HomeMy WebLinkAboutB11-0496 REV03 Steel Connection Designs approvedTRANSMITTAL FORM
Project Street Address:
__________ ______________________________ ___________
(Number) (Street) (Suite #)
Building/Complex Name: ________________________________
Building Permits:
Revised ADDITIONAL Valuations (Labor & Materials)
(DO NOT include original valuation)
Building: $_____________________
Plumbing: $_____________________
Electrical: $_____________________
Mechanical: $_____________________
Total: $_____________________
Description of Transmittal/ List of Changes, Items Attached:
__________________________________________________
__________________________________________________
__________________________________________________
__________________________________________________
__________________________________________________
__________________________________________________
(use additional sheet if necessary)
Application/Permit #(s) information applies
to: Attention: ( ) Revisions
( ) Response to Correction Letter
____________________________________ __________________________ ___attached copy of correction letter
( ) Deferred Submittal
____________________________________ __________________________ ( ) Other
Use this form when submitting additional information for planning applications or building permits.
This form is also used for requesting a revision to building permits. A two hour minimum building review
fee of $110 will be charged upon reissuance of the permit.
Date Received:
Department of Community Development
75 South Frontage Road
Vail, CO 81657
Tel: 970.479.2128
www.vailgov.com
Development Review Coordinator
For Office Use Only:
Fee Paid:
Received From:
Cash _____ ____ Check # __ _ _______
CC: Visa / MC Last 4 CC # exp. date:
Authorization #
Applicant Information
(architect, contractor, owner/owner’s rep)
Contact Name: ________________________________________
Address:
City _____________________ State: _______ Zip: ____________
Contact Name: _________________________________________
Contact Phone: _________________________________________
Contact E-Mail: _________________________________________
I hereby acknowledge that I have read this application, filled out
in full the information required, completed an accurate plot plan,
and state that all the information as required is correct. I agree to
comply with the information and plot plan, to comply with all Town
ordinances and state laws, and to build this structure according
to the town's zoning and subdivision codes, design review ap-
proved, International Building and Residential Codes and other
ordinances of the Town applicable thereto.
X___________________________________________________
Owner/Owner’s Representative Signature (Required)
PCL Initial Submittal Review Notes
Strata -Vail
PCL Project No. 5001410
Subcontractor:Zimmerman
Submittal #:05120-1 Date:8/7/2014
Revisions:Revision Dates:
Specification Section:05120–Structural Steel
Item Description:Structural Steel Connection Details and Calculations
Action:For Approval
Variance Request (Y/N):If so, why?:
Notes:
Reviewed By:Chuck Kay
PCL CONSTRUCTION SERVICES, INC.
953S.FRONTAGE RD WEST,SUITE 302,VAIL,COLORADO 81652
TELEPHONE:(970)470-6044
REVIEWED FURNISH AS CORRECTED
REJECTED REVISE AND RESUBMIT
SUBMIT SPECIFIED ITEM
CHECKING IS ONLY FOR GENERAL CONFORMANCE WITH THE DESIGN
CONCEPT OF THE PEOJECT AND GENERAL COMPLIANCE WITH THE
INFORMATION GIVEN IN THE CONTRACT DOCUMENTS. ANY ACTION
SHOWN IS SUBJECT TO THE REQUIREMENTS OF THE PLANS AND
SPECIFICATIONS. CONTACTOR IS RESPONSIBLEFOR DIMENSIONS
WHICH SHALL BE CONFIRMED AND CORRELATED AT THE JOB SITE:
FABRICATION PROCESSESAND TECHNIQUES OF CONSTRUCTION;
COORDINATION OF HIS WORK WITH THAT OF ALL OTHER TRADES;
AND THE SATISFACTORY PERFORMANCE OF HIS WORK.
Monroe & Newell Engineers, Inc.
DATE 08/12/2014 BY:
X
Ne
w
S
u
b
m
i
t
t
a
l
Su
b
m
i
t
t
a
l
C
o
v
e
r
S
h
e
e
t
8/
7
/
2
0
1
4
Pr
o
jec
t
:
St
r
a
t
a
-
V
a
i
l
OZ
A
r
c
h
i
t
e
c
t
u
r
e
Fr
o
m
:
PC
L
C
o
n
s
t
r
u
c
t
i
o
n
S
e
r
v
i
c
e
s
,
I
n
c
.
30
0
3
L
a
r
i
m
e
r
S
t
r
e
e
t
9
5
3
S
F
r
o
n
t
a
g
e
R
d
W
e
s
t
De
n
v
e
r
,
C
O
8
0
2
0
5
S
u
i
t
e
3
0
2
Va
i
l
,
C
O
8
1
6
5
7
SP
E
C
I
F
I
C
A
T
I
O
N
S
E
C
T
I
O
N
N
O
.
&
D
E
S
C
R
I
P
T
I
O
N
(
C
o
v
e
r
o
n
l
y
o
n
e
s
e
c
t
i
o
n
w
i
t
h
e
a
c
h
s
u
b
m
i
t
t
a
l
)
PR
I
O
R
I
T
Y
S
T
A
T
U
S
C
O
D
E
S
1.
4
B
CO
N
T
R
A
C
T
O
R
R
E
M
A
R
K
S
:
No
C
o
m
m
e
n
t
s
A/
E
R
E
M
A
R
K
S
:
CO
N
T
R
A
C
T
O
R
'
S
C
E
R
T
I
F
I
C
A
T
I
O
N
:
NA
M
E
A
N
D
S
I
G
N
A
T
U
R
E
O
F
C
O
N
T
R
A
C
T
O
R
R
E
P
R
E
S
E
N
T
A
T
I
V
E
:
N
A
M
E
A
N
D
S
I
G
N
A
T
U
R
E
O
F
R
E
V
I
E
W
I
N
G
A
U
T
H
O
R
I
T
Y
:
D
a
t
e
:
Ch
u
c
k
K
a
y
Pl
e
a
s
e
s
e
e
a
t
t
a
c
h
e
d
P
C
L
S
u
b
m
i
t
t
a
l
R
e
v
i
e
w
N
o
t
e
s
P
a
g
e
.
St
r
u
c
t
u
r
a
l
S
t
e
e
l
C
o
n
n
e
c
t
i
o
n
s
De
s
c
r
i
p
t
i
o
n
o
f
I
t
e
m
S
u
b
m
i
t
t
e
d
(T
y
p
e
,
s
i
z
e
,
m
o
d
e
l
n
u
m
b
e
r
,
e
t
c
.
)
b.
A
-
I
m
m
e
d
i
a
t
e
R
e
s
p
o
n
s
e
B
-
R
e
s
p
o
n
d
w
i
t
h
i
n
1
0
d
a
y
s
C
-
R
e
s
p
o
n
d
w
i
t
h
i
n
1
5
d
a
y
s
Su
b
m
i
t
t
a
l
N
o
:
Pr
e
v
i
o
u
s
S
u
b
m
i
t
t
a
l
N
o
:
Da
t
e
:
Re
s
u
b
m
i
t
t
a
l
CO
N
T
R
A
C
T
R
E
F
.
D
O
C
U
M
E
N
T
Sp
e
c
P
a
r
a
g
r
a
p
h
Nu
m
b
e
r
e.
Dr
a
w
i
n
g
S
h
e
e
t
Nu
m
b
e
r
f.
PC
L
C
o
n
s
t
r
u
c
t
i
o
n
S
e
r
v
i
c
e
s
I
n
c
.
Co
n
t
r
a
c
t
o
r
P
r
o
j
e
c
t
N
o
:
50
0
1
4
1
0
05
1
2
0
-
1
T
o
:
AC
T
I
O
N
T
A
K
E
N
A
-
A
p
p
r
o
v
e
d
B
-
A
p
p
r
o
v
e
d
a
s
N
o
t
e
d
C
-
R
e
v
i
s
e
a
n
d
R
e
s
u
b
m
i
t
D
-
N
o
t
A
pp
ro
v
e
d
I
c
e
r
t
i
f
y
t
h
a
t
t
h
e
a
b
o
v
e
s
u
b
m
i
t
t
e
d
i
t
e
m
s
h
a
v
e
b
e
en
r
e
v
i
e
w
e
d
i
n
d
e
t
a
i
l
,
a
r
e
c
o
r
r
e
c
t
,
a
n
d
i
n
ge
n
e
r
a
l
c
o
n
f
o
r
m
a
n
c
e
w
i
t
h
t
h
e
C
o
n
t
r
a
c
t
D
r
a
w
i
ng
s
a
n
d
S
p
e
c
i
f
i
c
a
t
i
o
n
s
e
x
c
e
p
t
a
s
o
t
h
e
r
w
i
s
e
no
t
e
d
5 6
Su
b
m
i
t
t
a
l
T
y
p
e
c.
Ac
t
i
o
n
It
e
m
a.1 2 3 4 7 8 9 10
Reviewed Without Exceptions
Chuck Kay Digitally signed by Chuck Kay
Contact Info: cmkay@pcl.com
Date: 2014.05.22 13:43:13-06'00'
5H6WUDWD9DLO
6WUXFWXUDOFRQQHFWLRQFDOFXODWLRQV
0DUWLQ0DUWLQ3URMHFW1R6
-XO\
'HDU%ULDQ
(QFORVHGDUHVWUXFWXUDOFDOFXODWLRQVSUHSDUHGE\RXURIILFHIRUVWDQGDUGVWHHOVKHDUFRQQHFWLRQV
XVHGRQWKH6WUDWD9DLOSURMHFW&DOFXODWLRQVFRQVLVWRIWKHIROORZLQJLWHPV
1DUUDWLYHVDQGGHVLJQFULWHULD
$WDEOHRIFRQQHFWLRQFDSDFLWLHVIRUEROWHGEROWHGVLQJOHDQJOHGRXEOHDQJOH
VLQJOHSODWHDQGH[WHQGHGVLQJOHSODWHFRQQHFWLRQVXVLQJ´GLDPHWHU$
EROWVDQG=0,VWDQGDUGFRQQHFWLRQJHRPHWU\
7DEOHVVXPPDUL]LQJWKHOLPLWVWDWHVIRUVLQJOHDQGGRXEOHDQJOHVLQJOHSODWH
DQGH[WHQGHGVLQJOHSODWHFRQQHFWLRQVDVFDOFXODWHGE\0DUWLQ0DUWLQ
GHYHORSHG([FHOVSUHDGVKHHW
5,6$&RQQHFWLRQUXQVYDOLGDWLQJ0DUWLQ0DUWLQGHYHORSHG([FHOVSUHDGVKHHW
IRUDVHOHFWQXPEHURIFRQQHFWLRQV
,I\RXKDYHDQ\TXHVWLRQVSOHDVHFDOO
6LQFHUHO\
6KDQH(ZLQJ3(
3ULQFLSDO
:HVW&ROID[•32%R[•/DNHZRRG&RORUDGR•
675$7$9$,/
67$1'$5'&211(&7,21'(6,*1
9DLO&2
6758&785$/&$/&8/$7,216
0$57,10$57,13URMHFW1R6
7DEOHRI&RQWHQWV
'HVLJQ&ULWHULD 1DUUDWLYHV3DJHV
&RQQHFWLRQ&DSDFLW\7DEOH3DJH
6LQJOH$QJOH/LPLW6WDWH6XPPDU\3DJH
'RXEOH$QJOH/LPLW6WDWH6XPPDU\3DJH
6LQJOH3ODWH/LPLW6WDWH6XPPDU\3DJH
([WHQGHG6LQJOH3ODWH6XPPDU\3DJHV
5,6$&RQQHFWLRQ9DOLGDWLRQV3DJHV
6WDQGDUG&RQQHFWLRQ*HRPHWU\3DJHV
-8/<
For
Approval
Not For
Construction
JUL 31 2013
:HVW&ROID[•32%R[•/DNHZRRG&RORUDGR•
'HVLJQ&ULWHULD
&RGHV
,QWHUQDWLRQDO%XLOGLQJ&RGH
$,6&
$&,
$&,
/RDGLQJ
%HDP5HDFWLRQV$VLQGLFDWHGLQ$XWR&$'ILOHVSURYLGHGE\(25
&ROXPQ5HDFWLRQV7UDQVIHUEHDPGHVLJQVDVVXPHGSDUWRI(25VFRSH
0RPHQW&RQQHFWLRQV$VLQGLFDWHGRQFRQWUDFWGRFXPHQWV
%UDFHG)UDPH$VLQGLFDWHGRQFRQWUDFWGRFXPHQWV
+66:LQG*LUW)UDPHV
0DWHULDO$VVXPSWLRQV
3ODWHVDQJOHVDQGFKDQQHOV$
6KHHW6WHHO*URUEHWWHU
3LSH$*U%
:HOGV([[
+LJK6WUHQJWK%ROWV$
5RGV$670)*UZHOGDEOH
'HVLJQ$VVXPSWLRQV
&ROXPQSDQHO]RQHVKHDU%\(25
&RQQHFWLRQVDWFROXPQWUDQVIHUV%\(25
%HDPRYHUFROXPQFRQQHFWLRQV%\(25
Strata Vail - Standard Connections 2014-07-24.pdf Page 1 of 4007/30/201438
Note: Town of Vail
uses the 2012 IBC,
and 2010 versions of
AISC references.
1RWHVRQ'HVLJQ 'HWDLOLQJRI6LQJOH$QJOHV
•$Q([FHOVSUHDGVKHHWKDVEHHQXVHGWRFDOFXODWHFRQQHFWLRQFDSDFLW\IRUDOOEHDPV
DQGDQXPEHURIFRSHOHQJWKVHQRXJKWRFRYHUPRVWSURMHFWVSHFLILFFRQGLWLRQV
•7KH([FHOVSUHDGVKHHWLVVHWXSWRFRYHUERWK$,6&DQG$,6&FDSDFLWLHV
7KLVLVJHQHUDOO\FRQVHUYDWLYH
•$FRQGHQVHGYHUVLRQRIWKHVSUHDGVKHHWLVLQFOXGHGWKDWVKRZVRQO\DVXPPDU\RIWKH
OLPLWVWDWHV
•5,6$&RQQHFWLRQZDVXVHGWRYDOLGDWHVHOHFWFRQQHFWLRQV
•3HU$,6&WK(GLWLRQSDJHHFFHQWULFLWLHVPD\EHQHJOHFWHGIRUEROWVLQ
VXSSRUWHGPHPEHUEXWPXVWEHDFFRXQWHGIRULQVXSSRUWLQJPHPEHU5,6$
&RQQHFWLRQGRHVDFFRXQWIRUHFFHQWULFLWLHVLQERWKGLUHFWLRQVRQWKHVXSSRUWLQJ
PHPEHUEROWVZKHQGHWHUPLQLQJEROWVKHDUFDSDFLW\$WWKHVHFRQGLWLRQVZHKDYH
EDVHGRXUFDOFXODWLRQVRQ$,6&PHWKRGRORJ\7KLVKDVEHHQFRPPHQWHGXSRQLQWKH
LQFOXGHGYDOLGDWLRQFDOFXODWLRQV
Strata Vail - Standard Connections 2014-07-24.pdf Page 2 of 4007/30/201438
1RWHVRQ'HVLJQ 'HWDLOLQJRI'RXEOH$QJOHV
•$Q([FHOVSUHDGVKHHWKDVEHHQXVHGWRFDOFXODWHFRQQHFWLRQFDSDFLW\IRUDOOEHDPV
DQGDQXPEHURIFRSHOHQJWKVHQRXJKWRFRYHUPRVWSURMHFWVSHFLILFFRQGLWLRQV
•7KH([FHOVSUHDGVKHHWLVVHWXSWRFRYHUERWK$,6&DQG$,6&FDSDFLWLHV
7KLVLVJHQHUDOO\FRQVHUYDWLYH
•$FRQGHQVHGYHUVLRQRIWKHVSUHDGVKHHWLVLQFOXGHGWKDWVKRZVRQO\DVXPPDU\RIWKH
OLPLWVWDWHV
•5,6$&RQQHFWLRQZDVXVHGWRYDOLGDWH:[EHDPVZLWKDOOFRSHFRQGLWLRQV2QO\
VRPHDUHLQFOXGHGLQWKLVFDOFXODWLRQVSDFNDJH:LWKLQWKHVHYDOLGDWLRQFDOFXODWLRQV
ZKHUHYDULDQFHLVVLJQLILFDQWZHKDYHSURYLGHGFRPPHQWDU\
•3HU$,6&WK(GLWLRQSDJHHFFHQWULFLWLHVPD\EHQHJOHFWHGIRUZRUNDEOHJDJHV
VKRZQLQ7DEOH5,6$&RQQHFWLRQGRHVDFFRXQWIRUHFFHQWULFLWLHVZKHQ
GHWHUPLQLQJEROWVKHDUFDSDFLW\$WWKHVHFRQGLWLRQVZHKDYHEDVHGRXUFDOFXODWLRQV
RQ$,6&PHWKRGRORJ\7KLVKDVEHHQFRPPHQWHGXSRQLQWKHLQFOXGHGYDOLGDWLRQ
FDOFXODWLRQV
•%ROWEHDULQJRQJLUGHUZHEVZKHUHEROWVDUHVKDUHGKDVEHHQDFFRXQWHGIRUZLWKD
VHSDUDWHWDEOH
Strata Vail - Standard Connections 2014-07-24.pdf Page 3 of 4007/30/201438
%HDP6L]HRI%ROWV
:;
:[
:[
:[
:[
:;
:;
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:;
:;
:[
:[
:[
:[
:[
:[
:;
:;
:[
:[
:[
:[
:;
:;
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:;
:;
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:;
:;
:;
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:;
:;
:;
:[
:[
:[
:;
:;
:;
:;
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:[
:;
:;
:;
:;
:[
:[
:[
:[
:;
:;
:;
:;
:;
:;
:;
:;
:[
:[
:[
:[
1R&RSH&7RS&7 %&7RS&7 %&7RS&7 %&7RS &7 %1R&RSH$&7RS&7 %&7RS&7 %&7RS&7 %&7RS&7 %1R&RSH&7RS&7 %&7RS&7 %&7RS&7 %&7RS&7 %
'RXEOH$QJOH6LQJOH3ODWH 6LQJOH$QJOH
Strata Vail - Standard Connections 2014-07-24.pdf Page 4 of 40 07/30/2014
7/8" Diameter A325 Bolts - ZMI Standard Connection Geometry
38
&R
Q
Q
H
F
W
L
R
Q
*
H
R
P
H
W
U
\
%R
O
W
7
\
S
H
$
1
6
7
'
%R
O
W
'
L
D
P
H
W
H
U
%/
7
L
Q
6K
H
D
U
&
D
S
D
F
L
W
\
%
R
O
W
N
+R
O
H
'
L
D
P
H
W
H
U
L
Q
6S
D
F
L
Q
J
%
H
W
Z
H
H
Q
&
R
O
X
P
Q
V
L
Q
3
O
D
W
H
6&
L
Q
(G
J
H
'
L
V
W
D
Q
F
H
L
Q
3
O
D
W
H
(5
L
Q
(Q
G
'
L
V
W
D
Q
F
H
L
Q
3
O
D
W
H
(&
L
Q
&R
S
H
/
H
Q
J
W
K
&/
L
Q
%R
O
W
(
F
F
H
Q
W
U
L
F
L
W
\
(%
L
Q
(Q
G
'
L
V
W
D
Q
F
H
L
Q
%
H
D
P
L
Q
(G
J
H
'
L
V
W
D
Q
F
H
L
Q
%
H
D
P
L
Q
6L
Q
J
O
H
$
Q
J
O
H
%
R
O
W
F
R
O
X
P
Q
6L
Q
J
O
H
$
Q
J
O
H
&
R
Q
Q
H
F
W
L
R
Q
6
X
P
P
D
U
\
$
,
6
&
U
G
(
G
$
6
'
%R
O
W
V
&
R
Q
Q
(
O
'
E
O
&
R
Q
Q
(
O
6
K
<
L
H
O
G
6
K
5
X
S
W
%
R
O
W
%
H
D
U
L
Q
J
%
O
R
F
N
6
K
H
D
U
7R
S
&
R
S
H
&
7
R
S
&
R
S
H
&
7
R
S
&
R
S
H
&
7
R
S
&
R
S
H
&
7
%
&
R
S
H
&
7
%
&
R
S
H
&
7
%
&
R
S
H
&
7
%
&
R
S
H
&
%R
O
W
6
K
H
D
U
B
6
L
Q
J
O
H
6
$
6
X
S
S
R
U
W
%
R
O
W
V
%R
O
W
%
H
D
U
L
Q
J
B
7
R
W
D
O
%O
R
F
N
6
K
H
D
U
5
X
S
W
X
U
H
6
K
H
D
U
<
L
H
O
G
6
K
H
D
U
5
X
S
W
X
U
H
6
K
H
D
U
<
L
H
O
G
6
K
H
D
U
5
X
S
WX
U
H
%RO
W
%
H
D
U
L
Q
J
B
7
R
W
D
%H
D
U
L
Q
J
B
7
R
W
D
O
X
Q
F
R
S
%O
R
F
N
6
K
H
D
U
5
X
S
W
X
U
H
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
FD
O
%
X
F
N
O
L
Q
J
6
K
H
D
U
<
L
H
O
G
6
K
H
D
U
5
X
S
W
X
U
H
%RO
W
%
H
D
U
L
Q
J
B
7
R
W
D%O
R
F
N
6
K
H
D
U
5
X
S
W
X
U
H
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
FD
O
%
X
F
N
O
L
Q
J
1R
&
R
S
H
&
7
R
S
&
7
%
&
7
R
S
&
7
%
&
7
R
S
&
7
%
&
7
R
S
&
7
%
:
;
11
.
6
0
1
6
.
5
8
:
[
15
.
7
0
2
2
.
4
3
:
[
15
.
7
0
2
2
.
4
3
:
[
24
.
6
7
3
8
.
1
2
:
[
16
.
3
8
2
3
.
4
0
:
[
37
.
5
4
5
8
.
0
1
:
[
23
.
2
1
3
3
.
1
5
:
[
36
.
4
7
5
6
.
3
6
:
;
21
.
4
5
3
3
.
1
5
:
[
27
.
8
9
4
3
.
1
0
:
[
20
.
4
8
2
9
.
2
5
:
[
32
.
1
8
4
9
.
7
3
:
[
24
.
6
7
3
8
.
1
2
:
[
28
.
9
6
4
4
.
7
5
:
[
45
.
3
4
7
2
.
5
4
:
[
36
.
4
7
5
6
.
3
6
:
[
49
.
7
3
7
9
.
5
6
:
[
40
.
2
2
6
2
.
1
6
:
[
54
.
8
4
8
7
.
7
5
:
[
44
.
5
1
6
8
.
7
9
:
[
60
.
6
9
9
7
.
1
1
:
;
26
.
8
1
4
1
.
4
4
:
;
36
.
5
6
5
8
.
5
0
:
[
29
.
4
9
4
5
.
5
8
:
[
40
.
2
2
6
4
.
3
5
:
[
31
.
6
4
4
8
.
9
0
:
[
43
.
1
4
6
9
.
