HomeMy WebLinkAboutI-70 Chamonix Road Feasibility Study 1996 Feasibility Study
I-70/CHAMONIX ROAD
November, 1996
Prepared for
Gregory A. Hall, P.E.
- Town Engineer
Town of Vail
Engineering Department
1309 Vail Valley Drive
Vail, Colorado 81657
Prepared by
Leif Ourston, P. E.
Ourston & Doctors
5290 Overpass Road, Suite 212
Santa Barbara, California 93111
CONTENTS
SECTION DESCRIPTION
FEASIBILITY STUDY
I-70/Chamonix Road The main text of the study.
APPENDIX A
Proposed Interchange Layouts Drawings of the interchange.
APPENDIX B
Modern Roundaboutor
Nonconforming Traffic Circle? A one-page comparison of the two types
of circularintersection.
APPENDIX C
West Vail Accident History Diagrams of collisions at West Vail.
APPENDIX D
Understanding Rodel An explanation of the computer
application used to design Vail 's
roundabouts.
APPENDIX E
Roundabout Levels of Service Computations of levels of service,
together with Rodel printouts.
Feasibility Study
I-70/CHAMONIX ROAD
SUMMARY
Congestion at the interchange of Interstate Highway 70 and Chamonix Road will
be nearly eliminated when a pair of modern roundabouts on both sides of the
freeway are built next year. The Town will not need to widen the undercrossing.
The interchange will operate at Level of Service A with present base flows. It
will have ample capacity to operate at Levels of Service B and C even if present
flows increase by more than fifty percent. Crash frequency and severity are
expected to decrease following construction of the project.
ROUNDABOUTS AT WEST VAIL
The Town of Vail built North America's first modern roundabout interchange at
Main Vail (I-70/Vail Road) in 1995, thus nearly eliminating traffic congestion at
what had been the Vai1 Valley's most heavily impacted interchange. Following a
series of ineetings with residents over the summer of 1996, the Town decided to
convert West Yail {I-7(��C�hamonix Road) into a modern roundabout interchange.
Construction�be�completed in 1997. The design and analysis contained in
this report were made available to the Town prior to completion of this report,
and the Town's decision to proceed with the project was based partly on this
information.
West Vail is now the most heavily impacted interchange in the Vail Valley. With
flows approaching capacity much of the time, the interchange is�sn�ject to
unacceptable delay �hen �nP��.��.��.nt�-ea�se s�e�s� traffic demand At the
closely spaced ramp and frontage road intersections, which are regulated by ,
STOP signs, drivers are sometimes confused as to who should stop and who has
the right of way.
I
FEASIBILITY STUDY I-70/CHAMONIX ROAD
PROJECT DESCRIPTION
At West Vail two 150-foot-diameter 6-leg roundabouts will be built (see
Appendix A). All entries to both roundabouts will have two lanes, with two
exceptions: on both roundabouts the southbound Chamonix Road entries will
have only one lane.
The circulatory roadways will be 30 feet wide through both roundabouts, with
one exception. In front of the 34-foot-wide westbound South Frontage Road
entry to the south roundabout, the circulatory roadway will be 34 feet wide.
Both roundabouts are designed to accommodate a 65-foot-long tractor and
semitrailer.
Visibility limits to vegetation and signs are given in the drawing of Appendix A
titled, "Clear View Areas." Within the central islands the outer 30.5-foot-wide
margins will be kept clear of tall objects to provide adequate forward visibility,
but a central area 29 feet in diameter may be used for landscaping or public art of
any desired height.
Splitter islands will be notched to allow pedestrian refuges. Following modern
guidelines, crosswalks will not be marked. Walkways will be designed where
necessary as part of the landscape plan to align with the pedestrian refuges in the
splitter islands. A six-foot-wide walk will follow the west side of Chamonix
Road. Along the east side of Chamonix .Road a 10-foot-wide bike road will be
provided for cyclists and pedestrians. Behind the row of bridge columns the
bike road will widen to 12 feet. It will link a 10-foot-wide bike road to be built
along the north side of North Frontage Road with a pair of bike lanes striped
along the south side of South Frontage Road. Where the bike lanes of South
Frontage Road follow alongside the south roundabout, they will be separated
from the roundabout by a six�inch curb. Bicyclists and pedestrians will cross the
south leg of Chamonix Road south of the splitter island.
Since there is barely room now for both the ramps and the frontage road
between the freeway and Gore Creek, space for a new 150-foot-diameter
- - - � -� — � - - � � � � , , ., , • � • �
r�unuavuut uiusi oe aeveiopea �y �uiiaing iarge siruciures. Space ivr tne ramps
2
FEASIBILITY STUDY I -70/CHAMONIX ROAD
to cut into the side slopes of the freeway will be provided by use of retaining
walls. A wider bridge will permit the south side of the roundabout to span
Gore Creek.
TRAFFIC PERFORMANCE
The performance of the roundabouts was estimated using the computer
application RODEL. (See Appendix D for an explanation of RODEL.) RODEL
estimates average delay in minutes per vehicle. By use of a spreadsheet, RODEL
estimates were converted to average delay in seconds per vehicle and to the
corresponding levels of service (see Appendix E). The Highway Capacity Manual
relates levels of service to average delay for the whole intersection according to
the following table .
LEVEL OF SERVICE FROM AVERAGE
STOPPED DELAY AT INTERSECTION i - `
!� ;` �
Taken from Table 9-1 of the i, j ` � ,�� � `
Highway Capacity Manual � d-' '' ��_` �
r� ��
a��
STOPPED LEVEL OF
DELAY SERVICE
ISECNEH�
d<=5 A
5<d<=i.6 B
1 S<d<,25 G
25<d<=40 D
40<d<=60 E
60<d F
Both roundabouts will operate at Level of Service A with present traffic. The
roundabouts were designed to allow a traffic increase of at least fifty percent
because it is thought that some longevity will be necessary to justify the
substantial investment required for this project. The improved capacity will
3 '
FEASIBILITY STUDY I-70/CHAMONIX ROAD
accommodate traffic surges of an unknown amount, perhaps fifty percent or
more, which presently occur at various times each year.
The design objective of allowing a fifty percent increase in existing flows will be
exceeded. The following percent increases in existing traffic will be possible
without exceeding average stopped delay of 30 seconds per vehicle on any leg (a
measure of practical capacity), estimated at the 85th percentile.
ROUNDABOUT A.M. P.M.
West Vail North 146% 56%
West Vail South 67% 56%
With the percent increases in traffic given above, both roundabouts will operate
at Level of Service B in the morning peak hour and at Level of Service C in the
evening peak hour. Levels of service are presented in the table below.
AVERAGE DELAY LEVEL OF SERVICE
(Seconds Per Vehicle)
North R . South R. North R . South R.
TRAFFIC DEMAND A_M . P . M, A_M . P_M . A_M . P_M . A_M . P_M .
100% of Base Flows� 2.5 3 .9 3 .4 3.8 A A A A
Increased Base Flows"` 11 .5 23 .4 7.6 16.4 B C B C
* "Base Flows" in this report refers to design flows developed by the Town of Vail
in the summer of 1995.
** "Increased Base Flows" refers to 100% of base flows plus the percent increases
of the first table given above.
4
FEASIBILITY STUDY I-70/CHAMONIX ROAD
SAFETY
Roger D. Gilpin, of the Colorado Department of Transportation, prepared a
report of all crashes at both the Main Vail and West Vail interchanges with
Interstate Highway 70 over the three-year period of 1991-93. Appendix C
contains the portion of his report that pertains to West Vail.
Fifty-six crashes were reported at the west Vail interchange over the three-year
period. Of these crashes, 40 were intersectional. The remaining 16 crashes
would not be affected by the modern roundabouts proposed to replace the
existing ramp and frontage road intersections.
At the two Chamonix Road intersections which will be replaced by the north
roundabout 17 crashes were reported in the study period. At the two
intersections which will be replaced by the south roundabout 23 crashes were
reported during the study period.
Seventy percent of the 40 intersectional crashes (28 crashes) were rear-end
crashes, many of them involving vehicles sliding on ice into stopped vehicles.
The roundabouts will not do anything to prevent icy conditions, but they will
greatly reduce the number of vehicles stopped in queue. The potential for
crashes between vehicles which are stopped and vehicles behind them which can
not stop will be reduced as the roundabouts reduce queuing.
During the study period there was one pedestrian crash. There were no
motorcycle crashes and no bicycle crashes. Only three of the 40 crashes involved
injuries. Thirty-seven were property-damage-only crashes.
