Loading...
HomeMy WebLinkAboutRockfall Mitigation Design Specs - Sept 1990 (2) . � T ��� . r . � ��'��� i . � � � � ' . � � � � �: � ; :. f ; : � i_'� { ROCKF`ALL MITIGATION DESIGN SPECIFICATION3 , �'� THE VALLEY, PHASE VI, YAIL� COLORADO ' I Prepared For ( I i Mr. Ed ��neimer � i � I , . � I Prepar�d By � • - Arthur I. Mears, P.E. , �nc. � ' Gunn�son, Colorado ; September, �990 ' r �. � , � . � I , , ' . , � � 1 OBJECTIVEB AND LIMITATI�NS This analysis of xockfal� mitigation techniques and perfarmance specificatians af mitigation design was requested by Mr, Ed � Zneimer and has the following objectives: a. CalcuZation of design rockfa2l bounce heights, � veloci�ies, and momentum at three locatians requiring rockfall mitigation design; i b. Calculatzons of the �ailure probabilities ot rock- � fall defenses at various locations, and c. Specificatian of the locations, sizes, and possible forms of rockfall protection. The conclusions and recammendations of this repqrt ar� site specific, the�efvre they may not apply at other sites. Further- mare, any substantial changes to b�ilding positions from those ' shown on Figure 5 of this report may invalidate the recommenda- tions af this study. Some of the conclusi�ns of this study and the application of the � Colorado Rockfall Simulation Program (CRSP) depend on observa- '� tions and field measurements made on June 21, 1990. These observations were reported in the '�Rockfall Hazard Analysis, The Va11ey, Phase V2, Vail, Golorado, " submitted to Mr. Ed Zneimer on June 25, �990. 2 APPLICATION OF "CRSP" AND ROCKFALL DESIGN PARAMETERS ' i Rockfall mitigation design requires information about rock size E and mass, rockfall velocity, and rockfall bounce heights at the � position of the mitigation device. These design parameters are � determined by field observations and through application of the � CRSP computer mod�l, a stocastic model that outputs a statistical distribu�ion of rock behavior at positions alang the rockfall path. D�sagn rock size, rockfa�.�. source l�cation, slope incZina- t�.on, and ground hardness and roughness must be measured and �stimated in order to apply. CRSP. Design rock size was deter- , mined to be a 2-foot diameter rack during the field inspect3on oF June 21. During the field wark the rockfall source locations were locatedr the slopes of the most likely rockfal.3, paths were �; surveyed, and the ground roughness and hardness were estimated. Historic (and pre-historic) rock�all runout distances were also � mapped and used to ca].ibrate roughness and hardness. . ; i Three analysis pos�tions were considered for mitigation and used ' a.n the CRSP application: (A} a possible catching-fence locatian 60 feet above builda.ng envelopes 3 and 4, (B) the uphill walls of buildings 3 and 4, and (C) a possible� ber�n location near the ' bottom of the valley. These positions are shown in Figure 5. Detinitions of rockfa�l bounce heights and velocities are def ined � di.agrammatically in Figure 1. �he statistical distribution of � rockfall bounce heights and velocities at each of the three ! mitigation pvsa�tions are summarized on Figures 2 , 3 , and 4. The � �� . � • ' . . • � bounce height and v�loci�y� distributions are given as "excee- dence" probabiZitzes, therefore the probabzlity that a randflm roekfall event will exceed a given value has been shown on these graphs. For example, the bounce-height graph on Figure 2 ind�- cates a 25a probability that bounce he�gh�t will exceed 4 feet at the fence ].ocation but only a 10°s probability that it will exceed 6. 