recommended. Steel sheet -pile and soldier beams are commonly either Grade 36 (Fy = 248 MPa) or Grade 50 (Fy = 345 MPa). For tem porary SOE walls, a 20 percent increase in the allowable stress may be allowed for Positive wall bending moments between anchor locations; no allowable stress increase is recommended for negative wall bending movements at the anchor locations. The required section modulus S, q, is calculated as: S,q = MMU (Equation 22) Standard ST units are S(mm3), M. (W -m), and Fe (Mpa). In most cases, several available steel sections will typically meet this requirement. The actual wall section selected will be* based on contractor /owner preference, cost, constructability, and details of the anchor /wall connection. When designing permanent anchored walls in relatively uniform competent materials, it is usually only necessary to check the final stage of construction provided that: (1) the ground can develop adequate passive resistance below the excavation to support the wall; (2) apparent earth pressure diagrams are used to assess the loading on the wall; *and (3) there is minimal over excavation below each anchor level (FHWA -RD -97 -130, 1998). For cases where there are large concentrated surcharges or berms at the ground surface, it is prudent to check wall bending moments for. the initial cantilever stage (i.e., stage just prior to installation and lock -off of uppermost anchor). Where the final excavation height is not the most critical condition, staged construction analysis where the maximum wall bending moment, designers all deflections, a use a embedment depth are evaluated for several stages of construction. An analysis is and wall case since the ys required for this maximum* bending moment may occur at an intermediate stage of construction (i.e., before the final excavation depth is reached). Intermediate construction stages may be critical when: (1) triangular earth pressure diagrams are used to design the wall; (2) the excavation extends significantly below an anchor level prior to stressing that anchor (3) a cutoff wall is used to maintain the water level behind the wall; (4) the soil below the bottom of the excavation is weals resulting in active earth pressures that are greater than available resistance provided by the too of the wall; and (5) strictures are located near the wall. 5.4.2 Design of Lagging for Temporary Support The thickness of temporary timber lagging for soldier beam and lagging in walls is based primarily on experience or semi - empirical rules. Table 12 presents recommended thicknesses of construction grade lumber for temporary timber lagging. For temporary SOE walls, contractors may use other lagging thicknesses provided they can demonstrate good performance of the lagging thickness for walls constructed in similar ground. Permanent timber lagging has been used in lieu of a concrete face to carry permanent wall loads. For Permanent applications, the timber grade and dimensions should be designed according to structural glridelines. Several problems may exist for permanent timber lagging including: (1) need to provide fire protection for the lagging; (2) limited service Iife for timber, and (3) difficulty in providing 81 Report No. FNWk;RD•15.128 O . rM# !01 PB 257 21( LATERAL SUPPORT SYSTEMS AND UNDERPINNING Vol. I. Design and Construction 0. T. Goldberg, W. E. laworski, and. M. D. Gordon April 1916 Final Report This document is available to the public through the National Technical wormado' n Service, Springfield, Virginia 22161 NATIONAL STEjIit�ECAI Prepared f�r INF.ORAAAMEN SEf {VICE eS.0E1QFKIf Of COMMERCE SPRIR6fIEl0. TA. 22161 FEDERAL HIGHWAY ADMINISTRATION . Offices of Research & Development, Washington, D.C. 20590 9.32 Wood La in 9. 32. 