Loading...
HomeMy WebLinkAboutI-70 Chamonix Road Feasibility Study 1996 Feasibility Study I-70/CHAMONIX ROAD November, 1996 Prepared for Gregory A. Hall, P.E. - Town Engineer Town of Vail Engineering Department 1309 Vail Valley Drive Vail, Colorado 81657 Prepared by Leif Ourston, P. E. Ourston & Doctors 5290 Overpass Road, Suite 212 Santa Barbara, California 93111 CONTENTS SECTION DESCRIPTION FEASIBILITY STUDY I-70/Chamonix Road The main text of the study. APPENDIX A Proposed Interchange Layouts Drawings of the interchange. APPENDIX B Modern Roundaboutor Nonconforming Traffic Circle? A one-page comparison of the two types of circularintersection. APPENDIX C West Vail Accident History Diagrams of collisions at West Vail. APPENDIX D Understanding Rodel An explanation of the computer application used to design Vail 's roundabouts. APPENDIX E Roundabout Levels of Service Computations of levels of service, together with Rodel printouts. Feasibility Study I-70/CHAMONIX ROAD SUMMARY Congestion at the interchange of Interstate Highway 70 and Chamonix Road will be nearly eliminated when a pair of modern roundabouts on both sides of the freeway are built next year. The Town will not need to widen the undercrossing. The interchange will operate at Level of Service A with present base flows. It will have ample capacity to operate at Levels of Service B and C even if present flows increase by more than fifty percent. Crash frequency and severity are expected to decrease following construction of the project. ROUNDABOUTS AT WEST VAIL The Town of Vail built North America's first modern roundabout interchange at Main Vail (I-70/Vail Road) in 1995, thus nearly eliminating traffic congestion at what had been the Vai1 Valley's most heavily impacted interchange. Following a series of ineetings with residents over the summer of 1996, the Town decided to convert West Yail {I-7(��C�hamonix Road) into a modern roundabout interchange. Construction�be�completed in 1997. The design and analysis contained in this report were made available to the Town prior to completion of this report, and the Town's decision to proceed with the project was based partly on this information. West Vail is now the most heavily impacted interchange in the Vail Valley. With flows approaching capacity much of the time, the interchange is�sn�ject to unacceptable delay �hen �nP��.��.��.nt�-ea�se s�e�s� traffic demand At the closely spaced ramp and frontage road intersections, which are regulated by , STOP signs, drivers are sometimes confused as to who should stop and who has the right of way. I FEASIBILITY STUDY I-70/CHAMONIX ROAD PROJECT DESCRIPTION At West Vail two 150-foot-diameter 6-leg roundabouts will be built (see Appendix A). All entries to both roundabouts will have two lanes, with two exceptions: on both roundabouts the southbound Chamonix Road entries will have only one lane. The circulatory roadways will be 30 feet wide through both roundabouts, with one exception. In front of the 34-foot-wide westbound South Frontage Road entry to the south roundabout, the circulatory roadway will be 34 feet wide. Both roundabouts are designed to accommodate a 65-foot-long tractor and semitrailer. Visibility limits to vegetation and signs are given in the drawing of Appendix A titled, "Clear View Areas." Within the central islands the outer 30.5-foot-wide margins will be kept clear of tall objects to provide adequate forward visibility, but a central area 29 feet in diameter may be used for landscaping or public art of any desired height. Splitter islands will be notched to allow pedestrian refuges. Following modern guidelines, crosswalks will not be marked. Walkways will be designed where necessary as part of the landscape plan to align with the pedestrian refuges in the splitter islands. A six-foot-wide walk will follow the west side of Chamonix Road. Along the east side of Chamonix .Road a 10-foot-wide bike road will be provided for cyclists and pedestrians. Behind the row of bridge columns the bike road will widen to 12 feet. It will link a 10-foot-wide bike road to be built along the north side of North Frontage Road with a pair of bike lanes striped along the south side of South Frontage Road. Where the bike lanes of South Frontage Road follow alongside the south roundabout, they will be separated from the roundabout by a six�inch curb. Bicyclists and pedestrians will cross the south leg of Chamonix Road south of the splitter island. Since there is barely room now for both the ramps and the frontage road between the freeway and Gore Creek, space for a new 150-foot-diameter - - - � -� — � - - � � � � , , ., , • � • � r�unuavuut uiusi oe aeveiopea �y �uiiaing iarge siruciures. Space ivr tne ramps 2 FEASIBILITY STUDY I -70/CHAMONIX ROAD to cut into the side slopes of the freeway will be provided by use of retaining walls. A wider bridge will permit the south side of the roundabout to span Gore Creek. TRAFFIC PERFORMANCE The performance of the roundabouts was estimated using the computer application RODEL. (See Appendix D for an explanation of RODEL.) RODEL estimates average delay in minutes per vehicle. By use of a spreadsheet, RODEL estimates were converted to average delay in seconds per vehicle and to the corresponding levels of service (see Appendix E). The Highway Capacity Manual relates levels of service to average delay for the whole intersection according to the following table . LEVEL OF SERVICE FROM AVERAGE STOPPED DELAY AT INTERSECTION i - ` !