5 feet. Velocity probabilities have been similarly determine�l and grap�ed. The distributions shown res�alt from 1�0 simulated 2-foot dzameter rockfall events along the pa�hs determined in the field survey. The computer prin�outs for the 100 rockfall simulations at each analysis pasition are given in appendices A - C, at the end of this repart. It must be emphasized that the probabilities gi.v�n in Figures 2 , 3, and 4 apply to the 2-foot d�.ameter "design" rock only. Smaller rocks will a�so roll down the slope, but will attain lesser velocities and bounce heights; many small rockfalls wi�.l stop on the upper slopes and not reach the proposed building locations. Rockfall design speGifications are based on the lflo exceedance probabilities shown in Figures 2 , 3 , and 4 . This means that there exis�.s orae chance in ten �hat the d�sign rockfall event will exceed mitigation desic�n capaci�y. This is a reasonably conservative approach because the design rockfall event is exp�cted only once in several decades and when this rare event does occur ther� is a 90o chance the mitigation will work. OF course, an even grea�er level of protection can be achieved by insisting on a smaZler exceedence pzobability. , � , ? , ���� � �, �-. . ti., 3 RQCRFALL MITI�ATION FOR BUII�DINGS 3 AND 4 ` J , _� :1 Two forms of external rockfall defenses have been cons�dered �or ' � protection of these two building sites: (A) a "flexible-post" �''��� �`'Zt fence, and (8) rockfall-wall barriers. -' A FLEXIBLE-POST FENCE �,_L P� The flexible-post fence coul�i be located as shoran by line A - A on Figure 5, approximate�y 60 feet north ot the buildings. Fence design parameters, based on the 10% exceedance probability are: � bounce height - 6.5 feet; velacity = 37 ft/sec. Fence height, therefore, must be 7 . 5 feet (measured verticaZly) , and is equal to the bounce height (6. 5 feet) plus the rock radius (1. 0 feet) . The fence will stap 2-foot diameter rocks or w.ill reduce their speed so they will not cause damage. The fence posts (at approximate�y 30-faot intervals) consist of a laundle of cab3.es (similar to 3/8" ar 1/2" guy wires) encased in ' 4" diame�er galvanized steel tubing (Figur� 6) . A section of the cable bundle approximately 12" to 18" long is open and allowed to flex upon impact. The rock momentum, therefare, is dissipated � gradually as the fence bends downslope at impact, instantaneous impact forces are reduced, and massive, expensive structures are avoided. . . � � . � � � Although these fences are not in widespread use, pratotypes have been tested extensively by the Colorado Highway Department and have been very successful in stopping rockfall. Estimated cos�s for a 7 . 5-high fence is $60 - $1(}0 per foot of fence length. A 330-foot long fence as shown in Figure 5 would cost approximately $20, 000 to $33 , 000. The fences are not mass produced at the present time. Rarrr materzals would need to be purchased and ass�mbled at the site. B ROCKI'ALL WALL �ARRIERS Rockfall.-wall barriers would �liminate structural damage from the design (10%-probabi�.ity} rockfall event if built on the uphill sides ot buildings 3 and 4 (Figures 5 and 7} , These barriers must be 6 . 5 fe�t high (5. 5-foot bounce height plus 1. 0-foot rock radius) . They should con��_st af �teel �rames covered with coarse wire mesh and filled with unconsolidated gravel ar�c� small rocks. The structures should be approximately 2-te�t thick. Pre-fabri- cated "Gabion" baskets, in commnn use along highways, could be substituted. Similar to the flexible-post fences discussed above, the rock momentum will be dissipated by the barrier and damage to the wall eliminated. Cons�ruction and ins�.allation of �he rockfall-wall barriers could be done locally. Protection of buildings 3 and 4 would requi�e an estimated 70 feet of length and a volume of 45 yd3 per build- ing. Casts would depend upon local construction casts and the cost and transportation of the unconsolidated grav�l fill materi- a�.. As n�tec3 above, Gabian rock-filled baskets could be substi- tuted. Loca1 cost for these baskets, which should maintain the he�ght requirements, have not �een determined. BUILDING-WALL