0
3
:
[
32
.
7
1
5
0
.
5
5
:
[
44
.
6
1
7
1
.
3
7
:
[
37
.
0
0
5
7
.
1
8
:
[
50
.
4
6
8
0
.
7
3
:
[
40
.
7
6
6
2
.
9
9
:
[
55
.
5
8
8
8
.
9
2
:
[
46
.
1
2
7
1
.
2
7
:
[
62
.
8
9
1
0
0
.
6
2
:
[
42
.
3
6
6
5
.
4
7
:
[
57
.
7
7
9
2
.
4
3
:
[
48
.
8
0
7
5
.
4
2
:
[
66
.
5
4
1
0
6
.
4
7
:
[
56
.
3
1
8
7
.
0
2
:
[
76
.
7
8
1
2
2
.
8
5
:
[
62
.
7
4
9
6
.
9
6
:
[
85
.
5
6
1
3
6
.
8
9
:
[
32
.
1
8
4
9
.
7
3
:
[
43
.
8
8
7
0
.
2
0
:
[
55
.
5
8
9
0
.
6
8
:
[
33
.
7
8
5
2
.
2
1
:
[
46
.
0
7
7
3
.
7
1
:
[
58
.
3
5
9
5
.
2
1
:
;
45
.
5
8
7
0
.
4
4
:
;
62
.
1
6
9
9
.
4
5
:
;
78
.
7
3
1
2
8
.
4
6
:
[
51
.
4
8
7
9
.
5
6
:
[
70
.
2
0
1
1
2
.
3
2
:
[
88
.
9
2
1
4
5
.
0
8
:
[
63
.
2
8
9
7
.
7
9
:
[
86
.
2
9
1
3
8
.
0
6
:
[
10
9
.
3
0
1
7
8
.
3
3
:
[
51
.
1
9
8
1
.
9
0
:
[
64
.
8
4
1
0
5
.
7
9
:
[
78
.
4
9
1
2
9
.
6
8
:
[
55
.
5
8
8
8
.
9
2
:
[
70
.
4
0
1
1
4
.
8
6
:
[
85
.
2
2
1
4
0
.
7
9
:
[
59
.
2
3
9
4
.
7
7
:
[
75
.
0
3
1
2
2
.
4
1
:
[
90
.
8
2
1
5
0
.
0
5
:
[
58
.
5
0
9
3
.
6
0
:
[
74
.
1
0
1
2
0
.
9
0
:
[
89
.
7
0
1
4
8
.
2
0
:
[
66
.
5
4
1
0
6
.
4
7
:
[
84
.
2
9
1
3
7
.
5
2
:
[
10
2
.
0
3
1
6
8
.
5
8
:
;
73
.
1
3
1
1
7
.
0
0
:
;
92
.
6
3
1
5
1
.
1
3
:
;
11
2
.
1
3
1
8
5
.
2
5
:
[
80
.
4
4
1
2
8
.
7
0
:
[
10
1
.
8
9
1
6
6
.
2
4
:
[
12
3
.
3
4
2
0
3
.
7
8
:
;
57
.
7
7
9
2
.
4
3
:
;
73
.
1
7
1
1
9
.
3
9
:
;
88
.
5
8
1
4
6
.
3
5
:
;
10
3
.
9
8
1
7
3
.
3
1
:
[
62
.
8
9
1
0
0
.
6
2
:
[
79
.
6
6
1
2
9
.
9
7
:
[
96
.
4
3
1
5
9
.
3
2
:
[
11
3
.
2
0
1
8
8
.
6
6
:
[
60
.
6
9
9
7
.
1
1
:
[
76
.
8
8
1
2
5
.
4
3
:
[
93
.
0
6
1
5
3
.
7
6
:
[
10
9
.
2
5
1
8
2
.
0
8
:
[
64
.
3
5
1
0
2
.
9
6
:
[
81
.
5
1
1
3
2
.
9
9
:
[
98
.
6
7
1
6
3
.
0
2
:
[
11
5
.
8
3
1
9
3
.
0
5
:
[
85
.
2
2
1
3
9
.
0
4
:
[
10
3
.
1
6
1
7
0
.
4
3
:
[
12
1
.
1
0
2
0
1
.
8
3
:
[
90
.
7
7
1
4
8
.
1
0
:
[
10
9
.
8
8
1
8
1
.
5
5
:
[
12
8
.
9
9
2
1
4
.
9
9
:
;
87
.
0
7
1
4
2
.
0
6
:
;
10
5
.
4
0
1
7
4
.
1
4
:
;
12
3
.
7
3
2
0
6
.
2
1
:
;
14
2
.
0
6
2
3
8
.
2
9
:
;
12
3
.
3
4
2
0
3
.
7
8
:
;
14
4
.
7
9
2
4
1
.
3
1
:
;
16
6
.
2
4
2
7
8
.
8
5
:
;
18
7
.
6
9
3
1
6
.
3
9
:
;
13
4
.
5
5
2
2
2
.
3
0
:
;
15
7
.
9
5
2
6
3
.
2
5
:
;
18
1
.
3
5
3
0
4
.
2
0
:
;
20
4
.
7
5
3
4
5
.
1
5
6L
Q
J
O
H
6
K
H
D
U
&
R
Q
Q
H
F
W
L
Q
J
(
O
H
P
H
Q
W
/
L
P
L
W
6
W
D
W
H
V
7
R
S
&
R
S
H
%
H
D
P
:
H
E
/
LP
L
W
6
W
D
W
H
V
7
%
&
R
S
H
%
H
D
P
:
H
E
/
L
P
L
W
6
W
D
W
H
V
6L
Q
J
O
H
$
Q
J
O
H
%R
O
W
V
St
r
a
t
a
V
a
i
l
-
S
t
a
n
d
a
r
d
C
o
n
n
e
c
t
i
o
n
s
2
0
1
4
-
0
7
-
2
4
.
p
d
f
Pa
ge
5
o
f
4
0
07
/
3
0
/
2
0
1
4
38
&R
Q
Q
H
F
W
L
R
Q
*
H
R
P
H
W
U
\
%R
O
W
7
\
S
H
$
1
6
7
'
%R
O
W
'
L
D
P
H
W
H
U
%/
7
L
Q
6K
H
D
U
&
D
S
D
F
L
W
\
%
R
O
W
N
+R
O
H
'
L
D
P
H
W
H
U
L
Q
6S
D
F
L
Q
J
%
H
W
Z
H
H
Q
&
R
O
X
P
Q
V
L
Q
3
O
D
W
H
6&
L
Q
(G
J
H
'
L
V
W
D
Q
F
H
L
Q
3
O
D
W
H
(5
L
Q
(Q
G
'
L
V
W
D
Q
F
H
L
Q
3
O
D
W
H
(&
L
Q
&R
S
H
/
H
Q
J
W
K
&/
L
Q
%R
O
W
(
F
F
H
Q
W
U
L
F
L
W
\
(%
L
Q
(Q
G
'
L
V
W
D
Q
F
H
L
Q
%
H
D
P
L
Q
(G
J
H
'
L
V
W
D
Q
F
H
L
Q
%
H
D
P
L
Q
6LQ
J
O
H
$
Q
J
O
H
%
R
O
W
F
R
O
X
P
Q
'R
X
E
O
H
$
Q
JOH
&
R
Q
Q
H
F
W
L
R
Q
6
X
P
P
D
U
\
$
,
6
&
U
G
(
G
$
6
'
%R
O
W
V
&
R
Q
Q
(
O
'
E
O
&
R
Q
Q
(
O
6
K
<
L
H
O
G
6
K
5
X
S
W
%
R
O
W
%
H
D
U
L
Q
J
%
O
R
F
N
6
K
H
D
U
&
R
SH
7R
S
&
R
S
H
&
7
R
S
&
R
S
H
&
7
R
S
&
R
S
H
&
7
R
S
&
R
S
H
&
7
%
&
R
S
H
&
7
%
&
R
S
H
&
7
%
&
R
S
H
&
7
%
&
R
S
H
&
%H
D
P
6
L
]
H
R
I
%
R
O
W
V
%
R
O
W
6
K
H
D
U
B
6
L
Q
J
O
H
%
R
O
W
6
K
H
D
U
B
'
R
X
E
O
H
%R
O
W
%
H
D
U
L
Q
J
B
7
R
W
D
O
%OR
F
N
6
K
H
D
U
5
X
S
W
X
U
H
6
K
H
D
U
<
L
H
O
G
6
K
H
D
U
5
X
S
W
X
U
H
%R
O
W
%
H
D
U
L
Q
J
B
7
R
W
D
O
%OR
F
N
6
K
H
D
U
5
X
S
W
X
U
H
6
K
H
D
U
<
L
H
O
G
6
K
H
D
U
5
X
S
W
X
U
H
6
K
H
D
U
<
L
H
O
G
6
K
H
D
U
5
X
S
WX
U
H
%R
O
W
%
H
D
U
L
Q
J
B
7
R
W
D
O
%
R
O
W
%
H
D
U
L
Q
J
B
7
R
W
D
O
X
Q
F
R
S
H
G
%OR
F
N
6
K
H
D
U
5
X
S
W
X
U
H
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
FD
O
%
X
F
N
O
L
Q
J
6
K
H
D
U
<
L
H
O
G
6
K
H
D
U
5
X
S
W
X
U
H
%R
O
W
%
H
D
U
L
Q
J
B
7
R
W
D
O
%OR
F
N
6
K
H
D
U
5
X
S
W
X
U
H
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
FD
O
%
X
F
N
O
L
Q
J
1R
&
R
S
H
&
7
R
S
&
7
%
&
7
R
S
&
7
%
&
7
R
S
&
7
%
&
7
R
S
&
7
%
:
;
11
.
6
0
1
6
.
5
8
:
;
:
[
15
.
7
0
2
2
.
4
3
:
[
:
[
16
.
7
2
2
3
.
8
9
:
[
:
[
15
.
7
0
2
2
.
4
3
:
[
:
[
17
.
0
6
2
4
.
3
8
:
[
:
[
16
.
7
2
2
3
.
8
9
:
[
:
[
19
.
4
5
2
7
.
7
9
:
[
:
;
12
.
9
7
1
8
.
5
3
:
;
:
;
20
.
3
8
3
1
.
4
9
:
;
:
[
15
.
7
0
2
2
.
4
3
:
[
:
[
24
.
6
7
3
8
.
1
2
:
[
:
[
16
.
3
8
2
3
.
4
0
:
[
:
[
25
.
7
4
3
9
.
7
8
:
[
:
[
17
.
0
6
2
4
.
3
8
:
[
:
[
26
.
8
1
4
1
.
4
4
:
[
:
[
16
.
3
8
2
3
.
4
0
:
[
:
[
25
.
7
4
3
9
.
7
8
:
[
:
[
17
.
7
5
2
5
.
3
5
:
[
:
[
27
.
8
9
4
3
.
1
0
:
[
:
[
20
.
4
8
2
9
.
2
5
:
[
:
[
32
.
1
8
4
9
.
7
3
:
[
:
[
23
.
8
9
3
4
.
1
3
:
[
:
[
37
.
5
4
5
8
.
0
1
:
[
:
[
23
.
2
1
3
3
.
1
5
:
[
:
[
36
.
4
7
5
6
.
3
6
:
[
:
[
25
.
2
5
3
6
.
0
8
:
[
:
[
39
.
6
8
6
1
.
3
3
:
[
:
;
13
.
6
5
1
9
.
5
0
:
;
:
;
21
.
4
5
3
3
.
1
5
:
;
:
[
15
.
0
2
2
1
.
4
5
:
[
:
[
23
.
6
0
3
6
.
4
7
:
[
:
[
16
.
0
4
2
2
.
9
1
:
[
:
[
25
.
2
0
3
8
.
9
5
:
[
:
[
17
.
7
5
2
5
.
3
5
:
[
:
[
27
.
8
9
4
3
.
1
0
:
[
:
;
15
.
7
0
2
2
.
4
3
:
;
:
;
24
.
6
7
3
8
.
1
2
:
;
:
[
17
.
7
5
2
5
.
3
5
:
[
:
[
27
.
8
9
4
3
.
1
0
:
[
:
[
20
.
4
8
2
9
.
2
5
:
[
:
[
32
.
1
8
4
9
.
7
3
:
[
:
;
20
.
1
3
2
8
.
7
6
:
;
:
;
31
.
6
4
4
8
.
9
0
:
;
:
[
22
.
8
6
3
2
.
6
6
:
[
:
[
35
.
9
3
5
5
.
5
3
:
[
:
[
24
.
6
7
3
8
.
1
2
:
[
:
[
33
.
6
4
5
3
.
8
2
:
[
:
[
28
.
9
6
4
4
.
7
5
:
[
:
[
39
.
4
9
6
3
.
1
8
:
[
:
[
33
.
2
5
5
1
.
3
8
:
[
:
[
45
.
3
4
7
2
.
5
4
:
[
:
[
36
.
4
7
5
6
.
3
6
:
[
:
[
49
.
7
3
7
9
.
5
6
:
[
:
[
40
.
2
2
6
2
.
1
6
:
[
:
[
54
.
8
4
8
7
.
7
5
:
[
:
[
44
.
5
1
6
8
.
7
9
:
[
:
[
60
.
6
9
9
7
.
1
1
:
[
:
;
26
.
8
1
4
1
.
4
4
:
;
:
;
36
.
5
6
5
8
.
5
0
:
;
:
[
29
.
4
9
4
5
.
5
8
:
[
:
[
40
.
2
2
6
4
.
3
5
:
[
:
[
31
.
6
4
4
8
.
9
0
:
[
:
[
43
.
1
4
6
9
.
0
3
:
[
:
[
32
.
7
1
5
0
.
5
5
:
[
:
[
44
.
6
1
7
1
.
3
7
:
[
:
[
37
.
0
0
5
7
.
1
8
:
[
:
[
50
.
4
6
8
0
.
7
3
:
[
:
[
40
.
7
6
6
2
.
9
9
:
[
:
[
55
.
5
8
8
8
.
9
2
:
[
:
[
46
.
1
2
7
1
.
2
7
:
[
:
[
62
.
8
9
1
0
0
.
6
2
:
[
:
[
42
.
3
6
6
5
.
4
7
:
[
:
[
57
.
7
7
9
2
.
4
3
:
[
:
[
48
.
8
0
7
5
.
4
2
:
[
:
[
66
.
5
4
1
0
6
.
4
7
:
[
:
[
56
.
3
1
8
7
.
0
2
:
[
:
[
76
.
7
8
1
2
2
.
8
5
:
[
:
[
62
.
7
4
9
6
.
9
6
:
[
:
[
85
.
5
6
1
3
6
.
8
9
:
[
:
[
32
.
1
8
4
9
.
7
3
:
[
:
[
43
.
8
8
7
0
.
2
0
:
[
:
[
55
.
5
8
9
0
.
6
8
:
[
:
[
33
.
7
8
5
2
.
2
1
:
[
:
[
46
.
0
7
7
3
.
7
1
:
[
:
[
58
.
3
5
9
5
.
2
1
:
[
:
;
45
.
5
8
7
0
.
4
4
:
;
:
;
62
.
1
6
9
9
.
4
5
:
;
:
;
78
.
7
3
1
2
8
.
4
6
:
;
:
[
51
.
4
8
7
9
.
5
6
:
[
:
[
70
.
2
0
1
1
2
.
3
2
:
[
:
[
88
.
9
2
1
4
5
.
0
8
:
[
:
[
63
.
2
8
9
7
.
7
9
:
[
:
[
86
.
2
9
1
3
8
.
0
6
:
[
:
[
10
9
.
3
0
1
7
8
.
3
3
:
[
:
[
51
.
1
9
8
1
.
9
0
:
[
:
[
64
.
8
4
1
0
5
.
7
9
:
[
:
[
78
.
4
9
1
2
9
.
6
8
:
[
:
[
55
.
5
8
8
8
.
9
2
:
[
:
[
70
.
4
0
1
1
4
.
8
6
:
[
:
[
85
.
2
2
1
4
0
.
7
9
:
[
:
[
59
.
2
3
9
4
.
7
7
:
[
:
[
75
.
0
3
1
2
2
.
4
1
:
[
:
[
90
.
8
2
1
5
0
.
0
5
:
[
:
[
58
.
5
0
9
3
.
6
0
:
[
:
[
74
.
1
0
1
2
0
.
9
0
:
[
:
[
89
.
7
0
1
4
8
.
2
0
:
[
:
[
66
.
5
4
1
0
6
.
4
7
:
[
:
[
84
.
2
9
1
3
7
.
5
2
:
[
:
[
10
2
.
0
3
1
6
8
.
5
8
:
[
:
;
73
.
1
3
1
1
7
.
0
0
:
;
:
;
92
.
6
3
1
5
1
.
1
3
:
;
:
;
11
2
.
1
3
1
8
5
.
2
5
:
;
:
[
80
.
4
4
1
2
8
.
7
0
:
[
:
[
10
1
.
8
9
1
6
6
.
2
4
:
[
:
[
12
3
.
3
4
2
0
3
.
7
8
:
[
:
;
57
.
7
7
9
2
.
4
3
:
;
:
;
73
.
1
7
1
1
9
.
3
9
:
;
:
;
88
.
5
8
1
4
6
.
3
5
:
;
:
;
10
3
.
9
8
1
7
3
.
3
1
:
;
:
[
62
.
8
9
1
0
0
.
6
2
:
[
:
[
79
.
6
6
1
2
9
.
9
7
:
[
:
[
96
.
4
3
1
5
9
.
3
2
:
[
:
[
11
3
.
2
0
1
8
8
.
6
6
:
[
:
[
60
.
6
9
9
7
.
1
1
:
[
:
[
76
.
8
8
1
2
5
.
4
3
:
[
:
[
93
.
0
6
1
5
3
.
7
6
:
[
:
[
10
9
.
2
5
1
8
2
.
0
8
:
[
:
[
64
.
3
5
1
0
2
.
9
6
:
[
:
[
81
.
5
1
1
3
2
.
9
9
:
[
:
[
98
.
6
7
1
6
3
.
0
2
:
[
:
[
11
5
.
8
3
1
9
3
.
0
5
:
[
:
[
73
.
1
3
1
1
7
.
0
0
:
[
:
[
92
.
6
3
1
5
1
.
1
3
:
[
:
[
11
2
.
1
3
1
8
5
.
2
5
:
[
:
[
13
1
.
6
3
2
1
9
.
3
8
:
[
:
[
80
.
4
4
1
2
8
.
7
0
:
[
:
[
10
1
.
8
9
1
6
6
.
2
4
:
[
:
[
12
3
.
3
4
2
0
3
.
7
8
:
[
:
[
14
4
.
7
9
2
4
1
.
3
1
:
[
:
[
88
.
4
8
1
4
1
.
5
7
:
[
:
[
11
2
.
0
8
1
8
2
.
8
6
:
[
:
[
13
5
.
6
7
2
2
4
.
1
5
:
[
:
[
15
9
.
2
7
2
6
5
.
4
4
:
[
:
[
85
.
2
2
1
3
9
.
0
4
:
[
:
[
10
3
.
1
6
1
7
0
.
4
3
:
[
:
[
12
1
.
1
0
2
0
1
.
8
3
:
[
:
[
90
.
7
7
1
4
8
.
1
0
:
[
:
[
10
9
.
8
8
1
8
1
.
5
5
:
[
:
[
12
8
.
9
9
2
1
4
.
9
9
:
[
:
[
95
.
4
0
1
5
5
.
6
6
:
[
:
[
11
5
.
4
9
1
9
0
.
8
1
:
[
:
[
13
5
.
5
7
2
2
5
.
9
6
:
[
:
[
10
5
.
5
9
1
7
2
.
2
8
:
[
:
[
12
7
.
8
2
2
1
1
.
1
9
:
[
:
[
15
0
.
0
5
2
5
0
.
0
9
:
[
:
[
11
3
.
0
0
1
8
4
.
3
7
:
[
:
[
13
6
.
7
9
2
2
6
.
0
1
:
[
:
[
16
0
.
5
8
2
6
7
.
6
4
:
[
:
[
11
2
.
0
8
1
8
2
.
8
6
:
[
:
[
13
5
.
6
7
2
2
4
.
1
5
:
[
:
[
15
9
.
2
7
2
6
5
.
4
4
:
[
:
[
12
2
.
2
7
1
9
9
.
4
9
:
[
:
[
14
8
.
0
1
2
4
4
.
5
3
:
[
:
[
17
3
.
7
5
2
8
9
.
5
8
:
[
:
[
15
3
.
7
6
2
5
0
.
8
7
:
[
:
[
18
6
.
1
3
3
0
7
.
5
2
:
[
:
[
21
8
.
5
0
3
6
4
.
1
6
:
[
:
;
87
.
0
7
1
4
2
.
0
6
:
;
:
;
10
5
.
4
0
1
7
4
.
1
4
:
;
:
;
12
3
.
7
3
2
0
6
.
2
1
:
;
:
;
14
2
.
0
6
2
3
8
.
2
9
:
;
:
[
10
0
.
9
6
1
6
4
.
7
3
:
[
:
[
12
2
.
2
2
2
0
1
.
9
2
:
[
:
[
14
3
.
4
7
2
3
9
.
1
2
:
[
:
[
16
4
.
7
3
2
7
6
.
3
2
:
[
:
[
10
4
.
6
7
1
7
0
.
7
7
:
[
:
[
12
6
.
7
0
2
0
9
.
3
3
:
[
:
[
14
8
.
7
4
2
4
7
.
8
9
:
[
:
[
17
0
.
7
7
2
8
6
.
4
6
:
[
:
;
12
1
.
3
4
1
9
7
.
9
7
:
;
:
;
14
6
.
8
8
2
4
2
.
6
8
:
;
:
;
17
2
.
4
3
2
8
7
.
3
8
:
;
:
;
19
7
.
9
7
3
3
2
.
0
9
:
;
:
[
13
1
.
5
3
2
1
4
.
6
0
:
[
:
[
15
9
.
2
2
2
6
3
.
0
6
:
[
:
[
18
6
.
9
1
3
1
1
.
5
1
:
[
:
[
21
4
.
6
0
3
5
9
.
9
7
:
[
:
;
12
3
.
3
4
2
0
3
.
7
8
:
;
:
;
14
4
.
7
9
2
4
1
.
3
1
:
;
:
;
16
6
.
2
4
2
7
8
.
8
5
:
;
:
;
18
7
.
6
9
3
1
6
.
3
9
:
;
:
;
13
4
.
5
5
2
2
2
.
3
0
:
;
:
;
15
7
.
9
5
2
6
3
.
2
5
:
;
:
;
18
1
.
3
5
3
0
4
.
2
0
:
;
:
;
20
4
.
7
5
3
4
5
.
1
5
:
;
:
[
14
0
.
1
6
2
3
1
.
5
6
:
[
:
[
16
4
.
5
3
2
7
4
.
2
2
:
[
:
[
18
8
.
9
1
3
1
6
.
8
8
:
[
:
[
21
3
.
2
8
3
5
9
.