� ;` � Taken from Table 9-1 of the i, j ` � ,�� � ` Highway Capacity Manual � d-' '' ��_` � r� �� a�� STOPPED LEVEL OF DELAY SERVICE ISECNEH� d<=5 A 5<d<=i.6 B 1 S<d<,25 G 25<d<=40 D 40<d<=60 E 60<d F Both roundabouts will operate at Level of Service A with present traffic. The roundabouts were designed to allow a traffic increase of at least fifty percent because it is thought that some longevity will be necessary to justify the substantial investment required for this project. The improved capacity will 3 ' FEASIBILITY STUDY I-70/CHAMONIX ROAD accommodate traffic surges of an unknown amount, perhaps fifty percent or more, which presently occur at various times each year. The design objective of allowing a fifty percent increase in existing flows will be exceeded. The following percent increases in existing traffic will be possible without exceeding average stopped delay of 30 seconds per vehicle on any leg (a measure of practical capacity), estimated at the 85th percentile. ROUNDABOUT A.M. P.M. West Vail North 146% 56% West Vail South 67% 56% With the percent increases in traffic given above, both roundabouts will operate at Level of Service B in the morning peak hour and at Level of Service C in the evening peak hour. Levels of service are presented in the table below. AVERAGE DELAY LEVEL OF SERVICE (Seconds Per Vehicle) North R . South R. North R . South R. TRAFFIC DEMAND A_M . P . M, A_M . P_M . A_M . P_M . A_M . P_M . 100% of Base Flows� 2.5 3 .9 3 .4 3.8 A A A A Increased Base Flows"` 11 .5 23 .4 7.6 16.4 B C B C * "Base Flows" in this report refers to design flows developed by the Town of Vail in the summer of 1995. ** "Increased Base Flows" refers to 100% of base flows plus the percent increases of the first table given above. 4 FEASIBILITY STUDY I-70/CHAMONIX ROAD SAFETY Roger D. Gilpin, of the Colorado Department of Transportation, prepared a report of all crashes at both the Main Vail and West Vail interchanges with Interstate Highway 70 over the three-year period of 1991-93. Appendix C contains the portion of his report that pertains to West Vail. Fifty-six crashes were reported at the west Vail interchange over the three-year period. Of these crashes, 40 were intersectional. The remaining 16 crashes would not be affected by the modern roundabouts proposed to replace the existing ramp and frontage road intersections. At the two Chamonix Road intersections which will be replaced by the north roundabout 17 crashes were reported in the study period. At the two intersections which will be replaced by the south roundabout 23 crashes were reported during the study period. Seventy percent of the 40 intersectional crashes (28 crashes) were rear-end crashes, many of them involving vehicles sliding on ice into stopped vehicles. The roundabouts will not do anything to prevent icy conditions, but they will greatly reduce the number of vehicles stopped in queue. The potential for crashes between vehicles which are stopped and vehicles behind them which can not stop will be reduced as the roundabouts reduce queuing. During the study period there was one pedestrian crash. There were no motorcycle crashes and no bicycle crashes. Only three of the 40 crashes involved injuries. Thirty-seven were property-damage-only crashes. It is estimated that the safety performance of modern roundabout improvements to West Vail will be similar to the safety performance of Main Vail's modern roundabouts. During the first twelve months of modern roundabout service, from October 1, 1995 to September 30, 1996, total crashes at Main Vail decreased by 19 percent compared to the average number of crashes per year over the three previous 12-month periods. The percentage reduction, l9 percent, is exactly equal to the percentage reduction forecast in the August 1994 feasibility study for xl... t :...x,.«..1...,. .". T_.:. ...: ... ... ....1. ..,. 1..._,,. L..11,.« 1.__ 7G ... _.t a., ..«7�. .. « xL. ,. Ut0.t 11LLC11.1�pll�C. 11L�LL11VLLD L1Q�l1lCJ 1IQVC 1Q11G11 Vy / J r1CltClll� LV Vllly VltC lll LLLC 5 FEASIBILITY STUDY I-70/CHAMONIX ROAD 12 months since construction of the roundabouts from an average of four injurious crashes per year in the previous three years. CONCWSION The modern roundabout interchange to be built at West Vail next year will, more than any possible alternative, impart high capacity, low delay, and safety to the cramped, six-leg stop-sign-regulated intersections on both sides of the freeway. The roundabouts will bring order and beauty to Vail's west entrance. The interchange will become a source of pride over future years to the people of Vail and to all who contribute to the project. 6 APPENDIX A Proposedlnterchange Layouts y��� Q / . - .Q �rJ Bike Road � \ —_ North Fronta9,�R�ad _ ; �NOOFrontage Road � � � . ' - ' - - ' - ' - - - V / \ � � . . Omramp I — — �f-rerr�p Walk o Bike Road ¢ �� I-70 to Grand Junction r "c 0 E m L U i-70 to Denver —._� Bike Foad yya�� Wall Walk Off-ramp — — �� � � � _ _ , _ _ On-ramp \ ' � ` South Frontage fload ' � — — Q o �D South Frontage Road Bike lanes \ ' � �. Bike Lanes Bike Lanes Raised 6" Bike Lanes Raised 6" Next to Roundabout � � �� Next to Roundabout / � Ourston & Doctors I- 70/Chamonix Road MODERN ROUNDABOUT INT€RCbANGES Vail, Colorado 5290 Overpass Road Ji212 Santa Barbara, CA 93111 Nu✓einue� i 1, i 9yv Saaie: i '=cii ... . . ... . .. . ... .. .... .. ..... . . . . . .,.. : ............ .. , . ... .. � . �. : . .. .: ,��: ., : :` a � . ........ � : : � � _.. . . ... . , .. . :... .;. . ��.;.. � � : : . �: a .,.. .. .:.. Bike Road "-----" '."" . '`. i . : � ''..... :� ��' .. . ., . ... � : __' ". ....-.,.,. ' � �• .... ... . ...�. .'. ... . .. � � '. ..,..... ... .... ... .. ... . ......: .... ........... ... ..Fronta98 Foad North Fron�age Road �lorth .. �: ;. :' . � . . �] ;.: . V �. On-ramP ..... .. ... ... .... .. ..... . .. .. �. , . ... . ... .... .... .... ..... .. .. ....... �f'��P :Walk � �'�, ���,! � � ; � � Bike:Road : ¢ : : I-70 to Grand Junction - x • '� : E t ;� U . : I-70to Denver —�� � �� Bike Road Wall Wall Walk. '' ��:': . .. , . : :. .. •... - . . �... . :._.. . . .... ..::� - : Q : : .. .. � ... .... . ..... ............. .... .... .:.. .... ... . : .. . .. ... ... .. .. . ... . ... . .. . . .... ... ..... ... . ... . . .. .... ... 08-ramp On-ramp _ ...... ... . ... .. . . ......:....' _ .:., � . .._ :•{�': -.. . ..::: '.:::':-.::'.: _.... ,. . . _'. ..... .. South Fron[age Road � � �� ...... . ....... ..... .... .. . .. ... . .. .. . . .. . . .. ... . ... .... .... ........ .... . .... Q a D South Frontage Fioad � ... . ........ .......... .. .. . . .,:. ... . . • . .. .. .. ... . .. .... .. . ... . .,, . . � ,....... ... ......... . .. .. ......................... .......... ... . _ . . ...... " : . .. • ........ :., .. Gore Cteek Gore Creek � � Ourston & Doctors 1- 70/Chamonix Road MODERN ROUNDABOUT INTERCHANGES Vail, Colorado 5290 Overpass Road #212 Sania Barbara, CA 93111 ryovember 5, i990 Scaie: 9 "=Fsu' �� b �;' ....o O p —_ _ • �� __ _ _ �T�°��e� _ �fLNiFmnmTFna1 � r ` \ N : ' � ' ` \ � \ � \ \ ....•� � � \ .. / � \ ` OxarR I OXaary •.•:::::: ........ ............................. ...............�. ........ 9AeHaat ..................... ........�.. ........................ ......._....�. ...�........... . ........�......�.......... ......... ............. . ...._.....�....._. ............ ..........�.. ..........�...............�. 4]O�oGreMJi�n[Mn ••..�rnr:::::::::::. .••••.. ...................:::':::.:s. ............. ....... �.. - - ---� - . . .................. . . ... ... . ... . .. . .. . .... .......... .......... .... . ... .. .. . ......... .. ...... _. . ..--- -�--- - �- .. . .. __ ------..._ --.. ..._..... ._........... .. �� .. ......._ ......... . ............._ .. .......... .. . ..............._. �.�o,o �� .. _..... ---............ ... ...�...� .. .......- -�- --- -�- - �- __ .. ....... ......................- - -wy--..._. .. e��,m _..... ---... - �- .-....._ . w� �., -- --........ ............... .. . .. .... .. ...... .....:::.: ..:... o ._ ax..r- _ _� \ .. a..�m \ .. .._.... - ..................................................... ...."'�:" � �nv,o,�.�no:d' o ` _ _ _ _ - _ ............................................_..._............................. hSw1I�Fm�YOePmE ....••••.••••• eixoLNOV \ ' V � �..x+.m a x.ncra.a.em �mrw�e.m�� � � . � Ourston & Doctors I- 70/Chamonix Road MODERN ROUNDABOUT INTERCHANGES Vail, Colorado 5290 Overpass Road #212 Santa Barbara, CA 93111 Novembe� 5, 1996 Scale: i "= i50' \�Y � / ` - .� XT � 4n Bike Road , � — __ 18 — � � 35" 4, D=29' 4„ � 35� � F�onia9�Roa�_ ` ; i8� North Frontage Road � Nodh - - - ' - - - - - 35" 4 t, . 35" \ , � 18" 35" _ . - � " \ 4" " " " " " _ � / \ � �r• On-ramp — — Off-ramp - Walk ol BikeRoad ¢ �— I-70 to Grand Junction x .� 0 � c U I-70 to Denver �� Bike Road Wall Wall Walk 35'� 35' Off-ramp — — �� � 35' - _ _ _ _ . On-ramp q„ ' ' ' 35" \ q" 18" ` South Frontage Road 35' �g ' � — � � 3,5• 4, p_Zy� 4" Soulh Frontage Road eike Lanes � � 1e� �^� � Bike Lanes 4" Bike Lanes Fiaised 6" Bike Lanes Raised 6' Next [o Roundabout 35' _ _ Next to Rounda6out 35�5^ CLEAR VIEW AREAS Maximum heights of sight obstructions are given above curbs. � Our�ton & Doctor� 1- 70/Cham�nix Road MODERN ROUNDABOUT INTERCHANGES Vail, Colorado 5290 Overpass Road #212 Santa Barbara, CA 93111 ryovember 5, i�9a Saa1e: i "=ov' APPENDIX B Modern Roundabout or Nonconforming Traffic Circle? MODERN ROUNDABOUT OR NONCONFORMING TRAFFIC CIRCLE ? Unlike nonconforming traffic circles, modern roundabouts conform to modern roundabout guidelines. Among other important new features, modern round- abouts have yield at entry, deflection, and (often) flare, as illustrated below. MODERNROUNDABOUT NONCONFORMING TRAFFIC CIRCLE Entering traffic yields Entering traffic cuts to circulating traffic. off circulating traffic. • Circulating traffic • Circulating traffic always keeps moving. comes to a dead stop YIELD when the circle filis with entering traffic. • Works well with very • Breaks down with heavy heavy traffic. traffic. • No weaving distance • Long weaving distances necessary. Roundabouts for merging entries are compact. cause circles to be YIELD AT ENTRY large. Entering traffic aims at Entering traffic aims to the center of the the right of the central central island and is island and proceeds �'; deflected slowly around straight ahead at speed. OE.<< �,TO it. 1oti • Slows traffic on fast • Causes serious roads, reducing accidents if used on accidents. fast roads. • Deflection promotes the • Fast entries defeat the DEFLECTION yielding proc��s. yielding process. � I � � Upstream roadway often Lanes are not added at i�� � '� flares at entry, adding entry. ,<., � � lanes. - - -_____�___- O • Provides high capacity • Provides low capacity in a compact space. even if circle is large. - - • Permits two-lane roads • For tiigh capacity, � FLAR� � � �r between roundabouts, requires multilane i !! saving pavement, land, roads between circles, and bridge area. wa�ting pav@m@nt, land, FLAltE and bridge area. APPENDIX C West Vail Accident History , STAFF TRAFEIC AND SAFETY PROJECTS BRANCN TYPIC"AL COLL' lSION DIAGRAM ' LEGEND FOR MOTOR VEH [ CLE TRAFFIC' ACC[ QENTS � � � A'CClOENT LOCATION _►' �/'y. . ���,' Op-rosdw�Y Off-roadway:{right) Off-roadway{left) ACCiDENTTYPES: SYMBOI_ . ,. HO - liead-0n HO —►�--- RE - Rear�nd RE —��• .SS - Sidewslpe-same ��ction SS � ��-.. . - - SO� - Sideswipa-opposite dnection SO �� - . AT - Approach tum AT �—. OT - Overta(dng tum OT �f BS - Broadside BS ' TorAN T - Traia (rype indicated) AN - Mima! PC - Pariced car p _ p� PC, Any of the above P or B as appropriate B - - 8icyde, Motociz�d.bicyde - � - ��� �I� . Fo or o O - Other objecf (tYPe i�idiea4ed) - f�� OTR - Overtumfng. OTR / "� '�• � ONC- Ofher noncollisioci ONC �. (type indicated) • ACCiOENT SEVER(TY' number ot persons killed� �s. � �� � Fatai Accident _ � Injury Accident 0�2. numberof pecsons injured O• P�operty i]amago Only Accident COLORADO DEPARTMENT OF TRANSPORTATION Fi�eu � , G D. Or.. SUMMARY OF MOTOR VEHICLE TRAFFIC ACCIDENTS Date � � , U/?< <3C Sheet of 5/ Description: .5� G �l� GI � , � f �� �?o.� 4�'0! �i� � r C'/,�r�-� Milepoint: �,,� �� to: Period : .