REINFORCEMENT A third altez-native form of protection for buildings 3 and 4 is ta allow rockfal�. impact with the uphill building walls and design internal wall structural members tv resist rock impact. As in the above sys'tems "A" and '�B, '� the major construction elements in the building (beams, cross-bracing, etc) , must absorb rackfall momentum. Fo� flexible constxuctian, �tructural d�f�ec- tion must be considered in computing th� impact �orce, P. Equating the baulder kinetic energy with work expended in bending deflec�ion yields the relationship F = (M VZ K}: �5� (1) ' where M is boulder mass (691/32 .2 = 21. 5 lbs-ft/secZ} , V is ve�.ocity (36 ft/sec at �.Oo probabzlity level [Figure 3] ) , and K i.s a stifFness factars. For a simple beam, K = 48 EI/L�, �2� � ' ' � � where EI is beam stiffness and L is beam length. The relation- ships expressed in (Z) and (2) inc�icate that flexiblr� structural members are more effiCient in resisting impact than stiff ones. The actual expression for stiffness, K, wi11 probably be differ- �nt than (2) , d�pending on structural-engineering de�ails. In general, rockfall protection at buildings 3 and 4 m�ast a. avaid windows wi�.hin the lawer 5.5 feet; b. assure structur�l e�Ements can resist P; and c, assure racks wiZl not penetrate walls betwe�n the beams. The additional cast for reinforcing the building walls wi1.� d�pend on s�ructural-engineering and archi�ectural details which will b�come known in final design. Of the 3 structural-mitigation options d�scussed in this section, only the flexible-post fence wiZZ prevent rocks from reaching the buildings. The ather two optians (rockfa�i-wall barriers and building-waZl reinforcement) obviously allow rockfall impact with the building and would also allow rocks to ro�l between the builclings and acxoss Lions Ridge Loop. The resa.dual risk to persons in the ar�a, th�e�efore, is larger with the latter two mitigation opt�ons. Even this residual risk i� small, how�ver, because �najor rockfalls are expected to occuz only once every few years or �ess, thus the probability of encounter with a p�rson who may be outside and exposed just when the rockfall vccurs is very smal�. 4 ROCRFALL MITIGATIpN FOR BUILDZNGS 9 - 13 Buildings 9 - 13 are loca�ed across the flat valley �loor, near the southern limit of rockfall po�.ential (�igure 5) . No rocks whieh cauld be c�early identified with the source outcrop on the hill could be found at the proposed building locations, and the CRSP simula��.on indicated that onl�r 350 �f the rocks rolled as far as the buildings. The simulated rocks that did reach the buildings were rolling (not bounczng above the ground) , with typzcal rolling velocities of approximately 20 ft/sec �� less (Appendix C) . Roekfall events of this character could dent the lower part of building siding, but would not �ndanger the struc- ture or its occupants. Furthermore, suc� major events are exgected on�.y once every decade or �onger. � Because roc}cfall �nergies will be small at �he mid--valley loca- ti.an, there�ore the fill bank on the nc�rth side of �he proposed subdiv�ision road, located directl.y north of Lots 9 - 13 , will stop a�most all rocks. In my opinion, this raad .is sufficient miti.gation. . . , • . � � Additional str�ctural mi�igation for these rare, relatively low- energy rockfall events is not recommended unless occupants of these buildings demand camplete protec�ion from rockfall. If such complete protectian is desired, it can be attained by building a 3-foot high rackfall barrier near the center of the vaZley, as located on Figure 5 and diagrammed on Figure 8 . The rockfall baxrier shown on Figure 8 consists of a retaining wall wi�h a vertical face toward the rockfall direction consisting of railraad ties or simi�ar weather-treated timber of �arge cross section. These ties should be braced on the uphill side w�th steel fence posts driven into the ground at approximately 4-foot intervals, and should be filled on the downh�ll side. This will stop the 10%-probability rockfall event (Figure �) , which has a bounce height of �. 