It is estimated that the safety performance of modern roundabout improvements
to West Vail will be similar to the safety performance of Main Vail's modern
roundabouts. During the first twelve months of modern roundabout service,
from October 1, 1995 to September 30, 1996, total crashes at Main Vail decreased
by 19 percent compared to the average number of crashes per year over the three
previous 12-month periods. The percentage reduction, l9 percent, is exactly
equal to the percentage reduction forecast in the August 1994 feasibility study for
xl... t :...x,.«..1...,. .". T_.:. ...: ... ... ....1. ..,. 1..._,,. L..11,.« 1.__ 7G ... _.t a., ..«7�. .. « xL. ,.
Ut0.t 11LLC11.1�pll�C. 11L�LL11VLLD L1Q�l1lCJ 1IQVC 1Q11G11 Vy / J r1CltClll� LV Vllly VltC lll LLLC
5
FEASIBILITY STUDY I-70/CHAMONIX ROAD
12 months since construction of the roundabouts from an average of four
injurious crashes per year in the previous three years.
CONCWSION
The modern roundabout interchange to be built at West Vail next year will, more
than any possible alternative, impart high capacity, low delay, and safety to the
cramped, six-leg stop-sign-regulated intersections on both sides of the freeway.
The roundabouts will bring order and beauty to Vail's west entrance. The
interchange will become a source of pride over future years to the people of Vail
and to all who contribute to the project.
6
APPENDIX A
Proposedlnterchange Layouts
y��� Q
/ . - .Q
�rJ
Bike Road
� \ —_
North
Fronta9,�R�ad _ ; �NOOFrontage Road � �
� .
' - ' - - ' - ' - - - V / \ � � . .
Omramp I — — �f-rerr�p
Walk o Bike Road
¢
�� I-70 to Grand Junction
r
"c
0
E
m
L
U
i-70 to Denver —._�
Bike Foad yya��
Wall Walk
Off-ramp — — �� � � � _ _ , _ _ On-ramp
\ ' �
`
South Frontage fload ' � — —
Q o �D South Frontage Road
Bike lanes \ ' �
�. Bike Lanes
Bike Lanes Raised 6" Bike Lanes Raised 6"
Next to Roundabout � � �� Next to Roundabout
/
� Ourston & Doctors I- 70/Chamonix Road
MODERN ROUNDABOUT INT€RCbANGES Vail, Colorado
5290 Overpass Road Ji212 Santa Barbara, CA 93111 Nu✓einue� i 1, i 9yv Saaie: i '=cii
... . . ... . .. . ... .. .... .. .....
. . . .
. .,.. :
............ .. ,
. ... .. � . �. : . ..
.: ,��: ., : :` a � . ........
� : :
� � _.. . . ... . , .. .
:... .;. .
��.;.. � � : :
. �: a .,.. .. .:..
Bike Road
"-----" '."" . '`. i .
: � ''..... :� ��' .. .
., . ... � :
__' ". ....-.,.,.
' � �• .... ... . ...�. .'.
... .
..
� � '. ..,..... ... .... ... .. ... . ......:
.... ........... ... ..Fronta98 Foad
North Fron�age Road
�lorth
.. �: ;.
:' .
� . . �] ;.:
. V �.
On-ramP ..... .. ... ... .... .. ..... . .. .. �. , . ... . ... .... .... .... ..... .. .. ....... �f'��P
:Walk � �'�, ���,! � � ; � � Bike:Road
: ¢ : :
I-70 to Grand Junction -
x •
'� :
E
t
;� U . :
I-70to Denver —��
� �� Bike Road Wall
Wall Walk. '' ��:':
. .. , . : :. .. •... -
. . �... . :._..
. . .... ..::� - : Q : : .. .. �
... .... . ..... ............. .... .... .:.. .... ... . : .. . .. ... ... .. .. . ... . ... . .. . . .... ... ..... ... . ... . . .. .... ...
08-ramp On-ramp
_ ...... ... . ... .. . . ......:....' _ .:., � . .._
:•{�':
-.. . ..::: '.:::':-.::'.: _.... ,. . .
_'. ..... ..
South Fron[age Road � � ��
...... . ....... ..... .... .. . .. ... . .. .. . . .. . . .. ... . ... .... .... ........ .... . ....
Q a D South Frontage Fioad
�
... . ........ .......... .. .. . . .,:. ... . . • . .. .. .. ... .
.. .... .. . ... . .,, . . �
,....... ... ......... . .. ..
......................... .......... ... . _ . . ......
" : . .. • ........ :., .. Gore Cteek
Gore Creek �
� Ourston & Doctors 1- 70/Chamonix Road
MODERN ROUNDABOUT INTERCHANGES Vail, Colorado
5290 Overpass Road #212 Sania Barbara, CA 93111 ryovember 5, i990 Scaie: 9 "=Fsu'
��
b �;'
....o
O p —_ _
• �� __ _ _
�T�°��e� _ �fLNiFmnmTFna1 � r ` \
N : ' �
' ` \
� \ � \ \
....•� � � \
..
/ � \ `
OxarR I OXaary •.•::::::
........ .............................
...............�. ........
9AeHaat ..................... ........�..
........................ ......._....�.
...�........... . ........�......�.......... .........
.............
. ...._.....�....._. ............ ..........�..
..........�...............�.
4]O�oGreMJi�n[Mn ••..�rnr:::::::::::. .••••..
...................:::':::.:s. .............
....... �.. - - ---� - . . .................. . . ... ... . ... . .. . .. . .... .......... .......... .... . ... .. .. . ......... .. ......
_.
. ..--- -�--- - �- .. . ..
__
------..._
--.. ..._..... ._........... .. �� .. ......._ ......... . ............._ .. .......... .. . ..............._.
�.�o,o ��
..
_..... ---............ ... ...�...� .. .......- -�- --- -�- - �-
__ .. ....... ......................- - -wy--..._. ..
e��,m _..... ---... - �- .-....._ .
w� �., -- --........
............... .. . .. .... .. ...... .....:::.: ..:...
o ._
ax..r- _ _� \ .. a..�m
\ .. .._....
- .....................................................
...."'�:" �
�nv,o,�.�no:d' o ` _ _ _ _ - _ ............................................_..._.............................
hSw1I�Fm�YOePmE ....••••.•••••
eixoLNOV \ ' V �
�..x+.m a
x.ncra.a.em �mrw�e.m�� �
� .
� Ourston & Doctors I- 70/Chamonix Road
MODERN ROUNDABOUT INTERCHANGES Vail, Colorado
5290 Overpass Road #212 Santa Barbara, CA 93111 Novembe� 5, 1996 Scale: i "= i50'
\�Y �
/ ` - .�
XT �
4n
Bike Road
, � — __
18 — � �
35" 4, D=29' 4„ � 35� �
F�onia9�Roa�_ ` ; i8� North Frontage Road �
Nodh - - - ' - - - - -
35" 4 t, .
35"
\
, � 18"
35" _ . - � " \ 4"
" " " " " _ � / \ � �r•
On-ramp — — Off-ramp
- Walk ol BikeRoad
¢
�— I-70 to Grand Junction
x
.�
0
�
c
U
I-70 to Denver ��
Bike Road Wall
Wall Walk
35'� 35'
Off-ramp — — �� � 35' - _ _ _ _ . On-ramp
q„ ' ' '
35" \ q"
18" `
South Frontage Road 35' �g ' � —
� � 3,5• 4, p_Zy� 4" Soulh Frontage Road
eike Lanes � � 1e� �^� � Bike Lanes
4"
Bike Lanes Fiaised 6" Bike Lanes Raised 6'
Next [o Roundabout 35' _ _
Next to Rounda6out
35�5^
CLEAR VIEW AREAS
Maximum heights of sight obstructions
are given above curbs.
� Our�ton & Doctor� 1- 70/Cham�nix Road
MODERN ROUNDABOUT INTERCHANGES Vail, Colorado
5290 Overpass Road #212 Santa Barbara, CA 93111 ryovember 5, i�9a Saa1e: i "=ov'
APPENDIX B
Modern Roundabout or
Nonconforming Traffic Circle?
MODERN ROUNDABOUT OR NONCONFORMING TRAFFIC CIRCLE ?
Unlike nonconforming traffic circles, modern roundabouts conform to modern
roundabout guidelines. Among other important new features, modern round-
abouts have yield at entry, deflection, and (often) flare, as illustrated below.
MODERNROUNDABOUT NONCONFORMING
TRAFFIC CIRCLE
Entering traffic yields Entering traffic cuts
to circulating traffic. off circulating traffic.
• Circulating traffic • Circulating traffic
always keeps moving. comes to a dead stop
YIELD when the circle filis
with entering traffic.
• Works well with very • Breaks down with heavy
heavy traffic. traffic.
• No weaving distance • Long weaving distances
necessary. Roundabouts for merging entries
are compact. cause circles to be
YIELD AT ENTRY large.