�C,�i�L �/r � ��� to: ��j'�?cl9/ � �/ � I. NUMBER OF ACCIDENTS REPORTED V. LOCATION One-car accidents On-roadway accidents ��' Two-car accidents � Off-roadway accidents g Three or more cars Total .S� Total �G VI. TYPES OF ACCIDENTS II. SEVERITY Non-collision accidents Fatal accidents o Overturning / Injury accidents � Other non-collision ,2 Property damage only SO Collision accide�ts Total �"! Pedestrian _� Broadside Pi Persons killed O Head-on Persons injured � Rear-end � Sideswipe S. D. �3 III. LIGHT Sideswipe O. D. Daylight �3 Approach turn Dark, roadway not lighted Overtaking turn Dark, roadway Iighted /� Parked car / Train IV. ADVER9E CONBITIONS Bicycie Weather Motorized Bicycle Raining � Domestic animal Snowing �2/_� Wild animai Road Fixed object � Wet � Other object Snowy !,� Icy y3� Total -%� COMMENTS: _ � COLORADO DEPARTMENTOFTRANSPORTATION F��aNO. sao . o�o . oz TRAFFIC ACCIDENT LOCATIONS oa�a June 30 , 1994 S.H. NO. �O oi:ma III Pef��a �anuary 1 , 1991 1O January 1 , 1994 sneB� Z �� 4 oesc1p°0° SH 70 ( I 70) at the Idest Vail ( Chamonix Rd . ) Interchange Milepalnl 173 . 32 1D � 9 x o � � I � �`-h � � 3 � 2 �O � � � � � • _ � y � ``� t � �� � ` a � � i B � `��i \y �o Y � � 3F ° i . �m .� S o `h � . 4� � a�i � ,o a ,� � � - a � ° y o ea o e� � � ° v Q A �p V '4 rtl F .l C y � �i. 0 i � UV — � W � .ti Y � N \� T � � LL O �\ � 1 � � � NI � v� Q �� � A � � � � � � N a �Q � Sht �y � See Sht . #3 See �p� g � . � �„ � \ \2 � � � � m � � � � � � � h � ^, � o � �� � � � m \ � v a Fa � � � `�� � y � h = � M � � 2 �, �' a ' � --- � c� '�,V � `1 � O � •ti \ \ .� �0 4 � � a 2 '� � � a �Y � � h � � � � o �� \ _ � z nj o � o ni � q o � � F W O � w e � e � O � � g � LL 0 0 0 CVLORADO DEPARTMENT OFTRANSPORTATION FIIeNO. $$O . OJO . OZ TRAFFIC ACCIDENT LOCATIONS Date �une 30 , 19�4 S.H. NO. �O Disldcl III Per1oe January 1 , 1991 �O January 1 , 1994 snaei 3 oi 4 oes�dPron SH 70 ( I 70) Westbound Ramps and north frontage road at the Intersections H�ith Chamonix Rd . in Vail � Milepo�nl 173 . 32 �O a m 0 s w m � '�' 1" � ��ti l� o �` \ \ `t . a I w �� �� m � i ,� a �. a � � � y m o ,� L \ � � 4- o l� � o � � � � � ~ � � � � �� � n �� � �� a �� h � � �; � a, a � � . � . : : '� a q. � o � �� �. ' � � � � � � \ � � � \ � � �� �� � � 3 � � 2 � � � � � (Jn � n � � � �� �� o �;> � �� �\ � '^` � �`��� —T" � � \� .,� � � � o 6 � " � � � � � �� � � � � �a � � - � ti � : � � � .�` x 4^ � V O y E ! N - S n V [ � � � � � � E h 8 � ? � �� � � � : � a e � � � � � 2 � � 0 � �. 6 3 � O � r � C N O i �� � �� � y h C C l CULORADO DEPARTMENT OFTRANSPORTATION FileNO. gg0 . 070 . 02 TRAFFIC ACCIDENT LOCATIONS od1e June 30 , 19�4 S.H. NO. 70 oisma III Padod ,7anuary 1 , 1491 �O danuary 1 , 1994 sneei 3 oi 4 oesc�iPron SH 70 ( I 70) lJestbound Ramps and north frontage road at the Intersections o!ith Chamonix Rd . in Vail � Milepainl 173 . 32 �O v m 0 L w a: R � Z �. J� .'� o �` � , \i , n � � t� � � ii e � 0 -, z " m � ok � � °c a \ ,,, o Qa `` � � � �` �1,� � . 5�, h \dZ � \ `' \ � , � � � \ � � \ry a \ 2 1� � �V' p��' 6� � `D � ° '� \ \ I o q� � o� o: � \`. . ��l� � \ � ' \ o � \ \ \3� �\ � � �� �� O � . � � � � O 2 � � � , \ � � \, / � 2 �. �2 \ / � � �� n4� ' . � p (V) ��� _�_% ";� ���� a 2 �` ' O � � � � � � � � � � � � �� , � \ h \ � \ \O \ � �� � . / `� � � . � f _ o � �i o �) � t s � � � � � U ( � \ � �� 4 !� \ � `^l� \ E � � � a �2 � � � °�,t c � F 0 z m . a i � o � � i � .. o � �-�� � `�� � Y t APPENDIX D Understanding Rodel UNDERSTANDING RODEL by Leif Ourston, P .E. Leif Ourston & Associates Santa Barbara, California August 25 , 1994 ABSTRACT This report explains Rodel , a computer application that predicts the traffic performance of modern roundabouts. Rodel estimates delay, queue length, and capacity as functions of roundabout geometry and flows . It was used to design Vail' s proposed modern roundabout interchanges. PHILOSOPHY BEHIND RODEL Rodel was developed by Barry Crown of the Staffordshire County Council in England . It applies research by the United Kingdom' s Transport Research Laboratory, which licenses its use. Rodel is faster and easier to use than a widely used program by the British Transport Research Laboratory, ARCADY. Insofar as the two programs overlap, their output is identical. Rodel works like a spreadsheet in which the designer answers what- if questions by changing one of the input parameters and running the program again. Because Rodel is fast and easy to use, the designer is likely to continue altering his design until a nearly optimal design is achieved. Rodel permits the designer to select the confidence level of his estimates of traffic performance. A confidence level of 50 percent is implicit in other traffic performance programs, like AI�CADY or TRANSYT. Rodel's author r�comm� nd� u, in� a ccnfi�� nc€ I€v21 of 85 to 95 p@rc@nt. Thi� allow� fo � � na�c ;� racie§ in bcth th� � nput design flow� and the output capacity estimate. Often a small increase in roundabout entry width or flare length will greatly increase the probability that the roundabout will perform well at a high confidence level. The Long Beach roundabout in California was designed using ARCADY before Rodel became available. ARCADY's delay predictions are equal to those of Rodel when Rodel is set to the . 50-percent confidence level . Delay predictions at the Long �each roundabout (the busiest modern American roundabout) compare with actual observed delays as follows: Understanding Rodel 2 AVERAGESTOPPED DELAY (SECONDS PER VEHICLE) PREDICTED OBSERVED A. M. Peak Hour 2. 2 2 . 7 P. M . Peak Fiour 2 .4 3 . 4 The difference between estimated and observed delay was 0 . 5 second per vehicle in the morning peak hour and 1 . 0 second per vehicle in the afternoon peak hour. Because of the close correlation, it is believed that Rodel's estimates of delay may be close to the actual delay that will be observed at modern roundabouts in Vail. RESEARCH STUDIES Capacity estimates of Rodel are based on research reported in Kimber, R. M , The Traffic Capacity of Roundabouts, TRRL Laboratory Report 942, 1980. Regression equations were developed from data taken at 86 roundabouts on public roads and 35 geometric variations on the TRRL study track. The capacity of each entry to a roundabout (Qe ) was found to be a function of one flow variable, circulating flow, and six geometric parameters . The definitions of symbols are given below. PARAMETER YS MBOL Capacity = maximum entering flow, pcu/h Qe Circulating flow, pcu/h Q� Entry width, m e Approach half-width, m v Length of flare, m I' Inscribed circle diameter, m D Entr�r angle, degrees ¢ Entry radius, m r Understanding Rodel 3 Capacity is estimated using the following six regression equations. PARAMETER E ATI N Sharpness of flare S = 1 . 