5
3
:
[
%R
O
W
V
'R
X
E
O
H
$
Q
J
O
H
6L
Q
J
O
H
6
K
H
D
U
&
R
Q
Q
H
F
W
L
Q
J
(
O
H
P
H
Q
W
/
L
P
L
W
6
W
D
W
H
V
7R
S
&
R
S
H
%
H
D
P
:
H
E
/
L
P
L
W
6
W
D
W
H
V
'R
X
E
O
H
6
K
H
D
U
&
R
Q
Q
H
F
W
L
Q
J
(
O
H
P
H
Q
W
/
L
P
L
W
6
W
D
W
H
V
7
%
&
R
S
H
%
H
D
P
:
H
E
/
L
P
L
W
6
W
D
W
H
V
St
r
a
t
a
V
a
i
l
-
S
t
a
n
d
a
r
d
C
o
n
n
e
c
t
i
o
n
s
2
0
1
4
-
0
7
-
2
4
.
p
d
f
Pa
ge
6
o
f
4
0
07
/
3
0
/
2
0
1
4
38
&R
Q
Q
H
F
W
L
R
Q
*
H
R
P
H
W
U
\
%R
O
W
7
\
S
H
$
1
6
7
'
%R
O
W
'
L
D
P
H
W
H
U
%/
7
L
Q
6K
H
D
U
&
D
S
D
F
L
W
\
%
R
O
W
N
+R
O
H
'
L
D
P
H
W
H
U
L
Q
6S
D
F
L
Q
J
%
H
W
Z
H
H
Q
&
R
O
X
P
Q
V
L
Q
3
O
D
W
H
6&
L
Q
(G
J
H
'
L
V
W
D
Q
F
H
L
Q
3
O
D
W
H
(5
L
Q
(Q
G
'
L
V
W
D
Q
F
H
L
Q
3
O
D
W
H
(&
L
Q
&R
S
H
/
H
Q
J
W
K
&/
L
Q
%R
O
W
(
F
F
H
Q
W
U
L
F
L
W
\
(%
L
Q
(Q
G
'
L
V
W
D
Q
F
H
L
Q
%
H
D
P
L
Q
(G
J
H
'
L
V
W
D
Q
F
H
L
Q
%
H
D
P
L
Q
6L
Q
J
O
H
$
Q
J
O
H
%
R
O
W
F
R
O
X
P
Q
6L
Q
J
O
H
3
O
D
W
H
&
R
Q
Q
H
F
W
L
R
Q
6
X
P
P
D
U
\
$
,
6
&
U
G
(
G
$
6
'
%R
O
W
V
&
R
Q
Q
(
O
'
E
O
&
R
Q
Q
(
O
6
K
<
L
H
O
G
6
K
5
X
S
W
%
R
O
W
%
H
D
U
L
Q
J
%
O
R
F
N
6
K
H
D
U
&
R
SH
%ROW
V
7RS
&RS
H
&
7RS
&RS
H
&
7RS
&RS
H
&
7RS
&RS
H
&
7
%
&RS
H
&
7
%
&RS
H
&
7
%
&RS
H
&
7
%
&RS
H
&
%R
O
W
6
K
H
D
U
B
6
L
Q
J
O
H
%ROW
%HD
U
LQJ
B
7RWDO
%O
R
F
N
6
K
H
D
U
5
X
S
W
X
U
H
6
K
H
D
U
<
L
H
O
G
6
K
H
D
U
5
X
S
W
X
U
H
6
K
H
D
U
<
L
H
O
G
6
K
H
D
U
5
X
S
WX
U
H
%ROW
%HD
U
LQJ
B
7RWDO
%ROW
%HD
U
LQJ
B
7RWDOXQ
F
R
S
H
G
%OR
F
N
6
K
H
D
U
5
X
S
W
X
U
H
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
FD
O
%
X
F
N
O
L
Q
J
6
K
H
D
U
<
L
H
O
G
6
K
H
D
U
5
X
S
W
X
U
H
%ROW
%HD
U
LQJ
B
7RWDO
%O
R
F
N
6
K
H
D
U
5
X
S
W
X
U
H
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
F
D
O
%
X
F
N
O
L
Q
J
/
R
FD
O
%
X
F
N
O
L
Q
J
1R&RS
H
&
7RS
&
7
%
&
7RS
&
7
%
&
7RS
&
7
%
&
7RS
&
7
%
:
;
11
.
6
0
1
6
.
5
8
:
[
15
.
7
0
2
2
.
4
3
:
[
15
.
7
0
2
2
.
4
3
:
[
24
.
6
7
3
8
.
1
2
:
[
16
.
3
8
2
3
.
4
0
:
[
37
.
5
4
5
8
.
0
1
:
[
23
.
2
1
3
3
.
1
5
:
[
36
.
4
7
5
6
.
3
6
:
;
21
.
4
5
3
3
.
1
5
:
[
27
.
8
9
4
3
.
1
0
:
[
20
.
4
8
2
9
.
2
5
:
[
32
.
1
8
4
9
.
7
3
:
[
24
.
6
7
3
8
.
1
2
:
[
28
.
9
6
4
4
.
7
5
:
[
45
.
3
4
7
2
.
5
4
:
[
36
.
4
7
5
6
.
3
6
:
[
49
.
7
3
7
9
.
5
6
:
[
40
.
2
2
6
2
.
1
6
:
[
54
.
8
4
8
7
.
7
5
:
[
44
.
5
1
6
8
.
7
9
:
[
60
.
6
9
9
7
.
1
1
:
;
26
.
8
1
4
1
.
4
4
:
;
36
.
5
6
5
8
.
5
0
:
[
29
.
4
9
4
5
.
5
8
:
[
40
.
2
2
6
4
.
3
5
:
[
31
.
6
4
4
8
.
9
0
:
[
43
.
1
4
6
9
.
0
3
:
[
32
.
7
1
5
0
.
5
5
:
[
44
.
6
1
7
1
.
3
7
:
[
37
.
0
0
5
7
.
1
8
:
[
50
.
4
6
8
0
.
7
3
:
[
40
.
7
6
6
2
.
9
9
:
[
55
.
5
8
8
8
.
9
2
:
[
46
.
1
2
7
1
.
2
7
:
[
62
.
8
9
1
0
0
.
6
2
:
[
42
.
3
6
6
5
.
4
7
:
[
57
.
7
7
9
2
.
4
3
:
[
48
.
8
0
7
5
.
4
2
:
[
66
.
5
4
1
0
6
.
4
7
:
[
56
.
3
1
8
7
.
0
2
:
[
76
.
7
8
1
2
2
.
8
5
:
[
62
.
7
4
9
6
.
9
6
:
[
85
.
5
6
1
3
6
.
8
9
:
[
32
.
1
8
4
9
.
7
3
:
[
43
.
8
8
7
0
.
2
0
:
[
55
.
5
8
9
0
.
6
8
:
[
33
.
7
8
5
2
.
2
1
:
[
46
.
0
7
7
3
.
7
1
:
[
58
.
3
5
9
5
.
2
1
:
;
45
.
5
8
7
0
.
4
4
:
;
62
.
1
6
9
9
.
4
5
:
;
78
.
7
3
1
2
8
.
4
6
:
[
51
.
4
8
7
9
.
5
6
:
[
70
.
2
0
1
1
2
.
3
2
:
[
88
.
9
2
1
4
5
.
0
8
:
[
63
.
2
8
9
7
.
7
9
:
[
86
.
2
9
1
3
8
.
0
6
:
[
10
9
.
3
0
1
7
8
.
3
3
:
[
51
.
1
9
8
1
.
9
0
:
[
64
.
8
4
1
0
5
.
7
9
:
[
78
.
4
9
1
2
9
.
6
8
:
[
55
.
5
8
8
8
.
9
2
:
[
70
.
4
0
1
1
4
.
8
6
:
[
85
.
2
2
1
4
0
.
7
9
:
[
59
.
2
3
9
4
.
7
7
:
[
75
.
0
3
1
2
2
.
4
1
:
[
90
.
8
2
1
5
0
.
0
5
:
[
58
.
5
0
9
3
.
6
0
:
[
74
.
1
0
1
2
0
.
9
0
:
[
89
.
7
0
1
4
8
.
2
0
:
[
66
.
5
4
1
0
6
.
4
7
:
[
84
.
2
9
1
3
7
.
5
2
:
[
10
2
.
0
3
1
6
8
.
5
8
:
;
73
.
1
3
1
1
7
.
0
0
:
;
92
.
6
3
1
5
1
.
1
3
:
;
11
2
.
1
3
1
8
5
.
2
5
:
[
80
.
4
4
1
2
8
.
7
0
:
[
10
1
.
8
9
1
6
6
.
2
4
:
[
12
3
.
3
4
2
0
3
.
7
8
:
;
57
.
7
7
9
2
.
4
3
:
;
73
.
1
7
1
1
9
.
3
9
:
;
88
.
5
8
1
4
6
.
3
5
:
;
10
3
.
9
8
1
7
3
.
3
1
:
[
62
.
8
9
1
0
0
.
6
2
:
[
79
.
6
6
1
2
9
.
9
7
:
[
96
.
4
3
1
5
9
.
3
2
:
[
11
3
.
2
0
1
8
8
.
6
6
:
[
60
.
6
9
9
7
.
1
1
:
[
76
.
8
8
1
2
5
.
4
3
:
[
93
.
0
6
1
5
3
.
7
6
:
[
10
9
.
2
5
1
8
2
.
0
8
:
[
64
.
3
5
1
0
2
.
9
6
:
[
81
.
5
1
1
3
2
.
9
9
:
[
98
.
6
7
1
6
3
.
0
2
:
[
11
5
.
8
3
1
9
3
.
0
5
:
[
73
.
1
3
1
1
7
.
0
0
:
[
92
.
6
3
1
5
1
.
1
3
:
[
11
2
.
1
3
1
8
5
.
2
5
:
[
13
1
.
6
3
2
1
9
.
3
8
:
[
80
.
4
4
1
2
8
.
7
0
:
[
10
1
.
8
9
1
6
6
.
2
4
:
[
12
3
.
3
4
2
0
3
.
7
8
:
[
14
4
.
7
9
2
4
1
.
3
1
:
[
88
.
4
8
1
4
1
.
5
7
:
[
11
2
.
0
8
1
8
2
.
8
6
:
[
13
5
.
6
7
2
2
4
.
1
5
:
[
15
9
.
2
7
2
6
5
.
4
4
:
[
85
.
2
2
1
3
9
.
0
4
:
[
10
3
.
1
6
1
7
0
.
4
3
:
[
12
1
.
1
0
2
0
1
.
8
3
:
[
90
.
7
7
1
4
8
.
1
0
:
[
10
9
.
8
8
1
8
1
.
5
5
:
[
12
8
.
9
9
2
1
4
.
9
9
:
[
95
.
4
0
1
5
5
.
6
6
:
[
11
5
.
4
9
1
9
0
.
8
1
:
[
13
5
.
5
7
2
2
5
.
9
6
:
[
10
5
.
5
9
1
7
2
.
2
8
:
[
12
7
.
8
2
2
1
1
.
1
9
:
[
15
0
.
0
5
2
5
0
.
0
9
:
[
11
3
.
0
0
1
8
4
.
3
7
:
[
13
6
.
7
9
2
2
6
.
0
1
:
[
16
0
.
5
8
2
6
7
.
6
4
:
[
11
2
.
0
8
1
8
2
.
8
6
:
[
13
5
.
6
7
2
2
4
.
1
5
:
[
15
9
.
2
7
2
6
5
.
4
4
:
[
12
2
.
2
7
1
9
9
.
4
9
:
[
14
8
.
0
1
2
4
4
.
5
3
:
[
17
3
.
7
5
2
8
9
.
5
8
:
[
15
3
.
7
6
2
5
0
.
8
7
:
[
18
6
.
1
3
3
0
7
.
5
2
:
[
21
8
.
5
0
3
6
4
.
1
6
:
;
87
.
0
7
1
4
2
.
0
6
:
;
10
5
.
4
0
1
7
4
.
1
4
:
;
12
3
.
7
3
2
0
6
.
2
1
:
;
14
2
.
0
6
2
3
8
.
2
9
:
[
10
0
.
9
6
1
6
4
.
7
3
:
[
12
2
.
2
2
2
0
1
.
9
2
:
[
14
3
.
4
7
2
3
9
.
1
2
:
[
16
4
.
7
3
2
7
6
.
3
2
:
[
10
4
.
6
7
1
7
0
.
7
7
:
[
12
6
.
7
0
2
0
9
.
3
3
:
[
14
8
.
7
4
2
4
7
.
8
9
:
[
17
0
.
7
7
2
8
6
.
4
6
:
;
12
1
.
3
4
1
9
7
.
9
7
:
;
14
6
.
8
8
2
4
2
.
6
8
:
;
17
2
.
4
3
2
8
7
.
3
8
:
;
19
7
.
9
7
3
3
2
.
0
9
:
[
13
1
.
5
3
2
1
4
.
6
0
:
[
15
9
.
2
2
2
6
3
.
0
6
:
[
18
6
.
9
1
3
1
1
.
5
1
:
[
21
4
.
6
0
3
5
9
.
9
7
:
;
12
3
.
3
4
2
0
3
.
7
8
:
;
14
4
.
7
9
2
4
1
.
3
1
:
;
16
6
.
2
4
2
7
8
.
8
5
:
;
18
7
.
6
9
3
1
6
.
3
9
:
;
13
4
.
5
5
2
2
2
.
3
0
:
;
15
7
.
9
5
2
6
3
.
2
5
:
;
18
1
.
3
5
3
0
4
.
2
0
:
;
20
4
.
7
5
3
4
5
.
1
5
:
[
14
0
.
1
6
2
3
1
.
5
6
:
[
16
4
.
5
3
2
7
4
.
2
2
:
[
18
8
.
9
1
3
1
6
.
8
8
:
[
21
3
.
2
8
3
5
9
.
5
3
6L
Q
J
O
H
6
K
H
D
U
&
R
Q
Q
H
F
W
L
Q
J
(
O
H
P
H
Q
W
/
L
P
L
W
6
W
D
W
H
V
7R
S
&
R
S
H
%
H
D
P
:
H
E
/
L
P
L
W
6
W
D
W
H
V
7
%
&
R
S
H
%
H
D
P
:
H
E
/
L
P
L
W
6
W
D
W
H
V
6LQJ
OH
3O
DWH
St
r
a
t
a
V
a
i
l
-
S
t
a
n
d
a
r
d
C
o
n
n
e
c
t
i
o
n
s
2
0
1
4
-
0
7
-
2
4
.
p
d
f
Pa
ge
7
o
f
4
0
07
/
3
0
/
2
0
1
4
38
%H
D
P
6
L
]
H
R
I
%
R
O
W
V
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
;
8Q
F
R
S
H
G
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
RS
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
St
r
a
t
a
V
a
i
l
-
S
t
a
n
d
a
r
d
C
o
n
n
e
c
t
i
o
n
s
2
0
1
4
-
0
7
-
2
4
.
p
d
f
Pa
ge
8
o
f
4
0
07
/
3
0
/
2
0
1
4
Ex
t
e
n
d
e
d
S
i
n
g
l
e
P
l
a
t
e
,
G
=
4
38
%H
D
P
6
L
]
H
R
I
%
R
O
W
V
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
;
8Q
F
R
S
H
G
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
SH
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
St
r
a
t
a
V
a
i
l
-
S
t
a
n
d
a
r
d
C
o
n
n
e
c
t
i
o
n
s
2
0
1
4
-
0
7
-
2
4
.
p
d
f
Pa
ge
9
o
f
4
0
07
/
3
0
/
2
0
1
4
Ex
t
e
n
d
e
d
S
i
n
g
l
e
P
l
a
t
e
,
G
=
4
38
%H
D
P
6
L
]
H
R
I
%
R
O
W
V
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
;
8Q
F
R
S
H
G
&
R
S
H
G
7
R
S
&
R
S
HG
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
St
r
a
t
a
V
a
i
l
-
S
t
a
n
d
a
r
d
C
o
n
n
e
c
t
i
o
n
s
2
0
1
4
-
0
7
-
2
4
.
p
d
f
Pa
ge
1
0
o
f
4
0
07
/
3
0
/
2
0
1
4
Ex
t
e
n
d
e
d
S
i
n
g
l
e
P
l
a
t
e
,
G
=
4
38
%H
D
P
6
L
]
H
R
I
%
R
O
W
V
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
;
8Q
F
R
S
H
G
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
St
r
a
t
a
V
a
i
l
-
S
t
a
n
d
a
r
d
C
o
n
n
e
c
t
i
o
n
s
2
0
1
4
-
0
7
-
2
4
.
p
d
f
Pa
ge
1
1
o
f
4
0
07
/
3
0
/
2
0
1
4
Ex
t
e
n
d
e
d
S
i
n
g
l
e
P
l
a
t
e
,
G
=
6
38
%H
D
P
6
L
]
H
R
I
%
R
O
W
V
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
;
8Q
F
R
S
H
G
&
R
S
H
G
7
R
S
&
R
S
HG
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
St
r
a
t
a
V
a
i
l
-
S
t
a
n
d
a
r
d
C
o
n
n
e
c
t
i
o
n
s
2
0
1
4
-
0
7
-
2
4
.
p
d
f
Pa
ge
1
2
o
f
4
0
07
/
3
0
/
2
0
1
4
Ex
t
e
n
d
e
d
S
i
n
g
l
e
P
l
a
t
e
,
G
=
6
38
%H
D
P
6
L
]
H
R
I
%
R
O
W
V
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
;
8Q
F
R
S
H
G
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
SH
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
St
r
a
t
a
V
a
i
l
-
S
t
a
n
d
a
r
d
C
o
n
n
e
c
t
i
o
n
s
2
0
1
4
-
0
7
-
2
4
.
p
d
f
Pa
ge
1
3
o
f
4
0
07
/
3
0
/
2
0
1
4
Ex
t
e
n
d
e
d
S
i
n
g
l
e
P
l
a
t
e
,
G
=
8
38
%H
D
P
6
L
]
H
R
I
%
R
O
W
V
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
;
8Q
F
R
S
H
G
&
R
S
H
G
7
R
S
&
R
S
HG
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
St
r
a
t
a
V
a
i
l
-
S
t
a
n
d
a
r
d
C
o
n
n
e
c
t
i
o
n
s
2
0
1
4
-
0
7
-
2
4
.
p
d
f
Pa
ge
1
4
o
f
4
0
07
/
3
0
/
2
0
1
4
Ex
t
e
n
d
e
d
S
i
n
g
l
e
P
l
a
t
e
,
G
=
8
38
%H
D
P
6
L
]
H
R
I
%
R
O
W
V
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
[
:
[
:
[
:
[
:
[
:
[
:
;
:
;
:
;
:
;
8Q
F
R
S
H
G
&
R
S
H
G
7
R
S
&
R
S
HG
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
R
S
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
&
R
S
H
G
7
%
St
r
a
t
a
V
a
i
l
-
S
t
a
n
d
a
r
d
C
o
n
n
e
c
t
i
o
n
s
2
0
1
4
-
0
7
-
2
4
.
p
d
f
Pa
ge
1
5
o
f
4
0
07
/
3
0
/
2
0
1
4
Ex
t
e
n
d
e
d
S
i
n
g
l
e
P
l
a
t
e
,
G
=
1
0
38
5,6$&RQQHFWLRQYHUVLRQ
*OREDO3DUDPHWHUV'HVFULSWLRQ
3URMHFW7LWOH :[$6'$
&RPSDQ\0DUWLQ0DUWLQ
'HVLJQHU (56
-RE1XPEHU
1RWHV
*OREDO3DUDPHWHUV6ROXWLRQ
'HVLJQ0HWKRG $,6&WK$6'
%ROW*URXS$QDO\VLV0HWKRG &HQWHURI5RWDWLRQ
:HOG$QDO\VLV0HWKRG &HQWHURI5RWDWLRQ
&RQVLGHU%ROW+ROH'HIRUPDWLRQ"<HV
&KHFN:HOG)LOOHU0DWHULDO0DWFKLQJ"<HV
&KHFN5RWDWLRQDO'XFWLOLW\"<HV
3URMHFW([SORUHU6XPPDU\
:[6$8QFRSHG )$,/8&
:[6$8QFRSHG'9LHZ &ROXPQ%HDP&OLS$QJOH6KHDU&RQQHFWLRQ
:[6$8QFRSHG'9LHZV &ROXPQ%HDP&OLS$QJOH6KHDU&RQQHFWLRQ
See comments herein
and single angle
connection summary
Strata Vail - Standard Connections 2014-07-24.pdf Page 16 of 4007/30/201438
6LGHYLHZ
)URQWYLHZ
$6':[6$8QFRSHG$6'5HVXOWV&ROXPQ%HDP&OLS$QJOH6KHDU&RQQHFWLRQ
Strata Vail - Standard Connections 2014-07-24.pdf Page 17 of 4007/30/201438
5HSRUW
0DWHULDO3URSHUWLHV
&ROXPQ :;$)\ NVL)X NVL
%HDP :;$)\ NVL)X NVL
$QJOH /;;$)\ NVL)X NVL
,QSXW'DWD
6KHDU/RDG NLSV 8VHU,QSXW6KHDU/RDG
$[LDO/RDG NLSV 8VHU,QSXW$[LDO)RUFH
7RS&ROXPQ'LVW LQ 8VHU,QSXW7RS&ROXPQ'LVW
&ROXPQ)RUFH NLSV 8VHU,QSXW&ROXPQ)RUFH
6WRU\6KHDU NLSV 8VHU,QSXW6WRU\6KHDU
1RWH8QOHVVVSHFLILHGDOOFRGHUHIHUHQFHVDUHIURP$,6&*RYHUQLQJ/&1$
/LPLW6WDWH5HTXLUHG $YDLODEOH8QLW\&KHFN5HVXOW
*HRPHWU\5HVWULFWLRQVDW%HDP 3$66
&KHFN0LQ%ROW6SDFLQJ 3DVV &RQGLWLRQ6PLQ !
GEROW -
6PLQ LQ 0LQEROWVSDFLQJ
GEROW LQ %ROWGLDPHWHU
&KHFN0D[%ROW6SDFLQJ 3DVV &RQGLWLRQ6PD[ PLQLQ
W-D
6PD[LQ 0D[EROWVSDFLQJ
WLQ7KLFNQHVVRIJRYHUQLQJHOHPHQW%HDP
&KHFN0LQ(GJH'LVWDQFH3DVV &RQGLWLRQ('PLQ ! ('DOORZ -
&KHFN0D[(GJH'LVWDQFH3DVV &RQGLWLRQ('PD[ PLQLQ
W-
*HRPHWU\5HVWULFWLRQVDW&ROXPQ 3$6 6
&KHFN0LQ%ROW6SDFLQJ 3DVV &RQGLWLRQ6PLQ !