2 �eet and a �elocity of 26 ft/sec. 5 SCALING: REMOVAL OF ROCKFALL SOURCE This type of rockfall mitigation is sometimes used where obvious, active rockfall source areas can be identified and removal of rocks can c�early reduce the hazard. Removal of all the loose rocks could b� completed abov� the prapased subdivisian, probably within 10 - 15 man-days of work. Field observations of the bedrock outcroppings and lower slopes indicate that most of the loose rack couZd probably be remaved by blasting and/or prying rocks loose and forcing them to roll down the slope. Traffic eontrol on �he L�ons Ridge Loo� road would obviously be required during scaZing. Although scaling would red�ce rock�all risk to an acceptable level immediately after the work is completed, i� is not a permanent so�ution at this location. In �ime, the �ormal weath- ering process will produce additianal saurc� material and the rockfall hazard will gradually in�reas� with time. With the. houses in place, additional sca�ing to reduce th� rockfall hazaxd could nQt be completed. Report submitt�d by, �-��� ��. 4�'�� . Arthur 2. Mears, P.E. Rock t�ajectory \ - r �' ' � � � r+ � 'r Local . Velocity N{,,vfN W W W • . W W W sxz ;o o Bounce Heigh� N^� ..aa . �f v et ..�-� � i r�r Analysis �xo�� ,� Point �< Surface FIGURE l. Definitions of velocity and bounce height at the analysis point. The statist�.cal distribution of these values are comp�-�ed by the CASP rockfall model and are shown for 100 s�mulated rockfalls of 2-foot diameter rocks at 3 different slope positions in Figures - 2� 3� and 4. � .� � 4� � . � � �1� • � • BdUNCE HEIGHT . . � {FENCE LOGATIaN� � .. a� U � � � � . . • • � � . . . . .. . _ rFn�n a ,,� I N W W U • Z=_ • O � H N N � . h O P �'' ' �� .r�l �N'Q � . a.t.r A . N M C! ' �r r o z5 5a 75 �oa� j` Probability of exceeding bounce height � . �Oft�s ._ � VELOCITY . (FENCE LOCATION� ,-. 40 • m � � +� , � � v � +� �ri . 0 3a � � � • U O �'r S�" ' � 2Q � • � io . , 0 25 So Z5 1Q� � Probability of exceeding velocity FIGCIRE 2. Exceedance probabil.it�.es for bounce heights and velocities of 2-foot diameter rock at possible fence location, approxima,tely 60 ' � � . ^ . .. �, 10ft . . _ . . _._. ..._ .. `. � .. . , BOUNCE HEIGHT � (UP`PER HOIIS�S} ' x � - .. _ _ U C , � J ..... .. ...... H�� � wu�iw O . . �_ . W W W W I V1 N VI . ►�y ' . .. _ . . ��I O O O V �+o a o - ^`� o� ��� _ � o . .r., �n r A a zz �o �� ioo� jq Probability of exceeding laounce height � 50ft� �_ . . . , � VELOCITY . (UP�'ER HOUSES) �a , � .�. 3p � . . . � � . " � � U _ O • _ � 20 � � r�i U . O � � � N 10 " - . A .. � ' o z5 50 75 ioo� Froba.bility of exceedin.g velocity FIG[h?E�. Exceedance probabilities for bounce heights and velocit�es of 2-foo� diameter rock at possible honse locations at Lots 3 and 4�. ,.-. , - 4�-� 5 �t v � '� �f BOUNCE HEIGHTS aD .r., x (BERM LOCATION� � 3 . � � . '^�� 0 2 . �W�, �a W 1Y W . Yf N V1 - . .• .� V 000 p i ,. Yf00 �. �C ['f tl' � �w.a.. � �r-i � � • ��� p o 25 50 75 �.00� e � Probability of exceeding bounce height �# . �O�t�s VELOCITIES � (BERM LOGAT�ON� 34 • . N � � 4� � �, 2Q � � , .� U O ri N ? � O �.O a � . ' .� � a� A 0 0 25 5fl 75 �oo� Probability of exceeding velocity FIGURE �. Exceed.a.z�ce probabilities for bounce heigY�t� and. velocities at b�rm location in val�ey bv�tom �o protect Lots 9 - 13. � ! � '��. :.a,. �` � ��•,�� �.�.� / ., .�► ,�,�•� . .a..i►� /./� � . ,�,,� � ,,i � ., �� � �. .:. -�'' l.,�,/.� .// ,,i-� � �r �I� '.�:.�.:i,..� ..r.�,�� �'� . . �- . . � � � �; . ���� � / � � ; , , ', : .,.:-. � �'�� `� ';�i'�� :�. , •�/� y�, r� ',:,.7�!`�'� �i � � � , //�.� r ./�..