1 Wood Materials United States is construction gradeenrwood used for la gging in the Struc- tural stress - graded l , usually rough -cut. Preferred woods are Dgl,a,s Fir or Southern Yellow specified though seldom used. which provide a desirable balance between flexural stren e' both of formation modulus. gth and de- may be used for Table 3 lists the properties of some woods that wood lagging' The allowable flexural stress state in the table is far norms -d or repetitive use construction. d 9.32.2 Ar i:4g the convention Experience has shown that lagging installed in manner in most reasonably competent soils does not receive the total earl pressure concentrates on the relatively s '' on the wall. The lateral sure is a tiff soldier piles; less Ares. applied to the more flexible lagging between the soldier piles. ing, is inherent) r This redistribution of pressure.. known as arch - Y elated to the usual manner of lagging is suppo construction, The rted on the front Hang behind the i e; a slight overDut is made aging to facilitate v placement of the boards; and the inter- boards space behind the boards is filled with soil. lagging is relatively related phenomenon is that the pressure on the greater forces Y unaffected by depth. It therefore follows that associated with deeper excavations must be trans- mitted through soldier piles. 32. 3. General Practice - -�• �.�uc�ness p Lagging thickness design is based primarily u on experience and /or empirical rules. amPlitude of the One procedure is to vary the pressure diagram with niaxiinum pressure at the sold- Lacroix pile and mu�.i,m� pressure midway between the soldier pile Lacroix and Jacks o P (see Pressure-di a -r n,, 1972). Another procedure is to reduce the basic g am used in the design of bracing and /or tiebacks by ng lag applying a reducti on factor. For example, Armento (1972), in design- or lagging for the BA,RTD system, a � � factor to the basic trapezoidal earth applied dipercent ed for design. The New York Transit Authority uses the basic pressure rut P Table 3. Strength properties for typical grades of timber. Allowable Modulus of Wood T ype and Grade Flexural Stress Elasticity Dou 1as Fir - L,a.rch, fb, psi E, psi surfaced dry or surfaced green used at max. 19% M. C Construction Select Structural 1200 1,500,000 2050 1,800,000 Douglas Fir South surfaced dry or surfaced green used at max. 19 % U. C. Construction Select Structural 1150 1,100,000 1950 1,400,000 Northern pine surfaced at 15%, moisture content, used at 15% max. 19% M. C. Construction - Select Structural 1050 1,200,006 I750 1,500,000 Southern pine, surfaced at 15'j6 moisture content K. D. , used at 15% max. M. C. Construction Select Structural 1300 1, 500, 000 2250 1,900,000 Southern pine, surfaced dry, used a t max. 19% M. C. Construction Select, Structural 1200 1, 400, 000 2050 1,800,000 - bear avaiiable��m . T American Institute of Timber Construction,. "Timber Constructio Manual ", 2nd Edition, Wiley, 1974. n -119- uiagram but allows a 50 stress of stress Percent increase in the towable flexural graded lumber. 9. 32.4 Recommended La m Tmekness de oeloped and i.s resented ale of recommended tbicIiesses has been n the basis of construction Table 4. since the table has been develop_ for stress - graded 1 grade lumber, adjustments are required timber. The so -coed "competent soils shown are typically either, gr�ula.r with relatively, high �� °� herein friction ors ' Y g angles of internal are those tiff to Very stiff clays. Medium clays included in the a ratio of overburden stress to undrained strength able than 5. gth of less - granular soils The category of "difficult 8011811 includes loose, with low angles of internal friction and soils -ha tendency to run when saturated, fieavil, having a Ys are also included because the Y overconsolidated fissured esPecially in deep excavations hate a tendency to expand laterally., 9.33 Dis Iacements and Lo ss of Ground 9.33.1 General. axe the soil • ImPor�t factors contribtting to ground loss in zones immediately behind the la of the Iagg�g board itself. gg�g and the flexure loss caused b The follow�g discussion concerns ground particular Y the inherent characteristics of soldier pile walls, in the teChniques used in construction, aofi deal y i overall deformations of the retaine hscussion does mass. 9. 