GEROW -
6PLQ LQ 0LQEROWVSDFLQJ
GEROW LQ %ROWGLDPHWHU
&KHFN0D[%ROW6SDFLQJ 3DVV &RQGLWLRQ6PD[ PLQLQ
W-D
6PD[LQ 0D[EROWVSDFLQJ
WLQ7KLFNQHVVRIJRYHUQLQJHOHPHQW$QJOH
&KHFN0LQ(GJH'LVWDQFH3DVV &RQGLWLRQ('PLQ ! ('DOORZ -
&KHFN0D[(GJH'LVWDQFH3DVV &RQGLWLRQ('PD[ PLQLQ
W-
(UHFWLRQ6WDELOLW\3$66
&KHFNFRQGLWLRQ/\! G
NGHV
/\LQ &RQQHFWRUOHQJWKYHUWLFDO
G LQ %HDPGHSWK
NGHV LQ %HDPILOOHW
/PLQ LQ 0LQFRQQHFWRUOHQJWK
%HDP6KHDU<LHOG NLSVNLSV 3$6 6
5Q
)\
$JY
&Y *
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
$JY LQ*URVVDUHDVXEMHFWWRVKHDU
&Y :HEVKHDUFRHIILFLHQW*
5QNLSV 6KHDU\LHOGVWUHQJWK
&OLS$QJOH6KHDU<LHOG NLSVNLSV 3$6 6
5Q
)\
$JY -
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
$JY LQ*URVVDUHDVXEMHFWWRVKHDU
5QNLSV 6KHDU\LHOGVWUHQJWK
%HDP6KHDU5XSWXUH NLSVNLSV 3$6 6
5Q
)X
$QY -
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
Strata Vail - Standard Connections 2014-07-24.pdf Page 18 of 4007/30/201438
$QY LQ1HWDUHDVXEMHFWWRVKHDU
5QNLSV 6KHDUUXSWXUHVWUHQJWK
&OLS$QJOH6KHDU5XSWXUHDW%HDP NLSVNLSV 3$66
5Q
)X
$QY -
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
$QY LQ1HWDUHDVXEMHFWWRVKHDU
5QNLSV 6KHDUUXSWXUHVWUHQJWK
&OLS$QJOH6KHDU5XSWXUHDW&ROXPQ NLSVNLSV 3$66
5Q
)X
$QY -
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
$QY LQ1HWDUHDVXEMHFWWRVKHDU
5QNLSV 6KHDUUXSWXUHVWUHQJWK
&OLS$QJOH%ORFN6KHDUDW&ROXPQ NLSVNLSV 3$66
5Q >PLQ
)X
$QY
)\
$JY
8EV
)X
$QW @
-
$JY LQ*URVVDUHDVXEMHFWWRVKHDU
$QY LQ1HWDUHDVXEMHFWWRVKHDU
8EV 8QLIRUPWHQVLRQVWUHVVIDFWRU
$QW LQ1HWDUHDVXEMHFWWRWHQVLRQ
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
5QNLSV %ORFNVKHDUVWUHQJWK
%HDP%ORFN6KHDU NLSVNLSV 3$66
5Q >PLQ
)X
$QY
)\
$JY
8EV
)X
$QW @
-
$JY LQ*URVVDUHDVXEMHFWWRVKHDU
$QY LQ1HWDUHDVXEMHFWWRVKHDU
8EV 8QLIRUPWHQVLRQVWUHVVIDFWRU
$QW LQ1HWDUHDVXEMHFWWRWHQVLRQ
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
5QNLSV %ORFNVKHDUVWUHQJWK
&OLS$QJOH%ORFN6KHDUDW%HDP NLSVNLSV 3$6 6
5Q >PLQ
)X
$QY
)\
$JY
8EV
)X
$QW @
-
$JY LQ*URVVDUHDVXEMHFWWRVKHDU
$QY LQ1HWDUHDVXEMHFWWRVKHDU
8EV 8QLIRUPWHQVLRQVWUHVVIDFWRU
$QW LQ1HWDUHDVXEMHFWWRWHQVLRQ
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
5QNLSV %ORFNVKHDUVWUHQJWK
%ROW%HDULQJRQ&ROXPQ NLSVNLSV 3$6 6
5Q 1URZV
1FROV
5QVSDFLQJ -D
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
G LQ %ROWGLDPHWHU
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
/FVSDFLQJ LQ 9HUWLFDOGLVWDQFHIURPHGJHVRIDGMDFHQWKROHV
5QVSDFLQJ NLSV 6WUHQJWKDWVSDFHV PLQ5QVSDFLQJWHDURXW5Q
EHDULQJ5QEROW
5QEHDULQJ NLSV %HDULQJ
G
W
)X
5QVSDFLQJWHDURXW NLSV 7HDURXWDWVSDFHV
/FVSDFLQJ
W
)X
Strata Vail - Standard Connections 2014-07-24.pdf Page 19 of 4007/30/201438
5QEROW NLSV %ROWVKHDUVWUHQJWK5QEROW )QY
$EROW
)QY NVL 1RPLQDOVKHDUVWUHVVRIEROW
5QNLSV %ROWEHDULQJVWUHQJWK
%ROW%HDULQJRQ&OLS$QJOHDW&ROXPQ NLSVNLSV 3$66
5Q 1URZV
>5QHGJH1FROV
5QVSDFLQJ@
-D
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
G LQ %ROWGLDPHWHU
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
/FHGJH LQ 9HUWLFDOGLVWDQFHIURPHGJHRIKROHWRHGJHRI
PDWHULDO
/FVSDFLQJ LQ 9HUWLFDOGLVWDQFHIURPHGJHVRIDGMDFHQWKROHV
5QHGJH NLSV 6WUHQJWKDWHGJH PLQ5QHGJHWHDURXW5Q
EHDULQJ5QEROW
5QVSDFLQJ NLSV 6WUHQJWKDWVSDFHV PLQ5QVSDFLQJWHDURXW5Q
EHDULQJ5QEROW
5QEHDULQJ NLSV %HDULQJ
G
W
)X
5QHGJHWHDURXW NLSV 7HDURXWDWHGJH
/FHGJH
W
)X
5QVSDFLQJWHDURXW NLSV 7HDURXWDWVSDFHV
/FVSDFLQJ
W
)X
5QEROW NLSV %ROWVKHDUVWUHQJWK5QEROW )QY
$EROW
)QY NVL 1RPLQDOVKHDUVWUHVVRIEROW
5QNLSV %ROWEHDULQJVWUHQJWK
%ROW%HDULQJRQ%HDP NLSVNLSV 3$66
5Q 1URZV
1FROV
5QVSDFLQJ -D
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
G LQ %ROWGLDPHWHU
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
/FVSDFLQJ LQ 9HUWLFDOGLVWDQFHIURPHGJHVRIDGMDFHQWKROHV
5QVSDFLQJ NLSV 6WUHQJWKDWVSDFHV PLQ5QVSDFLQJWHDURXW5Q
EHDULQJ5QEROW
5QEHDULQJ NLSV %HDULQJ
G
W
)X
5QVSDFLQJWHDURXW NLSV 7HDURXWDWVSDFHV
/FVSDFLQJ
W
)X
5QEROW NLSV %ROWVKHDUVWUHQJWK5QEROW )QY
$EROW
)QY NVL 1RPLQDOVKHDUVWUHVVRIEROW
5QNLSV %ROWEHDULQJVWUHQJWK
%ROW%HDULQJRQ&OLS$QJOHDW%HDP NLSVNLSV 3$66
5Q 1URZV
>5QHGJH1FROV
5QVSDFLQJ@
-D
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
G LQ %ROWGLDPHWHU
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
/FHGJH LQ 9HUWLFDOGLVWDQFHIURPHGJHRIKROHWRHGJHRI
PDWHULDO
/FVSDFLQJ LQ 9HUWLFDOGLVWDQFHIURPHGJHVRIDGMDFHQWKROHV
5QHGJH NLSV 6WUHQJWKDWHGJH PLQ5QHGJHWHDURXW5Q
EHDULQJ5QEROW
5QVSDFLQJ NLSV 6WUHQJWKDWVSDFHV PLQ5QVSDFLQJWHDURXW5Q
EHDULQJ5QEROW
5QEHDULQJ NLSV %HDULQJ
G
W
)X
5QHGJHWHDURXW NLSV 7HDURXWDWHGJH
/FHGJH
W
)X
5QVSDFLQJWHDURXW NLSV 7HDURXWDWVSDFHV
/FVSDFLQJ
W
)X
5QEROW NLSV %ROWVKHDUVWUHQJWK5QEROW )QY
$EROW
)QY NVL 1RPLQDOVKHDUVWUHVVRIEROW
5QNLSV %ROWEHDULQJVWUHQJWK
%ROW6KHDUDW&ROXPQ NLSVNLSV 3$6 6
Strata Vail - Standard Connections 2014-07-24.pdf Page 20 of 4007/30/201438
5Q )QY
$E
1EROW
& -
)QY NVL 6KHDUVWUHVV1W\SH
$E LQ$UHDRIEROW
1EROW 1XPEHURIEROWV
&(FFHQWULFLW\FRHIILFLHQW
5QNLSV %ROWVKHDUUXSWXUHVWUHQJWK
%ROW*URXS(FFHQWULFLW\DW&ROXPQ
,&PHWKRG $,6&WK S
&&RHIILFLHQW
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
'[LQ +RUL]RQWDOEROWVSDFLQJ
'\LQ 9HUWLFDOEROWVSDFLQJ
([LQ +RUL]RQWDOHFFHQWULFLW\
(\LQ 9HUWLFDOHFFHQWULFLW\
$QJ $QJOHRIIRUFHLQGHJUHHVUHODWLYH;D[LV
,&[LQ &HQWHURIURWDWLRQ;
,&\LQ &HQWHURIURWDWLRQ<
%ROW6KHDUDW%HDP NLSVNLSV 3$6 6
5Q )QY
$E
1EROW
& -
)QY NVL 6KHDUVWUHVV1W\SH
$E LQ$UHDRIEROW
1EROW 1XPEHURIEROWV
&(FFHQWULFLW\FRHIILFLHQW
5QNLSV %ROWVKHDUUXSWXUHVWUHQJWK
%ROW*URXS(FFHQWULFLW\DW%HDP
,&PHWKRG $,6&WK S
&&RHIILFLHQW
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
'[LQ +RUL]RQWDOEROWVSDFLQJ
'\LQ 9HUWLFDOEROWVSDFLQJ
([LQ +RUL]RQWDOHFFHQWULFLW\
(\LQ 9HUWLFDOHFFHQWULFLW\
$QJ $QJOHRIIRUFHLQGHJUHHVUHODWLYH;D[LV
,&[LQ &HQWHURIURWDWLRQ;
,&\LQ &HQWHURIURWDWLRQ<
%ROW3U\LQJ 3$6 6
$,6&WK S
&KHFN$QJOH/HJ7KLFNQHVV)DLO &RQGLWLRQWPLQ WDQJOH
&KHFN3U\LQJ)RUFH3DVV
WDQJOH LQ &OLSDQJOHOHJWKLFNQHVV
3 NLSV 8VHULQSXWD[LDOORDG
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
QE 1XPEHURIEROWV
7EROW NLSV 7HQVLRQ/RDGSHUEROWGXHWRPRPHQW6HH
%ROW7HQVLRQ&KHFN
GE LQ %ROWGLDPHWHU
GKROH LQ %ROWKROHGLDPHWHU
E
LQ 'LVWDQFHIURPWKHLQQHUHGJHRIWKHEROWKROHWR
WKHIDFHRIWKHVWHPE
EGE
S LQ /HQJWKRIIODQJHWULEXWDU\WRHDFKEROWDORQJWKH
ORQJLWXGLQDOD[LVRIWKHDQJOH
7 NLSV 7RWDOWHQVLRQIRUFHZLWKPRPHQW7 7EROW3
QE
WPLQ LQ 0LQLPXPWKLFNQHVVUHTXLUHGWRHOLPLQDWHSU\LQJ
DFWLRQWPLQ
7
E
S
)X
0LQLPXP
1XPEHUR
7HQVLRQ/
%ROW7HQVLR
%ROWGLDP
Not required on support
member per AISC
Strata Vail - Standard Connections 2014-07-24.pdf Page 21 of 4007/30/201438
D LQ 'LVWDQFHIURPEROWFHQWHUOLQHWRWKHRXWHUHGJH
RIWKHOHJ
E LQ 'LVWDQFHIURPEROWFHQWHUOLQHWRWKHIDFHRIWKH
VWHP
D
LQ 'LVWDQFHIURPLQQHUHGJHRIEROWKROHWRWKH
RXWHUHGJHRIWKHOHJD
DGE
EGE
5DWLRRIE
WRD
E
D
5DWLRRIWKHQHWDUHDDWWKHEROWOLQHWRWKHJURVV
DUHDDWWKHIDFHRIWKHVWHP GKROHS
%NLSV 7RWDOWHQVLOHFDSDFLW\SHUEROW% $E
)QW
WF LQ )ODQJHWKLFNQHVVUHTXLUHGWRGHYHORSWKH
DYDLODEOHVWUHQJWKRIWKHEROWZLWKRXWSU\LQJ
DFWLRQWF
%
E
S
)X
5DWLRRIPRPHQWDWEROWOLQHWRPRPHQWDWVWHP
OLQH PD[>>7%WFW@
T NLSV )DFWRUHGSU\LQJIRUFHSHUEROWT %>WWF@
7X NLSV 7RWDOWHQVLRQRQWKHEROWLQFOXGLQJWKHSU\LQJ
IRUFH7X 7T
%ROW7HQVLRQDW&ROXPQ NLSVNLSV )$,/
5Q )
QW
$E -
&KHFN8VHU1RWH/LPLWIUW)QW
IUW NVL 5HTXLUHGWHQVLOHVWUHVV 7EROW3QE$E
)QW NVL 1RPLQDOWHQVLOHVWUHVVSHU7DEOH-
%HFDXVHIUW)QW:!WKH%ROW7HQVLOH&KHFNLVUHTXLUHG
&KHFN,QWHUDFWLRQ/LPLWIUY)QY
IUY NVL 5HTXLUHGVKHDUVWUHVVIUY 9QE$E
)QY NVL 1RPLQDOVKHDUVWUHVVSHU7DEOH-
%HFDXVHIUY)QY:!WKLVFKHFNVKDOOXVHWKHPRGLILHG)
QWVWUHVV
)
QW NVL 0RGLILHGQRPLQDOWHQVLOHVWUHVV PLQ
)QW
)QW)QY
IUY)QW
9 NLSV 8VHULQSXWVKHDUORDG
3 NLSV 8VHULQSXWD[LDOORDG
$E LQ%ROWFURVVVHFWLRQDODUHD
QE 1XPEHURIEROWV
7EROW NLSV 0D[WHQVLRQORDGSHUEROWGXHWRHFFHQWULFLW\
0HE
G
$W
NBHII
0H NLSVLQ 0RPHQWGXHWRHFFHQWULFLW\ 9
H[3
H\
H[LQ +RUL]RQWDOHFFHQWULFLW\
H\LQ 9HUWLFDOHFFHQWULFLW\
E LQ &RQQHFWRUZLGWK
G LQ &RQQHFWRUGHSWK
$W LQ0D[LPXPWULEXWDU\DUHDSHUEROW
NBHII &RHIILFLHQWFRUUHFWLRQIDFWRU
7X NLSV 5HTXLUHGWHQVLOHVWUHQJWKLQFOXGLQJSU\LQJVHH
%ROW3U\LQJ
FKHFN
5QNLSV %ROWWHQVLOHVWUHQJWK
1RPLQDOWHQVLOHVWUH
UHTXLUHG
5HTXLUHGVKHDUVWUH
Not required on support
member per AISC
Strata Vail - Standard Connections 2014-07-24.pdf Page 22 of 4007/30/201438
5,6$&RQQHFWLRQYHUVLRQ
*OREDO3DUDPHWHUV'HVFULSWLRQ
3URMHFW7LWOH :[$6'$
&RPSDQ\0DUWLQ0DUWLQ
'HVLJQHU (56
-RE1XPEHU
1RWHV
*OREDO3DUDPHWHUV6ROXWLRQ
'HVLJQ0HWKRG $,6&WK$6'
%ROW*URXS$QDO\VLV0HWKRG &HQWHURI5RWDWLRQ
:HOG$QDO\VLV0HWKRG &HQWHURI5RWDWLRQ
&RQVLGHU%ROW+ROH'HIRUPDWLRQ"<HV
&KHFN:HOG)LOOHU0DWHULDO0DWFKLQJ"<HV
&KHFN5RWDWLRQDO'XFWLOLW\"<HV
3URMHFW([SORUHU6XPPDU\
:[6$7DQG%&RSH )$,/8&
:[6$7DQG%&RSH'9LHZ *LUGHU%HDP&OLS$QJOH6KHDU&RQQHFWLRQ
:[6$7DQG%&RSH'9LHZV *LUGHU%HDP&OLS$QJOH6KHDU&RQQHFWLRQ
See comments herein
Strata Vail - Standard Connections 2014-07-24.pdf Page 23 of 4007/30/201438
6LGHYLHZ
)URQWYLHZ
$6':[6$7DQG%&RSH$6'5HVXOWV*LUGHU%HDP&OLS$QJOH6KHDU&RQQHFWLRQ
Strata Vail - Standard Connections 2014-07-24.pdf Page 24 of 4007/30/201438
5HSRUW
0DWHULDO3URSHUWLHV
*LUGHU :[$)\ NVL)X NVL
%HDP :[$)\ NVL)X NVL
$QJOH /;;$)\ NVL)X NVL
,QSXW'DWD
6KHDU/RDG NLSV 8VHU,QSXW6KHDU/RDG
$[LDO/RDG NLSV 8VHU,QSXW$[LDO)RUFH
1RWH8QOHVVVSHFLILHGDOOFRGHUHIHUHQFHVDUHIURP$,6&*RYHUQLQJ/&1$
/LPLW6WDWH5HTXLUHG $YDLODEOH8QLW\&KHFN5HVXOW
*HRPHWU\5HVWULFWLRQVDW%HDP 3$66
&KHFN0LQ%ROW6SDFLQJ 3DVV &RQGLWLRQ6PLQ !
GEROW -
6PLQ LQ 0LQEROWVSDFLQJ
GEROW LQ %ROWGLDPHWHU
&KHFN0D[%ROW6SDFLQJ 3DVV &RQGLWLRQ6PD[ PLQLQ
W-D
6PD[LQ 0D[EROWVSDFLQJ
WLQ7KLFNQHVVRIJRYHUQLQJHOHPHQW%HDP
&KHFN0LQ(GJH'LVWDQFH3DVV &RQGLWLRQ('PLQ ! ('DOORZ -
&KHFN0D[(GJH'LVWDQFH3DVV &RQGLWLRQ('PD[ PLQLQ
W-
*HRPHWU\5HVWULFWLRQVDW*LUGHU 3$6 6
&KHFN0LQ%ROW6SDFLQJ 3DVV &RQGLWLRQ6PLQ !
