Loading...
HomeMy WebLinkAboutB12-0585 REV3 ENGINEER LETTER.pdf #CENTERLINE SOLUTIONS 16360 Table Mountain Parkway, Golden, CO 80403 August 22, 2013 Mr. Warren Bloss Crown Castle RE: 810106 "Vail" Retaining Wall—Electrical Vault Dear Mr. Bloss: Centerline Solutions designed a new retaining wall at the above referenced site. The wall was designed using the site specific conditions and is detailed in the attached calculations and drawings issued by this office. Please contact us with any questions. Sincerely, r p R E G/ST, rr Khristopher Scott, PE 34610 Att: Calculations �� '• ••,. '`�,� /0M Al. AUG 1 Z 1013 f ETATC)NE ]RING WALT.SYSTEMS RETAINING WALL DESIGN N KeyWall_2012 Version 3.7.2 Build 10 Project: Crowncastle- Vail Date: 811512013 Project No: 810106 Designer: KIS Case: Case 1 Design Method:Rankine-w/Batter(modified soil interface) Design Parameters --- - Soil Parameters: deg c psf y ncf Reinforced Fill 28 0 120 Retained Zone 28 0 120 ---------------- Foundation Soil 28 0 120 _. Reinforced Fill Type: Sand, Silt or Clay �= 7oon Unit Fill: Crushed Stone, 1 inch minus Minimum Design Factors of Safety sliding: 1.50 pullout: 1.50 uncertainties: 1.50 overturning: 2.00 shear: 1.50 connection: 1.50 bearing: 2.00 bending: 1.50 Design Preferences Reinforcing Parameters: Mirafi AT Geogrids Tult RFcr RFd RFid LTDS FS Tal Ci Cds 3XT 3500 1.58 1.10 1.05 1918 1.50 1279 0.80 0.80 Analysis: Case:Case 1 Electircal Vault Retaining Wall Unit Type: Compac/120.00 pcf Wall Batter: 4.00 deg(Hinge Ht N/A) Leveling Pad: Crushed Stone Wall Ht: 6.00 ft embedment: 1.00 ft BackSlope: 28.00 deg. slope, 20.00 ft long Surcharge: LL:20 psf uniform surcharge DL: 0 psf uniform surcharge Load Width: 100.00 ft Load Width: 100.00 ft Results: Sliding Overturning Bearing Shear BeiMl Mg Factors of Safety: 1.51 4.07 7.88 3.29 2.35 Calculated Bearing Pressure: 1078/1078 psf Eccentricity at base: 0.14 ft Reinforcing: (ft&lbs/ft) Cale. Allow Ten Pk Conn Pullout Laver Height Length Tension Reinf.Tyne Tal TO FS 3 4.67 7.0 204 3XT 1279 ok 449 ok 625 ok 2 2.67 7.0 480 3XT 1279 ok 597 ok 5.05 ok 1 0.67 7.0 589 3XT 1279 ok 745 ok 667 ok Reinforcing Quantities (no waste included): 3XT 2.33 sy/ft NOTE: THESE CALCULATIONS ARE FOR PRELIMINARY DESIGN ONLYAND SHOULD NOT BE USED FOR CONSTRUCTION WITHOUT REVIEW B Y A QUALIFIED ENGINEER Date 8/22/2013 Case I Page 1 DETAILED CALCULATIONS Project: Crowncastle- Vail Date: 811512013 Project No: 810106 Designer:KIS Case: Case I Design Method:Rankine-w/Batter(modified soil interface) Soil Parameters: deg c nsf y pcf Reinforced Fill 28 0 120 Retained Zone 28 0 120 Foundation Soil 28 0 120 Leveling Pad: Crushed Stone Modular Concrete Unit:Compac Depth: 1.00 ft In-Place Wt: 120 pcf Geometry Internal Stability External Stability (Broken geometry) (Broken geometry) Height: 6.00 ft Height: 9.31 ft BackSlope: Angle:28.0 deg Angle:28.0 deg Height: 10.63 ft Height: 7.32 ft Batter: 4.00deg Batter: 4.00deg Surcharge: Dead Load: 0.00 psf Dead Load: 0.00 psf Live Load:20.00 psf Live Load:20.00 psf Base width: 7.0 ft Earth Pressures: sings+0) ka = s- sin +,Y)si sins a sin(a—S) 1+ — 8� sin(a—(T)6.n(a+,3) F R Internal C rterrtrr = 28 deg = 28 deg a =94.00 deg a =94.00 deg R =28.00 deg R =28.00 deg 5 =28.00 deg 5 =28.00 deg H = 6.00 ft ka =0.628 ka =0.550 Hinge Height: Hinge Ht=Not applicable Date 8/2212013 Case 1 Page 2 Reinforcing Parameters:Miraft XT Geogrids Tult RFcr RFd RFid LTDS FS Tal Ci Cds 3XT 3500 1.58 1.10 1.05 1918 1.50 1279 0.80 0.80 Connection Parameters:Mirafi