Entering traffic aims at Entering traffic aims to
the center of the the right of the central
central island and is island and proceeds
�'; deflected slowly around straight ahead at speed.
OE.<< �,TO it.
1oti • Slows traffic on fast • Causes serious
roads, reducing accidents if used on
accidents. fast roads.
• Deflection promotes the • Fast entries defeat the
DEFLECTION yielding proc��s. yielding process.
� I � � Upstream roadway often Lanes are not added at
i�� � '� flares at entry, adding entry.
,<., � �
lanes.
- - -_____�___- O • Provides high capacity • Provides low capacity
in a compact space. even if circle is large.
- - • Permits two-lane roads • For tiigh capacity,
� FLAR� � � �r between roundabouts, requires multilane
i !! saving pavement, land, roads between circles,
and bridge area. wa�ting pav@m@nt, land,
FLAltE and bridge area.
APPENDIX C
West Vail Accident History
,
STAFF TRAFEIC AND SAFETY PROJECTS BRANCN
TYPIC"AL COLL' lSION DIAGRAM ' LEGEND
FOR MOTOR VEH [ CLE TRAFFIC' ACC[ QENTS
� � � A'CClOENT LOCATION
_►' �/'y. . ���,'
Op-rosdw�Y Off-roadway:{right) Off-roadway{left)
ACCiDENTTYPES: SYMBOI_
. ,.
HO - liead-0n HO —►�---
RE - Rear�nd RE —��•
.SS - Sidewslpe-same ��ction SS �
��-.. . -
- SO� - Sideswipa-opposite dnection SO �� - .
AT - Approach tum AT �—.
OT - Overta(dng tum OT �f
BS - Broadside BS '
TorAN
T - Traia
(rype indicated)
AN - Mima!
PC - Pariced car
p _ p� PC, Any of the above
P or B as appropriate
B - - 8icyde, Motociz�d.bicyde -
� - ��� �I� . Fo or o
O - Other objecf (tYPe i�idiea4ed) - f��
OTR - Overtumfng. OTR / "� '�• �
ONC- Ofher noncollisioci ONC �.
(type indicated)
• ACCiOENT SEVER(TY'
number ot
persons killed� �s. � �� � Fatai Accident
_ � Injury Accident
0�2. numberof pecsons injured
O• P�operty i]amago Only Accident
COLORADO DEPARTMENT OF TRANSPORTATION Fi�eu �
, G D. Or..
SUMMARY OF MOTOR VEHICLE
TRAFFIC ACCIDENTS
Date � � ,
U/?< <3C
Sheet of 5/
Description:
.5� G �l� GI � , � f �� �?o.� 4�'0!
�i� � r C'/,�r�-�
Milepoint: �,,� �� to:
Period : .�C,�i�L �/r � ��� to: ��j'�?cl9/ � �/ �
I. NUMBER OF ACCIDENTS REPORTED V. LOCATION
One-car accidents On-roadway accidents ��'
Two-car accidents � Off-roadway accidents g
Three or more cars
Total .S�
Total �G
VI. TYPES OF ACCIDENTS
II. SEVERITY Non-collision accidents
Fatal accidents o Overturning /
Injury accidents � Other non-collision ,2
Property damage only SO
Collision accide�ts
Total �"! Pedestrian _�
Broadside Pi
Persons killed O Head-on
Persons injured � Rear-end �
Sideswipe S. D. �3
III. LIGHT Sideswipe O. D.
Daylight �3 Approach turn
Dark, roadway not lighted Overtaking turn
Dark, roadway Iighted /� Parked car /
Train
IV. ADVER9E CONBITIONS Bicycie
Weather Motorized Bicycle
Raining � Domestic animal
Snowing �2/_� Wild animai
Road Fixed object �
Wet � Other object
Snowy !,�
Icy y3�
Total -%�
COMMENTS:
_ � COLORADO DEPARTMENTOFTRANSPORTATION F��aNO. sao . o�o . oz
TRAFFIC ACCIDENT LOCATIONS
oa�a June 30 , 1994
S.H. NO. �O oi:ma III Pef��a �anuary 1 , 1991 1O January 1 , 1994 sneB� Z �� 4
oesc1p°0° SH 70 ( I 70) at the Idest Vail ( Chamonix Rd . ) Interchange
Milepalnl 173 . 32 1D
�
9
x
o �
�
I �
�`-h � � 3
� 2 �O
� �
� � � • _
�
y � ``� t
� ��
� ` a � � i B
� `��i \y �o Y �
� 3F ° i
. �m .� S o `h � .
4� � a�i � ,o a
,� � � - a � ° y
o ea o e� � � ° v Q A
�p V '4 rtl F .l C
y � �i. 0 i � UV — � W � .ti Y � N
\� T � � LL O �\ �
1 � � � NI
� v� Q �� � A � � � � �
� N a
�Q �
Sht
�y � See Sht . #3 See �p� g
� .
� �„ � \ \2 � � � � m
�
� � � � � � h �
^, � o � �� �
� � m
\ � v a
Fa � � � `�� � y
� h = �
M � � 2 �, �' a ' � --- �
c� '�,V � `1 � O
� •ti \ \ .� �0 4
� � a 2 '�
� � a
�Y
� �
h �
� � �
o �� \ _ �
z nj o
�
o ni �
q o
� � F
W O � w e
� e
� O
� � g
� LL
0
0
0
CVLORADO DEPARTMENT OFTRANSPORTATION FIIeNO. $$O . OJO . OZ
TRAFFIC ACCIDENT LOCATIONS
Date �une 30 , 19�4
S.H. NO. �O Disldcl III Per1oe January 1 , 1991 �O January 1 , 1994 snaei 3 oi 4
oes�dPron SH 70 ( I 70) Westbound Ramps and north frontage road at the Intersections H�ith
Chamonix Rd . in Vail �
Milepo�nl 173 . 32 �O
a
m
0
s
w
m �
'�' 1" � ��ti l�
o �` \ \ `t . a I
w �� �� m � i
,� a �. a � � �
y m o ,�
L \ � � 4-
o l� � o
� � � � � ~ �
�
� � �� � n �� � �� a �� h � �
�; � a, a �
� . �
. : : '� a q. � o � �� �.
' � � � � � � \ �
� � \ � � �� �� � �
3 � � 2 � � � � �
(Jn � n � � � �� �� o
�;> � �� �\ � '^` � �`��� —T" �
� \� .,� � � � o
6 � " � � � � � �� � � � � �a
� � -
� ti
�
: � �
� .�` x
4^ �
V O
y E !
N -
S
n V [
� � �
� � � E
h 8 � ?
� �� � �
� :
� a e
� � � � � 2
� �
0
�
�. 6
3 �
O �
r �
C
N O
i
�� � ��
�
y
h
C
C
l
CULORADO DEPARTMENT OFTRANSPORTATION FileNO. gg0 . 070 . 02
TRAFFIC ACCIDENT LOCATIONS
od1e June 30 , 19�4
S.H. NO. 70 oisma III Padod ,7anuary 1 , 1491 �O danuary 1 , 1994 sneei 3 oi 4
oesc�iPron SH 70 ( I 70) lJestbound Ramps and north frontage road at the Intersections o!ith
Chamonix Rd . in Vail �
Milepainl 173 . 32 �O
v
m
0
L
w
a: R
� Z �. J� .'�
o �` � , \i , n
� � t� � � ii
e � 0 -, z
" m � ok
� �
°c a \ ,,, o
Qa `` � � � �` �1,� � . 5�,
h \dZ � \ `'
\ � , � � � \ � � \ry a \ 2 1� � �V'
p��' 6� � `D �
° '� \ \ I o q� � o� o: � \`. .
��l� � \ � ' \ o � \ \
\3� �\ � � �� �� O � .
� � � � O 2 � � � ,
\ �
� \, / �
2 �. �2 \ / � � �� n4� ' .
� p (V) ��� _�_% ";� ���� a 2 �` '
O � � � � � � � � � � � � �� ,
� \ h \ � \ \O
\ �
�� � .
/ `� �
�
. � f _
o �
�i o
�) � t
s �
� � � � U (
� \ � �� 4
!� \ �
`^l� \ E
� � � a
�2 � � � °�,t c
� F
0
z
m
. a
i �
o �
� i
�
.. o
� �-�� � `�� �
Y
t
APPENDIX D
Understanding Rodel
UNDERSTANDING RODEL
by Leif Ourston, P .E.
Leif Ourston & Associates
Santa Barbara, California
August 25 , 1994
ABSTRACT
This report explains Rodel , a computer application that
predicts the traffic performance of modern roundabouts. Rodel
estimates delay, queue length, and capacity as functions of
roundabout geometry and flows . It was used to design Vail' s
proposed modern roundabout interchanges.