GEROW -
6PLQ LQ 0LQEROWVSDFLQJ
GEROW LQ %ROWGLDPHWHU
&KHFN0D[%ROW6SDFLQJ 3DVV &RQGLWLRQ6PD[ PLQLQ
W-D
6PD[LQ 0D[EROWVSDFLQJ
WLQ7KLFNQHVVRIJRYHUQLQJHOHPHQW*LUGHU
&KHFN0LQ(GJH'LVWDQFH3DVV &RQGLWLRQ('PLQ ! ('DOORZ -
&KHFN0D[(GJH'LVWDQFH3DVV &RQGLWLRQ('PD[ PLQLQ
W-
(UHFWLRQ6WDELOLW\3$66
&KHFNFRQGLWLRQ/\! G
NGHV
/\LQ &RQQHFWRUOHQJWKYHUWLFDO
G LQ %HDPGHSWK
NGHV LQ %HDPILOOHW
/PLQ LQ 0LQFRQQHFWRUOHQJWK
%HDP6KHDU<LHOG NLSVNLSV 3$6 6
5Q
)\
$JY
&Y *
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
$JY LQ*URVVDUHDVXEMHFWWRVKHDU
&Y :HEVKHDUFRHIILFLHQW*
5QNLSV 6KHDU\LHOGVWUHQJWK
&OLS$QJOH6KHDU<LHOG NLSVNLSV 3$6 6
5Q
)\
$JY -
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
$JY LQ*URVVDUHDVXEMHFWWRVKHDU
5QNLSV 6KHDU\LHOGVWUHQJWK
%HDP6KHDU5XSWXUH NLSVNLSV 3$6 6
5Q
)X
$QY -
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
Strata Vail - Standard Connections 2014-07-24.pdf Page 25 of 4007/30/201438
$QY LQ1HWDUHDVXEMHFWWRVKHDU
5QNLSV 6KHDUUXSWXUHVWUHQJWK
&OLS$QJOH6KHDU5XSWXUHDW%HDP NLSVNLSV 3$66
5Q
)X
$QY -
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
$QY LQ1HWDUHDVXEMHFWWRVKHDU
5QNLSV 6KHDUUXSWXUHVWUHQJWK
&OLS$QJOH6KHDU5XSWXUHDW*LUGHU NLSVNLSV 3$66
5Q
)X
$QY -
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
$QY LQ1HWDUHDVXEMHFWWRVKHDU
5QNLSV 6KHDUUXSWXUHVWUHQJWK
&OLS$QJOH%ORFN6KHDUDW*LUGHU NLSVNLSV 3$66
5Q >PLQ
)X
$QY
)\
$JY
8EV
)X
$QW @
-
$JY LQ*URVVDUHDVXEMHFWWRVKHDU
$QY LQ1HWDUHDVXEMHFWWRVKHDU
8EV 8QLIRUPWHQVLRQVWUHVVIDFWRU
$QW LQ1HWDUHDVXEMHFWWRWHQVLRQ
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
5QNLSV %ORFNVKHDUVWUHQJWK
%HDP%ORFN6KHDU NLSVNLSV 3$66
5Q >PLQ
)X
$QY
)\
$JY
8EV
)X
$QW @
-
$JY LQ*URVVDUHDVXEMHFWWRVKHDU
$QY LQ1HWDUHDVXEMHFWWRVKHDU
8EV 8QLIRUPWHQVLRQVWUHVVIDFWRU
$QW LQ1HWDUHDVXEMHFWWRWHQVLRQ
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
5QNLSV %ORFNVKHDUVWUHQJWK
&OLS$QJOH%ORFN6KHDUDW%HDP NLSVNLSV 3$6 6
5Q >PLQ
)X
$QY
)\
$JY
8EV
)X
$QW @
-
$JY LQ*URVVDUHDVXEMHFWWRVKHDU
$QY LQ1HWDUHDVXEMHFWWRVKHDU
8EV 8QLIRUPWHQVLRQVWUHVVIDFWRU
$QW LQ1HWDUHDVXEMHFWWRWHQVLRQ
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
5QNLSV %ORFNVKHDUVWUHQJWK
&RSHG%HDP)OH[XUDO5XSWXUH NLSVNLSV 3$6 6
5Q )X
6QHWH $,6&WK S
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
6QHW LQ6QHW ,Q<PD[HODVWLFVHFWLRQPRGXOXVRIWKH
FURVVVHFWLRQ
H LQ 'LVWDQFHIURPWKHIDFHRIWKHFRSHWRWKHSRLQWRI
LQIOHFWLRQ
,Q LQ0RPHQWRILQHUWLDZLWKUHVSHFWWRWKHQHXWUDOD[LV
<PD[LQ 0D[LPXPGLVWDQFHIURPWKHQHXWUDOSODQH KR
\F
KR LQ 2YHUDOGHSWKRIFRSHGVHFWLRQ
Strata Vail - Standard Connections 2014-07-24.pdf Page 26 of 4007/30/201438
\F LQ 3RVLWLRQRIWKHQHXWUDOSODQH
5QNLSV &RSHGEHDPIOH[XUDOUXSWXUH
&RSHG%HDP/DWHUDO7RUVLRQDO%XFNOLQJ NLSVNLSV )$,/
5Q PLQ)FU)\
6QHWH $,6&WK S
)FU NVL $YDLODEOHEXFNOLQJ)FU
(
WZ
IG F
KR
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
6QHW LQ6QHW ,Q<PD[HODVWLFVHFWLRQPRGXOXVRIWKH
FURVVVHFWLRQ
H LQ 'LVWDQFHIURPWKHIDFHRIWKHFRSHWRWKHSRLQWRI
LQIOHFWLRQ
(NVL 0RGXOXVRIHODVWLFLW\RIVWHHO
WZ LQ %HDPZHEWKLFNQHVV
KR LQ 5HGXFHGEHDPGHSWK
F LQ &RSHOHQJWK
IG $GMXVWPHQWIDFWRU
5QNLSV &RSHGEHDPORFDOZHEEXFNOLQJ
%ROW%HDULQJRQ*LUGHU NLSVNLSV 3$66
5Q 1URZV
1FROV
5QVSDFLQJ -D
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
G LQ %ROWGLDPHWHU
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
/FVSDFLQJ LQ 9HUWLFDOGLVWDQFHIURPHGJHVRIDGMDFHQWKROHV
5QVSDFLQJ NLSV 6WUHQJWKDWVSDFHV PLQ5QVSDFLQJWHDURXW5Q
EHDULQJ5QEROW
5QEHDULQJ NLSV %HDULQJ
G
W
)X
5QVSDFLQJWHDURXW NLSV 7HDURXWDWVSDFHV
/FVSDFLQJ
W
)X
5QEROW NLSV %ROWVKHDUVWUHQJWK5QEROW )QY
$EROW
)QY NVL 1RPLQDOVKHDUVWUHVVRIEROW
5QNLSV %ROWEHDULQJVWUHQJWK
%ROW%HDULQJRQ&OLS$QJOHDW*LUGHU NLSVNLSV 3$6 6
5Q 1URZV
>5QHGJH1FROV
5QVSDFLQJ@
-D
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
G LQ %ROWGLDPHWHU
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
/FHGJH LQ 9HUWLFDOGLVWDQFHIURPHGJHRIKROHWRHGJHRI
PDWHULDO
/FVSDFLQJ LQ 9HUWLFDOGLVWDQFHIURPHGJHVRIDGMDFHQWKROHV
5QHGJH NLSV 6WUHQJWKDWHGJH PLQ5QHGJHWHDURXW5Q
EHDULQJ5QEROW
5QVSDFLQJ NLSV 6WUHQJWKDWVSDFHV PLQ5QVSDFLQJWHDURXW5Q
EHDULQJ5QEROW
5QEHDULQJ NLSV %HDULQJ
G
W
)X
5QHGJHWHDURXW NLSV 7HDURXWDWHGJH
/FHGJH
W
)X
5QVSDFLQJWHDURXW NLSV 7HDURXWDWVSDFHV
/FVSDFLQJ
W
)X
5QEROW NLSV %ROWVKHDUVWUHQJWK5QEROW )QY
$EROW
)QY NVL 1RPLQDOVKHDUVWUHVVRIEROW
5QNLSV %ROWEHDULQJVWUHQJWK
%ROW%HDULQJRQ%HDP NLSVNLSV 3$66
5Q 1URZV
>5QHGJH1FROV
5QVSDFLQJ@
-D
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
G LQ %ROWGLDPHWHU
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
/FHGJH LQ 9HUWLFDOGLVWDQFHIURPHGJHRIKROHWRHGJHRI
H
(
WZ
KR
Indicates it won't
buckle, therefore use
Znet
Strata Vail - Standard Connections 2014-07-24.pdf Page 27 of 4007/30/201438
PDWHULDO
/FVSDFLQJ LQ 9HUWLFDOGLVWDQFHIURPHGJHVRIDGMDFHQWKROHV
5QHGJH NLSV 6WUHQJWKDWHGJH PLQ5QHGJHWHDURXW5Q
EHDULQJ5QEROW
5QVSDFLQJ NLSV 6WUHQJWKDWVSDFHV PLQ5QVSDFLQJWHDURXW5Q
EHDULQJ5QEROW
5QEHDULQJ NLSV %HDULQJ
G
W
)X
5QHGJHWHDURXW NLSV 7HDURXWDWHGJH
/FHGJH
W
)X
5QVSDFLQJWHDURXW NLSV 7HDURXWDWVSDFHV
/FVSDFLQJ
W
)X
5QEROW NLSV %ROWVKHDUVWUHQJWK5QEROW )QY
$EROW
)QY NVL 1RPLQDOVKHDUVWUHVVRIEROW
5QNLSV %ROWEHDULQJVWUHQJWK
%ROW%HDULQJRQ&OLS$QJOHDW%HDP NLSVNLSV 3$66
5Q 1URZV
>5QHGJH1FROV
5QVSDFLQJ@
-D
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
G LQ %ROWGLDPHWHU
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
/FHGJH LQ 9HUWLFDOGLVWDQFHIURPHGJHRIKROHWRHGJHRI
PDWHULDO
/FVSDFLQJ LQ 9HUWLFDOGLVWDQFHIURPHGJHVRIDGMDFHQWKROHV
5QHGJH NLSV 6WUHQJWKDWHGJH PLQ5QHGJHWHDURXW5Q
EHDULQJ5QEROW
5QVSDFLQJ NLSV 6WUHQJWKDWVSDFHV PLQ5QVSDFLQJWHDURXW5Q
EHDULQJ5QEROW
5QEHDULQJ NLSV %HDULQJ
G
W
)X
5QHGJHWHDURXW NLSV 7HDURXWDWHGJH
/FHGJH
W
)X
5QVSDFLQJWHDURXW NLSV 7HDURXWDWVSDFHV
/FVSDFLQJ
W
)X
5QEROW NLSV %ROWVKHDUVWUHQJWK5QEROW )QY
$EROW
)QY NVL 1RPLQDOVKHDUVWUHVVRIEROW
5QNLSV %ROWEHDULQJVWUHQJWK
%ROW6KHDUDW*LUGHU NLSVNLSV 3$66
5Q )QY
$E
1EROW
& -
)QY NVL 6KHDUVWUHVV1W\SH
$E LQ$UHDRIEROW
1EROW 1XPEHURIEROWV
&(FFHQWULFLW\FRHIILFLHQW
5QNLSV %ROWVKHDUUXSWXUHVWUHQJWK
%ROW*URXS(FFHQWULFLW\DW*LUGHU
,&PHWKRG $,6&WK S
&&RHIILFLHQW
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
'[LQ +RUL]RQWDOEROWVSDFLQJ
'\LQ 9HUWLFDOEROWVSDFLQJ
([LQ +RUL]RQWDOHFFHQWULFLW\
(\LQ 9HUWLFDOHFFHQWULFLW\
$QJ $QJOHRIIRUFHLQGHJUHHVUHODWLYH;D[LV
,&[LQ &HQWHURIURWDWLRQ;
,&\LQ &HQWHURIURWDWLRQ<
%ROW6KHDUDW%HDP NLSVNLSV 3$6 6
5Q )QY
$E
1EROW
& -
)QY NVL 6KHDUVWUHVV1W\SH
$E LQ$UHDRIEROW
1EROW 1XPEHURIEROWV
&(FFHQWULFLW\FRHIILFLHQW
Strata Vail - Standard Connections 2014-07-24.pdf Page 28 of 4007/30/201438
5QNLSV %ROWVKHDUUXSWXUHVWUHQJWK
%ROW*URXS(FFHQWULFLW\DW%HDP
,&PHWKRG $,6&WK S
&&RHIILFLHQW
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
'[LQ +RUL]RQWDOEROWVSDFLQJ
'\LQ 9HUWLFDOEROWVSDFLQJ
([LQ +RUL]RQWDOHFFHQWULFLW\
(\LQ 9HUWLFDOHFFHQWULFLW\
$QJ $QJOHRIIRUFHLQGHJUHHVUHODWLYH;D[LV
,&[LQ &HQWHURIURWDWLRQ;
,&\LQ &HQWHURIURWDWLRQ<
%ROW3U\LQJ 3$66
$,6&WK S
&KHFN$QJOH/HJ7KLFNQHVV)DLO &RQGLWLRQWPLQ WDQJOH
&KHFN3U\LQJ)RUFH3DVV
WDQJOH LQ &OLSDQJOHOHJWKLFNQHVV
3 NLSV 8VHULQSXWD[LDOORDG
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
QE 1XPEHURIEROWV
7EROW NLSV 7HQVLRQ/RDGSHUEROWGXHWRPRPHQW6HH
%ROW7HQVLRQ&KHFN
GE LQ %ROWGLDPHWHU
GKROH LQ %ROWKROHGLDPHWHU
E
LQ 'LVWDQFHIURPWKHLQQHUHGJHRIWKHEROWKROHWR
WKHIDFHRIWKHVWHPE
EGE
S LQ /HQJWKRIIODQJHWULEXWDU\WRHDFKEROWDORQJWKH
ORQJLWXGLQDOD[LVRIWKHDQJOH
7 NLSV 7RWDOWHQVLRQIRUFHZLWKPRPHQW7 7EROW3
QE
WPLQ LQ 0LQLPXPWKLFNQHVVUHTXLUHGWRHOLPLQDWHSU\LQJ
DFWLRQWPLQ
7
E
S
)X
D LQ 'LVWDQFHIURPEROWFHQWHUOLQHWRWKHRXWHUHGJH
RIWKHOHJ
E LQ 'LVWDQFHIURPEROWFHQWHUOLQHWRWKHIDFHRIWKH
VWHP
D
LQ 'LVWDQFHIURPLQQHUHGJHRIEROWKROHWRWKH
RXWHUHGJHRIWKHOHJD
DGE
EGE
5DWLRRIE
WRD
E
D
5DWLRRIWKHQHWDUHDDWWKHEROWOLQHWRWKHJURVV
DUHDDWWKHIDFHRIWKHVWHP GKROHS
%NLSV 7RWDOWHQVLOHFDSDFLW\SHUEROW% $E
)QW
WF LQ )ODQJHWKLFNQHVVUHTXLUHGWRGHYHORSWKH
DYDLODEOHVWUHQJWKRIWKHEROWZLWKRXWSU\LQJ
DFWLRQWF
%
E
S
)X
5DWLRRIPRPHQWDWEROWOLQHWRPRPHQWDWVWHP
OLQH PD[>>7%WFW@
T NLSV )DFWRUHGSU\LQJIRUFHSHUEROWT %>WWF@
7X NLSV 7RWDOWHQVLRQRQWKHEROWLQFOXGLQJWKHSU\LQJ
IRUFH7X 7T
%ROW7HQVLRQDW*LUGHU 1$
5Q )
QW
$E -
&KHFN8VHU1RWH/LPLWIUW)QW
IUW NVL 5HTXLUHGWHQVLOHVWUHVV 7EROW3QE$E
)QW NVL 1RPLQDOWHQVLOHVWUHVVSHU7DEOH-
NLSV
NVL
NLSV
Not required on support
member per AISC
Strata Vail - Standard Connections 2014-07-24.pdf Page 29 of 4007/30/201438
%HFDXVHIUW)QW: WKH%ROW7HQVLOH&KHFNLVQRWUHTXLUHG
)
QW NVL 0RGLILHGQRPLQDOWHQVLOHVWUHVV PLQ
)QW
)QW)QY
IUY)QW
9 NLSV 8VHULQSXWVKHDUORDG
3 NLSV 8VHULQSXWD[LDOORDG
$E LQ%ROWFURVVVHFWLRQDODUHD
QE 1XPEHURIEROWV
7EROW NLSV 0D[WHQVLRQORDGSHUEROWGXHWRHFFHQWULFLW\
0HE
G
$W
NBHII
0H NLSVLQ 0RPHQWGXHWRHFFHQWULFLW\ 9
H[3
H\
H[LQ +RUL]RQWDOHFFHQWULFLW\
H\LQ 9HUWLFDOHFFHQWULFLW\
E LQ &RQQHFWRUZLGWK
G LQ &RQQHFWRUGHSWK
$W LQ 0D[LPXPWULEXWDU\DUHDSHUEROW
NBHII &RHIILFLHQWFRUUHFWLRQIDFWRU
Strata Vail - Standard Connections 2014-07-24.pdf Page 30 of 4007/30/201438
5,6$&RQQHFWLRQYHUVLRQ
*OREDO3DUDPHWHUV'HVFULSWLRQ
3URMHFW7LWOH :[$6'$
&RPSDQ\0DUWLQ0DUWLQ
'HVLJQHU (56
-RE1XPEHU
1RWHV
*OREDO3DUDPHWHUV6ROXWLRQ
'HVLJQ0HWKRG $,6&WK$6'
%ROW*URXS$QDO\VLV0HWKRG &HQWHURI5RWDWLRQ
:HOG$QDO\VLV0HWKRG &HQWHURI5RWDWLRQ
&RQVLGHU%ROW+ROH'HIRUPDWLRQ"<HV
&KHFN:HOG)LOOHU0DWHULDO0DWFKLQJ"<HV
&KHFN5RWDWLRQDO'XFWLOLW\"<HV
3URMHFW([SORUHU6XPPDU\
:[6$7DQG%&RSH )$,/8&
:[6$7DQG%&RSH'9LHZ *LUGHU%HDP&OLS$QJOH6KHDU&RQQHFWLRQ
:[6$7DQG%&RSH'9LHZV *LUGHU%HDP&OLS$QJOH6KHDU&RQQHFWLRQ
See comments herein
and double angle
connection narrative
Strata Vail - Standard Connections 2014-07-24.pdf Page 31 of 4007/30/201438
6LGHYLHZ
)URQWYLHZ
$6':[6$7DQG%&RSH$6'5HVXOWV*LUGHU%HDP&OLS$QJOH6KHDU&RQQHFWLRQ
Strata Vail - Standard Connections 2014-07-24.pdf Page 32 of 4007/30/201438
5HSRUW
0DWHULDO3URSHUWLHV
*LUGHU :[$)\ NVL)X NVL
%HDP :[$)\ NVL)X NVL
$QJOH /;;$)\ NVL)X NVL
,QSXW'DWD
6KHDU/RDG NLSV 8VHU,QSXW6KHDU/RDG
$[LDO/RDG NLSV 8VHU,QSXW$[LDO)RUFH
1RWH8QOHVVVSHFLILHGDOOFRGHUHIHUHQFHVDUHIURP$,6&*RYHUQLQJ/&1$
/LPLW6WDWH5HTXLUHG $YDLODEOH8QLW\&KHFN5HVXOW
*HRPHWU\5HVWULFWLRQVDW%HDP 3$66
&KHFN0LQ%ROW6SDFLQJ 3DVV &RQGLWLRQ6PLQ !
GEROW -
6PLQ LQ 0LQEROWVSDFLQJ
GEROW LQ %ROWGLDPHWHU
&KHFN0D[%ROW6SDFLQJ 3DVV &RQGLWLRQ6PD[ PLQLQ
W-D
6PD[LQ 0D[EROWVSDFLQJ
WLQ7KLFNQHVVRIJRYHUQLQJHOHPHQW%HDP
&KHFN0LQ(GJH'LVWDQFH3DVV &RQGLWLRQ('PLQ ! ('DOORZ -
&KHFN0D[(GJH'LVWDQFH3DVV &RQGLWLRQ('PD[ PLQLQ
W-
*HRPHWU\5HVWULFWLRQVDW*LUGHU 3$6 6
&KHFN0LQ%ROW6SDFLQJ 3DVV &RQGLWLRQ6PLQ !