< <:�:��,_ /r_ -�'�/./ //�: � � ,� �l�titi4 �a � f 5�....:y hYt .'�°�`�t ��' �r� ',n;.� _ ��� r, � �i���� � ��,: ��� � ��� �.. i �,.�� • . ��:' �" I�� ,:rc �� ''' �••!/�'�1.�//:`► �,�.- r-, � �:r���►�•!� ,�' � � .+� �. - -�... �.� ./�. ..�- � s� - .. . _ � �.,, . � , �.� : - . �-�. �... : �.� � • . . , _. . . , . ,, . � . `. : . , ,. ..�. � . .� - . :� f � , ,��' � . . , • ��i ,� � . . . ,. � , � � � � f � ���� . . �� �� � .� . � / . � - ---- i � ♦ J , ./' , j f . � - � � � _ ( � '�� � - � „�� ,� - r � � � � � � � . . . , i / �� ,- FIG�. R��o�ended locat�ons of flexib�e--po�t � . fence ���, up�1�l rackfall-barrier wall (B) � North ` , and railroad�ear�hen barrier C � } • Building envelopes / are from Sept,ember 18, 199� site plan, r . �. � Scale: 1"=�0' ' / - / , i0 _ � . �! � � �. � r � N / � J � �' �. b . � �� '� ' �� ��� 9 � � "a ct► e --' _ r — � 3 � _ ' r. ` �~' L�� `� ' . ����� _ � ` --�--*--f �r _ +- � ! � _f i � � � � d " `�+7 ��� � � �► � . � _ � � �� `'` � �,I' + j � ! • • / \ c � • 2 - z y - ,�'�� - � + ! �-�i (i!l'� ` •�� f�„��' _� �. , � .� � � - � � ' �~ � � . '` _ . -� ' � � @ . �''�• , - , r �� � �: . r� ' �1 / ` 1 ' '-'` / 1 � � / � ."+ - � �� / K 5� � � � � � �" �1�'1� �'` r � - �� � Q,�d'i�. � �� � 1.1T1 L.l TY E1�S EI�'tE1titT ��� _ n � � ' • � _• FIGUR� 6. Flexa.ble-post rockfi'all �ence located 60 feet uphill of buiZdings �- -- 3 and 4. Exposed cable neax base of� fence pasts enable fence to flex upon � rock impac� and reduce forces on structure membexs anc� foundations. Design fence heigh� �7.5 f�} is based on 10f exceedence probability at location plus design rock radius (i.d it) . W W W � . , . `.. _ . � �'�. 47 W 41 . . . . . . xsx ' - 4iNN � 7 . NOO "��� . �H ..�.�r. ' , � � �. H� i M � � � ava ; , ��.. .. ;,.� . . e'veir ., - 7,5 f� � � aaer .• �t•C ' � 'q •�. P. . .,� Deta,il •< below � c... Guy � . f, ' �LS. ��. . � �ti' � M�• :r � • t �: , ' i .� I � �,' i � . , ., ' . / � �" diameter galvanized . ' steel tube ' _ lz�� - is,. ' '� Bundle of 3�$�� or 1/2" steel cable . �, o. , o �oo�o . ., . _ ; °�� .. _ .. � I , / ���Ps / � . ��:° . a . �,e. ' . . � . � . \ � Rock ' � 1 Trajectory - � . _ ... .� .. . . .. . m w rn "".. \ x== � �'••.��-- — �, � �� Energy-absoxb�.ng N N N �:` Barrier - � 000 • _y �noa :;� '.,r .•�.� .,� . �.• �ev o ' . •...,� . . .. ava . i;,r ri � House t'/N CV Reguixing �� Protection � . _� . ,�y .� � � . pC,0�:•�s+0 F1ex�.b1E • aQ='0?�OQ o. , . . Frame or� ::.+•.:.:w "� o . ... pp.v • � Wire Mesh �p"p�00 � . op�°oV o . o`O s � ;'`' . Gravel� :o'v_e;:0. o • � '. � n:� •�� - Small rocks �Q�00� � (well d�aine 'p�Do•0 6 5 f� 0 ,r,�:- f O.o 0�0'�00 . �� 0�a°o p p. n,� .a'QoaOQ� �.,. �-- �D Q o 0: � � �g°�' '� r- .°�A°� �,o o� . 2.Oft _ . _. __ . _ . ' I . FIGURE 7. Rockfall proteetion at uphill walls of houses on Lots 3 and ►�. Rockfall protection barrier shoula consi.st of unconsolidated, coaxse- ` grained, xell-drained g�cavel and sma1.1 rocks tha.t wi1� absoxb �ock � momentum, D�sign height (6.5 ft� is based on lOJ exceedence probabi.lity at loeation plus desi�n rock radius. . . , � � � t . . ` � ' j ' . �_ � . , � ' �� � ' KUr�: � - ' . � . . . , . � _, , . , `` ..\ i.o . � . . , . . ..� ' . . .. . � -. .. ' � . . . _ - • , �,+r�A:,;�•. . � Ntf1N ' . � ' � . . " •Q"�,' � � . ., .. . � ' - � . ��.. . .. ___ ��.os. . W W z�c s . � 3f�` . --. � "-o:�- . . ' N vl N � I - .. ..S- �: ���� _ � .. - . . Y1 O O -- .� , iC �d��F,ii. � .�. . � . --er . Rockfall Direction � �_s�:: . � �-i � .�;:C�' :` , �a . . ' - �� � ' . a er a Q;•�.. r.�.. . CINN . � .