PHILOSOPHY BEHIND RODEL
Rodel was developed by Barry Crown of the Staffordshire County Council
in England . It applies research by the United Kingdom' s Transport
Research Laboratory, which licenses its use. Rodel is faster and easier to
use than a widely used program by the British Transport Research
Laboratory, ARCADY. Insofar as the two programs overlap, their output is
identical.
Rodel works like a spreadsheet in which the designer answers what- if
questions by changing one of the input parameters and running the program
again. Because Rodel is fast and easy to use, the designer is likely to
continue altering his design until a nearly optimal design is achieved.
Rodel permits the designer to select the confidence level of his estimates
of traffic performance. A confidence level of 50 percent is implicit in
other traffic performance programs, like AI�CADY or TRANSYT. Rodel's
author r�comm� nd� u, in� a ccnfi�� nc€ I€v21 of 85 to 95 p@rc@nt. Thi�
allow� fo � � na�c ;� racie§ in bcth th� � nput design flow� and the output
capacity estimate. Often a small increase in roundabout entry width or
flare length will greatly increase the probability that the roundabout will
perform well at a high confidence level.
The Long Beach roundabout in California was designed using ARCADY
before Rodel became available. ARCADY's delay predictions are equal to
those of Rodel when Rodel is set to the . 50-percent confidence level .
Delay predictions at the Long �each roundabout (the busiest modern
American roundabout) compare with actual observed delays as follows:
Understanding Rodel 2
AVERAGESTOPPED DELAY
(SECONDS PER VEHICLE)
PREDICTED OBSERVED
A. M. Peak Hour 2. 2 2 . 7
P. M . Peak Fiour 2 .4 3 . 4
The difference between estimated and observed delay was 0 . 5 second per
vehicle in the morning peak hour and 1 . 0 second per vehicle in the
afternoon peak hour. Because of the close correlation, it is believed that
Rodel's estimates of delay may be close to the actual delay that will be
observed at modern roundabouts in Vail.
RESEARCH STUDIES
Capacity estimates of Rodel are based on research reported in Kimber, R. M ,
The Traffic Capacity of Roundabouts, TRRL Laboratory Report 942, 1980.
Regression equations were developed from data taken at 86 roundabouts
on public roads and 35 geometric variations on the TRRL study track. The
capacity of each entry to a roundabout (Qe ) was found to be a function of
one flow variable, circulating flow, and six geometric parameters . The
definitions of symbols are given below.
PARAMETER YS MBOL
Capacity = maximum
entering flow, pcu/h Qe
Circulating flow, pcu/h Q�
Entry width, m e
Approach half-width, m v
Length of flare, m I'
Inscribed circle diameter, m D
Entr�r angle, degrees ¢
Entry radius, m r
Understanding Rodel 3
Capacity is estimated using the following six regression equations.
PARAMETER E ATI N
Sharpness of flare S = 1 . 6 (e-v)/I'
Entry width parameter x2 = v+(e-v)/( 1 +25)
Function of D tp = 1 +0. 5/( 1 +exp((D-60)/ 10))
Adjustmentfactor, cap. curve k = 1 -0.00347(� -30) -0. 978(( 1 /r)-0. 5 )
Slope of capacity curve f� = 0.210tp( 1 +0. 2x2)
Y-intercept, pcu/min F = 303x2
The best predictive equations of capacity were:
Qe = k( F-f�Q�) when f�Q�<=F, and
Qe =0 when f�Q�>F.
Queues and delays are estimated by use of time-dependent queuing theory.
This is reported in Kimber, R . M . and Erica M. Hollis, Traffic Queues and
Delays at Road Junctions, TRRL Laboratory Report 909, 1979 . Queue
lengths are estimated in a series of small consecutive time intervals .
Traffic demand and capacity are assumed to vary from interval to interval.
INTERPRETING RODEL' S PRINTOUTS
Rodel prints out traffic performance given on a main screen , which has the
following twelve fields.
1 . TITLE
In the titie section of the main screen are the date, written the British
way, day: month:year, the name of the roundabout, and the number of the
computer run . This last number corresponds to the number given in
subsequent statistics screens.
Understanding Rodel 4
2 . GEOMETRY
The user inputs seven geometric parameters. Distances are in meters.
E Entry width.
L' Length of flare between V and E.
V Upstream roadway width before flaring begins.
RAD Curb return radius.
PHI Angle between entering traffic and circulating traffic.
DIA Inscribed circle diameter of the roundabout.
GRAD SEP Grade separated, 0 or 1 ? The user inputs a one in this field if
the roundabout is very large, as at huge two-bridge British
grade separated roundabouts that run over or under the
freeway at some interchanges.
3 . TIME
The user inputs the following seven parameters which set the periods over
which traffic performance estimates are made. Times are in minutes.
TIME PERIOD The total period to be modeled.
TIME SLICE Equal pieces of the time period during which capacity and
demand flow remain constant. Capacity and flow may
change from slice to slice but not within each slice.
RESULTS PERIOD The period over which results are computed. If the time
period is 90 minutes and _ the results period is from
minute 15 to minute 75 , then results for the middle 60
minutes are given.
TIME COST The value of driver's time in British pence per minute.
FLOW PERIOD The period over which the user inputs turning flows in
field 5 , explained below. If a 15 and 75 are given, the
user inputs flows for the middle 60 minutes.
FLOW TYPE Flows of field 5 may be entered in passenger car units
( pcu 's) or vehicles . A truck equals one vehicle or two
pcu's.
FLOW PEAK The peak hour being analyzed: a. m. , off peak, or p. m.
4. LEG NAME
The user inputs an abbreviation of the name of each leg of the roundabout.
The leg names are in the order of the direction that traffic flows around
the roundabout.
5 . PCU FACTOR
This is fhe humder a� v�hi�l�s Fi�vin� mor� tt�ar� gour wheels divided by the
totai number or` vei�icies.
Understanding Rodel 5
6 . TURNING FLOWS
For each leg, the user enters the number of vehicles exiting at the first
exit, the second exit, and so on up to the final flow, which is the number
of U-turns exiting at the entry leg.
7. FLOW FACTOR (FLOF)
The input flows are multiplied by this factor. With this factor the user
can perform a sensitivity analysis to see what would happen if flows
were to increase.
8. CONFIDENCE LEVEL (CL)
Queues and delays are predicted at the input confidence levef. If 85 is
entered, we are 85 percent confident that the queues and delays will not
be greater than predicted.
9 . FLOW RATIOS
To allow for peaking of traffic within the peak period , the turning flows
are shaped into a flow profile. If the time period is 90 minutes and flow
times are set at minute numbers 15 and 75 , then Rodel shapes the flow
profile into three rectangular steps: a beginning 15 minute step, a middle
60 minute step, and a final 15 minute step, the flow being constant within
each step. If the user inputs flow ratios of 0 . 75 , 1 . 125 , and 0. 75 , then
Rodel models the flow profile so that flows of the first and third step are
0 . 75 times the average input flows, and flows of the middle step are
1 . 125 times the average input flows.
10. FLOW TIMES
The user inputs the flow times that are used with the flow ratios to
produce the flow profile from the turning flows.
11 . TRAFFIC PERFORMANCE
Rodel outputs the traffic performance of each leg in this field, as follows.
FLOW Entry flow, vehicles per results period.
CAPACITY Capacity, vehicles per results period.
AVE DELAY Average delay, minutes per vehicle over results period.
MAX DELAY Maximum delay, minutes per vehicle over results period.
AVE QUEUE Aveeaye v�hicles in queue over results period.
MAX QUEUE Maximum vehicles in queue over results period.
12 . TOTAL DELAYS AND COSTS
Rodel output§ the total vehicle delay in hours over the results period. It
�ivc� t�ie i.usi vi tiii5 uGidy iii �fiils�i �UUf�s S`LI�II�i�.