33.2 Denection of La in in Table 4 will generall The lagging board �eknesses recom Y maiatain deflection to Tess Ph mended an about 1 inch, 9.33.3 OYercut by Movements caused by overcut are best controlled backpack Pang of soil behind lagging. The m g s to ram the soil into the s ost effective way of each lagg•�g board. If there is Pace from the upperside of sxon in terial r d ic,,,a a obtaining sufficient cohe- ,� fug � ermined ui this manner and /or tlier� is concern "i ashout from ground water action, the soil can be mixed = -1 20 - r I Table 4. Recommended thicknesses of wood lagging. Sail Descdptloa Gumed . Classification Recommended Thicknesses of (rouL7cut) for Clear Spans of: Silts or Cues and Depth Sl"s66M6� g !0� and silt above water table ML - •+ SM -ML hSands and gravels (medium GWo GP, GM. h dense to dense), 01 to 25' 2" 3" x GC. SW. SP. SM 3" „ 3 414 4., fd Clays (stfu to veil, BUM; R non- fissured. CL' CH Z5' to 60, 3° 311 3" a Clays. meditun 4„ 4" Sol coasts - U tency and X CL, CH < S. Su Sands and silty sands, (loose), SW. SP. SM . v� Clayey sands (me &um hdense to dense) below SC 0'to Z51 3" 3" 3" 4" F4 water table. 4" S" aClays, Leavily over - coaso)idated fissured. C� CH 25' to 60, 3" 3" 4" 4" ACoheaiooleu slit or fine S" S" .and and silt below water 1 iL� Sirt -ML table. a soft clay. X H ) s. a �O AM sughtly CH 01 0'to 15, 301 3" 4., Su -- -- zN 0: plastic silts N below water table. ML 15' to 2S 3" 4" Ito 6" -_ O(M) Clayey sands (loose), t4A h below water table. f Sc 25, to 351• 4" 5" 6" -- Note: k In the category of „potentially dangerous sous". use of lagging is questionable. -121- 101 C•7 Oast onei WCNANICAL AND. MATERIAL REQUIREMENTS .EXTERNALLY THREADED ,l ' FASTENERS --SAE J419 AUG83 ' .SAE �Sladdard 7 lgalt Ktoe kou lWd SIM Te4saW Caissainty ' January 1119, a --A mWan. IS t C Diruioa 2!, Aurml 1911. • 1 i !:; Score This SAE Standard covers the tnedunipl'and material re- + ' quiremcnls for'sted bolts, screws studs, semsel and U- bulls' used in s Nrraat 1p nuSAl 905 A thu ' Iq.6 ). also clsvercil nail, now curl lllsldnititivt strtd related indus(lics in'sizes•to I% in, indusive. ' . + �: Deriygrtatiolrr � � grtstl 1E►G7). i 1-i rte'= Screw aad srasflcr i ! .2.1 Designation Srsltsal- (;rades air;desiriixW b'f irfutnbers rv1 ' U Isoi(s coveted by this SAE Standard arc those wed priesarsly b leg I"tTeasing aumbcrs acptest'"Okotrrasing tcnsite strength. and i �cillicd aft," of rsisic a; Far b) dreir U�la at auds..M spa4fitalior of whole numbers ACC /fccha.ds r'cpllescnt; variatI6iu at the 'h purposes, this standaid, trrals strength kvtl.11le -! • mes ik, d,oya� tYtr Ilse Hard "srlads "•appears, `U•bo"J- is also sits- g1 g jle>tiglraliotls atlt! direh n.Tible i. g"Ke'ba Ilse «u.. ebrsF6iltatiotl may rot a"W. It 12.2 Grades—Botts anH thews are notnuUy •awat�abi only Gn Iwd 69 tap "t isUA.6 Ala ld d< saw,K slse -and [radc:•dna'-ww9 bad 1. •Y, S. 5.2. i. 8, and 8:21 -Studs arc alormally available only in Ora °y U entlined by sadldk bad tesu.i t 1,- 2; d. 5. 8, and 8,1. Get d 5.1 is applieaWc to semi° rrh' i ! II which are l TMtE t' Q1�111' REQIlIIIEAtEttts Ara 10Wt WAt10A MAR.Km kw soEm mewl. f, SEMS, AM It• (KTV ' _ t Fsltt Stara sake. • 1: set.all SIa1.. f aM MadiMa Tasl spdawaae ar Sref:ea i s j: , • BAS, Saaws„ "W Slate Orada' rraaf Tawelfi Ylell+ -, Tamil. Oraatpsa- Ilasislaisl flat "R4 > S1e+M� Rd., N. ! I RtrdwaN i , Ilaw ha/ads (fk PSI (Basra) (filarse) . (ftraee) Elanaa/{aee at /leda ( Ras #wig 30N ►d Alto, pot MM. pl MIa. Fd i Aar", % MMs % klasr Mtn ltait Marlcl,l j+ } + S1vd 1/4 liwv 1.1/2. 