6 (e-v)/I' Entry width parameter x2 = v+(e-v)/( 1 +25) Function of D tp = 1 +0. 5/( 1 +exp((D-60)/ 10)) Adjustmentfactor, cap. curve k = 1 -0.00347(� -30) -0. 978(( 1 /r)-0. 5 ) Slope of capacity curve f� = 0.210tp( 1 +0. 2x2) Y-intercept, pcu/min F = 303x2 The best predictive equations of capacity were: Qe = k( F-f�Q�) when f�Q�<=F, and Qe =0 when f�Q�>F. Queues and delays are estimated by use of time-dependent queuing theory. This is reported in Kimber, R . M . and Erica M. Hollis, Traffic Queues and Delays at Road Junctions, TRRL Laboratory Report 909, 1979 . Queue lengths are estimated in a series of small consecutive time intervals . Traffic demand and capacity are assumed to vary from interval to interval. INTERPRETING RODEL' S PRINTOUTS Rodel prints out traffic performance given on a main screen , which has the following twelve fields. 1 . TITLE In the titie section of the main screen are the date, written the British way, day: month:year, the name of the roundabout, and the number of the computer run . This last number corresponds to the number given in subsequent statistics screens. Understanding Rodel 4 2 . GEOMETRY The user inputs seven geometric parameters. Distances are in meters. E Entry width. L' Length of flare between V and E. V Upstream roadway width before flaring begins. RAD Curb return radius. PHI Angle between entering traffic and circulating traffic. DIA Inscribed circle diameter of the roundabout. GRAD SEP Grade separated, 0 or 1 ? The user inputs a one in this field if the roundabout is very large, as at huge two-bridge British grade separated roundabouts that run over or under the freeway at some interchanges. 3 . TIME The user inputs the following seven parameters which set the periods over which traffic performance estimates are made. Times are in minutes. TIME PERIOD The total period to be modeled. TIME SLICE Equal pieces of the time period during which capacity and demand flow remain constant. Capacity and flow may change from slice to slice but not within each slice. RESULTS PERIOD The period over which results are computed. If the time period is 90 minutes and _ the results period is from minute 15 to minute 75 , then results for the middle 60 minutes are given. TIME COST The value of driver's time in British pence per minute. FLOW PERIOD The period over which the user inputs turning flows in field 5 , explained below. If a 15 and 75 are given, the user inputs flows for the middle 60 minutes. FLOW TYPE Flows of field 5 may be entered in passenger car units ( pcu 's) or vehicles . A truck equals one vehicle or two pcu's. FLOW PEAK The peak hour being analyzed: a. m. , off peak, or p. m. 4. LEG NAME The user inputs an abbreviation of the name of each leg of the roundabout. The leg names are in the order of the direction that traffic flows around the roundabout. 5 . PCU FACTOR This is fhe humder a� v�hi�l�s Fi�vin� mor� tt�ar� gour wheels divided by the totai number or` vei�icies. Understanding Rodel 5 6 . TURNING FLOWS For each leg, the user enters the number of vehicles exiting at the first exit, the second exit, and so on up to the final flow, which is the number of U-turns exiting at the entry leg. 7. FLOW FACTOR (FLOF) The input flows are multiplied by this factor. With this factor the user can perform a sensitivity analysis to see what would happen if flows were to increase. 8. CONFIDENCE LEVEL (CL) Queues and delays are predicted at the input confidence levef. If 85 is entered, we are 85 percent confident that the queues and delays will not be greater than predicted. 9 . FLOW RATIOS To allow for peaking of traffic within the peak period , the turning flows are shaped into a flow profile. If the time period is 90 minutes and flow times are set at minute numbers 15 and 75 , then Rodel shapes the flow profile into three rectangular steps: a beginning 15 minute step, a middle 60 minute step, and a final 15 minute step, the flow being constant within each step. If the user inputs flow ratios of 0 . 75 , 1 . 125 , and 0. 75 , then Rodel models the flow profile so that flows of the first and third step are 0 . 75 times the average input flows, and flows of the middle step are 1 . 125 times the average input flows. 10. FLOW TIMES The user inputs the flow times that are used with the flow ratios to produce the flow profile from the turning flows. 11 . TRAFFIC PERFORMANCE Rodel outputs the traffic performance of each leg in this field, as follows. FLOW Entry flow, vehicles per results period. CAPACITY Capacity, vehicles per results period. AVE DELAY Average delay, minutes per vehicle over results period. MAX DELAY Maximum delay, minutes per vehicle over results period. AVE QUEUE Aveeaye v�hicles in queue over results period. MAX QUEUE Maximum vehicles in queue over results period. 12 . TOTAL DELAYS AND COSTS Rodel output§ the total vehicle delay in hours over the results period. It �ivc� t�ie i.usi vi tiii5 uGidy iii �fiils�i �UUf�s S`LI�II�i�. APPENDIX E Roundabout Levels of Service ROUNDABOUT LEVELS OF SERVICE 1 1 -21 - 95 Leif Ourston & Associates WEST VAIL NORTH A.M. PEAK HOUR 100% OF BASE FLOW WHOLE LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT INPUT FROM RODELOR ARCADY FLOW veh/hr 124 96 0 680 122 424 1 , 446 AVE DELAY min/veh 0 . 06 0 . 05 0 . 00 0 . 04 0 . 04 0 . 04 PUT AVE DELAY sec/veh 3 . 6 3 . 0 0 . 0 2 . 4 2 . 4 2 . 4 DELAY sec/hr 446 288 0 1 , 632 293 1 , 018 3 , 677 AVE DELAY, sec/veh 2 . 5 LEVEL OF SERVICE A 246% OF BASE FLOW WHOLE LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT INPUT FROM RODELOR ARCADY FLOW veh /hr 305 236 0 1 , 673 299 1 , 044 3 ,557 AVE DELAY min/veh 0 .49 0 . 