APPENDIX E
Roundabout Levels of Service
ROUNDABOUT LEVELS OF SERVICE 1 1 -21 - 95
Leif Ourston & Associates
WEST VAIL NORTH
A.M. PEAK HOUR
100% OF BASE FLOW
WHOLE
LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT
INPUT FROM RODELOR ARCADY
FLOW veh/hr 124 96 0 680 122 424 1 , 446
AVE DELAY min/veh 0 . 06 0 . 05 0 . 00 0 . 04 0 . 04 0 . 04
PUT
AVE DELAY sec/veh 3 . 6 3 . 0 0 . 0 2 . 4 2 . 4 2 . 4
DELAY sec/hr 446 288 0 1 , 632 293 1 , 018 3 , 677
AVE DELAY, sec/veh 2 . 5
LEVEL OF SERVICE A
246% OF BASE FLOW
WHOLE
LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT
INPUT FROM RODELOR ARCADY
FLOW veh /hr 305 236 0 1 , 673 299 1 , 044 3 ,557
AVE DELAY min/veh 0 .49 0 . 1 5 0 . 00 0 . 15 0 . 13 0 . 20
OUTPUT
AVE DELAY sec/veh 29 . 4 9 . 0 9 . 0 7 . 8 12 . 0
DELAY sec/hr 8 , 967 2 , 124 15 , 057 2 , 332 12 , 528 41 , 008
AVE DELAY, sec/veh 11 . 5
LEVEL OF SERVICE B
k#1#X!�##��ltl%*kY*ItA%t%i###RY####1##�#k%%##�ttY#%M##�Yt#t%YYk##tl##kY%ti##%�kt
# t
+ 21 : 11 : 95 150 ' N & S 11 . WEST VAIL NORTN . 81 $
z �
z��zxxxzt�:zzs�tzrx���z�*��xt�t���x�z�x:zxx�x�x�xx��xx�xxxx�:rt�rsrx���*zxxx��*�
r � �
* E (m ) 5 , 18 8 . 53 8 . 53 8 . 56 8 . 53 8 . 53 � TIME PERIOD min 90 �
� L ' (m ) 29 . 79 28 . 53 0 . 00 7 .36 35 . 01 33 . I0 � TIME SLICE min 15 �
� 4 (m) 4 . S1 3 . 96 5 . 79 7 . 32 5 . 79 4 . 27 � RESULTS PERIOD min 15 IS �
� RAD (m ) 19 . 81 24 . 38 24 . 36 30 . 48 18 . 90 24 . 38 � TIME COSi pJmin 7 . 79 �
� PHI (d) 9 . 5 40 . 5 0 . 0 17 . 0 40 . 5 20 . 0 � FLOW PERIOD min 15 15 �
� DIA (m ) 45 . 72 45 , 72 45 . 72 45 . 72 45 . 72 45 . 72 * fLOW TYPE pcu/veh VEH �
* GAAD SEP 0 0 0 0 0 0 � FLOYI PEAK am/oo/pm AM �
z � t
s�ax:xxsxa�xrt�zxr�z�x�zt:�z::��zxtz�xz:t���:axt�art���szr::x��s��x��:xz�x:�x:x�
� LEG NAME ►PCU �FLOWS ( lst exit 2nd etc . . . U)�FLOF�CL� FLOW RATIO �PL�W iIME<
z x z x * x x *
#CHAMONI 58�1 . 02# 4 39 46 0 22 0 �1 . 00�85�0 . 75 1 . 125 0 . 75�15 45 75 �
�N FR RD E8� 1 . 02� 0 38 0 37 11 0 �1 . 00�85�0 . 75 1 . 125 0 . 75� 15 45 75 �
�ON RAMP W8*1 . 02# 0 0 0 0 0 0 *1 . 00�85�0 . 75 1 . 125 0 . 75#IS 45 75 �
*CNRMONI NB*I . U2# 0 406 30 6 167 0 � 1 .00#85�0 . 75 1 . 125 0 , 75�15 45 75 �
�OFfRAMP WB#1 . 02� 0 30 29 0 50 0 $1 . 00�85�0 . 75 1 . 125 0 . 75�15 45 75 �
#N FR ftD WB$1 . 02# 18 22 91 249 0 0 +1 . 00�85$0 , 75 1 . t25 0 . 75�15 45 75 *
t � : s x x x z
*x�ztt�������x��c��x�x�rx�cx��rxz����s�����zx�xzzzz��a��rzz�x��xzxx�x��s�txzxt�s
� x �
� FLOW veh 124 96 0 680 122 424 � TOTAL DELAYS #
# CAPACITY veh lOSI 1331 1375 2207 1519 1758 � *
# AVE DELAY mins 0 . 06 0 . 05 0 . 00 0 . 04 0 . 04 0 . 04 � 1 hrs �
� MA1( DELAY mins 0 . 08 0 . 06 0 . 00 0 . 05 0. 05 0 . 06 � �
� A4E AVEUE veh 0 0 0 0 0 0 $ 5 pounds *
$ MAX 9UEUE veh 0 0 0 1 0 0 $ *
t $ x
zz$xzzt:zxtzr:��:�:sz�xz�x�tzz�ttxx��MZ���x�ax�xrzx*�#��z�x�azx���x:�z��*�xt�ttx
%##%i#tYYtY##Y#tl#1$#1#i#�##1Rk#�#%k�I*%t*#tt#&kYt*YY#t%#R#t#S#k#*t�#*XtYi�X#t%t
� #
* 21 : 11 : 95 150 ' N & S 11 . WEST 4AIl NORTH . 80 �
� t
*x�xxt�r�tz�rxstttz�tr�zx�ts:txraz�zxx��zxx*x�x�xx��zxt�xx��xtx������attx�xz�zx�
z � �
* E (m � 5 . 18 B . 53 8 . 53 8 . 56 8 . i3 9 . 53 � TIME PERIOD min 90 �
� L ' (m ) 29 . 79 28 . 53 0 . 00 1 . 36 35 . 07 33 , 10 � TIME SLICE min 15 �
� V (ml 4 . 51 3 . 96 5 . 79 7 . 32 5 , 79 4 . 27 � RESULTS PERIOD min 15 75 �
� RAD (m ) 19. 81 24 . 38 24 . 38 30 . 48 18 . 90 24 . 38 � iIME COSi pJmin 7 . 79 �
* PHI (d ) 4 . 5 40 . 5 0 , 0 17 . 0 40 , 5 20 . 0 $ FLOW PERIOD min 15 75 �
# DIA (m ) 45 . 72 45 . 72 45 . 72 45 . 72 45 . 72 45 . 72 � FLOW TYPE pcu(veh 4EH �
* 6RAD SEP D 0 0 0 0 0 � FLOW PEAK am/op/pm AM �
t � �
�x�rxx��x�x�x��z���x��xxz*sx�z�tztxz�#rs#rx#tt��x�xxx���xaxtx�rx�as����x�xx�*xxx
# LEG NAME $PCU #FLOWS ( lst exit 2nd etc . . . U )�fLOF$CL$ FLOW RATIO �FLOW TIME<
� s t x x � � �
�CHAMONI SB#1 . 02* 4 39 46 0 22 0 �2 . 46�85�0 . 75 1 . 125 0 . 75$15 45 75 �
�N FR RD EB�1 . 02� 0 38 0 37 11 0 �2 . d6#85+O . 15 1 . 125 0 . 75�15 45 75 �
*ON RAMP W8�1 . 02� 6 0 0 0 0 0 *2 . 46�85�0 . 75 1 . 125 0 . 75*15 AS 75 *
�CHAMONI NB�1 . 02� 0 406 30 b 167 Q #2 . 4b�85�0 . 75 1 . 125 0 . 75�15 45 75 +
�OFFRAMP WB* 1 . 02� 0 30 29 0 50 0 �2 . 46�85#O . iS 1 . 125 O . 15�15 45 IS �
�N FR RD W6�1 . 02� 18 22 91 249 0 0 �2 . &6$85#0 . 75 1 . 125 0 . 75*15 45 75 �
z # t � � � x t
#���xxstxx���xx*z#�x�a���x��zx���x��z�x�xcxzx�x�txx���z�x�r:�x�zz�aa���as:��:*x�
� � a
* FLOW veh 305 236 0 16I3 299 1044 � TOTAL DELAYS �
� CAPACITY veh 491 675 914 2124 801 1406 � �
, � pVE DELAY mins D . 49 0 . 15 0 . 00 0 . 15 0 . 13 0 . 20 $ 11 hrs �
# MAX DELAY mins 0 . 46 0 . 23 0 . 00 0 . 2b 0 . 21 0 . 39 � �
$ AVE AUEUE veh 3 1 0 4 1 4 � 53 paunds �
� MAX AUEUE veh 5 I 0 7 1 5 $ �
x x �
a�#tzstczxts:�:tsx�ts:�xzx�zt���z�a�rx��z*x���xx�z��zx#zzxz�zz�*x���x�x�$z�z��z:
ROUNDABOUT LEVELS OF SERVICE 1 i -zi -ss
Leif Ourston & Associates
WEST VAIL NORTH •
P.M. PEAK HOUR
100% OF BASE FLOWS
WHOLE
LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT
INPUT FROM RODELOR ARCADY
�LOW veh/hr 164 95 0 1 , 259 52 796 2 , 366
AVE DELAY min/veh 0 . 09 0 . 06 0 . 00 0 . 06 0 . 05 0 . 07
PUT
AVE DELAY sec/veh 5 . 4 3 . 6 0 . 0 3 . 6 3 . 0 4 . 2
DELAY sec/hr 886 342 0 4 , 532 156- 3 ,343 9 , 259
AVE DELAY, sec/veh 3 . 9
LEVELOFSERVICE A
156% OF BASE FLOWS
WHOLE
LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT
INPUT FROM RODEL OR ARCADY
FLOW veh/hr 256 148 0 1 , 964 82 1 , 242 3 , 692
AVE DELAY min/veh 0 . 45 0 . 13 0 . 00 0 . 47 0 . 11 0 . 30
OUTPUT
AVE DELAY sec/veh 27 . 0 7 . 8 0 . 0 28 . 2 6 . 6 18 . 0
DELAY sec/hr 6 , 912 1 , 154 0 55 , 385 541 22 , 356 86 , 348
AVE DELAY, sec/veh 23 .4
LEVELOFSERVICE C
kli#�##kY##t#�t%tikXYk*%Y&#Y��ik#%3$fYY#Y%tk#tY#t%#%#S9��Sitt#�k##%#%A%%%YYt�#iY
Y #
� 21 : 11 : 95 150 ' N & S 11 . WEST VAIL NORTH . 83 *
z t
���xxtz:xt�xxtxr �rxs:��:zs$:xax�xsaz�r*s�x��z��xz�xx��**x�x�t���xx�x�xx��tz���zr
z x �
� E !ml 5 . 18 8 . 53 8 . 53 8 . 56 8 . 53 8 . 53 + TIME PERIOD min 90 �
� L � (m ) 29 . 14 28 . 53 0 . 00 7 . 36 35 . 07 33 . 70 � TIME SLICE min 15 #
� 4 (m ) 4 . 57 3 . 9b 5 . 74 7 . 32 5 . 79 4 , 27 � ftESULTS PERIOD min 15 75 �
# RAD (m ) 19 . 81 24 . 38 24 . 38 30 . 48 18 . 90 24 . 38 � TIME COST p/min 7 . 79 �
� PHI (d) 9. 5 40 . 5 0 . 0 17 . 0 40 . 5 20 . 0 * FLOW PERIOD min 15 75 *
* DIA (ml 45 . 12 45 . 12 45 . 72 45 . 72 45 . 72 45 . 72 � FLOW iYPE pcu/veh 4EN *
* GAAD SEP 0 0 0 0 D 6 � FLOW PEAR am/op(pm PM +
� x �
�s��r���r:x�z�:ar�ze:�s�z*a+�zsxrxrxx�:�z����xx�t�c��xz��x�xxx�z�*z:xxxx:�xsxzxt
� LEG NAME �PCU �FLOWS � lst euit 2nd etc. . . U )�FLOF�CL� FLOW RATIO �FLOW TIME*
� x x s t x � �
�CHAMONI 56�1 , 02� 2 62 52 0 31 0 $1 . 00�85�0 . 75 1 . 125 0 . 75$15 45 75 �
*N FR RD EB�1 . 02# 0 45 0 26 12 0 �1 . 00�B5�O . i5 1 . 125 0 . 75�15 45 75 �
*ON RAMP W8�1 . 02# 0 0 0 0 0 0 *1 . 00�85�0 . 75 1 . 125 0 . 75�15 45 75 �
�CHAMONI NB�1 . 02� 0 762 12 36 257 0 � 1 . 00�85�0 . 75 1 . 125 0 . 15� 15 45 75 �
�OfFRAMP WB*1 . 02� 0 13 6 2 26 0 $1 . 00�85�0 . 75 1 . 125 0 . 75�15 45 75 �
�N FR RD WB�1 . Q2* 22 15 357 319 0 0 $1 . 00#85�0 . 75 1 . 125 0 . 75�15 45 75 $
* x x t � $ : �
*r*x��zx�ax�ts��zt�zz�xzrs��x:�t*xxzz�zx���z*x*xxx��xxxx��zrxz���xxx��zxx�xx����
� � �
� FLOVI veh L64 95 0 1259 52 796 � TOTAL DELAYS �
� CAPACITY veh 802 1032 1333 2206 1143 1663 � �
� A4E DELAY mins 0. 09 0 . 06 0. 00 0 . 06 0 . 05 0 . 07 � 3 hrs �
* MAX DELAY mins 0 . 13 0 . 09 0 . 00 0 . 09 0 . 07 0 . 04 # *
$ AUE AUEUE vah 0 0 0 1 0 1 � 12 pounds �
+ MAX 9UEUE veh 0 0 0 2 0 1 � +
x � �
�ax�x�xxr����t��x:tx�x�#xzxxzs��x��x����z�x#�t�:�zzxzzt�zrxxxtzt����z�zstzra�:�*
#Ylk#i#kt#Ii%##%Yt#Y####d#*t%YtY#�S#t#%YkXY�#SY1##kt&�titt#k##l%#%�t%it#�#!t�%%%
# �
* 21 : 11 ; 95 150' N & 5 11 . WEST 4AIL NORTH . 82 �
t �
z�xxaxx�ttx�ts�z�����t*�xx�r���txs�*t:�xx�x���xxxtx��xx�#$t�x�x*xxzz���s��*zxx�z
# s *
� E (m ) 5 . 18 8 . 53 8 . 53 8 . 56 8 . 53 8 . 53 � TIME PERIOD min 90 �
# L ' (m ) 29 . I4 28 . 53 0 . 00 1 . 36 35 . 07 33 . 70 � iIIdE SLICE min IS �
# V (m ) 4 . 57 3 . 96 5 . 74 7 . 32 5 . 79 4 . 27 � flESULTS PERIOD min 15 IS M
* RAD (m ) 19 . 61 24 . 38 24 . 38 30 . 48 18 . 90 24 . 38 � TIME COST p/min 7 . 79 �
� PNI (d ) 9 . 5 40 . 5 0 . 0 17 . 0 40 . 5 20 . 0 � fIOW PERIOD min 15 75 �
� DIA (m ) 45 . 72 45 . 72 45 . 72 45 . 72 45J2 45 . 72 � fLOW TYAE pcu/veh VEH �
� GRAD SEP 0 0 D 0 0 0 * FLOW PEAK amfop/pm PM �
� t z
:rxxz�tsxra*�zxx:*:��sx:�*c:z��*�����xxx�rx*�x��xt���axt�x:xx��rt�r�x�*���x���x:
$ LEG NAME �PCU �FLOWS ( lst exit 2nd etc . . . U )�FLOP#CL$ FLOW RATIO �FLOW TIME�
x � x � x * x z
�CHAMONI S8�1 . 02� 2 62 52 0 31 0 �1 . 56�65�0 . 75 1 . 125 0 . 75�15 45 15 �
*N FR RD EB*1 . 02� 0 45 0 28 12 0 �1 . 56�85+0 . 75 1 . 125 0 . 75�15 45 75 �
#DN RAMP W8�1 . 02� 0 0 0 0 0 0 $1 . 56$85#0 . 75 1 . 125 0 . 75$15 45 75 �
�CHAMONI NB*1 . 02� 0 762 72 36 257 0 �1 . 56�65$0 . 75 L l25 0 . 75� 15 45 75 $
*OFFRANP WB�I . 02� 0 13 6 2 26 0 �1 . 56#65�0 . 75 1 , 125 0 . 75#IS 45 75 �
�N FR RD WB*I . D2� 22 IS 351 319 0 0 �1 . 56�85�0 . 75 1 . 125 0 , 75�15 45 75 �
x � x t x z � :
aa:zs��x�xa:r�xz�xrta�arxrxz���:�t�txxxxt�z:xr���ax���axxx�x��zx:�:x����x��xxxxt
� � z
* FLOW ueh 256 148 0 1964 82 1242 � TOTAL DELAYS $
� CAPACITY veh 443 514 1133 2i74 658 1506 � �
� AVE DELAY mins 0 . 45 O . t3 0 . 00 0 . -07 0 . 11 0 . 30 � 24 hrs �
# MA% DELAY mins 0 . 88 0 . 21 0. 00 1 . 02 O . lb 0 . 58 � �
# AVE AUEUE veh 2 0 0 16 0 6 $ 113 pounds $
� MAX QUEUE veh 4 0 0 32 0 11 $ �
# x x
t:rt#�t�zxt�xxx*z��tz��#szxxtxxz:txtx��xzxzzxt��tx��xax�r*�*z:�xx�xa�zrs��x*�s�z