33 ov 6G am 3d 000 6o 000 1 t 33 D.i 170 6106 Sorrw 1/1 16V 3%I*1 1 1 i 331100` 74 000 '7000 74 000 660 X00 Slab Oval 3/4 w 1 -In 33 000 40 000 34000% 60 000 It 35. r 4' + SWds — 670 tl� NON ' 1 /4 6,Ir 1.1/2 63000. 113.000 100000. 115 000 10 3S _ t: 5 1 guts' 1%4 ltrnl i 6SOOb' 120000 2000 120000 11 73. s :54 a C3 Nam Surds Ctiiet 1 td 1 -1/2 74 000 103 olio l M ON 103 000 14 3S seas, ,11A. 6 lbw 5/1 6S 600 120 000 C19 COo — -- ! C23 ' C4tK I Sctews W. 6 tluv 1/2 • ' 'J.2' I,rl Nw 1 ' ' '..• :!' ? ws ! 65000 120000 '2 000 120 000 14 31-1I I 1 :-56 C26 C36 1 . • Ie 6o1N i i ' I' J, Swews I 1.1/2 105 000 133 000 11S 000 - 133 000 1 12 35 1 l I 1 totes, : 1: �t sl 1/416v 1.1/2 i 120 000 -150000 130 000: 150 000 12 35• I S6.a t33 C30 I I mil\ :•:•, i 1: 1i , studs 1 150 000 130 000 150 000 10 35 C32 CSI! Hoag 0.2 So11 1/4 Ihw 1 120 000 150 000 130 000 ISO 000 10 35 Yrold rtrcltpgt is :Ircys al *hkh a s } • Yteld'p l Pefiriment set of 0.2 % of lope length occurs. eGrade 2 It appl,. halasd of yield strength at 0.2% offset. It rcgutretnenls shoA� Ms Otis 114 Iiuovo 314 in opptf ortll b bolls and'cells 6 In and shorter to Gr-asle S ' le^p+h% ossd to studs of all kttptlu, for bolts and screws boyar Msaa 6 in, Grad. e Grade 7 ~ores - "'ot keoled before oss Ur with a Iwrdened washet h an acceplaW substitute.:. 'Ste Tab1a a joca"d saewt are tog Ihreoded ally heol keolmeal. ' ' •Her washer heddage lenalh. , cad h i 57.5. . • 6on9a predvcls wllhovt aisembkd waslwts shall have r core Iwednets Not aaceed-mp RodcweM CSB and a swinca harddass not ektaediap Rost wart Semi and si , ' . 'Sear loolnola 2 llf ka b:wilhoul washer. • s+ , !Not iTp(icahk la INds itched and cross recall Mod prodvcts. ' I Proo( load lest, Rcq%kim4nh in these grades onlr apply to skess .*Nved prodvcls. •i DICKMAN_HINES LUMBER COMPANY P.O. BOX 6137, FEDERAL WAY, WA 98063 PHONE 253 - .838.8790 FAX 253.83845GO Memo COGGINS &SONS DRILLING February 29, 2000 &612 TITAN P From: MIKE COOK UT7l.ETON, Co CIRCLE 80 Attn: LARRY PHONE. 30'$-141-011 FAX:303- 791.QW7 Re: Bending Design Values for 3 x 12 The Adusted Fb for Doug Fir # 2 is 1,250 Psi The Adjusted Fb for Hem Fir# 2 Is 1,175 Psi These figures repr,e5ent the minimum design value allowed both cases the lumber Provided is # 2 8 Btr, wed for straight # 2 Grade. In p , with the amount of "betfer" varying manufacturer to manufacturer: We know that the Hem -Fir from this ma from all of the h( her manufacturer has 9 grades left in it, that the Percentage ercentage of #1 and Select Structural grades in the mix is higher than in the Dou F' reasonabt e� g 1r,.-._therefore, one can Y quate the overall streng� of the two species to be very dose. COTE. Fb Exteme fiberin ben adjustments forsiz ding) to meet or exceed the abov"#er_ . el mPetibve member, and flatwise use. Fb may be rnunded to the nearest 25 or 50 Psi increment, according to AS TM Designation: D 245 Seofion 6.1. MIKE COOK Dickman-Hines Lumber Co. TO /To •a �ocr oc-c, 4 0 COGGINS & SO lip RECEIVED JAN 2 2 2007 The Layton GOMPanle$ Caisson Drilling, Excavation Shoring, Tieback Anchors E' January 19, 2006 Layton Construction Company, Inc. 9090 South Sandy Parkway Sandy, UT 84070 Attention: Mark Sheanshang Subject: Four Seasons Resort Earth Retention CDOT Questions As requested, we are providing a letter explaining the need of soil nails into adjacent CDOT property; in particular, Highway 6 and why a soil nailed wall earth retention system was selected for this site First, we would like to explain the basic concept of Soil Nailed Walls. The basic concept of soil nailing is to reinforce and strengthen the existing ground by installing closely spaced steel bars, called "nails ", into a slope or excavation as earth retention construction proceeds from the "top- down ". This