1 5 0 . 00 0 . 15 0 . 13 0 . 20 OUTPUT AVE DELAY sec/veh 29 . 4 9 . 0 9 . 0 7 . 8 12 . 0 DELAY sec/hr 8 , 967 2 , 124 15 , 057 2 , 332 12 , 528 41 , 008 AVE DELAY, sec/veh 11 . 5 LEVEL OF SERVICE B k#1#X!�##��ltl%*kY*ItA%t%i###RY####1##�#k%%##�ttY#%M##�Yt#t%YYk##tl##kY%ti##%�kt # t + 21 : 11 : 95 150 ' N & S 11 . WEST VAIL NORTN . 81 $ z � z��zxxxzt�:zzs�tzrx���z�*��xt�t���x�z�x:zxx�x�x�xx��xx�xxxx�:rt�rsrx���*zxxx��*� r � � * E (m ) 5 , 18 8 . 53 8 . 53 8 . 56 8 . 53 8 . 53 � TIME PERIOD min 90 � � L ' (m ) 29 . 79 28 . 53 0 . 00 7 .36 35 . 01 33 . I0 � TIME SLICE min 15 � � 4 (m) 4 . S1 3 . 96 5 . 79 7 . 32 5 . 79 4 . 27 � RESULTS PERIOD min 15 IS � � RAD (m ) 19 . 81 24 . 38 24 . 36 30 . 48 18 . 90 24 . 38 � TIME COSi pJmin 7 . 79 � � PHI (d) 9 . 5 40 . 5 0 . 0 17 . 0 40 . 5 20 . 0 � FLOW PERIOD min 15 15 � � DIA (m ) 45 . 72 45 , 72 45 . 72 45 . 72 45 . 72 45 . 72 * fLOW TYPE pcu/veh VEH � * GAAD SEP 0 0 0 0 0 0 � FLOYI PEAK am/oo/pm AM � z � t s�ax:xxsxa�xrt�zxr�z�x�zt:�z::��zxtz�xz:t���:axt�art���szr::x��s��x��:xz�x:�x:x� � LEG NAME ►PCU �FLOWS ( lst exit 2nd etc . . . U)�FLOF�CL� FLOW RATIO �PL�W iIME< z x z x * x x * #CHAMONI 58�1 . 02# 4 39 46 0 22 0 �1 . 00�85�0 . 75 1 . 125 0 . 75�15 45 75 � �N FR RD E8� 1 . 02� 0 38 0 37 11 0 �1 . 00�85�0 . 75 1 . 125 0 . 75� 15 45 75 � �ON RAMP W8*1 . 02# 0 0 0 0 0 0 *1 . 00�85�0 . 75 1 . 125 0 . 75#IS 45 75 � *CNRMONI NB*I . U2# 0 406 30 6 167 0 � 1 .00#85�0 . 75 1 . 125 0 , 75�15 45 75 � �OFfRAMP WB#1 . 02� 0 30 29 0 50 0 $1 . 00�85�0 . 75 1 . 125 0 . 75�15 45 75 � #N FR ftD WB$1 . 02# 18 22 91 249 0 0 +1 . 00�85$0 , 75 1 . t25 0 . 75�15 45 75 * t � : s x x x z *x�ztt�������x��c��x�x�rx�cx��rxz����s�����zx�xzzzz��a��rzz�x��xzxx�x��s�txzxt�s � x � � FLOW veh 124 96 0 680 122 424 � TOTAL DELAYS # # CAPACITY veh lOSI 1331 1375 2207 1519 1758 � * # AVE DELAY mins 0 . 06 0 . 05 0 . 00 0 . 04 0 . 04 0 . 04 � 1 hrs � � MA1( DELAY mins 0 . 08 0 . 06 0 . 00 0 . 05 0. 05 0 . 06 � � � A4E AVEUE veh 0 0 0 0 0 0 $ 5 pounds * $ MAX 9UEUE veh 0 0 0 1 0 0 $ * t $ x zz$xzzt:zxtzr:��:�:sz�xz�x�tzz�ttxx��MZ���x�ax�xrzx*�#��z�x�azx���x:�z��*�xt�ttx %##%i#tYYtY##Y#tl#1$#1#i#�##1Rk#�#%k�I*%t*#tt#&kYt*YY#t%#R#t#S#k#*t�#*XtYi�X#t%t � # * 21 : 11 : 95 150 ' N & S 11 . WEST 4AIl NORTH . 80 � � t *x�xxt�r�tz�rxstttz�tr�zx�ts:txraz�zxx��zxx*x�x�xx��zxt�xx��xtx������attx�xz�zx� z � � * E (m � 5 . 18 B . 53 8 . 53 8 . 56 8 . i3 9 . 53 � TIME PERIOD min 90 � � L ' (m ) 29 . 79 28 . 53 0 . 00 1 . 36 35 . 07 33 , 10 � TIME SLICE min 15 � � V (ml 4 . 51 3 . 96 5 . 79 7 . 32 5 , 79 4 . 27 � RESULTS PERIOD min 15 75 � � RAD (m ) 19. 81 24 . 38 24 . 38 30 . 48 18 . 90 24 . 38 � iIME COSi pJmin 7 . 79 � * PHI (d ) 4 . 5 40 . 5 0 , 0 17 . 0 40 , 5 20 . 0 $ FLOW PERIOD min 15 75 � # DIA (m ) 45 . 72 45 . 72 45 . 72 45 . 72 45 . 72 45 . 72 � FLOW TYPE pcu(veh 4EH � * 6RAD SEP D 0 0 0 0 0 � FLOW PEAK am/op/pm AM � t � � �x�rxx��x�x�x��z���x��xxz*sx�z�tztxz�#rs#rx#tt��x�xxx���xaxtx�rx�as����x�xx�*xxx # LEG NAME $PCU #FLOWS ( lst exit 2nd etc . . . U )�fLOF$CL$ FLOW RATIO �FLOW TIME< � s t x x � � � �CHAMONI SB#1 . 02* 4 39 46 0 22 0 �2 . 46�85�0 . 75 1 . 125 0 . 75$15 45 75 � �N FR RD EB�1 . 02� 0 38 0 37 11 0 �2 . d6#85+O . 15 1 . 125 0 . 75�15 45 75 � *ON RAMP W8�1 . 02� 6 0 0 0 0 0 *2 . 46�85�0 . 75 1 . 125 0 . 75*15 AS 75 * �CHAMONI NB�1 . 02� 0 406 30 b 167 Q #2 . 4b�85�0 . 75 1 . 125 0 . 75�15 45 75 + �OFFRAMP WB* 1 . 02� 0 30 29 0 50 0 �2 . 46�85#O . iS 1 . 125 O . 15�15 45 IS � �N FR RD W6�1 . 02� 18 22 91 249 0 0 �2 . &6$85#0 . 75 1 . 125 0 . 75*15 45 75 � z # t � � � x t #���xxstxx���xx*z#�x�a���x��zx���x��z�x�xcxzx�x�txx���z�x�r:�x�zz�aa���as:��:*x� � � a * FLOW veh 305 236 0 16I3 299 1044 � TOTAL DELAYS � � CAPACITY veh 491 675 914 2124 801 1406 � � , � pVE DELAY mins D . 49 0 . 15 0 . 00 0 . 15 0 . 13 0 . 20 $ 11 hrs � # MAX DELAY mins 0 . 46 0 . 23 0 . 00 0 . 2b 0 . 21 0 . 39 � � $ AVE AUEUE veh 3 1 0 4 1 4 � 53 paunds � � MAX AUEUE veh 5 I 0 7 1 5 $ � x x � a�#tzstczxts:�:tsx�ts:�xzx�zt���z�a�rx��z*x���xx�z��zx#zzxz�zz�*x���x�x�$z�z��z: ROUNDABOUT LEVELS OF SERVICE 1 i -zi -ss Leif Ourston & Associates WEST VAIL NORTH • P.M. PEAK HOUR 100% OF BASE FLOWS WHOLE LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT INPUT FROM RODELOR ARCADY �LOW veh/hr 164 95 0 1 , 259 52 796 2 , 366 AVE DELAY min/veh 0 . 09 0 . 06 0 . 00 0 . 06 0 . 05 0 . 07 PUT AVE DELAY sec/veh 5 . 4 3 . 6 0 . 0 3 . 6 3 . 0 4 . 2 DELAY sec/hr 886 342 0 4 , 532 156- 3 ,343 9 , 259 AVE DELAY, sec/veh 3 . 9 LEVELOFSERVICE A 156% OF BASE FLOWS WHOLE LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT INPUT FROM RODEL OR ARCADY FLOW veh/hr 256 148 0 1 , 964 82 1 , 242 3 , 692 AVE DELAY min/veh 0 . 45 0 . 13 0 . 00 0 . 47 0 . 11 0 . 30 OUTPUT AVE DELAY sec/veh 27 . 0 7 . 8 0 . 0 28 . 2 6 . 6 18 . 0 DELAY sec/hr 6 , 912 1 , 154 0 55 , 385 541 22 , 356 86 , 348 AVE DELAY, sec/veh 23 .4 LEVELOFSERVICE C kli#�##kY##t#�t%tikXYk*%Y&#Y��ik#%3$fYY#Y%tk#tY#t%#%#S9��Sitt#�k##%#%A%%%YYt�#iY Y # � 21 : 11 : 95 150 ' N & S 11 . WEST VAIL NORTH . 83 * z t ���xxtz:xt�xxtxr �rxs:��:zs$:xax�xsaz�r*s�x��z��xz�xx��**x�x�t���xx�x�xx��tz���zr z x � � E !ml 5 . 18 8 . 53 8 . 53 8 . 56 8 . 53 8 . 53 + TIME PERIOD min 90 � � L � (m ) 29 . 14 28 . 53 0 . 00 7 . 36 35 . 07 33 . 70 � TIME SLICE min 15 # � 4 (m ) 4 . 57 3 . 9b 5 . 74 7 . 32 5 . 79 4 , 27 � ftESULTS PERIOD min 15 75 � # RAD (m ) 19 . 81 24 . 38 24 . 38 30 . 48 18 . 90 24 . 38 � TIME COST p/min 7 . 79 � � PHI (d) 9. 5 40 . 5 0 . 0 17 . 0 40 . 5 20 . 0 * FLOW PERIOD min 15 75 * * DIA (ml 45 . 12 45 . 12 45 . 72 45 . 72 45 . 72 45 . 72 � FLOW iYPE pcu/veh 4EN * * GAAD SEP 0 0 0 0 D 6 � FLOW PEAR am/op(pm PM + � x � �s��r���r:x�z�:ar�ze:�s�z*a+�zsxrxrxx�:�z����xx�t�c��xz��x�xxx�z�*z:xxxx:�xsxzxt � LEG NAME �PCU �FLOWS � lst euit 2nd etc. . . U )�FLOF�CL� FLOW RATIO �FLOW TIME* � x x s t x � � �CHAMONI 56�1 , 02� 2 62 52 0 31 0 $1 . 00�85�0 . 75 1 . 125 0 . 75$15 45 75 � *N FR RD EB�1 . 02# 0 45 0 26 12 0 �1 . 00�B5�O . i5 1 . 125 0 . 