�'. � , - {`I C1 CY ' ,• �— �i •p . Steel � - � . �� : _ � ` fence� _ =-�� � pos� _ ._`_ : - ' _ • FIGURE 8. Op�ional rackfall barrier to protec� units 9 - 13. Vertical ��� upha.11 face is made o�' railroad tiss or similar ma.terial and is braced �with vertical fence posts at a spacing of 4 feet. � � � � I • � . • , Appendix A. C1� output fvr des�gn of flexibl�s� rock�all. fence � locateci 60 fest above buildings 3 and �. ' CQLORAD� fiDCk�ALL SIM�ILATION Pi4�3GRAM FILE IVAME \ro�ksit�\zneimer-.3 F:�7CF�: STATISTICS 691 �F� 8F'HER I CAL ROCF; 1 FT FtflD I U5 NUh1HER �F CELLS .11 � NtJMBER OF �OCf;S lOt7 �° ANALYS�S FOSIT�ON 2u0 INITIAL Y ZONE 475 TO 485 � � YhIITIAL X VEL�CITY i FT��EC I3VITZAL Y VEL�CTTY —1 FT/SEC � TANG�NTIAL �IORMAL '� SUFiFACE COEFFICIENT COEFFICTENT B�G�AINING EI�DING � CELL # . RDIJGHNESS �ESTITUTYC3N X,Y 7C,Y 1 1.5 .8 .3 Q , q.7U 7b a 41�7 2 .5 .B ,? 76 a 4 i i? 8g a 408 y 3..5 ,8 .3 8B , 41�� 118 , 385 4 1.5 .6 .? i 1 B , �85 199 a w32 5 1, .8 .3 199 r v.:s� ?8� , 285 b .5 .8 .3 288 , ?�5 .�77 , ��� �� 7 .3 .85 .35 �77 , ?52 39� , ^44 8 . 1 .9? ,4� ' .�9� , ?44 4^6 � ?44 9 .? . 85 . .35 426 � �44 446 , 236 1 C� . 3 „85 , .35 44b a ��6 54� a �3? 1�. .3 .B5 .35 5�4b , 23,?s 587 , 234 _ � ' � ' • � . . � � '. .�,�. . : ' : . ''��'�ILEA�AL��IS�PO�hIT���zneim�r.3" h1A X I MtJM VEL���TY X= ��c-� Y= 331 �VE�iAGE VELOCITY 54 FT%SEC I IN�MUM VELOCLTY 4 FTISEC � STANDA�iD DEV I AT I DN (VELOC I TY) _�,p. �4 AVE�AGE �30UN�E HEIGHT � FEET MAX I h�Ll�I �tQUNCE HE I GHT 11 FEET MAXIMUh� KINETIC ENE�GY 2919B FT L�S HOUhiCE At�ALYSIB F�D�NT BCik��lC� HEIGHT D�STRIbU7Y0N HEIGHT � . � � � { N=7¢ . 9� �""'""z � . � �—i 3 � � 3 � �` 7 • � � � 89 1 �' �s � . �g � C7 Rollin�� �� ^� �� �� �� b� FF�EQIJEi�CY • FFtEGlSEIVC� AfALYS�S �OINT VELOC�TY DISTF�.IBUTION , ,3� � C££ f� � £�C � { f £ i 1 �£C£ f�'C�fC��f££�£f££��C£'�efCf£ft� C CfC f £ � � 4 � VELOCITY � � �8 � , � , f 52 I ' II � I . i � � , + � . , - . . ! � . �,� . - FILE NRME. \rock:sit�\:neimer.u . BQIJI�CE B�UNCE H�YGHT �,�AI�H HEIG�� � 11 � 9� � £'�' C�£ �C Cf f B � C£C £�£££££CC �£Cf££ � � rcre r €�rerrceec �r��c�rrr � � rr�rrr�rer{crr�cre���ccrer�c 4 � fCff£L'C�£££f£fC�'C£££££C���C L'f £ . �£{f£f fffCCCCf C�CCf£f�f£'C���'�'C£CCC £'£ ££ ^ �C�����£�C��£�£��£{'��£�£�ffff£££����C�£�'��� f£C£ 1 ��{�CC�£�C£{'£L'L'CfCfC£££fffCCC�££�'CCL'CCCCC tCCC£CC£C£ �7 97 195 ?9? �91 489 5B7 HO�IZONTAL DISTANCE VELQCITY UELOCITY GFA�H 65 � �� � £� f��C £ C£C £ 49 � C Cf£CCCCC CCCC£ L C£C 45 � C�' CL£Ct£ffCCC£�CCCfL"�'fCC£££C£f££ � £C 41 � � £CL'£L'£ f{£�{" C�f�f £ ���' CCC£££££C£fC£C£ T7 � £C£££C£�£�£CCCC��'£CC£�C�CC£�£C£�tt'�tC£t'�CCC � £££££CC£�£££C�€'L"�'C£f£££�C££fCt£CC�'£�£�£CCCCCC{'£ ^4 � £££££CC£££C��£CC{'�{££C£££f£££f£ffCC£C£�£f�'fffC£C£C� ^� �f£Cf£�£CfC£���£�£CC££'££Cf£C££CC�,�C�C�t�l'�CC�"C'CL"C�L'£££C£ ^� �£££££CC£ft'�����f�£��CrC££�C£££�£C££££f€'��{f{f£Cff£�f£fe� ia �ceeecec�-r��-�e��c����rer{eec��eccrceee�c�e�ccr�e���rc�eeee 1� �ff£'f£££f�C£€'££CC�CC��'L"££££'C�'CC£££CfffCf£fC��£ffClCC�CCCC£CC � 9HO�iIZOtVTAL9DI8TANCEi�V `�9� 489 587 � � _ , � .. � � �� ., :. . . ;�• :,:� ..�: �t:. . , .. i FILE 3VAME: \ract�:sit�\zneimer.L �'IAXIh'IUM AVERAGE STANDRRD AVEF�AG� MAXIMIJM CELL # VELOC I TY VELOC I TY DEV I AT I ON �PC3UNC� �#7€�NCE � (F'T/SECy (FT/SEC) VELOCITY HEIGHT (FT) H�IGHT (FT} 1 48 ^7 9. 8� 2 �.0 � 4q ?B � 9.62 � 7 4 5� `'1 �.U.47 ^ i.c� 6 5T ^b 8�45~ 1 4 � 9 46 28 6.58 U b �� i�4, �U �.95 � �1 ' X I NTEFVAL FiQCF.S STOF�ED u TQ 1�� FEET 1� 10 TC] ��� FEET 1 ^�� TO ,:,ca EET 1 3t� TO 4C] �EET 1 • 6c� TO 7t.3 �EET 1, �6 7c=� TO e�i FEET 1 8�"� TO �t� FEET 1 1�t� Tb 13� FEET 1 14c� TQ 15� FEET i 15s:� TCl 164.� FE�T �.1 17�.� TC3 18� FEET � �C�t7 TO 21 u FEET i— 24U T� ^5c� FEET 1 ^6�7 T 27� FEET - �� � 27�� . TO ^B� FEET 1 � ^8C7 TD 29�� FEET 1 48r.� 7a 49�� FEET S 49C� TL3 5U� FEET 5 50c� Tt3 51 U FEET 7 � 51� TO 5�0 FEET 12 5��� T[� �?C1 FEET 8 5:�0 TO 54{� FEET 11 54� TO 55�7 FEET � 4 � 55C1 TC] 56� FEET 8 56c;� TO S74 FEET � 58� 7D 594 FEET � 1 ' � i _ . A endi.x J� l:L-t�Y output ��or design o�� roc 11-earrier wa1.L at buildings � . ' 3 and 4�. � . � ��•�'•,;'����;.:;�. : CCILQRAD❑ �OC}:FALL S I MULAT Y ON FftRGRAM F��LE NAhlE �rocksite\�n�imer. 2 �iOCF� STATTSTICS 691 L�t �PFiER I�AL F,C3�F; 1 FT RAQ I LIS NUI��E�► OF CELLS 1� . NUME�E�i 0� �OCF:S ].00 ANALYSIS FOS�TTON ��,p � � , I hl�T I AL Y ZONE 475 TO 4B5 � IhIITIAL X VELOCITY 1 FT/S�C INITIfiL Y VELCICITY ��. FT/SEC TANGEhET I AL hiOFtMAL SURFACE COE�FICIENT CQEFFIC�ENT bEGINNrhIG END�NG CELL # ROLJGHN�BS RESTITUTTON X,Y X,Y 1 1 . 