GEROW -
6PLQ LQ 0LQEROWVSDFLQJ
GEROW LQ %ROWGLDPHWHU
&KHFN0D[%ROW6SDFLQJ 3DVV &RQGLWLRQ6PD[ PLQLQ
W-D
6PD[LQ 0D[EROWVSDFLQJ
WLQ7KLFNQHVVRIJRYHUQLQJHOHPHQW*LUGHU
&KHFN0LQ(GJH'LVWDQFH3DVV &RQGLWLRQ('PLQ ! ('DOORZ -
&KHFN0D[(GJH'LVWDQFH3DVV &RQGLWLRQ('PD[ PLQLQ
W-
(UHFWLRQ6WDELOLW\3$66
&KHFNFRQGLWLRQ/\! G
NGHV
/\LQ &RQQHFWRUOHQJWKYHUWLFDO
G LQ %HDPGHSWK
NGHV LQ %HDPILOOHW
/PLQ LQ 0LQFRQQHFWRUOHQJWK
%HDP6KHDU<LHOG NLSVNLSV 3$6 6
5Q
)\
$JY
&Y *
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
$JY LQ*URVVDUHDVXEMHFWWRVKHDU
&Y :HEVKHDUFRHIILFLHQW*
5QNLSV 6KHDU\LHOGVWUHQJWK
&OLS$QJOH6KHDU<LHOG NLSVNLSV 3$6 6
5Q
)\
$JY -
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
$JY LQ*URVVDUHDVXEMHFWWRVKHDU
5QNLSV 6KHDU\LHOGVWUHQJWK
%HDP6KHDU5XSWXUH NLSVNLSV 3$6 6
5Q
)X
$QY -
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
Strata Vail - Standard Connections 2014-07-24.pdf Page 33 of 4007/30/201438
$QY LQ1HWDUHDVXEMHFWWRVKHDU
5QNLSV 6KHDUUXSWXUHVWUHQJWK
&OLS$QJOH6KHDU5XSWXUHDW%HDP NLSVNLSV 3$66
5Q
)X
$QY -
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
$QY LQ1HWDUHDVXEMHFWWRVKHDU
5QNLSV 6KHDUUXSWXUHVWUHQJWK
&OLS$QJOH6KHDU5XSWXUHDW*LUGHU NLSVNLSV 3$66
5Q
)X
$QY -
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
$QY LQ1HWDUHDVXEMHFWWRVKHDU
5QNLSV 6KHDUUXSWXUHVWUHQJWK
&OLS$QJOH%ORFN6KHDUDW*LUGHU NLSVNLSV 3$66
5Q >PLQ
)X
$QY
)\
$JY
8EV
)X
$QW @
-
$JY LQ*URVVDUHDVXEMHFWWRVKHDU
$QY LQ1HWDUHDVXEMHFWWRVKHDU
8EV 8QLIRUPWHQVLRQVWUHVVIDFWRU
$QW LQ1HWDUHDVXEMHFWWRWHQVLRQ
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
5QNLSV %ORFNVKHDUVWUHQJWK
%HDP%ORFN6KHDU NLSVNLSV 3$66
5Q >PLQ
)X
$QY
)\
$JY
8EV
)X
$QW @
-
$JY LQ*URVVDUHDVXEMHFWWRVKHDU
$QY LQ1HWDUHDVXEMHFWWRVKHDU
8EV 8QLIRUPWHQVLRQVWUHVVIDFWRU
$QW LQ1HWDUHDVXEMHFWWRWHQVLRQ
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
5QNLSV %ORFNVKHDUVWUHQJWK
&OLS$QJOH%ORFN6KHDUDW%HDP NLSVNLSV 3$6 6
5Q >PLQ
)X
$QY
)\
$JY
8EV
)X
$QW @
-
$JY LQ*URVVDUHDVXEMHFWWRVKHDU
$QY LQ1HWDUHDVXEMHFWWRVKHDU
8EV 8QLIRUPWHQVLRQVWUHVVIDFWRU
$QW LQ1HWDUHDVXEMHFWWRWHQVLRQ
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
5QNLSV %ORFNVKHDUVWUHQJWK
&RSHG%HDP)OH[XUDO5XSWXUH NLSVNLSV 3$6 6
5Q )X
6QHWH $,6&WK S
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
6QHW LQ6QHW ,Q<PD[HODVWLFVHFWLRQPRGXOXVRIWKH
FURVVVHFWLRQ
H LQ 'LVWDQFHIURPWKHIDFHRIWKHFRSHWRWKHSRLQWRI
LQIOHFWLRQ
,Q LQ0RPHQWRILQHUWLDZLWKUHVSHFWWRWKHQHXWUDOD[LV
<PD[LQ 0D[LPXPGLVWDQFHIURPWKHQHXWUDOSODQH KR
\F
KR LQ 2YHUDOGHSWKRIFRSHGVHFWLRQ
Strata Vail - Standard Connections 2014-07-24.pdf Page 34 of 4007/30/201438
\F LQ 3RVLWLRQRIWKHQHXWUDOSODQH
5QNLSV &RSHGEHDPIOH[XUDOUXSWXUH
&RSHG%HDP/DWHUDO7RUVLRQDO%XFNOLQJ NLSVNLSV )$,/
5Q PLQ)FU)\
6QHWH $,6&WK S
)FU NVL $YDLODEOHEXFNOLQJ)FU
(
WZ
IG F
KR
)\NVL 0LQLPXP\LHOGVWUHVVRIPDWHULDO
6QHW LQ6QHW ,Q<PD[HODVWLFVHFWLRQPRGXOXVRIWKH
FURVVVHFWLRQ
H LQ 'LVWDQFHIURPWKHIDFHRIWKHFRSHWRWKHSRLQWRI
LQIOHFWLRQ
(NVL 0RGXOXVRIHODVWLFLW\RIVWHHO
WZ LQ %HDPZHEWKLFNQHVV
KR LQ 5HGXFHGEHDPGHSWK
F LQ &RSHOHQJWK
IG $GMXVWPHQWIDFWRU
5QNLSV &RSHGEHDPORFDOZHEEXFNOLQJ
%ROW%HDULQJRQ*LUGHU NLSVNLSV 3$66
5Q 1URZV
1FROV
5QVSDFLQJ -D
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
G LQ %ROWGLDPHWHU
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
/FVSDFLQJ LQ 9HUWLFDOGLVWDQFHIURPHGJHVRIDGMDFHQWKROHV
5QVSDFLQJ NLSV 6WUHQJWKDWVSDFHV PLQ5QVSDFLQJWHDURXW5Q
EHDULQJ5QEROW
5QEHDULQJ NLSV %HDULQJ
G
W
)X
5QVSDFLQJWHDURXW NLSV 7HDURXWDWVSDFHV
/FVSDFLQJ
W
)X
5QEROW NLSV %ROWVKHDUVWUHQJWK5QEROW )QY
$EROW
)QY NVL 1RPLQDOVKHDUVWUHVVRIEROW
5QNLSV %ROWEHDULQJVWUHQJWK
%ROW%HDULQJRQ&OLS$QJOHDW*LUGHU NLSVNLSV 3$6 6
5Q 1URZV
>5QHGJH1FROV
5QVSDFLQJ@
-D
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
G LQ %ROWGLDPHWHU
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
/FHGJH LQ 9HUWLFDOGLVWDQFHIURPHGJHRIKROHWRHGJHRI
PDWHULDO
/FVSDFLQJ LQ 9HUWLFDOGLVWDQFHIURPHGJHVRIDGMDFHQWKROHV
5QHGJH NLSV 6WUHQJWKDWHGJH PLQ5QHGJHWHDURXW5Q
EHDULQJ5QEROW
5QVSDFLQJ NLSV 6WUHQJWKDWVSDFHV PLQ5QVSDFLQJWHDURXW5Q
EHDULQJ5QEROW
5QEHDULQJ NLSV %HDULQJ
G
W
)X
5QHGJHWHDURXW NLSV 7HDURXWDWHGJH
/FHGJH
W
)X
5QVSDFLQJWHDURXW NLSV 7HDURXWDWVSDFHV
/FVSDFLQJ
W
)X
5QEROW NLSV %ROWVKHDUVWUHQJWK5QEROW )QY
$EROW
)QY NVL 1RPLQDOVKHDUVWUHVVRIEROW
5QNLSV %ROWEHDULQJVWUHQJWK
%ROW%HDULQJRQ%HDP NLSVNLSV 3$66
5Q 1URZV
>5QHGJH1FROV
5QVSDFLQJ@
-D
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
G LQ %ROWGLDPHWHU
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
/FHGJH LQ 9HUWLFDOGLVWDQFHIURPHGJHRIKROHWRHGJHRI
H
(
WZ
KR
F
Indicates it won't
buckle, therefore use
Znet
Strata Vail - Standard Connections 2014-07-24.pdf Page 35 of 4007/30/201438
PDWHULDO
/FVSDFLQJ LQ 9HUWLFDOGLVWDQFHIURPHGJHVRIDGMDFHQWKROHV
5QHGJH NLSV 6WUHQJWKDWHGJH PLQ5QHGJHWHDURXW5Q
EHDULQJ5QEROW
5QVSDFLQJ NLSV 6WUHQJWKDWVSDFHV PLQ5QVSDFLQJWHDURXW5Q
EHDULQJ5QEROW
5QEHDULQJ NLSV %HDULQJ
G
W
)X
5QHGJHWHDURXW NLSV 7HDURXWDWHGJH
/FHGJH
W
)X
5QVSDFLQJWHDURXW NLSV 7HDURXWDWVSDFHV
/FVSDFLQJ
W
)X
5QEROW NLSV %ROWVKHDUVWUHQJWK5QEROW )QY
$EROW
)QY NVL 1RPLQDOVKHDUVWUHVVRIEROW
5QNLSV %ROWEHDULQJVWUHQJWK
%ROW%HDULQJRQ&OLS$QJOHDW%HDP NLSVNLSV 3$66
5Q 1URZV
>5QHGJH1FROV
5QVSDFLQJ@
-D
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
G LQ %ROWGLDPHWHU
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
/FHGJH LQ 9HUWLFDOGLVWDQFHIURPHGJHRIKROHWRHGJHRI
PDWHULDO
/FVSDFLQJ LQ 9HUWLFDOGLVWDQFHIURPHGJHVRIDGMDFHQWKROHV
5QHGJH NLSV 6WUHQJWKDWHGJH PLQ5QHGJHWHDURXW5Q
EHDULQJ5QEROW
5QVSDFLQJ NLSV 6WUHQJWKDWVSDFHV PLQ5QVSDFLQJWHDURXW5Q
EHDULQJ5QEROW
5QEHDULQJ NLSV %HDULQJ
G
W
)X
5QHGJHWHDURXW NLSV 7HDURXWDWHGJH
/FHGJH
W
)X
5QVSDFLQJWHDURXW NLSV 7HDURXWDWVSDFHV
/FVSDFLQJ
W
)X
5QEROW NLSV %ROWVKHDUVWUHQJWK5QEROW )QY
$EROW
)QY NVL 1RPLQDOVKHDUVWUHVVRIEROW
5QNLSV %ROWEHDULQJVWUHQJWK
%ROW6KHDUDW*LUGHU NLSVNLSV 3$66
5Q )QY
$E
1EROW
& -
)QY NVL 6KHDUVWUHVV1W\SH
$E LQ$UHDRIEROW
1EROW 1XPEHURIEROWV
&(FFHQWULFLW\FRHIILFLHQW
5QNLSV %ROWVKHDUUXSWXUHVWUHQJWK
%ROW*URXS(FFHQWULFLW\DW*LUGHU
,&PHWKRG $,6&WK S
&&RHIILFLHQW
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
'[LQ +RUL]RQWDOEROWVSDFLQJ
'\LQ 9HUWLFDOEROWVSDFLQJ
([LQ +RUL]RQWDOHFFHQWULFLW\
(\LQ 9HUWLFDOHFFHQWULFLW\
$QJ $QJOHRIIRUFHLQGHJUHHVUHODWLYH;D[LV
,&[LQ &HQWHURIURWDWLRQ;
,&\LQ &HQWHURIURWDWLRQ<
%ROW6KHDUDW%HDP NLSVNLSV 3$6 6
5Q )QY
$E
1EROW
& -
)QY NVL 6KHDUVWUHVV1W\SH
$E LQ$UHDRIEROW
1EROW 1XPEHURIEROWV
&(FFHQWULFLW\FRHIILFLHQW
Strata Vail - Standard Connections 2014-07-24.pdf Page 36 of 4007/30/201438
5QNLSV %ROWVKHDUUXSWXUHVWUHQJWK
%ROW*URXS(FFHQWULFLW\DW%HDP
,&PHWKRG $,6&WK S
&&RHIILFLHQW
1URZV 1XPEHURIURZVRIEROWV
1FROV 1XPEHURIEROWVSHUURZ
'[LQ +RUL]RQWDOEROWVSDFLQJ
'\LQ 9HUWLFDOEROWVSDFLQJ
([LQ +RUL]RQWDOHFFHQWULFLW\
(\LQ 9HUWLFDOHFFHQWULFLW\
$QJ $QJOHRIIRUFHLQGHJUHHVUHODWLYH;D[LV
,&[LQ &HQWHURIURWDWLRQ;
,&\LQ &HQWHURIURWDWLRQ<
%ROW3U\LQJ 3$66
$,6&WK S
&KHFN$QJOH/HJ7KLFNQHVV)DLO &RQGLWLRQWPLQ WDQJOH
&KHFN3U\LQJ)RUFH3DVV
WDQJOH LQ &OLSDQJOHOHJWKLFNQHVV
3 NLSV 8VHULQSXWD[LDOORDG
)X NVL 0LQLPXPWHQVLOHVWUHVVRIPDWHULDO
QE 1XPEHURIEROWV
7EROW NLSV 7HQVLRQ/RDGSHUEROWGXHWRPRPHQW6HH
%ROW7HQVLRQ&KHFN
GE LQ %ROWGLDPHWHU
GKROH LQ %ROWKROHGLDPHWHU
E
LQ 'LVWDQFHIURPWKHLQQHUHGJHRIWKHEROWKROHWR
WKHIDFHRIWKHVWHPE
EGE
S LQ /HQJWKRIIODQJHWULEXWDU\WRHDFKEROWDORQJWKH
ORQJLWXGLQDOD[LVRIWKHDQJOH
7 NLSV 7RWDOWHQVLRQIRUFHZLWKPRPHQW7 7EROW3
QE
WPLQ LQ 0LQLPXPWKLFNQHVVUHTXLUHGWRHOLPLQDWHSU\LQJ
DFWLRQWPLQ
7
E
S
)X
D LQ 'LVWDQFHIURPEROWFHQWHUOLQHWRWKHRXWHUHGJH
RIWKHOHJ
E LQ 'LVWDQFHIURPEROWFHQWHUOLQHWRWKHIDFHRIWKH
VWHP
D
LQ 'LVWDQFHIURPLQQHUHGJHRIEROWKROHWRWKH
RXWHUHGJHRIWKHOHJD
DGE
EGE
5DWLRRIE
WRD
E
D
5DWLRRIWKHQHWDUHDDWWKHEROWOLQHWRWKHJURVV
DUHDDWWKHIDFHRIWKHVWHP GKROHS
%NLSV 7RWDOWHQVLOHFDSDFLW\SHUEROW% $E
)QW
WF LQ )ODQJHWKLFNQHVVUHTXLUHGWRGHYHORSWKH
DYDLODEOHVWUHQJWKRIWKHEROWZLWKRXWSU\LQJ
DFWLRQWF
%
E
S
)X
5DWLRRIPRPHQWDWEROWOLQHWRPRPHQWDWVWHP
OLQH PD[>>7%WFW@
T NLSV )DFWRUHGSU\LQJIRUFHSHUEROWT %>WWF@
7X NLSV 7RWDOWHQVLRQRQWKHEROWLQFOXGLQJWKHSU\LQJ
IRUFH7X 7T
%ROW7HQVLRQDW*LUGHU 1$
5Q )
QW
$E -
&KHFN8VHU1RWH/LPLWIUW)QW
IUW NVL 5HTXLUHGWHQVLOHVWUHVV 7EROW3QE$E
)QW NVL 1RPLQDOWHQVLOHVWUHVVSHU7DEOH-
Strata Vail - Standard Connections 2014-07-24.pdf Page 37 of 4007/30/201438
%HFDXVHIUW)QW: WKH%ROW7HQVLOH&KHFNLVQRWUHTXLUHG
)
QW NVL 0RGLILHGQRPLQDOWHQVLOHVWUHVV PLQ
)QW
)QW)QY
IUY)QW
9 NLSV 8VHULQSXWVKHDUORDG
3 NLSV 8VHULQSXWD[LDOORDG
$E LQ%ROWFURVVVHFWLRQDODUHD
QE 1XPEHURIEROWV
7EROW NLSV 0D[WHQVLRQORDGSHUEROWGXHWRHFFHQWULFLW\
0HE
G
$W
NBHII
0H NLSVLQ 0RPHQWGXHWRHFFHQWULFLW\ 9
H[3
H\
H[LQ +RUL]RQWDOHFFHQWULFLW\
H\LQ 9HUWLFDOHFFHQWULFLW\
E LQ &RQQHFWRUZLGWK
G LQ &RQQHFWRUGHSWK
$W LQ 0D[LPXPWULEXWDU\DUHDSHUEROW
NBHII &RHIILFLHQWFRUUHFWLRQIDFWRU
Strata Vail - Standard Connections 2014-07-24.pdf Page 38 of 4007/30/201438
$
'
(
6
,
*
1
&
5
,
7
(
5
,
$
,%
&
:
,
7
+
7
2
:
1
2
)
9
$
,
/
$
0
0
(
1
'
0
(
1
7
6
$,
6
&
%
(
$
0
5
(
$
&
7
,
2
1
6
3
5
2
9
,
'
(
'
%
<
(
2
5
2
1
0
$
<
%
(
$
0
5
(
$
&
7
,
2
1
6
$
1
'
&
2
1
1
(
&
7
,
2
1
&
$
3
$
&
,
7
,
(
6
$
5
(
5
(
3
2
5
7
(
'
8
6
,
1
*
6
(5
9
,
&
(
/
(
9
(
/
/
2
$
'
6
$
6
'
6
(
,
6
0
,
&
/
$
7
(
5
$
/
6
<
6
7
(
0
2
5
'
,
1
$
5
<
&
2
1
&
(
1
7
5
,
&
%
5
$
&
(
'
)
5
$
0
(
6
%
0
$
7
(
5
,
$
/
$
6
6
8
0
3
7
,
2
1
6
3/
$
7
(
6
$
1
'
$
1
*
/
(
6
$
3,
3
(
$
*
5
%
:(
/
'
6
(
;
;
+,
*
+
6
7
5
(
1
*
7
+
%
2
/
7
6
$
(;
,
6
7
,
1
*
:
,
'
(
)
/
$
1
*
(
6
$
&
6
7
$
1
'
$
5
'
&
2
1
1
(
&
7
,
2
1
6
6
7
$
1
'
$
5
'
&
2
1
1
(
&
7
,
2
1
6
$
5
(
'
(
)
,
1
(
'
%
<
7
+
2
6
(
$
'
'
5
(
6
6
(
'
%
<
6
&
+
(
'
8/
(
6
$
1
'
7
<
3
,
&
$
/
'
(
7
$
,
/
6
)
2
8
1
'
21
6
+
(
(
7
6
6
&
7
+
5
2
8
*
+
6
&
7
+
(
<
$
5
(
1
2
7
,
1
'
,
&
$
7
(
'
2
1
3
/
$
1
)
2
5
1
2
1
&
2
0
3
2
6
,
7
(
%
(
$
0
6
:
,
7
+
2
8
7
5
(
$
&
7
,
2
1
6
3
5
2
9
,
'
(
&
2
1
1
(
&
7
,
2
1
:
,
7
+
&
$
3
$
&
,
7
<
(
;
&
(
(
'
,
1
*
2
)
7+
(
0
$
;
,
0
8
0
7
2
7
$
/
8
1
,
)
2
5
0
/
2
$
'
3
(
5
$
,
6
&
7
$
%
/
(
)
2
5
&
2
0
3
2
6
,
7
(
%
(
$
0
6
:
,
7
+
2
8
7
5
(
$
&
7
,
2
1
6
3
5
2
9
,
'
(
&
2
1
1
(
&
7
,
2
1
:
,
7+
&
$
3
$
&
,
7
<
(
;
&
(
(
'
,
1
*
2
)
7+
(
0
$
;
,
0
8
0
7
2
7
$
/
8
1
,
)
2
5
0
/
2
$
'
3
(
5
$
,
6
&
7
$
%
/
(
1
2
7
,
)
<
0
$
5
7
,
1
0
$
5
7
,
1
2
)
$
1
<
&
2
1
1
(
&
7
,
2
1
6
1
2
7
&
2
9
(
5
(
'
(
,
7
+
(
5
$
%2
9
(
2
5
$
6
$
6
7
$
1
'
$
5
'
&
2
1
1
(
&
7
,
2
1
'
7
(
6
7
,
1
*
$
1
'
,
1
6
3
(
&
7
,
2
1
6
7
(
6
7
,
1
*
$
1
'
6
3
(
&
,
$
/
,
1
6
3
(
&
7
,
2
1
6
6
+
$
/
/
%
(
3
(
5
)
2
5
0
(
'
,
1
&
2
0
3
/
,
$1
&
(
:
,
7
+
(
2
5
&
2
1
7
5
$
&
7
'
2
&
8
0
(
1
7
6
,%
&
$
1
'
$
,
6
&
&
+
$
3
7
(
5
1
7
(
6
7
$
1
'
,
1
6
3
(
&
7
3
2
6
7
,
1
6
7
$
/
/
(
'
$
1
&
+
2
5
6
3
(
5
5
(
4
8
,
5
(
0
(
1
7
6
2
)
,&
&
5
(
3
2
5
7
6
*(
1
(
5
$
/
1
2
7
(
6
$%
%
5
(
9
,
$
7
,
2
1
/
,
6
7
$(
6
6
$
U
F
K
L
W
H
F
W
X
U
D
O
O
\
(
[
S
R
V
H
G
6
W
U
X
F
W
X
U
D
O
6
W
H
H
O
%2
7
%
R
W
W
R
P
&-
3
&
R
P
S
O
H
W
H
-
R
L
Q
W
3
H
Q
H
W
U
D
W
L
R
Q
:
H
O
G
&1
7
5
&
H
Q
W
H
U
H
G
&2
1
1
&
R
Q
Q
H
F
W
L
R
Q
'&
:
'
H
P
D
Q
G
&
U
L
W
L
F
D
O
:
H
O
G
(1
*
5
(
Q
J
L
Q
H
H
U
6
W
H
H
O
&
R
Q
Q
H
F
W
L
R
Q
(2
5
(
Q
J
L
Q
H
H
U
R
I
5
H
F
R
U
G
(6
(
D
F
K
6
L
G
H
)%
*
)
O
D
U
H
%
H
Y
H
O
*
U
R
R
Y
H
:
H
O
G
)/
*
)
O
D
Q
J
H
)6
)
D
U
6
L
G
H
*$
*
D
J
H
R
U
*
D
X
J
H
+2
5
,
=
+
R
U
L
]
R
Q
W
D
O
/)
5
&
/
D
W
H
U
D
O
)
R
U
F
H
5
H
V
L
V
W
L
Q
J
&
R
P
S
R
Q
H
Q
W
//
+
/
R
Q
J
/
H
J
+
R
U
L
]
R
Q
W
D
O
//
9
/
R
Q
J
/
H
J
9
H
U
W
L
F
D
O
/6
/
7
/
R
Q
J
6
O
R
W
W
H
G
+
R
O
H
2+
2
S
S
R
V
L
W
H
+
D
Q
G
29
6
2
Y
H
U
V
L
]
H
G
3-
3
3
D
U
W
L
D
O
-
R
L
Q
W
3
H
Q
H
W
U
D
W
L
R
Q
:
H
O
G
5$
'
5
D
G
L
X
V
5(
7
5
H
W
X
U
Q
6&
6
O
L
S
&
U
L
W
L
F
D
O
6&
+
(
'
6
F
K
H
G
X
O
H
66
/
7
6
K
R
U
W
6
O
R
W
W
H
G
+
R
O
H
67
'
6
W
D
Q
G
D
U
G
67
,
)
)
6
W
L
I
I
H
Q
H
U
7
%
7
R
S
D
Q
G
%
R
W
W
R
P
9(
5
7
9
H
U
W
L
F
D
O
:3
:
R
U
N
S
R
L
Q
W
6+
(
(
7
7
,
7
/
(
6+
(
(
7
1
8
0
%
(
5
'(7$,/(5
'$7(35,17('352-(&70$1$*(50DUWLQ0DUWLQ,QFFRQVLGHUVWKDWGHVLJQGDWDLVRQO\LQLWVILQDOIRUPRQSORWWHGGUDZLQJVZLWKRULJLQDOVLJQDWXUHVDQGSURIHVVLRQDOFHUWLILFDWLRQEHLQJYLVLEO\SUHVHQWRQWKHGUDZLQJV'DWDVXSSOLHGYLDFRPSXWHUJHQHUDWHGIRUPDWGRHVQRWFRQWDLQWKLVDSSURYDORUFHUWLILFDWLRQ7KHUHFHLYHURIHOHFWURQLFDOO\WUDQVPLWWHGGUDZLQJVLVUHVSRQVLEOHIRUYHULI\LQJWKHLQIRUPDWLRQFRQWDLQHGZLWKLQWKHHOHFWURQLFGDWDDJDLQVWWKHUHFRUGHGRUDSSURYHGGRFXPHQWV7KHXVHRIHOHFWURQLFDOO\WUDQVPLWWHGGUDZLQJVLVFRQVLGHUHGWREHDW\RXURZQULVN0DUWLQ0DUWLQ,QFDVVXPHVQRUHVSRQVLELOLW\IRUDQ\FODLPVRUGDPDJHVUHVXOWLQJIURP\RXUXVHRIWKLVLQIRUPDWLRQ(OHFWURQLFLQIRUPDWLRQLVSURYLGHGIRUWKHFRQYHQLHQFHRIWKHUHFLSLHQWRQO\7KHUHFLSLHQWRIWKLVILOHDJUHHVWKDWWKHLQIRUPDWLRQPD\QRWEHWUDQVIHUUHGWRDQ\RWKHUSDUW\
67((/&211(&7,21'(6,*1'5$:,1*6
35
2
-
(
&
7
1
2
,6
6
8
(
'
$
7
(
5(
9
,
6
,
2
1
6
12
,
6
6
8
(
'
$
7
(
0
$
5
7
,
1
0
$
5
7
,
1
$,
6
&
7
+
(
'
,
7
,
2
1
$6
'
)25$33529$/$1''(7$,/(586(
=0,352-(&7
30
6&
67
(
(
/
&
2
1
1
(
&
7
,
2
1
*(
1
(
5
$
/
1
2
7
(
6
3$
*
(
(56
675$7$9$,/
9DLO&2
Fo
r
Ap
p
r
o
v
a
l
No
t
F
o
r
Co
n
s
t
r
u
c
t
i
o
n
JU
L
3
1
2
0
1
3
;;
N
;;
N
;;
N
;;
N
;;
N
;;
N
;;
N
;;
N
;;N ;;N ;;N
;;N ;;N
;;
N
%(
$
0
6
,
=
(
%($06,=(
'(
7
$
,
/
(
5
6
(
/
(
&
7
&
2
1
1
(
&
7
,
2
1
7+
$
7
3
5
2
9
,
'
(
6
5
(
$
&
7
,
2
1
12
7
(
'
2
1
(
2
5
5
(
$
&
7
,
2
1
3
/
$
1
%(
$
0
5
(
$
&
7
,
2
1
25
'
(
5
2
)
3
5
(
)
(
5
(
1
&
(
6
,
1
*
/
(
$
1
*
/
(
&
2
1
1
6
&
+
(
'
8
/
(
'
2
8
%
/
(
$
1
*
/
(
&
2
1
1
6
&
+
(
'
8
/
(
6(
(
3
/
$
1
6&
$7
%
0
63
/
,
&
(
6
&
6
&
6&
$7
+
6
6
&2
/
6&
$7
:
&2
/
:
(
%
0,1
0,1
0,17<3
$7
'
%
/
$
1
*
/
(
6
67
$
1
'
$
5
'
2
5
+
2
5
,
=
6+
2
5
7
6
/
2
7
7
(
'
+2
/
(
6
0
$
<
%
(
86
(
'
7
<
3
/
[
[
%2/760$<%(
67$**(5('
25$/,*1('
$1
*
/
(
G
[
G
**
&2
1
1
(
&
7
,
2
1
6
(
(
6
&
+
(
'
8
/
(
6
86
(
7
%
&
2
3
(
9
$
/
8
(
6
'
2
1
2
7
/2
&
$
7
(
%
2
/
7
2
1
:
(
/
'
$'
'
:
(
%
(
;
7
(
1
6
,
2
1
3
/
:+
(
5
(
$
9
$
,
/
$
%
/
(
%
(
$
0
'(
3
7
+
,
6
,
1
6
8
)
)
,
&
,
(
1
7
)
2
5
&2
1
1
(
&
7
,
2
1
'
(
3
7
+
3
/
7
+
.
$1
'
*
5
$
'
(
7
2
0
$
7
&
+
%
0
:(
%
&-
3
$
7
67
5
,
3
3
(
'
)/
$
1
*
(
6
2)6,0,/$5%($0
70,1%$6('217
)2
5
$
1
*
/
(
6
,
=
(
'(
7
$
,
/
6
(
(
0
$
;
)2
5
&
$
3
$
&
,
7
<
6(
(
'2
8
%
/
(
$
1
*
/
(
$
$
6
&
6
&
6&
(;
7
(
1
'
(
'
6
,
1
*
/
(
3/
$
7
(
&
2
1
1
(
&
7
,
2
1
Ĭ
Ĭ
Ĭ
%
(
9
(
/
(1
'
2
)
3
/
$
7
)
$
&
(
2)
6
8
3
3
2
5
7
Ĭ
Ĭ
0
$
;
$7
6
.