75�15 45 75 � *ON RAMP W8�1 . 02# 0 0 0 0 0 0 *1 . 00�85�0 . 75 1 . 125 0 . 75�15 45 75 � �CHAMONI NB�1 . 02� 0 762 12 36 257 0 � 1 . 00�85�0 . 75 1 . 125 0 . 15� 15 45 75 � �OfFRAMP WB*1 . 02� 0 13 6 2 26 0 $1 . 00�85�0 . 75 1 . 125 0 . 75�15 45 75 � �N FR RD WB�1 . Q2* 22 15 357 319 0 0 $1 . 00#85�0 . 75 1 . 125 0 . 75�15 45 75 $ * x x t � $ : � *r*x��zx�ax�ts��zt�zz�xzrs��x:�t*xxzz�zx���z*x*xxx��xxxx��zrxz���xxx��zxx�xx���� � � � � FLOVI veh L64 95 0 1259 52 796 � TOTAL DELAYS � � CAPACITY veh 802 1032 1333 2206 1143 1663 � � � A4E DELAY mins 0. 09 0 . 06 0. 00 0 . 06 0 . 05 0 . 07 � 3 hrs � * MAX DELAY mins 0 . 13 0 . 09 0 . 00 0 . 09 0 . 07 0 . 04 # * $ AUE AUEUE vah 0 0 0 1 0 1 � 12 pounds � + MAX 9UEUE veh 0 0 0 2 0 1 � + x � � �ax�x�xxr����t��x:tx�x�#xzxxzs��x��x����z�x#�t�:�zzxzzt�zrxxxtzt����z�zstzra�:�* #Ylk#i#kt#Ii%##%Yt#Y####d#*t%YtY#�S#t#%YkXY�#SY1##kt&�titt#k##l%#%�t%it#�#!t�%%% # � * 21 : 11 ; 95 150' N & 5 11 . WEST 4AIL NORTH . 82 � t � z�xxaxx�ttx�ts�z�����t*�xx�r���txs�*t:�xx�x���xxxtx��xx�#$t�x�x*xxzz���s��*zxx�z # s * � E (m ) 5 . 18 8 . 53 8 . 53 8 . 56 8 . 53 8 . 53 � TIME PERIOD min 90 � # L ' (m ) 29 . I4 28 . 53 0 . 00 1 . 36 35 . 07 33 . 70 � iIIdE SLICE min IS � # V (m ) 4 . 57 3 . 96 5 . 74 7 . 32 5 . 79 4 . 27 � flESULTS PERIOD min 15 IS M * RAD (m ) 19 . 61 24 . 38 24 . 38 30 . 48 18 . 90 24 . 38 � TIME COST p/min 7 . 79 � � PNI (d ) 9 . 5 40 . 5 0 . 0 17 . 0 40 . 5 20 . 0 � fIOW PERIOD min 15 75 � � DIA (m ) 45 . 72 45 . 72 45 . 72 45 . 72 45J2 45 . 72 � fLOW TYAE pcu/veh VEH � � GRAD SEP 0 0 D 0 0 0 * FLOW PEAK amfop/pm PM � � t z :rxxz�tsxra*�zxx:*:��sx:�*c:z��*�����xxx�rx*�x��xt���axt�x:xx��rt�r�x�*���x���x: $ LEG NAME �PCU �FLOWS ( lst exit 2nd etc . . . U )�FLOP#CL$ FLOW RATIO �FLOW TIME� x � x � x * x z �CHAMONI S8�1 . 02� 2 62 52 0 31 0 �1 . 56�65�0 . 75 1 . 125 0 . 75�15 45 15 � *N FR RD EB*1 . 02� 0 45 0 28 12 0 �1 . 56�85+0 . 75 1 . 125 0 . 75�15 45 75 � #DN RAMP W8�1 . 02� 0 0 0 0 0 0 $1 . 56$85#0 . 75 1 . 125 0 . 75$15 45 75 � �CHAMONI NB*1 . 02� 0 762 72 36 257 0 �1 . 56�65$0 . 75 L l25 0 . 75� 15 45 75 $ *OFFRANP WB�I . 02� 0 13 6 2 26 0 �1 . 56#65�0 . 75 1 , 125 0 . 75#IS 45 75 � �N FR RD WB*I . D2� 22 IS 351 319 0 0 �1 . 56�85�0 . 75 1 . 125 0 , 75�15 45 75 � x � x t x z � : aa:zs��x�xa:r�xz�xrta�arxrxz���:�t�txxxxt�z:xr���ax���axxx�x��zx:�:x����x��xxxxt � � z * FLOW ueh 256 148 0 1964 82 1242 � TOTAL DELAYS $ � CAPACITY veh 443 514 1133 2i74 658 1506 � � � AVE DELAY mins 0 . 45 O . t3 0 . 00 0 . -07 0 . 11 0 . 30 � 24 hrs � # MA% DELAY mins 0 . 88 0 . 21 0. 00 1 . 02 O . lb 0 . 58 � � # AVE AUEUE veh 2 0 0 16 0 6 $ 113 pounds $ � MAX QUEUE veh 4 0 0 32 0 11 $ � # x x t:rt#�t�zxt�xxx*z��tz��#szxxtxxz:txtx��xzxzzxt��tx��xax�r*�*z:�xx�xa�zrs��x*�s�z ROUNDABOUT LEVELS OF SERVICE 11 -21 -95 Leif Ourston & Associates WEST VAIL SOUTH A.M. PEAK HOUR 100% OF BASE FLOWS WHOLE LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT INPUT FROM RODELOR ARCADY FLOW veh/hr 428 648 171 46 342 0 1 , 635 AVE DELAY min/veh 0 . 07 0 . 05 0 . 07 0 . 09 0 . 04 0 . 00 OUTPUT AVE DELAY sec/veh 4 . 2 3 . 0 4 . 2 5 . 4 2 . 4 0 . 0 DELAY sec/hr 1 , 798 1 , 944 718 248 821 0 5 , 529 AVE DELAY, sec/veh 3 . 4 LEVELOFSERVICE A 167% OF BASE FLOWS WHOLE LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT INPUT FROM RODEL OR ARCADY FLOW veh/hr 714 1 , 082 285 76 571 0 2 , 728 AVE DELAY min/veh 0 . 11 0 . 11 0 . 29 0 . 50 0 . 05 0 . 00 OUTPIJf AVE DELAY sec/veh 6 . 6 6 . 6 17 . 4 30 . 0 3 . 0 DELAY sec/hr 4 , 712 7 , 141 4 , 959 2 , 280 1 , 713 20 , 806 AVE DELAY, secNeh 7 . 6 LEVEL OF SERVICE B k#��YtY#�YYk#3##Y�#####%k%###3RY#Y%#ifY�tY#t#Y��%1#k##&#tY##tY%Yt#tYI%#1%t###�## # % # 21 : 11 : 95 150 ' N & S 12 . WEST VAIL SOUTH . 87 � t � x��xztxtx�xxxt�*xa�tax�tzsr+tt�zzxx:z*���:xz���xz��t�ta�ttz����������r*�zzttxrtx x x � * E fm ) 5 . 55 4 , 14 7 . 06 4 . 88 9 . 75 9 . 14 � TIME PERIOD min 90 � * L ' (m ) 5 . 00 33 . 58 14 . 05 0 . 00 61 . 10 30 . 48 � TIME SLICE min 15 � � V (m ) 3 . 66 6 . 40 3 . 66 4 . 68 4 . 27 6 . 10 � RESULTS PERIOD min 15 15 � � RAD (m ) 19 . 61 13 . 72 d2 . 37 10 . 18 30 . 48 13 . 72 � TIME COST plmin 7 . 79 � $ PHI (d) 13 . 5 36 . 5 13 . 0 5 . 5 40 . 5 0 . 0 � FLOW PEftIOD min IS 75 � � DIA (m ) 45 . 72 45 . 12 45 . 72 45 . 72 48 . 16 45 . 72 # FLOW TYPE pcu(veh VEH � * GRAD SEP 0 0 0 0 0 0 $ FLOW PEAK am/op/pm AM � t t � �xt*t�*�z�xz�x��z*x�xx��zxt�ztx�st�#�rx�xr��xxxs��x�s�xz�:xrxx�z�zt��xs#zztt*#t� � LEG NAME �PCU *FLOWS ( lst exit 2nd etc . . . U )�FLOF�CL$ FLOW RATIO $fLOW TIME* x x s � � s � z �CHAMONI SB*1 . 02$ 0 31 4 236 112 0 #1 . 00�85#0 . 75 1 . 125 Q . 75�15 45 75 � #OFFRAMP E8�1 . 02� 0 7 335 0 236 0 x1 . 00$85�0 . 75 1 . 125 0 . 75�15 45 75 * *S FR RD E8*1 . 02� 0 74 10 69 0 0 �1 . 00�85*0 . 75 1 . 125 O . 75M15 45 75 � �CHAMONI NB� 1 . 02# 24 4 13 0 0 0 �1 .00�85�0 . 75 1 . 125 0 . 75# IS 45 75 � �5 FR RD WB$1 . 02� 0 289 0 16 I 0 $1 . 00*85$0 . 75 1 . 125 0 . 75�15 45 75 � �ON RAMP EB*1 . 02� 0 0 0 D 0 � �1 . 00�85�0 . 75 1 . 125 0 . 75*15 45 75 � x t x � x x x � zt��x�x����txx��c�x�x��xx��xxzxzxx�s�:x�#��:s�s+�as��txxz�:x�x�zzxxx���xx�rz*x�� � x z * FLOW veh 928 6d8 171 Ab 342 0 � TOTAL DELAYS # � CAPACITY veh 1242 1846 966 689 1925 1657 � * � AVE DELAY mins 0 . 07 0 . 05 0 . 07 0 . 09 O . D4 0 . 00 $ 2 hrs * # MAX DELAY mins 0 . 09 0 . 01 O . 10 0 . 13 O . QS 9 . 90 $ # * AVE AUEUE veh 1 1 0 0 D 0 $ 7 paunds � # MAX AUEUE veh 1 1 0 0 0 0 � � x r a �#*xzs�t:s�:z:r�#:�rtzx�#txz�x�r�x�::�t�zz�z�xs�tttxrt���r��zs�tc#:s#ttzx�##zt k�tk###kiiktxl#X#R#R###k%�ktt�#tkY�Yk�kk#Y�kYYXt��tk#�i#�Y#klY�kk#Y#k�kk####kl�� * � � 21 : 11 : 95 I50 ' N & S 12 . WEST VAIL SOUTN . 86 � � � zxx�*:xzx�xxxt�xx�tz���xtx��x�x���r�s�x�s��s��t�ts�txt�tz�t��*xz�rz���t�xx*tz�:� x * * # E (m ) 5 . 55 9 . 14 7 . 08 4 . 8A 4 . 75 9 . 14 � TIME PERIOD min 40 � # L ' (m ) 5 . 00 33 . 58 14 . 05 0 . 00 B7 . f0 30 . 48 � TIME SLICE min 15 � � V (m ) 3 . 66 6 . 40 3 . 66 4 . 88 4 . 2] 6 . 10 � RESULTS PERIOD min 15 75 � � RAD (m) 19. 61 13 . 72 42 . 37 10 . 18 30 . 48 13 . 72 � TIME COST p/min 7 . 