5 .� .� � , 470 �6 , 41. �'�� • 5 .B .� 76 , 41 c? 8B , 4i! w �..5 .8 .� 8B , 4�8 118 , � 4 1 .5 . 8 .� 118 , 385 199 , � 5 1 •e .y 199 , ?�� ?88 , ^: 6 •� .8 .3 � �B8 , ^85 ?7? , �� 7 + y .BJ .ti J ..�i�7 � LS��'. ._�iSi� � � g . 1 , 9y .4� 342 , ?4�L 4�6 , � 4 ,3 .G5 .�� 42b x 244 446 , � 1� . �' , B5 .�5 446 , ��6 5�F6 , � 1 � •3 . B� , .35 5�b = ?33 587 , � . � • ' ' � � . � `:� FILE IVAME: \rnck;si'�e\�neim�r.'� . ; • •.• .. '�� ' ' AI�ALYSIS POINT . , .,. ,... X=_>'�6U Y---?00- . ..�: ,....: . . ._ . . . .. ._.. ,,._ _ ' MAXYMUM VELOCITY 52 FT%SEC AVERA�E VELOCITY 23 FT/SEC . h�INIMUM VELOCITY 4 FT/SEC STflNDAF�D DEV I AT I QI� (VELOC r TY 3 1 Q.45 AVEF�AGE �QUI�C� HE I GHT ? FEET . MAX IMUi"I $�UhICE HE I G�iT . 4 FEET MAXIMUM tCINETIC EIWEF�GY �9f.9B FT L� ... BClUNCE A�IALYS�S FO I�!T BQUI�CE HE I GHT D I STR I�UT I ON I NEIGHT � � 9 4_, N-72 ' 8 � 4. � �-3 6 �_� � 5 �_ 3 4 �` 3 �` � a � � IE �' � Z 2 (16 rollt.�) � 14 -20 3t� . 44 � 5�? bt� FREGIUENCY FREGIIJENCY A�IALYSIS F'OINT VELOGITY DIST�IBUTI�N ' 7 � C 6 � C £ 5 � C � £ C 4 � C £ £ £ , £ � � CtC £C C C C £ 2 � C �ff C££ f fC CfC£ £C {' C 1 �f I££££ £££f£CEfC£f� ��£££�£1", £L' £� � C C 4 28 �� VELDCITY � ' � • • � '�� 'FILE NAM�: � �rocksi t�\�nei mer.� �.. .,. BRUIVCE . . . . •.BL7E�NCE. HEIGH7_ GRAPH HEIGHT � �� ..� ' i 1 9� 30 � ££ : -. . 9 � C� �'�'C C�' . £C £ . 8 � E�C . _C££fC£f CL' fC££.CC 7 � fC£t f ffC£�f£££££fC££CfC . b � ceref���e�r�rcr�-��c�eere�crc _ � � CC�CCttCfC££�'C£C£CCC£C�Cf£££_ ��' £ . 4 � ££f£'Cff£�C�£C££L££ff£�'��L'£f£'Ctf££� £C C� � � rr�rr�trcrcr��rrrcrrercereerecf��c�trec r� � �L'ffCfff�££�£C�C£££f C££Cf£CC£fC�'�'�'fC£Ct££ ee�r i �££C£�£CC�fCfCC£'£��£�£C�£C�CCf�'f££ff£f£CC C££££fC£tC c� 97 195 c93 ;�91 4B9 587 HQ�;I�OIVTAL D I STANCE VELDC T TY GfiAPH . VELOCITY � 65 ,� 61 � C � 57 ,� ' f f t 5.3 � C£ CCC£ £ ££f �' . 49 � C f£££££££ £�CCC � fff . � 45 � £f e���tecr�eee�fccrtccrrrreerree C£ 4� � C CCt£C££�C£'CL"L'CC��fC�CC££Cf£CCCfCfC£�£'CL'C 37 � Cf£fff€'£f�t�f££C££Cf£C£f£Eff£ff£�££'r�fCCC£C �� � C�CC�££CC�C£��f��CCC�£Ct££�L"£CCfC££C£££££f£�'£££ ^9 � CCCfC£'CL'C££�f��L'�CCtC££f'C'CC��£C££££f�'f�£���'£CC�£'Cf� 25 �£CC��CC�Cf�CCf�'C�£�CCCCCC£££££fC££ff£��C€'L'fC��'t'CCCC��C � �1 �C£'Cf££�£££££££,�f£C£££££C£�fCf£f££££�'C�'£'t'CCCCC£C£C£�CC£CC 17 �CC£�C£C£f£L"£'CCfCC£L"�fC���L'CCCCCCCCC£CCCC£ff�£{�L'f£CL'fff£f 13 ��'t"CCt'CCL't'C£fC£fC£CL"t'�'�'£CCCC££££f£f£££�CCCCf�ffCf€'�'C�'tff�'L'f£' t� 97 195 293 391 489 • 5B7 HORIZQlVTAL DISTANCE . . • . . � � FILE NAr�IE: \rocl.:si.t�\zneimer.t MAXIt'IUM AVERAGE STANDARD flVE�;A�aE MAXINIIJM CELL # U�LQC x TY VEL�JC I�'Y �EV T AT T Clt�l �OU�ICE �QIJNCE (FT/SEC) (FT/SEC3 VELOCETY HEIGHT (FTJ HEIGHT (FT7 1 48 �7 9. 8$ 2 1� � 44 i8 7.9� � � � A�9 �� 9. b? '� 7 4 S� �1 1�. 47 � 1�� 5 S9 ?? 11 . 5 f 9 _. b �.1 2b 8. 45 1 4 : 7 5�a .:�1 6. 69 1 - 5 B 4�. 2� 6. 98 c:r 1 9 46 �� b.5 �:� 6 i i:� ^4 1�'a 6, 95 t:� 1 11 i� 7 U � U � X ��ITERVAL FiOC��:S S�QF'F'ED t� TO 1�� FE�T 15 1 i� TL3 ^c7 FEET 1 ��_) TQ �u F�E7 1 �� TQ 4c� FEET 1 6t_a TO 7�� FEET }. . 7�'� TO B� FEET 1 .3 �c:y TO 5��.� FEET 1 1��� TO 1•��� FE�T � f.��'a TO 15�7 FEET 1 15�a T❑ 16u FEET i, 17� �'q i.8ta FEET 2 ��'�U TO �2 c� FEET 1 24� T� �5�:� FEET 1 '�b� ��l :7;� FEET 1 27�� TQ �8�� FEET � 3. tSU TR '?9� FEET 1 ' � 4Br_a TO 49r_y FEE�" 5 �F9� � Ta �t�c3 FEET � �0�� T❑ 51�� FEET 7 51� TO 5�t� FEET 1� 5�n TO 5•��'� FEET 8 5.,��� "fCt 54� FEET 11 54h TO SS�� FEET - 4 � 55� TO 5bt, FEET B 56U �'❑ 570 FEET ? 