process creates a reinforced section that is itself stable and able to retain the ground behind it. The soil nails tie the active zone (that would otherwise fail by moving outwards and downwards) to the resistant zone. For stability to be achieved, the nail tensile strength must be adequate to provide the support force to stabilize the active block. The nails must also be embedded a sufficient leneth in the resistant zone to Prevent a Pullout failure. Since the edge of future foundation wall of the proposed Four Seasons Resort is located within close proximity of the property line separating Four Seasons and CDOT property, the soil nails will need to cross the property to achieve earth retention stability. I would like to clear up any issues that anyone may have about our proposed earth retention design and why the selected system is in our opinion the best earth retention system for this particular site. Due to the subsurface conditions outlined in the geotechnical report and our experience in the area, we feel the proposed system provides a safe working environment while maintaining an efficient construction schedule. In addition, we have utilized this particular system numerous times in the Vail Valley (and other mountain communities) with good success. 9512 Titan Park Circle • Littleton, Colorado 80125 • (303) 791 -9911 • FAX (303) 791 -0967 Caisson Drilling, Excavation Shoring, Tieback Anchors Before our proposal assembled, our engineers perform a complete design. The design approach includes interpreting data provided in the soil investigation and utilizing one or more computer analysis programs. One program utilized in the design was SNAIL -Z developed by the California Department of Transportation (CALTRANS). We have used this program on numerous successfully completed projects in the past and have found it to be an excellent method of designing Soil Nailed Walls. Our analyses of the soil nailed walls indicate a more then acceptable factor of safety for this particular project. The third party reviewer has indicated similar results. In addition, we utilized a program named Slope/W for additional slope stability analysis. This program is considered "state of the art" by most in the geotechnical field, and provides further confirmation of the design, and required safety factors. Additionally, this project has been designed and will be installed following criteria as outlined in the Federal Highway Administration (FHWA) Manual for soil -nail wall design and installation. The earth retention proposed for this project is not a typical soil - nail wall design as some may think. We have included additional vertical reinforcement as support, by utilizing reinforced grout columns or "micro- piles ". By including this aspect of construction we have increased the required safety factor. Including this added support will reduce the amount of potential caving and speed installation. Soil nail installation will be tested as outlined by FHWA. This information will be sent to our office on a weekly basis, for review by me to assure the design parameters are being accomplished. I will also visit the site on a bi- weekly basis (or more often if conditions dictate) to observe construction and compliance with the design documents. After each site visit a "site observation report" will be issued with copies to the contractor as well as our field supervisor and project manager. All of us at Coggins & Sons feel strongly that we have the highest standard of quality control and product installation. We feel the earth retention system proposed will generate a safe and successful project. If you have any questions, please contact us. Sincerely, Coggins and Sons, Inc. John H. Hart, PE PO0�REG�s YD �.� `a.�' fig'. •.� v o.•a �: o 9512 Titan Park Circle • Littleton, Colorado 80125 • (303) 791 -9911 • FAX (303) 791 -0967