19 � � PNI (d ) 13 . 5 36 . 5 13 . 0 5 . 5 40 . 5 0 . 0 > FLOW PERIOD min 15 75 � � DIA (mJ 45 . 12 45 . I2 45 . i2 45 . 72 48 . 16 45 . 72 � FLOW TYPE pcu�veh VEH � � GRAD SEP 0 0 0 0 0 0 � fLOW PEAK amJoo/pm PM � t x * :x�*xx:rzxrx�x��rxx�xxx�z*����x*a�xzx���xxx��x�txz�zrz����x�:��rrz:s��xxx:xt��t� $ LEG NAME �PCU �FLOWS ( lst exit 2nd etc . . .U )#fLOF�CI� FLOW kAiIO �FLOW TIMf* � � � 8 � x x z �CHAMONI SB#1 . 02* 0 31 4 236 112 0 *1 . 67*85�0 . 75 1 . 125 0 . 75M15 45 75 � �OFFRAMP EB$1 . 02# 0 7 335 0 236 0 �1 . 67�BS�O . IS 1 . 125 O . I5�15 45 75 � $S FR RD EB#1 . 02# 0 74 10 69 0 0 �1 . 67�65*0 . 75 1 . 125 0 . 75+15 45 75 � *CHAMONI N6�1 . 02* 24 4 13 0 0 0 �1 . 67�85*0 . 75 1 . 125 0 . 75�15 45 75 � �5 FR RD WB#1 . 02# 0 289 0 16 l 0 $1 . 67$85#0 . 75 1 . 125 0 . 75$15 45 75 � �UN RAMP E8�1 . 02� 0 0 0 0 0 0 �1 . 67�85�0 . 15 1 . 125 0 . 75$IS 45 IS � t � z � z s x s rxcx���z�x:xtxtzxx�zxx�:x�:�rs�xxrt�����xar�t���z�szx���x:zz:����z�x���zxxx�t�rx � x � � FLOW veh 114 1082 285 76 571 0 + TOTAL DELAYS � � CAPACITY veh 1235 1645 549 260 1693 1504 � � � AVE DELAY mins 0 , 11 0 . 11 D . 29 0 . 50 0 . 05 0 .00 $ 6 hrs � # MAX DELAY mins 0 . 16 4 . 18 6. 52 0 . 95 0 . 07 0 . 00 * � * AVE AIIEUE veh 1 2 1 1 1 0 $ 28 pounds # � MAM AUEUE veh 2 3 2 1 1 0 + � a � � iY#�t##1��tY#t##k#%#Yk##tk%##Y%##3dl#l�#%##!#%I#k#��ikl�Y�#1#t&t%t1t#k%t*%f1t*#� ROUNDABOUT LEVELS OF SERVICE 11 -21 -95 Leif Ourston & Associates WEST VAIL SOUTH • P.M. PEAK HOUR 100% OF BASE FLOWS WHOLE LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT INPUT FROM RODELOR ARCADY FLOW veh/hr 494 573 130 56 868 0 2 , 121 AVE DELAY min/veh 0 . 08 0 . 05 0 . 07 0 . 09 0 . 06 0 . 00 OUTPIJf AVE DELAY sec/veh 4 . 8 3 . 0 4 . 2 5 . 4 3 . 6 0 . 0 DELAY sec/hr 2 ,371 1 , 719 546 302 3 , 125 0 8 , 063 AVE DELAY, sec/veh 3 . 8 LEVELOFSERVICE A 156% OF BASE FLOWS WHOLE LEG 1 LEG 2 LEG 3 LEG 4 LEG 5 LEG 6 ROUNDABOUT INPUT FROM RODEL OR ARCADY FLOW veh/hr 770 894 202 87 1 , 354 0 3 , 307 AVE DELAY min/veh 0 . 1 4 0 . 09 0 . 15 0 . 22 0 . 49 0 . 00 PUT AVE DELAY sec/veh 8 . 4 5 . 4 9 . 0 13 . 2 29 . 4 DELAY sec/hr 6 , 468 4 , 828 1 , 818 1 , 148 39 , 808 54 , 07 � AVE � ELAY, secNeh 16 . 4 LEVEL OF SERVICE C %k#��X#%#XXttt#�X&t#I1%tt##k#tR#k%#klk�E%#%##Y&&#%R3%i%%Xtttk##Y�#�%kY#ttk�k4#%# % Y � 21 : 11 : 95 150 ' N & S 12 . WEST VAIL SOUTH . 89 # t s ��:��:a�z��t*�xt�x��x#x�xrz�t����:x��x�zxx�s*rxz��xxr�x�x�t�t�tzzxx�x��x���r�z�z x � � � E (m ) 5 . 55 9 . 14 7 . 06 4 . 88 9 . 15 9 . 14 � TIME PERIOD min 90 � $ L ' (m ) 5 . 00 33 , 56 14 . 05 0 . 00 87 . 10 30 . 48 � iIME SLICE min 15 � $ V ( m) 3 . 66 b . 40 3 . 66 4 . 88 4 . 2I b . 10 + RESULTS PERIOD min 15 75 � # RAD (m) 19 . 81 13 . 72 42 . 31 10 . 18 30 . 48 13 . 72 � TIME COST pJmin i . 79 * � PHI (d ) 13 . 5 3b . 5 13 . 0 5 . 5 40 . 5 0 . 0 � FLOW PERIOD min 15 75 $ � DIA (m) 45 . 72 45 , 72 45 . 72 45 . 72 48 , 16 45 . 72 � FLOW TYPE pcu(veh VEN * � GRAO SEP 0 0 0 0 0 0 * FLOW PEAK am�op/pm PM � z x x zx�x�z:*zx:x:x:**�x����sz�:��z�zxx���xx����zxx�xx:xzr*:txax����zzx�x��xx��zx��x: � LEG NAME �PCU �FLOWS ( ist exit 2nd etc . . . UI�FLOF�CL� FLOW RATIO $FLOW TIME� � t � r x � � : �CHAMONI SB� 1 . 02� 0 44 8 248 142 0 �I . 00�85�0 . 75 1 . 125 O . I5�15 45 75 � �OFFRAMP E6�1 . 02� 0 11 193 4 305 0 �1 . 00*65�0 . 75 L . 125 0 . 75�15 45 75 $ �S FR RD E8�1 . 02� 2 27 4 83 0 0 *1 . 00�85�0 . 75 1 . 125 0 . 75�15 45 75 $ �CHAMONI N8�1 . 02� 17 5 28 0 0 0 k1 . 00�85�0 . 15 1 . 125 0 . 75�15 45 75 � $S FR RD W6�1 . 02� 0 711 0 48 18 0 *1 . 00*85�0 . 75 1 . 125 0 . 75�15 45 75 * �ON ftANP E8�1 . 02* 0 0 0 0 0 D +1 . 00�85�0 . 75 1 . 125 0 . 75�15 45 75 # x � � : t x � � �r�*at�z�xtax���*tz*�at:*x����t�ta��zxx�xrrztz��zx��txt�zr�xxx�zxxx�:a�x����r�$* x z � # FLOW veh 494 573 130 56 868 0 � TOiAI DELAYS * � CAPACITY veh 1213 1765 9b9 729 1828 1319 # � # AVE DELNY mins 0 . 08 0 . 05 0 . 07 0 . 09 0 . 06 0 . 00 # 2 hrs � # MAX DELAY mins 0 . 11 0 . 07 0 . 10 0 . 12 0 . 09 0 . 00 $ � � AVE AUEUE veh 1 0 0 0 1 0 � 11 pounds # * MAX AUEUE veh 1 1 0 0 1 0 � � a t � Y###t1Y####Y###i#M#t�.t%t#Y##%##dk###�##1%Y*##�#tY%t%%%%tY%#�Rt##Ylit1Y%�kY#Y#ttt t#SkX#&Y%k#tYlttkt��tt%Y�tY##i$$kSRt$%�t%klt#%%k[t#%tt#%#�t$$##t###$I$##YR�%ktt% Y # � 21 : 11 : 45 I50 ' N & S 12 . WEST VAIL SOUTH . 88 � x x ��x�xt�����trxxtzt:x�sxa:a�t�x����t*xx�xtxxxxx�x�z�t:x���:�xx�z���x�xz��*����x�t x x x � E (ml 5 . 55 4 . 14 7 . 08 4 . 88 9 . 75 9 , 14 * iIME PERIOD min 96 � � L ' (m ) 5 . 00 33 . 58 14 . 05 0 . 00 87 . 10 30 . 48 � TIME SLICE min 15 � � V (m ) 3 . 66 6 . 4Q 3 . 66 4 . 08 d . 27 6 , 10 * RESULTS PERIOD min 15 75 � + RAD ( m) 19 . 81 13 . 72 42 . 37 10 . 18 30 . 48 13 . 72 # TIME COST p(min 7 . 79 � � PHI (d ) 13 . 5 36 . 5 13 . 0 5 . 5 40 , 5 0 . 0 � FLOW PERIOD min 15 75 � � DIA (m) 45 . 12 45 . 72 45 . 72 45 . 72 48 . 16 4i . 12 � FLOW TYPE pcu/veh VEH � � GRAD SEP 0 0 0 6 0 0 � FLOW PEAK am/op�pm PM � � x � #xxx�a�xzx��:*xx:��xx��x:x�zxz�s:��t������xz�***z������txxxxx�sxrs�xx�t�:��x::�r � LEG NAME *PCU �FLOWS ( lst exit 2nd etc . . . U )�FLOF�CL$ FLOW RATIO $FLOW TIME� � � � � x � t � �CHAMONI SB�1 . 02$ 0 4-0 8 248 142 0 �1 . 56#85$0 . 75 1 . 125 0 . 75$15 45 75 * �OFFRAMP EB*1 . 02* 0 ll 193 4 305 0 *1 , 56*85�0 , 75 1 . 125 0 . 75� 15 45 75 � *S FR RD fB�1 . 02$ 2 27 4 83 0 0 *1 . 56�85�0 . 75 t . 125 0 . 75$15 45 75 � �CHAMONI N6�1 . 02� 17 5 28 0 0 0 �1 . 56�85�0 . 75 1 . 125 0 . 75�15 45 75 $ �S FR RD W6�1 . 02� 0 711 0 48 18 0 �1 . 56�85�0 . 75 1 . 125 0 . 75�15 45 i5 � *ON RAMP E8�1 . 02� 0 0 0 0 0 0 %1 . 56�85*0 . 75 1 . 125 0 . 75$IS 45 15 � � � � t t z � x ����zxxxzxr��*�tz�xz�x�z��xxr��s:��z$�z�xx��:z�xzx��xx����x��xsr�����������z�zrz � s * * FLON veh 770 894 202 87 1354 0 # TOTAL DE�AYS $ � CRPACITY veh 1192 1551 622 394 1580 818 * � � AUE DELAY mins 0 . 14 0 . 04 0 . 15 0 . 22 0 . 49 0 . 00 � 15 hrs $ # MA7( DELAY mins 0 . 21 0 . 14 0 . 24 0 . 35 1 . 04 0 , 00 # � � AVE AUEUE veh 2 1 1 0 11 0 � 70 pounds # # MAX AUEUE veh 2 2 1 0 22 0 � � x x s ��sxr#�xrt:xt����$xt����z�z*#�xt��t�a:xx$�zxzx�tzt���z:t$�::xx�txz:t�rx�:�z�z��r