(
:
$
$
*
6,
1
*
/
(
3
/
$
7
(
&2
1
1
(
&
7
,
2
1
0 $;
6&
0 $;
G
72
3
%
2
7
7
2
0
&
2
3
(
72
3
&
2
3
(
2
1
/
<
7<3
G0,1
&2
3
(
/
(
1
*
7
+
6
(
(
6
&
+
(
'
G
6(
(
6
&
+
(
'
&2
3
(
/
(
1
*
7
+
G0,1
7<3
GZ:(%(;73/
12
7
(
7+
(
*
(
2
0
(
7
5
<
6
+
2
:
1
,
6
7
+
(
%
$
6
,
6
)
2
5
&$
/
&
8
/
$
7
,
2
1
6
2
)
/
,
0
,
7
6
7
$
7
(
6
,
1
9
2
/
9
,
1
*
&2
3
(
'
%
(
$
0
6
$
/
/
(
'
*
(
'
,
6
7
$
1
&
(
',
0
(
1
6
,
2
1
6
6
+
2
:
1
$
5
(
0
,
1
,
0
8
0
6
N
5
$
'
,
8
6
7<
3
&
2
3
(
%2
7
7
2
0
&
2
3
(
2
1
/
<
G0,1
7<3
N
86
(
7
2
3
&
2
3
(
'
9$
/
8
(
6
,
1
7
$
%
/
(
6
(
(
6
&
+
(
'
&
2
3
(
/
(
1
*
7
+
6
(
(
6
&
+
(
'
&
2
3
(
/
(
1
*
7
+
6
(
(
6
&
+
(
'
&
2
3
(
/
(
1
*
7
+
6
(
(
6
&
+
(
'
&
2
3
(
/
(
1
*
7
+
'(3 7 +
7 2 3
&2 3 ('(3 7 +
%2 7 7 2 0
&2 3 (
'(3 7 +7 2 3&2 3 ('(3 7 +
%2 7 7 2 0
&2 3 (
72
3
%
2
7
7
2
0
&
2
3
(
6
/
2
3
(
'
$/
/
+
2
/
(
6
,
1
%(
$
0
6
$
5
(
67
$
1
'
$
5
'
+2
/
(
6
$/
/
+
2
/
(
6
,
1
%(
$
0
6
$
5
(
67
$
1
'
$
5
'
+
2
/
(
6
$/
/
+
2
/
(
6
,
1
%(
$
0
6
$
5
(
67
$
1
'
$
5
'
+
2
/
(
6
6(
(
6
&
+
(
'
&2
3
(
/
(
1
*
7
+
6&
68
3
3
2
5
7
,
1
*
0(
0
%
(
5
:
(
%
67
5
,
3
%
2
7
7
2
0
%
(
$
0
)/
$
1
*
(
(
$
&
+
6
,
'
(
8
6
(
7
%
&
2
3
(
'
9
$
/
8
(
)5
2
0
7
$
%
/
(
)2
5
5
(
'
8
&
(
'
&
$
3
$
&
,
7
<
$7
6
+
$
5
(
'
%
2
/
7
6
6
(
(
0,1
(;
7
(
1
'
'
2
8
%
/
(
$
1
*
/
(
6
$
6
5(
4
8
,
5
(
'
)
2
5
5
(
'
8
&
(
'
&$
3
$
&
,
7
<
2
1
6
+
$
5
(
'
%2
/
7
6
2
5
7
2
0
(
(
7
2
6
+
$
(5
(
&
7
,
2
1
5
(
4
8
,
5
(
0
(
1
7
6
6
&
6
&
8
1
&
2
3
(
'
9
$
/
8
(
6
0
$
<
%(
8
6
(
'
:
+
(
1
)/
$
1
*
(
6
$
5
(
%
/
2
&
.
(
'
25
6
7
5
,
3
3
(
'
2
1
(
6
,
'
(
72
3
$
6
6
7
'
,
0
(
1
6
,
2
1
2)
&
2
/
8
0
1
5
$
'
,
8
6
7
<
3
6,
1
*
/
(
$
1
*
/
(
&2
1
1
$3
3
/
,
(
6
$
7
:
&2
/
8
0
1
6
$
6
5
(
4
'
$%
%
5
(
9
,
$
7
,
2
1
/
,
6
7
$(
6
6
$
U
F
K
L
W
H
F
W
X
U
D
O
O
\
(
[
S
R
V
H
G
6
W
U
X
F
W
X
U
D
O
6
W
H
H
O
%2
7
%
R
W
W
R
P
&-
3
&
R
P
S
O
H
W
H
-
R
L
Q
W
3
H
Q
H
W
U
D
W
L
R
Q
:
H
O
G
&1
7
5
&
H
Q
W
H
U
H
G
&2
1
1
&
R
Q
Q
H
F
W
L
R
Q
'&
:
'
H
P
D
Q
G
&
U
L
W
L
F
D
O
:
H
O
G
(1
*
5
(
Q
J
L
Q
H
H
U
6
W
H
H
O
&
R
Q
Q
H
F
W
L
R
Q
(2
5
(
Q
J
L
Q
H
H
U
R
I
5
H
F
R
U
G
(6
(
D
F
K
6
L
G
H
)%
*
)
O
D
U
H
%
H
Y
H
O
*
U
R
R
Y
H
:
H
O
G
)/
*
)
O
D
Q
J
H
)6
)
D
U
6
L
G
H
*$
*
D
J
H
R
U
*
D
X
J
H
+2
5
,
=
+
R
U
L
]
R
Q
W
D
O
/)
5
&
/
D
W
H
U
D
O
)
R
U
F
H
5
H
V
L
V
W
L
Q
J
&
R
P
S
R
Q
H
Q
W
//
+
/
R
Q
J
/
H
J
+
R
U
L
]
R
Q
W
D
O
//
9
/
R
Q
J
/
H
J
9
H
U
W
L
F
D
O
/6
/
7
/
R
Q
J
6
O
R
W
W
H
G
+
R
O
H
2+
2
S
S
R
V
L
W
H
+
D
Q
G
29
6
2
Y
H
U
V
L
]
H
G
3-
3
3
D
U
W
L
D
O
-
R
L
Q
W
3
H
Q
H
W
U
D
W
L
R
Q
:
H
O
G
5$
'
5
D
G
L
X
V
5(
7
5
H
W
X
U
Q
6&
6
O
L
S
&
U
L
W
L
F
D
O
6&
+
(
'
6
F
K
H
G
X
O
H
66
/
7
6
K
R
U
W
6
O
R
W
W
H
G
+
R
O
H
67
'
6
W
D
Q
G
D
U
G
67
,
)
)
6
W
L
I
I
H
Q
H
U
7
%
7
R
S
D
Q
G
%
R
W
W
R
P
9(
5
7
9
H
U
W
L
F
D
O
:3
:
R
U
N
S
R
L
Q
W
6+
(
(
7
7
,
7
/
(
6+
(
(
7
1
8
0
%
(
5
'(7$,/(5
'$7(35,17('352-(&70$1$*(50DUWLQ0DUWLQ,QFFRQVLGHUVWKDWGHVLJQGDWDLVRQO\LQLWVILQDOIRUPRQSORWWHGGUDZLQJVZLWKRULJLQDOVLJQDWXUHVDQGSURIHVVLRQDOFHUWLILFDWLRQEHLQJYLVLEO\SUHVHQWRQWKHGUDZLQJV'DWDVXSSOLHGYLDFRPSXWHUJHQHUDWHGIRUPDWGRHVQRWFRQWDLQWKLVDSSURYDORUFHUWLILFDWLRQ7KHUHFHLYHURIHOHFWURQLFDOO\WUDQVPLWWHGGUDZLQJVLVUHVSRQVLEOHIRUYHULI\LQJWKHLQIRUPDWLRQFRQWDLQHGZLWKLQWKHHOHFWURQLFGDWDDJDLQVWWKHUHFRUGHGRUDSSURYHGGRFXPHQWV7KHXVHRIHOHFWURQLFDOO\WUDQVPLWWHGGUDZLQJVLVFRQVLGHUHGWREHDW\RXURZQULVN0DUWLQ0DUWLQ,QFDVVXPHVQRUHVSRQVLELOLW\IRUDQ\FODLPVRUGDPDJHVUHVXOWLQJIURP\RXUXVHRIWKLVLQIRUPDWLRQ(OHFWURQLFLQIRUPDWLRQLVSURYLGHGIRUWKHFRQYHQLHQFHRIWKHUHFLSLHQWRQO\7KHUHFLSLHQWRIWKLVILOHDJUHHVWKDWWKHLQIRUPDWLRQPD\QRWEHWUDQVIHUUHGWRDQ\RWKHUSDUW\
67((/&211(&7,21'(6,*1'5$:,1*6
35
2
-
(
&
7
1
2
,6
6
8
(
'
$
7
(
5(
9
,
6
,
2
1
6
12
,
6
6
8
(
'
$
7
(
0
$
5
7
,
1
0
$
5
7
,
1
$,
6
&
7
+
(
'
,
7
,
2
1
$6
'
)25$33529$/$1''(7$,/(586(
=0,352-(&7
30
6&
7<
3
,
&
$
/
6
+
(
$
5
&2
1
1
(
&
7
,
2
1
'(
7
$
,
/
6
(56
(56
675$7$9$,/
9DLO&2
12
6
&
$
/
(
=0
,
7
<
3
%
(
$
0
&
2
1
1
(
&
7
,
2
1
6
12
6
&
$
/
(
=0
,
7
<
3
%
(
$
0
$
1
*
/
(
6
12
6
&
$
/
(
7<
3
%
(
$
0
:
(
%
(
;
7
(
1
6
,
2
1
12
6
&
$
/
(
7<
3
%
(
$
0
'
%
/
$
1
*
/
(
6
3
/
,
&
(
12
6
&
$
/
(
7<
3
6
.
(
:
(
'
%
(
$
0
&
2
1
1
(
&
7
,
2
1
12
6
&
$
/
(
7<
3
%
(
$
0
&
2
3
(
*
(
2
0
(
7
5
<
12
6
&
$
/
(
7<
3
(
;
7
(
1
'
(
'
$
1
*
/
(
12
6
&
$
/
(
7<
3
%
(
$
0
)
/
$
1
*
(
%
/
2
&
.
Fo
r
Ap
p
r
o
v
a
l
No
t
F
o
r
Co
n
s
t
r
u
c
t
i
o
n
JU
L
3
1
2
0
1
3
$
$$
%(
$
0
6
,
=
(
6
&2
3
(
&
2
1
'
,
7
,
2
1
2
)
%
2
/
7
6
7
7%77
7%
7
7%
7
%
7
7%
7
%
77
%77
7%77
7%
7
7%
7
7%
7
%
7%77
%
7
7
7%
7
7%
&2
3
(
7
<
3
(
81
&
2
3
(
'
&
2
3
(
/
(
1
*
7
+
&
2
3
(
/
(
1
*
7
+
&
2
3
(
/
(
1
*
7
+
&2
3
(
/
(
1
*
7
+
:
[
:
[
7%77
%77
%77
%77
%77
%77
%77
%77
%77
%77
%77
%77
%77
%77
%77
%
7
$
6
,
1
*
/
(
$
1
*
/
(
&
2
1
1
(
&
7
,
2
1
6
&
+
(
'
8
/
(
0
$
;
5
(
$
&
7
,
2
1
.
,
3
6
$
,
6
&
6
(
5
9
,
&
(
/
(
9
(
/
7
,
1
'
,
&
$
7
(
6
7
2
3
&2
3
(
2
1
/
<
7%
,
1
'
,
&
$
7
(
6
72
3
$
1
'
%2
7
7
2
0
&
2
3
(
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
8
3
:
:
:
:
:
:
$7
&
2
/
8
0
1
%2
/
7
6
6
7
$
*
*
(
5
(
'
%2
/
7
6
$
/
,
*
1
(
'
70,1
$7
*
,
5
'
(
5
%2
/
7
(
'
%
(
$
0
%
2
/
7
(
'
6
8
3
3
2
5
7
%2
/
7
6
6
7
$
*
*
(
5
(
'
%2
/
7
6
$
/
,
*
1
(
'
70,1
0
$
;
%2
/
7
(
'
%
(
$
0
%
2
/
7
(
'
6
8
3
3
2
5
7
6+
$
5
(
'
+
2
/
(
6
WZ
)2
5
6
+
$
5
(
'
+
2
/
(
6
:
+
(
5
(
:
(
%
W
Z
7
2
7
$
/
&
2
1
1
(
&
7
,
2
1
&$
3
$
&
,
7
<
6
8
0
2
)
5
(
$
&
7
,
2
1
6
)
5
2
0
%
2
7
+
6
,
'
(
6
,
6
/
,
0
,
7
(
'
7
2
9$
/
8
(
6
,
1
7
+
(
7
$
%
/
(
%
(
/
2
:
8
6
(
7
+
(
/
(
6
6
(
5
9
$
/
8
(
)
5
2
0
7+
,
6
7
$
%
/
(
$
1
'
7
+
(
&
2
1
1
(
&
7
,
2
1
6
&
+
(
'
8
/
(
13
1
2
7
3
(
5
0
,
7
7
(
'
2)%2/76
WZ
WZ
WZ
13
13
13
6&
6&
6&
6&
WZ13
13
WZ
WZ13
$%
%
5
(
9
,
$
7
,
2
1
/
,
6
7
$(
6
6
$
U
F
K
L
W
H
F
W
X
U
D
O
O
\
(
[
S
R
V
H
G
6
W
U
X
F
W
X
U
D
O
6
W
H
H
O
%2
7
%
R
W
W
R
P
&-
3
&
R
P
S
O
H
W
H
-
R
L
Q
W
3
H
Q
H
W
U
D
W
L
R
Q
:
H
O
G
&1
7
5
&
H
Q
W
H
U
H
G
&2
1
1
&
R
Q
Q
H
F
W
L
R
Q
'&
:
'
H
P
D
Q
G
&
U
L
W
L
F
D
O
:
H
O
G
(1
*
5
(
Q
J
L
Q
H
H
U
6
W
H
H
O
&
R
Q
Q
H
F
W
L
R
Q
(2
5
(
Q
J
L
Q
H
H
U
R
I
5
H
F
R
U
G
(6
(
D
F
K
6
L
G
H
)%
*
)
O
D
U
H
%
H
Y
H
O
*
U
R
R
Y
H
:
H
O
G
)/
*
)
O
D
Q
J
H
)6
)
D
U
6
L
G
H
*$
*
D
J
H
R
U
*
D
X
J
H
+2
5
,
=
+
R
U
L
]
R
Q
W
D
O
/)
5
&
/
D
W
H
U
D
O
)
R
U
F
H
5
H
V
L
V
W
L
Q
J
&
R
P
S
R
Q
H
Q
W
//
+
/
R
Q
J
/
H
J
+
R
U
L
]
R
Q
W
D
O
//
9
/
R
Q
J
/
H
J
9
H
U
W
L
F
D
O
/6
/
7
/
R
Q
J
6
O
R
W
W
H
G
+
R
O
H
2+
2
S
S
R
V
L
W
H
+
D
Q
G
29
6
2
Y
H
U
V
L
]
H
G
3-
3
3
D
U
W
L
D
O
-
R
L
Q
W
3
H
Q
H
W
U
D
W
L
R
Q
:
H
O
G
5$
'
5
D
G
L
X
V
5(
7
5
H
W
X
U
Q
6&
6
O
L
S
&
U
L
W
L
F
D
O
6&
+
(
'
6
F
K
H
G
X
O
H
66
/
7
6
K
R
U
W
6
O
R
W
W
H
G
+
R
O
H
67
'
6
W
D
Q
G
D
U
G
67
,
)
)
6
W
L
I
I
H
Q
H
U
7
%
7
R
S
D
Q
G
%
R
W
W
R
P
9(
5
7
9
H
U
W
L
F
D
O
:3
:
R
U
N
S
R
L
Q
W
6+
(
(
7
7
,
7
/
(
6+
(
(
7
1
8
0
%
(
5
'(7$,/(5
'$7(35,17('352-(&70$1$*(50DUWLQ0DUWLQ,QFFRQVLGHUVWKDWGHVLJQGDWDLVRQO\LQLWVILQDOIRUPRQSORWWHGGUDZLQJVZLWKRULJLQDOVLJQDWXUHVDQGSURIHVVLRQDOFHUWLILFDWLRQEHLQJYLVLEO\SUHVHQWRQWKHGUDZLQJV'DWDVXSSOLHGYLDFRPSXWHUJHQHUDWHGIRUPDWGRHVQRWFRQWDLQWKLVDSSURYDORUFHUWLILFDWLRQ7KHUHFHLYHURIHOHFWURQLFDOO\WUDQVPLWWHGGUDZLQJVLVUHVSRQVLEOHIRUYHULI\LQJWKHLQIRUPDWLRQFRQWDLQHGZLWKLQWKHHOHFWURQLFGDWDDJDLQVWWKHUHFRUGHGRUDSSURYHGGRFXPHQWV7KHXVHRIHOHFWURQLFDOO\WUDQVPLWWHGGUDZLQJVLVFRQVLGHUHGWREHDW\RXURZQULVN0DUWLQ0DUWLQ,QFDVVXPHVQRUHVSRQVLELOLW\IRUDQ\FODLPVRUGDPDJHVUHVXOWLQJIURP\RXUXVHRIWKLVLQIRUPDWLRQ(OHFWURQLFLQIRUPDWLRQLVSURYLGHGIRUWKHFRQYHQLHQFHRIWKHUHFLSLHQWRQO\7KHUHFLSLHQWRIWKLVILOHDJUHHVWKDWWKHLQIRUPDWLRQPD\QRWEHWUDQVIHUUHGWRDQ\RWKHUSDUW\
67((/&211(&7,21'(6,*1'5$:,1*6
35
2
-
(
&
7
1
2
,6
6
8
(
'
$
7
(
5(
9
,
6
,
2
1
6
12
,
6
6
8
(
'
$
7
(
0
$
5
7
,
1
0
$
5
7
,
1
$,
6
&
7
+
(
'
,
7
,
2
1
$6
'
)25$33529$/$1''(7$,/(586(
=0,352-(&7
30
6&
6,
1
*
/
(
$
1
*
/
(
&2
1
1
(
&
7
,
2
1
6&
+
(
'
8
/
(
/%-
(56
675$7$9$,/
9DLO&2
12
6
&
$
/
(
=0
,
7
<
3
%
(
$
0
6
,
1
*
/
(
$
1
*
/
(
&
2
1
1
(
&
7
,
2
1
6
&
+
(
'
8
/
(
$
,
6
&
$
6'
Fo
r
Ap
p
r
o
v
a
l
No
t
F
o
r
Co
n
s
t
r
u
c
t
i
o
n
JU
L
3
1
2
0
1
3
$
$
$
%(
$
0
6
,
=
(
6
&2
3
(
&
2
1
'
,
7
,
2
1
2
)
%
2
/
7
6
7
7%77
7%
7
7%
7
%
7
7%
7
%
77
%77
7%77
7%
7
7%
7
7%
7
%
7%77
%
7
7
7%
7
7%
&2
3
(
7
<
3
(
81
&
2
3
(
'
&
2
3
(
/
(
1
*
7
+
&
2
3
(
/
(
1
*
7
+
&
2
3
(
/
(
1
*
7
+
&2
3
(
/
(
1
*
7
+
:
[
:
[
7%77
%77
%77
%77
%77
%77
%77
%77
%77
%77
%77
%77
%77
%77
%77
%
7
$
'
2
8
%
/
(
$
1
*
/
(
&
2
1
1
(
&
7
,
2
1
6
&
+
(
'
8
/
(
0
$
;
5
(
$
&
7
,
2
1
.