570 TO 58�7 FEET 1 58�7 7C1 �9c_� FEET i . - . , a , ° _ Appendix C. CRSP•tput �ax design of rockfall b�ier for protection of buiia�x�s 9 - 13. COLOF;ADO F�OCF;FALL SIMULA"fI�N f�RC3GRAM FILE hil�ME �rocE;sit�\:�eam�r. � RC?Cf; S7A�{'i ST I CS 691 LH SF'HEFi I CAL ROCf� 1 FT RAD I U5 NUi�i�iFR QF CELLS � 1� NUt��ER ai= �acF':5 1��C� AhlALYS I S F'OS I T I Qh! �4c:� IN:EI"IAL Y ZDIVE � 5aU TO 56� Y�ITTTflL k VELOCITY 1 �T/SEC � Y�1�7IAL Y V�LOCTTY —1 FTl�EG . TANGERkT�AL NOFMAL SUFFACE CC]E�FTC7Ei�T COE�FICIENT E�EGII�t�ING EhIDING CELL � FiOl.3GhihfESS Fi�ST I TL]T'I CiIV X a Y X, Y �. 1 . 5 , B .4 c:� S45 44 51� '' #. .5 .8 • 44' , 51^ 99 ; 47' 1��1 ' 4�B 4 1.5 :� ' z; . �91 � �4�8 ^��i'� � :�99 5 1 . � . B � ': '?t�i� r .�99 �B5 .�47 � 3. 5 . B ��' ��5 ; ''47 � :�45 ; a f.S � .� • � �4J � .�.r�S -.:1JS � �1.5 6 . 5 . B . � �5$ , .�1' 412 , �'82 -��. �n, �, r, '; . ��� . i . 9� . 4^ 44B � ^�8 48$ � ^6B � 1 ^ . 8� . �� 481 7 ^6B 519 , ^57 1^ � "% , 65 :?5 519 ; ^�7 5B6 , ''S1 �.�j . � . t�`� . :?� 58b � ?�1 644 , ^�� � . i � FILE NAME• \rnc��site\�neis�er. i Ah1ALY�IS F'OxNT X= 5�� Y= 25� h1A X I MUh1 VELI7C I TY 35 FT f SEC AVEFiA�E VEl��CITY �5 FT/SEC MI1�1TMUh! VELDC�xTY 18 �T/SEC S"f"A1�DAFD DE�l AT I O!� (VELOC ITY) 3. 8 AVEF;AGE £�OUN�E HE I GH� �"� FEET MAX IMLlM �QUhlCE HEIGHT ^ �EET M(�X I MIJM td I l�lET I G ENEFiG'�' 1���8 FT L$ ' F�OtPubCE A�ALYS z 5 FO I h!l' BOUIVC;E NE I GHT D I ST�i I bUT I 0�1 HEIGHT �3=�= � � i �—� �� � (23 rol:;,na11� ���1 tit� . F�;EGIl���V�Y 4� �� 6t� FFECiUENCY ANALYS I 5 f�C1 I NT VEL�C I TY �7I STF'i I�SUT I UN 6 � t . 5 ,� f � � � �' f£��� � - ^ �� £C ££f£�'f . i �{ ee �ree��� e e 1 B ^••.6 ,�5 VELOGrTY , � . -- � . ��LE IVRI�E� \rocl�sit�\zneimer. i F�dUNC� b�LlNCE HESGHT GFtA�H � HETGHT 14 � � � 13 � 3.? � �'CC f 12 � C££ ffC 1U a� £f£f Cf£� �'�'C ��' 9 � fC ££CF£CfC£f�C L'�'f�' �£ B � C�£Ct'C£'L'£££�C£f ������E £C C£ 7 � Cf CCCC€"Ct'C�L"{"C�'CCCCCC�'£CC�' Cft 6 � fCC�£'�£CC£L"££££C££££f£fff��C f£C 5 � �' C�£�f["�£�£���Cf£C£f£�Cf££C££ £CC ' 4 � ��eeeefee�eceecc€�cr���cre�cfrre f Cff i ��L'£CC£££CC�£CCEC££C£'£'CCf£££C£f££ £f£CC£1"f C � • � ��f�££��££�f����£C��������C�£Cf����C�Cff�£�� �£C£ C£ U ].l�? ''14 ?^^ 4�9 5.�b , 644 ' HQR�ZC]NTAL I7I5TANCE�� • , UELOC I TY �fiA�'H � VELt�C7TY �� � I �� � EE£�'£� £ C CC 5t� � f££C£f�££L"C££f £'C�' {' 4� y� �fCt'£�f£C££�"�'C£1"�C�'L"L' f£ ££f 4^ � �'CCL'tf�CC££ff£C€'££CC�£'�£ C£' £ C �££ I ,� � c��t��rrc€��r�ef�€�ceecc����'tf� trcrreece� e ?4 .� €'���r�e�ecce�����eec�reeere�ere�£�e��eeeecrrer r ?s� 4 £�C�'�£t'££��'£�'�t'C£C££1"f££C££C�f£CC��fCC£L££CE££££f£CCC �6 .�eee��eeecececcccect'ret�rcececercrccec-c�cerr�errcerr���r�� i �cc��ee�ee�ece�c�e�rerecercreerceer�-eeeerr�rreece�c�����r�e� i� �ec�eeeeeee�ee���c��r����c€�cceeccrec�e�rc�c�'�e�r�crr€���c'�eeee �� �eeecfreeec�ccece�er�rr�er�cceeeeceeee��rrcrccecrr�e�trr���� C� 1�}7 ^14 �2� 4^9 ��6 644 I HOFt I ZO�ITAL D�STANCE � . , , ' ^` � � FILE hlAt'IE: \racl::site\�neimer. i MAXIt'iIJM A�1EF"iAGE STAC�I�AFiD AVERAGE h'IAXI�'ktJM CELL # VELOC z TY VELOC I�"Y DEV I flT I QI�I E�OLJNCE BDUNCE (�'T/SEC)� (FT/SEC3 UELaCITY HEIGHT (FT) HEIGHT (FTl , � 45 ^4 1B('a41,7 � � B 4 48 �q C�. 97 � � 1,� � 4b ^1 �1. 5� i �� � �� 8 4b ?7 �.�8r 1 5 � �� �� 5. 4::� �' �a f.i7 � � 4. ��� ti �` l i ?7 ^8 �. 61 t:� 'a . i? �^ � ^`• � "' �� �� `q 4.95 Cy Ca X I hITERVAL �i�Ct�5 STOF'F'ED �"� T❑ i c.� FEET �.; • i�] TO 2�7 FEET A� � 2C� T❑ ��:� FEET 2 ��.� T� 4�? FEET i 4s"� TO 5� FEET 1 5c=7 TO 6�7 FEET 14� '�'a 15�:a F��T 1 15i_� TQ �6�? FEET i 17�'� TQ 18�:} F�ET � 1 19« TO ^trt� F�ET 1 '�'''�J TQ �?t) FEET 4 ^?t� T� ^4r7 FE�T �. '�'4�°t� T�*O �51 � FEET 1 ,r:.��.J 1 0 iG1iU �E�T :^'_ , ":bc:� TO .^7tr F�ET ? ''7'�� TO ^8�� FEET ? ���=t TO ^9sa FEE�' � 29Cy T[] L�J�� F��T ^ � ?�7C� �"Q ;1 c'� FEET ^ .:r 1� TO ?2C� FEET 4 ,��« TO ti 3c� FEET 6 :�'U T�] 4tJ �EET 6 . .:14�� Tt3 �S�a FEET 4 , E,1� T� b^c] PEET 1 62�3 T� 6:.��} FEET � 6:�t] TE] f�4s� FEET b b4�=3 TO 65c> FEET ? ��c . �_ : �- � � 4