XT Geogrids Frictional I Break Pt Frictional 2 3XT Tcl=Ntan(42.80) +525 1100 Tcl=Ntan(11.10) +1328 Unit Shear Data Shear =N tan(40.00) Inter-Unit ShearShear=N tan(26 90) + 769.00 Calculated Reactions For the "modified"design method, the back of the mass assumed to be vertical for calculation of resisting forces. effective sliding length = 7.00 ft q as Pa:= 0.5H•(7'H•ka- 2c• a-) Pq:= q•H•ka € +x!14 Pal,:= Pa-cos(S) Pqh:= Pq•cos(S) Pas,Pasd n Pte,:= Pa•sin(S) Pqt,:= Pq•sin(S) � �,��� pa r� � A pa f Reactions are: Area Force Arm-x Arm-y Moment Wl 720.00 [0.710] 3.000 511.04 W2 151.04 [1.280] 2.000 193.29 W3 4017.92 [4.210] 3.000 16914.55 W5 993.49 [5.140] 6989 510638 Pa_h 2527.26 7.000 [3.104] -7845.84 Pa v 1343.77 [7.000] 3.104 940638 Pgl_h 13.85 7.000 [4.657] -64.51 Pgl_v 7.37 [7.000] 4.657 51.56 Sum V= 7233.58 Sum Mr= 32183.20 Sum H= 2541.11 Sum Mo = -7910.35 Date 8/22/2013 Case I Page 3 Calculate Sliding at Base For Sliding,Vertical Force=W1+W2+W3+W4+W5+W6+qd =7234 The resisting force within the rein.mass,Rf l =N tan(28) =3846 The resisting force at the foundation,Rf 2 =N tan(28.00) =3846 The driving forces,Df,are the sum of the external earth pressures: Pa_h+Pgl_h+Pgd_h =2541 the Factor of Safety for Sliding is Rf 2/Df = 1.51 Calculate Overturning: Overturning moment:Mo=Sum Mo =-7910 Resisting moment:Mr=Sum Mr =32183 Factor of Safety of Overturning: Mr/Mo =4.07 Date 8/22/2013 Case 1 Page 4 Calculate eccentricity at base: with Surcharge/without Surcharge Sum Moments =24273 /24273 Sum Vertical=7234/7234 Base Length=7.00 e=0.144/0.144 Calculate Ultimate Bearing based on shear: where: Nq= 14.72 Nc=25.80 Ng= 16.72(ref.Vesic(1973, 1975)eqns) Qult=8498 psf Equivalent footing width,B'=L-2e=6.71 /6.71 Bearing pressure=sumV/B'= 1078 psf/ 1078 psf [bearing is greatest without liveload] Factor of Safety for bearing=Qult/bearing=7.88 Calculate Tensions in Reinforcing: The tensions in the reinforcing layer,and the assumed load at the connection, is the vertical area supported by each respective layer, Sv.Column [7] is'2c sqrt(ka)'. Table of Results ppf [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Layer Depth A hl ka/rho Pa Pas+Pasd c (5+6)cos(d)-7 Ti Tcl Tsc 3 1.33 1.17 0.706/34 231 0 0 204 204 449 N/A 2 3.33 3.33 0.679/36 543 0 0 480 480 597 N/A 1 5.33 5.17 0.646/38 667 0 0 589 589 745 N/A Calculate sliding on the reinforcing: The shear value is the lessor of base-shear or inter-unit shear. [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] Layer Depth zi N Li Cds i RF ka Pa Pas+Pasd DF FS 3 1.33 2395 600 0.80 850 1869 0.638 827 5 735 2.54 2 3.33 4122 600 0.80 972 2725 0.592 1570 11 1396 1.95 1 5.33 5906 600 0.80 1094 3606 0.558 2504 18 2226 1.62 Date 8/22/2013 Case 1 Page 5 Calculate pullout of each layer The FoS(R*/S*)of pullout is calculated as the individual layer pullout(Rf)divided by the tension(Df)in that layer. The angle of the failure plane is: 31.00 degrees from vertical. [1] [2] [3] [4] [5] [6] [7] [8] Layer Depth zi Le Sumy Ci Poi Ti FS PO 3 1.33 3.52 1495 0.80 1272 204 6.25 2 3.33 4.58 2850 0.80 2425 480 5.05 1 5.33 5.65 4624 0.80 3933 589 667 Check Shear&Bending at each layer Bending on the top layer is the FOS of overturning of the Units (Most surcharge loads need to be moved back from the face) [1] [2] [3] [4] [5] [61 [7] [8] [9] Depth zi Si DM Pv RM FS b DS RS FS Sh 3 1.33 1.33 31 160 87 2.85 69 850 12.31 2 3.33 2.00 96 280 235 2.46 203 972 4.80 1 5.33 2.00 161 520 379 2.35 333 1094 3.29 Date 8/22/2013 Case 1 Page 6