ROUNDABOUT LEVELS OF SERVICE 11 -21 -95
Leif Ourston & Associates
WEST VAIL SOUTH
A.M. PEAK HOUR
100% OF BASE FLOWS
WHOLE
LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT
INPUT FROM RODELOR ARCADY
FLOW veh/hr 428 648 171 46 342 0 1 , 635
AVE DELAY min/veh 0 . 07 0 . 05 0 . 07 0 . 09 0 . 04 0 . 00
OUTPUT
AVE DELAY sec/veh 4 . 2 3 . 0 4 . 2 5 . 4 2 . 4 0 . 0
DELAY sec/hr 1 , 798 1 , 944 718 248 821 0 5 , 529
AVE DELAY, sec/veh 3 . 4
LEVELOFSERVICE A
167% OF BASE FLOWS
WHOLE
LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT
INPUT FROM RODEL OR ARCADY
FLOW veh/hr 714 1 , 082 285 76 571 0 2 , 728
AVE DELAY min/veh 0 . 11 0 . 11 0 . 29 0 . 50 0 . 05 0 . 00
OUTPIJf
AVE DELAY sec/veh 6 . 6 6 . 6 17 . 4 30 . 0 3 . 0
DELAY sec/hr 4 , 712 7 , 141 4 , 959 2 , 280 1 , 713 20 , 806
AVE DELAY, secNeh 7 . 6
LEVEL OF SERVICE B
k#��YtY#�YYk#3##Y�#####%k%###3RY#Y%#ifY�tY#t#Y��%1#k##&#tY##tY%Yt#tYI%#1%t###�##
# %
# 21 : 11 : 95 150 ' N & S 12 . WEST VAIL SOUTH . 87 �
t �
x��xztxtx�xxxt�*xa�tax�tzsr+tt�zzxx:z*���:xz���xz��t�ta�ttz����������r*�zzttxrtx
x x �
* E fm ) 5 . 55 4 , 14 7 . 06 4 . 88 9 . 75 9 . 14 � TIME PERIOD min 90 �
* L ' (m ) 5 . 00 33 . 58 14 . 05 0 . 00 61 . 10 30 . 48 � TIME SLICE min 15 �
� V (m ) 3 . 66 6 . 40 3 . 66 4 . 68 4 . 27 6 . 10 � RESULTS PERIOD min 15 15 �
� RAD (m ) 19 . 61 13 . 72 d2 . 37 10 . 18 30 . 48 13 . 72 � TIME COST plmin 7 . 79 �
$ PHI (d) 13 . 5 36 . 5 13 . 0 5 . 5 40 . 5 0 . 0 � FLOW PEftIOD min IS 75 �
� DIA (m ) 45 . 72 45 . 12 45 . 72 45 . 72 48 . 16 45 . 72 # FLOW TYPE pcu(veh VEH �
* GRAD SEP 0 0 0 0 0 0 $ FLOW PEAK am/op/pm AM �
t t �
�xt*t�*�z�xz�x��z*x�xx��zxt�ztx�st�#�rx�xr��xxxs��x�s�xz�:xrxx�z�zt��xs#zztt*#t�
� LEG NAME �PCU *FLOWS ( lst exit 2nd etc . . . U )�FLOF�CL$ FLOW RATIO $fLOW TIME*
x x s � � s � z
�CHAMONI SB*1 . 02$ 0 31 4 236 112 0 #1 . 00�85#0 . 75 1 . 125 Q . 75�15 45 75 �
#OFFRAMP E8�1 . 02� 0 7 335 0 236 0 x1 . 00$85�0 . 75 1 . 125 0 . 75�15 45 75 *
*S FR RD E8*1 . 02� 0 74 10 69 0 0 �1 . 00�85*0 . 75 1 . 125 O . 75M15 45 75 �
�CHAMONI NB� 1 . 02# 24 4 13 0 0 0 �1 .00�85�0 . 75 1 . 125 0 . 75# IS 45 75 �
�5 FR RD WB$1 . 02� 0 289 0 16 I 0 $1 . 00*85$0 . 75 1 . 125 0 . 75�15 45 75 �
�ON RAMP EB*1 . 02� 0 0 0 D 0 � �1 . 00�85�0 . 75 1 . 125 0 . 75*15 45 75 �
x t x � x x x �
zt��x�x����txx��c�x�x��xx��xxzxzxx�s�:x�#��:s�s+�as��txxz�:x�x�zzxxx���xx�rz*x��
� x z
* FLOW veh 928 6d8 171 Ab 342 0 � TOTAL DELAYS #
� CAPACITY veh 1242 1846 966 689 1925 1657 � *
� AVE DELAY mins 0 . 07 0 . 05 0 . 07 0 . 09 O . D4 0 . 00 $ 2 hrs *
# MAX DELAY mins 0 . 09 0 . 01 O . 10 0 . 13 O . QS 9 . 90 $ #
* AVE AUEUE veh 1 1 0 0 D 0 $ 7 paunds �
# MAX AUEUE veh 1 1 0 0 0 0 � �
x r a
�#*xzs�t:s�:z:r�#:�rtzx�#txz�x�r�x�::�t�zz�z�xs�tttxrt���r��zs�tc#:s#ttzx�##zt
k�tk###kiiktxl#X#R#R###k%�ktt�#tkY�Yk�kk#Y�kYYXt��tk#�i#�Y#klY�kk#Y#k�kk####kl��
* �
� 21 : 11 : 95 I50 ' N & S 12 . WEST VAIL SOUTN . 86 �
� �
zxx�*:xzx�xxxt�xx�tz���xtx��x�x���r�s�x�s��s��t�ts�txt�tz�t��*xz�rz���t�xx*tz�:�
x * *
# E (m ) 5 . 55 9 . 14 7 . 08 4 . 8A 4 . 75 9 . 14 � TIME PERIOD min 40 �
# L ' (m ) 5 . 00 33 . 58 14 . 05 0 . 00 B7 . f0 30 . 48 � TIME SLICE min 15 �
� V (m ) 3 . 66 6 . 40 3 . 66 4 . 88 4 . 2] 6 . 10 � RESULTS PERIOD min 15 75 �
� RAD (m) 19. 61 13 . 72 42 . 37 10 . 18 30 . 48 13 . 72 � TIME COST p/min 7 . 19 �
� PNI (d ) 13 . 5 36 . 5 13 . 0 5 . 5 40 . 5 0 . 0 > FLOW PERIOD min 15 75 �
� DIA (mJ 45 . 12 45 . I2 45 . i2 45 . 72 48 . 16 45 . 72 � FLOW TYPE pcu�veh VEH �
� GRAD SEP 0 0 0 0 0 0 � fLOW PEAK amJoo/pm PM �
t x *
:x�*xx:rzxrx�x��rxx�xxx�z*����x*a�xzx���xxx��x�txz�zrz����x�:��rrz:s��xxx:xt��t�
$ LEG NAME �PCU �FLOWS ( lst exit 2nd etc . . .U )#fLOF�CI� FLOW kAiIO �FLOW TIMf*
� � � 8 � x x z
�CHAMONI SB#1 . 02* 0 31 4 236 112 0 *1 . 67*85�0 . 75 1 . 125 0 . 75M15 45 75 �
�OFFRAMP EB$1 . 02# 0 7 335 0 236 0 �1 . 67�BS�O . IS 1 . 125 O . I5�15 45 75 �
$S FR RD EB#1 . 02# 0 74 10 69 0 0 �1 . 67�65*0 . 75 1 . 125 0 . 75+15 45 75 �
*CHAMONI N6�1 . 02* 24 4 13 0 0 0 �1 . 67�85*0 . 75 1 . 125 0 . 75�15 45 75 �
�5 FR RD WB#1 . 02# 0 289 0 16 l 0 $1 . 67$85#0 . 75 1 . 125 0 . 75$15 45 75 �
�UN RAMP E8�1 . 02� 0 0 0 0 0 0 �1 . 67�85�0 . 15 1 . 125 0 . 75$IS 45 IS �
t � z � z s x s
rxcx���z�x:xtxtzxx�zxx�:x�:�rs�xxrt�����xar�t���z�szx���x:zz:����z�x���zxxx�t�rx
� x �
� FLOW veh 114 1082 285 76 571 0 + TOTAL DELAYS �
� CAPACITY veh 1235 1645 549 260 1693 1504 � �
� AVE DELAY mins 0 , 11 0 . 11 D . 29 0 . 50 0 . 05 0 .00 $ 6 hrs �
# MAX DELAY mins 0 . 16 4 . 18 6. 52 0 . 95 0 . 07 0 . 00 * �
* AVE AIIEUE veh 1 2 1 1 1 0 $ 28 pounds #
� MAM AUEUE veh 2 3 2 1 1 0 + �
a � �
iY#�t##1��tY#t##k#%#Yk##tk%##Y%##3dl#l�#%##!#%I#k#��ikl�Y�#1#t&t%t1t#k%t*%f1t*#�
ROUNDABOUT LEVELS OF SERVICE 11 -21 -95
Leif Ourston & Associates
WEST VAIL SOUTH •
P.M. PEAK HOUR
100% OF BASE FLOWS
WHOLE
LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT
INPUT FROM RODELOR ARCADY
FLOW veh/hr 494 573 130 56 868 0 2 , 121
AVE DELAY min/veh 0 . 08 0 . 05 0 . 07 0 . 09 0 . 06 0 . 00
OUTPIJf
AVE DELAY sec/veh 4 . 8 3 . 0 4 . 2 5 . 4 3 . 6 0 . 0
DELAY sec/hr 2 ,371 1 , 719 546 302 3 , 125 0 8 , 063
AVE DELAY, sec/veh 3 . 8
LEVELOFSERVICE A
156% OF BASE FLOWS
WHOLE
LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT
INPUT FROM RODEL OR ARCADY
FLOW veh/hr 770 894 202 87 1 , 354 0 3 , 307
AVE DELAY min/veh 0 . 1 4 0 . 09 0 . 15 0 . 22 0 . 49 0 . 00
PUT
AVE DELAY sec/veh 8 . 4 5 . 4 9 . 0 13 . 2 29 . 4
DELAY sec/hr 6 , 468 4 , 828 1 , 818 1 , 148 39 , 808 54 , 07 �
AVE � ELAY, secNeh 16 . 4
LEVEL OF SERVICE C
%k#��X#%#XXttt#�X&t#I1%tt##k#tR#k%#klk�E%#%##Y&&#%R3%i%%Xtttk##Y�#�%kY#ttk�k4#%#
% Y
� 21 : 11 : 95 150 ' N & S 12 . WEST VAIL SOUTH . 89 #
t s
��:��:a�z��t*�xt�x��x#x�xrz�t����:x��x�zxx�s*rxz��xxr�x�x�t�t�tzzxx�x��x���r�z�z
x � �
� E (m ) 5 . 55 9 . 14 7 . 06 4 . 88 9 . 15 9 . 14 � TIME PERIOD min 90 �
$ L ' (m ) 5 . 00 33 , 56 14 . 05 0 . 00 87 . 10 30 . 48 � iIME SLICE min 15 �
$ V ( m) 3 . 66 b . 40 3 . 66 4 . 88 4 . 2I b . 10 + RESULTS PERIOD min 15 75 �
# RAD (m) 19 . 81 13 . 72 42 . 31 10 . 18 30 . 48 13 . 72 � TIME COST pJmin i . 79 *
� PHI (d ) 13 . 5 3b . 5 13 . 0 5 . 5 40 . 5 0 . 0 � FLOW PERIOD min 15 75 $
� DIA (m) 45 . 72 45 , 72 45 . 72 45 . 72 48 , 16 45 . 72 � FLOW TYPE pcu(veh VEN *
� GRAO SEP 0 0 0 0 0 0 * FLOW PEAK am�op/pm PM �
z x x
zx�x�z:*zx:x:x:**�x����sz�:��z�zxx���xx����zxx�xx:xzr*:txax����zzx�x��xx��zx��x:
� LEG NAME �PCU �FLOWS ( ist exit 2nd etc . . . UI�FLOF�CL� FLOW RATIO $FLOW TIME�
� t � r x � � :
�CHAMONI SB� 1 . 02� 0 44 8 248 142 0 �I . 00�85�0 . 75 1 . 125 O . I5�15 45 75 �
�OFFRAMP E6�1 . 02� 0 11 193 4 305 0 �1 . 00*65�0 . 75 L . 125 0 . 75�15 45 75 $
�S FR RD E8�1 . 02� 2 27 4 83 0 0 *1 . 00�85�0 . 75 1 . 125 0 . 75�15 45 75 $
�CHAMONI N8�1 . 02� 17 5 28 0 0 0 k1 . 00�85�0 . 15 1 . 125 0 . 75�15 45 75 �
$S FR RD W6�1 . 02� 0 711 0 48 18 0 *1 . 00*85�0 . 75 1 . 125 0 . 75�15 45 75 *
�ON ftANP E8�1 . 02* 0 0 0 0 0 D +1 . 00�85�0 . 75 1 . 125 0 . 75�15 45 75 #
x � � : t x � �
�r�*at�z�xtax���*tz*�at:*x����t�ta��zxx�xrrztz��zx��txt�zr�xxx�zxxx�:a�x����r�$*
x z �
# FLOW veh 494 573 130 56 868 0 � TOiAI DELAYS *
� CAPACITY veh 1213 1765 9b9 729 1828 1319 # �
# AVE DELNY mins 0 . 08 0 . 05 0 . 07 0 . 09 0 . 06 0 . 00 # 2 hrs �
# MAX DELAY mins 0 . 11 0 . 07 0 . 10 0 . 12 0 . 09 0 . 00 $ �
� AVE AUEUE veh 1 0 0 0 1 0 � 11 pounds #
* MAX AUEUE veh 1 1 0 0 1 0 � �
a t �
Y###t1Y####Y###i#M#t�.t%t#Y##%##dk###�##1%Y*##�#tY%t%%%%tY%#�Rt##Ylit1Y%�kY#Y#ttt
t#SkX#&Y%k#tYlttkt��tt%Y�tY##i$$kSRt$%�t%klt#%%k[t#%tt#%#�t$$##t###$I$##YR�%ktt%
Y #
� 21 : 11 : 45 I50 ' N & S 12 . WEST VAIL SOUTH . 88 �
x x
��x�xt�����trxxtzt:x�sxa:a�t�x����t*xx�xtxxxxx�x�z�t:x���:�xx�z���x�xz��*����x�t
x x x
� E (ml 5 . 55 4 . 14 7 . 08 4 . 88 9 . 75 9 , 14 * iIME PERIOD min 96 �
� L ' (m ) 5 . 00 33 . 58 14 . 05 0 . 00 87 . 10 30 . 48 � TIME SLICE min 15 �
� V (m ) 3 . 66 6 . 4Q 3 . 66 4 . 08 d . 27 6 , 10 * RESULTS PERIOD min 15 75 �
+ RAD ( m) 19 . 81 13 . 72 42 . 37 10 . 18 30 . 48 13 . 72 # TIME COST p(min 7 . 79 �
� PHI (d ) 13 . 5 36 . 5 13 . 0 5 . 5 40 , 5 0 . 0 � FLOW PERIOD min 15 75 �
� DIA (m) 45 . 12 45 . 72 45 . 72 45 . 72 48 . 16 4i . 12 � FLOW TYPE pcu/veh VEH �
� GRAD SEP 0 0 0 6 0 0 � FLOW PEAK am/op�pm PM �
� x �
#xxx�a�xzx��:*xx:��xx��x:x�zxz�s:��t������xz�***z������txxxxx�sxrs�xx�t�:��x::�r
� LEG NAME *PCU �FLOWS ( lst exit 2nd etc . . . U )�FLOF�CL$ FLOW RATIO $FLOW TIME�
� � � � x � t �
�CHAMONI SB�1 . 02$ 0 4-0 8 248 142 0 �1 . 56#85$0 . 75 1 . 125 0 . 75$15 45 75 *
�OFFRAMP EB*1 . 02* 0 ll 193 4 305 0 *1 , 56*85�0 , 75 1 . 125 0 . 75� 15 45 75 �
*S FR RD fB�1 . 02$ 2 27 4 83 0 0 *1 . 56�85�0 . 75 t . 125 0 . 75$15 45 75 �
�CHAMONI N6�1 . 02� 17 5 28 0 0 0 �1 . 56�85�0 . 75 1 . 125 0 . 75�15 45 75 $
�S FR RD W6�1 . 02� 0 711 0 48 18 0 �1 . 56�85�0 . 75 1 . 125 0 . 75�15 45 i5 �
*ON RAMP E8�1 . 02� 0 0 0 0 0 0 %1 . 56�85*0 . 75 1 . 125 0 . 75$IS 45 15 �
� � � t t z � x
����zxxxzxr��*�tz�xz�x�z��xxr��s:��z$�z�xx��:z�xzx��xx����x��xsr�����������z�zrz
� s *
* FLON veh 770 894 202 87 1354 0 # TOTAL DE�AYS $
� CRPACITY veh 1192 1551 622 394 1580 818 * �
� AUE DELAY mins 0 . 14 0 . 04 0 . 15 0 . 22 0 . 49 0 . 00 � 15 hrs $
# MA7( DELAY mins 0 . 21 0 . 14 0 . 24 0 . 35 1 . 04 0 , 00 # �
� AVE AUEUE veh 2 1 1 0 11 0 � 70 pounds #
# MAX AUEUE veh 2 2 1 0 22 0 � �
x x s
��sxr#�xrt:xt����$xt����z�z*#�xt��t�a:xx$�zxzx�tzt���z:t$�::xx�txz:t�rx�:�z�z��r