,
3
6
$
,
6
&
6
(
5
9
,
&
(
/
(
9
(
/
7
,
1
'
,
&
$
7
(
6
7
2
3
&2
3
(
2
1
/
<
7%
,
1
'
,
&
$
7
(
6
72
3
$
1
'
%2
7
7
2
0
&
2
3
(
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
:
[
8
3
:
[
:
[
:
[
8
3
:
:
:
6+
2
3
:
(
/
'
(
'
)
,
(
/
'
%
2
/
7
(
'
&
2
1
1
6
+
2
3
)
,
(
/
'
%
2
/
7
(
'
&
2
1
1
70,1
'2
8
%
/
(
$
1
*
/
(
&2
3
(
'
%
(
$
0
&
2
1
'
,
7
,
2
1
$
7
*
,
5
'
(
5
&2
/
8
0
1
:
(
%
2
5
)/
$
1
*
(
6+
2
3
:
(
/
'
(
'
)
,
(
/
'
%
2
/
7
(
'
&
2
1
1
6
+
2
3
)
,
(
/
'
%
2
/
7
(
'
&
2
1
1
:+
(
5
(
:
(
%
W
Z
7
2
7
$
/
&
2
1
1
(
&
7
,
2
1
&$
3
$
&
,
7
<
6
8
0
2
)
5
(
$
&
7
,
2
1
6
)
5
2
0
%
2
7
+
6,
'
(
6
,
6
/
,
0
,
7
(
'
$
6
)
2
/
/
2
:
6
W
Z
N
[
2
)
6
+
$
5
(
'
%
2
/
7
6
W
Z
N
[
2
)
6
+
$
5
(
'
%
2
/
7
6
W
Z
N
[
2
)
6
+
$
5
(
'
%
2
/
7
6
W
Z
N
[
2
)
6
+
$
5
(
'
%
2
/
7
6
W
Z
N
[
2
)
6
+
$
5
(
'
%
2
/
7
6
WZ
N
[
2
)
6
+
$
5
(
'
%
2
/
7
6
7<
3
,
&
$
/
$
7
&
2
/
8
0
1
*
,
5
'
(
5
70,1
'(
7
$
,
/
&
2
1
1
7
2
3
(
5
0
,
7
6$
)
(
(
5
(
&
7
,
2
1
2
)
%
0
(
$
6,
'
(
:
+
(
5
(
%
2
/
7
6
$
5
(
6+
$
5
(
'
,
1
$
&
&
2
5
'
$
1
&
(
:,
7
+
$
/
/
2
6
+
$
6
7
$
1
'
$
5
'
6
7<
3
$1
*
/
(
6
%
2
/
7
(
'
%
(
$
0
%
2
/
7
(
'
6
8
3
3
2
5
7
'2
8
%
/
(
$
1
*
/
(
0
$
;
0
,
1
6&
6&
6&
6&
6&
$%
%
5
(
9
,
$
7
,
2
1
/
,
6
7
$(
6
6
$
U
F
K
L
W
H
F
W
X
U
D
O
O
\
(
[
S
R
V
H
G
6
W
U
X
F
W
X
U
D
O
6
W
H
H
O
%2
7
%
R
W
W
R
P
&-
3
&
R
P
S
O
H
W
H
-
R
L
Q
W
3
H
Q
H
W
U
D
W
L
R
Q
:
H
O
G
&1
7
5
&
H
Q
W
H
U
H
G
&2
1
1
&
R
Q
Q
H
F
W
L
R
Q
'&
:
'
H
P
D
Q
G
&
U
L
W
L
F
D
O
:
H
O
G
(1
*
5
(
Q
J
L
Q
H
H
U
6
W
H
H
O
&
R
Q
Q
H
F
W
L
R
Q
(2
5
(
Q
J
L
Q
H
H
U
R
I
5
H
F
R
U
G
(6
(
D
F
K
6
L
G
H
)%
*
)
O
D
U
H
%
H
Y
H
O
*
U
R
R
Y
H
:
H
O
G
)/
*
)
O
D
Q
J
H
)6
)
D
U
6
L
G
H
*$
*
D
J
H
R
U
*
D
X
J
H
+2
5
,
=
+
R
U
L
]
R
Q
W
D
O
/)
5
&
/
D
W
H
U
D
O
)
R
U
F
H
5
H
V
L
V
W
L
Q
J
&
R
P
S
R
Q
H
Q
W
//
+
/
R
Q
J
/
H
J
+
R
U
L
]
R
Q
W
D
O
//
9
/
R
Q
J
/
H
J
9
H
U
W
L
F
D
O
/6
/
7
/
R
Q
J
6
O
R
W
W
H
G
+
R
O
H
2+
2
S
S
R
V
L
W
H
+
D
Q
G
29
6
2
Y
H
U
V
L
]
H
G
3-
3
3
D
U
W
L
D
O
-
R
L
Q
W
3
H
Q
H
W
U
D
W
L
R
Q
:
H
O
G
5$
'
5
D
G
L
X
V
5(
7
5
H
W
X
U
Q
6&
6
O
L
S
&
U
L
W
L
F
D
O
6&
+
(
'
6
F
K
H
G
X
O
H
66
/
7
6
K
R
U
W
6
O
R
W
W
H
G
+
R
O
H
67
'
6
W
D
Q
G
D
U
G
67
,
)
)
6
W
L
I
I
H
Q
H
U
7
%
7
R
S
D
Q
G
%
R
W
W
R
P
9(
5
7
9
H
U
W
L
F
D
O
:3
:
R
U
N
S
R
L
Q
W
6+
(
(
7
7
,
7
/
(
6+
(
(
7
1
8
0
%
(
5
'(7$,/(5
'$7(35,17('352-(&70$1$*(50DUWLQ0DUWLQ,QFFRQVLGHUVWKDWGHVLJQGDWDLVRQO\LQLWVILQDOIRUPRQSORWWHGGUDZLQJVZLWKRULJLQDOVLJQDWXUHVDQGSURIHVVLRQDOFHUWLILFDWLRQEHLQJYLVLEO\SUHVHQWRQWKHGUDZLQJV'DWDVXSSOLHGYLDFRPSXWHUJHQHUDWHGIRUPDWGRHVQRWFRQWDLQWKLVDSSURYDORUFHUWLILFDWLRQ7KHUHFHLYHURIHOHFWURQLFDOO\WUDQVPLWWHGGUDZLQJVLVUHVSRQVLEOHIRUYHULI\LQJWKHLQIRUPDWLRQFRQWDLQHGZLWKLQWKHHOHFWURQLFGDWDDJDLQVWWKHUHFRUGHGRUDSSURYHGGRFXPHQWV7KHXVHRIHOHFWURQLFDOO\WUDQVPLWWHGGUDZLQJVLVFRQVLGHUHGWREHDW\RXURZQULVN0DUWLQ0DUWLQ,QFDVVXPHVQRUHVSRQVLELOLW\IRUDQ\FODLPVRUGDPDJHVUHVXOWLQJIURP\RXUXVHRIWKLVLQIRUPDWLRQ(OHFWURQLFLQIRUPDWLRQLVSURYLGHGIRUWKHFRQYHQLHQFHRIWKHUHFLSLHQWRQO\7KHUHFLSLHQWRIWKLVILOHDJUHHVWKDWWKHLQIRUPDWLRQPD\QRWEHWUDQVIHUUHGWRDQ\RWKHUSDUW\
67((/&211(&7,21'(6,*1'5$:,1*6
35
2
-
(
&
7
1
2
,6
6
8
(
'
$
7
(
5(
9
,
6
,
2
1
6
12
,
6
6
8
(
'
$
7
(
0
$
5
7
,
1
0
$
5
7
,
1
$,
6
&
7
+
(
'
,
7
,
2
1
$6
'
)25$33529$/$1''(7$,/(586(
=0,352-(&7
30
6&
'2
8
%
/
(
$
1
*
/
(
&2
1
1
(
&
7
,
2
1
6&
+
(
'
8
/
(
(56
675$7$9$,/
9DLO&2
12
6
&
$
/
(
=0
,
7
<
3
%
(
$
0
'
2
8
%
/
(
$
1
*
/
(
&
2
11
(
&
7
,
2
1
6
&
+
(
'
8
/
(
$
,
6
&
$6
'
Fo
r
Ap
p
r
o
v
a
l
No
t
F
o
r
Co
n
s
t
r
u
c
t
i
o
n
JU
L
3
1
2
0
1
3
$
$
6
,
1
*
/
(
3
/
$
7
(
&
2
1
1
(
&
7
,
2
1
6
&
+
(
'
8
/
(
0$
;
5
(
$
&
7
,
2
1
.
,
3
6
$
,
6
&
6
(
5
9
,
&
(
/
(
9
(
/
%(
$
0
6
,
=
(
6
&2
3
(
&
2
1
'
,
7
,
2
1
2
)
%
2
/
7
6
&2
3
(
7
<
3
(
81
&
2
3
(
'
&
2
3
(
/
(
1
*
7
+
&
2
3
(
/
(
1
*
7
+
:
[
:
[
:
[
:
[
:
;
:
[
:
[
:
[
:
[
8
3
:
[
:
[
:
[
:
[
:
[
8
3
:
:
:
:
[
:
[
:
[
:
[
:
[
8
3
:
[
:
[
:
[
:
[
:
[
8
3
:
[
:
[
:
[
:
[
:
[
8
3
:
[
:
[
:
[
8
3
7
,
1
'
,
&
$
7
(
6
7
2
3
&
2
3
(
2
1
/
<
7%
,
1
'
,
&
$
7
(
6
7
2
3
$
1
'
%
2
7
7
2
0
&
2
3
(
7
7%77
7%
7
7%
7
%
7
7%
7
%
77
%77
7%77
7%
7
7%
7
7%
7
%
7%77
%
7
7
7%
7
7%
:
[
8
3
:
[
:
[
:
:
70,1
%(
$
0
7
2
+
6
6
&
2
/
:
5(
&
7
+
6
6
0,
1
:
$
/
/
7
+
,
&
.
6&
$
%(
$
0
a a
7+
5
8
3
/
$
7
(
2
3
7
,
2
1
6/
2
7
:
$
/
/
2)
+
6
6
&
2
/
7<
3
,
&
$
/
:
35
2
9
,
'
(
7
+
5
8
3
/
$
7
(
2
3
7
,
2
1
,
)
0,
1
:
$
/
/
7
+
,
&
.
1
(
6
6
1
2
7
0
(
7
7<3
67
'
+
2
/
(
6
,
1
%
(
$
0
66
/
7
,
1
3
/
$
7
(
&
2
/
8
0
1
6
2
)
%
2
/
7
6
%
2
/
7
5
2
:
6
6
+
2
:
1
&2
/
8
0
1
:
(
%
)
/
$
1
*
(
25
%
(
$
0
:
(
%
3/
*&
&2
3
(
%
(
$
0
:
+
(
5
(
5
(
4
'
6(
(
6
&
+
(
'
)
2
5
0
$
;
,
0
8
0
&2
3
(
6
$
1
'
1
2
7
(
6
)
2
5
$'
'
,
7
,
2
1
$
/
5
(
4
0
7
6
12
7
(
6
$
7
&
2
/
8
0
1
6
%
(
$
0
&
2
3
(
&
6
+
$
/
/
1
2
7
(
;
&
(
(
'
*
3/
$
1
6
.
(
:
(
'
%
(
$
0
aa
a
*
%2
/
7
(
'
%
(
$
0
:
(
/
'
(
'
6
8
3
3
2
5
7
&$
3
$
&
,
7
<
.
,
3
6
(
;
7
(
1
'
(
'
6
,
1
*
/
(
3
/
&
2
1
1
(
&
7
,
2
1
6
$
,
6
&
6
(
5
9
,
&
(
/
(
9
(
/
72
3
7
%
*
&
0
$
;
72
3
7
%
*
&
0
$
;
&$
3
$
&
,
7
<
.
,
3
6
%
2
/
7
52
:
6
&$
3
$
&
,
7
<
.
,
3
6
72
3
7
%
*
&
0
$
;
72
3
7
%
*
&
0
$
;
&$
3
$
&
,
7
<
.
,
3
6
:
:
:
:
:
%(
$
0
6,
=
(
6
:
:
:
:
:
)2
5
:
(
/
'
6
(
(
6
&
0,1
68
3
3
2
5
7
6
(
(
'
7
/
6
3/
%
2
/
7
6
6
7
$
1
'
$
5
'
2
5
+
2
5
,
=
6+
2
5
7
6
/
2
7
6
0
$
<
%
(
8
6
(
'
%
2
/
7
6
+
2
5
,
=
6
+
2
5
7
6
/
2
7
6
5(
4
8
,
5
(
'
7<3
0,1
0,1
0
$
;
0
,
1
$%
%
5
(
9
,
$
7
,
2
1
/
,
6
7
$(
6
6
$
U
F
K
L
W
H
F
W
X
U
D
O
O
\
(
[
S
R
V
H
G
6
W
U
X
F
W
X
U
D
O
6
W
H
H
O
%2
7
%
R
W
W
R
P
&-
3
&
R
P
S
O
H
W
H
-
R
L
Q
W
3
H
Q
H
W
U
D
W
L
R
Q
:
H
O
G
&1
7
5
&
H
Q
W
H
U
H
G
&2
1
1
&
R
Q
Q
H
F
W
L
R
Q
'&
:
'
H
P
D
Q
G
&
U
L
W
L
F
D
O
:
H
O
G
(1
*
5
(
Q
J
L
Q
H
H
U
6
W
H
H
O
&
R
Q
Q
H
F
W
L
R
Q
(2
5
(
Q
J
L
Q
H
H
U
R
I
5
H
F
R
U
G
(6
(
D
F
K
6
L
G
H
)%
*
)
O
D
U
H
%
H
Y
H
O
*
U
R
R
Y
H
:
H
O
G
)/
*
)
O
D
Q
J
H
)6
)
D
U
6
L
G
H
*$
*
D
J
H
R
U
*
D
X
J
H
+2
5
,
=
+
R
U
L
]
R
Q
W
D
O
/)
5
&
/
D
W
H
U
D
O
)
R
U
F
H
5
H
V
L
V
W
L
Q
J
&
R
P
S
R
Q
H
Q
W
//
+
/
R
Q
J
/
H
J
+
R
U
L
]
R
Q
W
D
O
//
9
/
R
Q
J
/
H
J
9
H
U
W
L
F
D
O
/6
/
7
/
R
Q
J
6
O
R
W
W
H
G
+
R
O
H
2+
2
S
S
R
V
L
W
H
+
D
Q
G
29
6
2
Y
H
U
V
L
]
H
G
3-
3
3
D
U
W
L
D
O
-
R
L
Q
W
3
H
Q
H
W
U
D
W
L
R
Q
:
H
O
G
5$
'
5
D
G
L
X
V
5(
7
5
H
W
X
U
Q
6&
6
O
L
S
&
U
L
W
L
F
D
O
6&
+
(
'
6
F
K
H
G
X
O
H
66
/
7
6
K
R
U
W
6
O
R
W
W
H
G
+
R
O
H
67
'
6
W
D
Q
G
D
U
G
67
,
)
)
6
W
L
I
I
H
Q
H
U
7
%
7
R
S
D
Q
G
%
R
W
W
R
P
9(
5
7
9
H
U
W
L
F
D
O
:3
:
R
U
N
S
R
L
Q
W
6+
(
(
7
7
,
7
/
(
6+
(
(
7
1
8
0
%
(
5
'(7$,/(5
'$7(35,17('352-(&70$1$*(50DUWLQ0DUWLQ,QFFRQVLGHUVWKDWGHVLJQGDWDLVRQO\LQLWVILQDOIRUPRQSORWWHGGUDZLQJVZLWKRULJLQDOVLJQDWXUHVDQGSURIHVVLRQDOFHUWLILFDWLRQEHLQJYLVLEO\SUHVHQWRQWKHGUDZLQJV'DWDVXSSOLHGYLDFRPSXWHUJHQHUDWHGIRUPDWGRHVQRWFRQWDLQWKLVDSSURYDORUFHUWLILFDWLRQ7KHUHFHLYHURIHOHFWURQLFDOO\WUDQVPLWWHGGUDZLQJVLVUHVSRQVLEOHIRUYHULI\LQJWKHLQIRUPDWLRQFRQWDLQHGZLWKLQWKHHOHFWURQLFGDWDDJDLQVWWKHUHFRUGHGRUDSSURYHGGRFXPHQWV7KHXVHRIHOHFWURQLFDOO\WUDQVPLWWHGGUDZLQJVLVFRQVLGHUHGWREHDW\RXURZQULVN0DUWLQ0DUWLQ,QFDVVXPHVQRUHVSRQVLELOLW\IRUDQ\FODLPVRUGDPDJHVUHVXOWLQJIURP\RXUXVHRIWKLVLQIRUPDWLRQ(OHFWURQLFLQIRUPDWLRQLVSURYLGHGIRUWKHFRQYHQLHQFHRIWKHUHFLSLHQWRQO\7KHUHFLSLHQWRIWKLVILOHDJUHHVWKDWWKHLQIRUPDWLRQPD\QRWEHWUDQVIHUUHGWRDQ\RWKHUSDUW\
67((/&211(&7,21'(6,*1'5$:,1*6
35
2
-
(
&
7
1
2
,6
6
8
(
'
$
7
(
5(
9
,
6
,
2
1
6
12
,
6
6
8
(
'
$
7
(
0
$
5
7
,
1
0
$
5
7
,
1
$,
6
&
7
+
(
'
,
7
,
2
1
$6
'
)25$33529$/$1''(7$,/(586(
=0,352-(&7
30
6&
7<
3
,
&
$
/
6
+
(
$
5
&2
1
1
(
&
7
,
2
1
6
6,
1
*
/
(
3
/
$
7
(
/%-
(56
675$7$9$,/
9DLO&2
12
6
&
$
/
(
=0
,
7
<
3
%
(
$
0
6
,
1
*
/
(
3
/
$
7
(
&
2
1
1
(
&7
,
2
1
6
&
+
(
'
8
/
(
$
,
6
&
$
6'
12
6
&
$
/
(
7<
3
%
(
$
0
7
2
+
6
6
&
2
/
8
0
1
12
6
&
$
/
(
=0
,
7
<
3
%
(
$
0
(
;
7
(
1
'
(
'
6
,
1
*
/
(
3
/
&
2
1
1
(
&
7
,
2
1
6
&
+
(
'
8
/
(
$
,
6
&
$
6
'
12
6
&
$
/
(
7<
3
%
(
$
0
6
,
1
*
/
(
3
/
$
7
(
Fo
r
Ap
p
r
o
v
a
l
No
t
F
o
r
Co
n
s
t
r
u
c
t
i
o
n
JU
L
3
1
2
0
1
3
X New Submittal
Submittal Cover Sheet 10/8/2014
Project:Strata - Vail
OZ Architecture From:PCL Construction Services, Inc.
3003 Larimer Street 953 S Frontage Rd West
Denver, CO 80205 Suite 302
Vail, CO 81657
SPECIFICATION SECTION NO. & DESCRIPTION (Cover only one section with each submittal)
PRIORITY STATUS CODES
1.4.B B
CONTRACTOR REMARKS:A/E REMARKS:
CONTRACTOR'S CERTIFICATION:
NAME AND SIGNATURE OF CONTRACTOR REPRESENTATIVE:NAME AND SIGNATURE OF REVIEWING AUTHORITY:Date:
Nick Strunc
Please see attached PCL Submittal Review Notes Page.
Structural Steel - Special Connection Design - Group #1
Description of Item Submitted
(Type, size, model number, etc.)
b.
A - Immediate Response
B - Respond within 10 days
C - Respond within 15 days
Submittal No:
Previous Submittal No:
Date:Resubmittal
CONTRACT REF. DOCUMENT
Spec Paragraph
Number
e.
Drawing Sheet
Number
f.
05120 - Structural Steel
PCL Construction Services Inc.
Contractor Project No: 5001410 05120-09 To:
ACTION TAKEN
A - Approved
B - Approved as Noted
C - Revise and Resubmit
D - Not Approved
I certify that the above submitted items have been reviewed in detail, are correct, and in
general conformance with the Contract Drawings and Specifications except as otherwise
noted.
5
6
Submittal Type
c.
Action
Item
a.
1
2
3
4
7
8
9
10
REVIEWED FURNISH AS CORRECTED REJECTED REVISE AND RESUBMIT SUBMIT SPECIFIED ITEMCHECKING IS ONLY FOR GENERAL CONFORMANCE WITH THE DESIGNCONCEPT OF THE PEOJECT AND GENERAL COMPLIANCE WITH THEINFORMATION GIVEN IN THE CONTRACT DOCUMENTS. ANY ACTIONSHOWN IS SUBJECT TO THE REQUIREMENTS OF THE PLANS ANDSPECIFICATIONS. CONTACTOR IS RESPONSIBLEFOR DIMENSIONSWHICH SHALL BE CONFIRMED AND CORRELATED AT THE JOB SITE:FABRICATION PROCESSESAND TECHNIQUES OF CONSTRUCTION;COORDINATION OF HIS WORK WITH THAT OF ALL OTHER TRADES;AND THE SATISFACTORY PERFORMANCE OF HIS WORK. Monroe & Newell Engineers, Inc. DATE 10/14/2014 BY:
PCL CONSTRUCTION SERVICES, INC.
953 S. FRONTAGE RD WEST, SUITE 302, VAIL, COLORADO 81652
TELEPHONE: (970) 470-6044
PCL Initial Submittal Review Notes
Strata - Vail
PCL Project No. 5001410
Subcontractor: Zimmerman
Submittal #: 05120-09 Date: 10/8/2014
Revisions: Revision Dates:
Specification Section: 05120 – Structural Steel
Item Description: Special Connection Design – Group #1
Action: For Approval
Variance Request (Y/N): If so, why?:
Notes:
Reviewed By: Chuck Kay/Nick Strunc
TO: PCL Construction DATE: 10/06/2012
SUBJECT: Submittal #9
ATTN: Chuck Kay ZMI JOB NO.241 – Strata
We are forwarding: Enclosed herewith Under separate cover
For: Approval Erection File & Distribution
Information Request Your Review Field Measurement
Resubmit Price & Delivery Return of Approval
Revised Other:
(void previous releases)
Via: Quick Silver 1st Class Mail U.P.S.
Fed Ex Email Other:
Drawing Number:
Special Connections Calculations
Hi Brian,
A calculations packet for these special connections was just sent to you. I did not CC everyone to save
inbox space (It was a 12MB file).
Included in this packet is all supplemental calcs to date, excluding any that were partially complete (i.e.
SQC‐004, QC‐014, QC‐020). Some of these may not have occurred in Lot #3. Also, some of the special
connections in Lot #3 did not require calculations (i.e. QC’s 3, 4, 8, 9, 19 and 22). I am tracking these in
our Q‐log so that we know when each special connection calculation was submitted and which ones do
not require a calculation.
If the design team has any questions during their review, I’m OK if they contact me so long as everything
is documented later via email. I’m also OK if they go through you first. I just want to do anything I can
to ease the approval process for everyone without stepping on any toes.
A few items I would like to highlight for the reviewer:
Page 2 ‐ design criteria
Page 191 – designer please approve assumed load at SQC‐006 moment connection
Page 195 – designer please approve assumed behavior regarding rotational ductility for SQC‐
006 connection to dropped framing beam
Page 204 – designer plate approve 11k connection capacity at SQC‐011
Thanks,
Eric
Eric Sobel, PE, SE, LEED AP
Sr. Project Engineer
PE (CO, NC), SE (IL), CE (CA)
Martin/Martin, Inc.
12499 W. Colfax Ave., Lakewood, CO 80215
P) 303‐431‐6100 Ext. 473
D) 720‐544‐2773
www.martinmartin.com
Assumed loading acceptable
Assumed rotational
capacity acceptable11 kip capacity
acceptable.
12499 West Colfax · P.O. Box 151500 · Lakewood, Colorado 80215 · 303-431-6100
STRATA VAIL
SPECIAL CONNECTION DESIGN – GROUP #1
Vail, CO
STRUCTURAL CALCULATIONS
MARTIN/MARTIN Project No. 14.0430.S.01
Table of Contents
Design Criteria & Narratives Pages 1-2
QC-002 Pages 3-97
QC-013 Page 98-101
QC-017 Pages 103-115
QC-018 Pages 116-124
SQC-003 Pages 125-134
SQC-005 Pages 135-183
SQC-006 Pages 184-203
SQC-011 Pages 204-213
03 OCTOBER 2014
ForApproval
Not For Construction
OCT 06 2014
Re: Strata Vail
Structural connection calculations
Martin/Martin Project No: 14.0430.S.01
03 October 2014
Dear Brian:
Enclosed are structural calculations prepared by our office for special steel connections used
on the Strata Vail project. Calculations consist of the following items:
1. Narratives and design criteria
2. A combination of hand and RISA Connection calculations.
Notes:
1. Typically, demand capacity ratios are kept below 100%. For cases where a
significant change in connection would be required to get the demand capacity
ratio below 100%, we are have accepted 105%.
2. We believe that RISA Connection’s approach to knife plate buckling is
conservative. Their approach follows a strict interpretation of the code and
requires the use of the elastic section modulus (Snet) in determining the
flexural buckling capacity. We believe that if the plate isn’t susceptible to
buckling (l < 0.7), then use of the plastic section modulus (Znet) is
appropriate and in line with typical flexural limit states. Consequently, we
have allowed this limit state to go up to a 150% demand capacity ratio when
using RISA Connection. These are noted as such in the enclosed calculations.
If you have any questions, please call.
Sincerely,
Shane Ewing, P.E.
Principal
Page 1 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
12499 West Colfax · P.O. Box 151500 · Lakewood, Colorado 80215 · 303-431-6100
Design Criteria
Codes:
2012 International Building Code with TOV Amendments
AISC 360-10
Loading:
Beam Reactions As indicated in AutoCAD files provided by EOR
Transfer beam designs assumed part of EOR scope
SQC-006 (balcony re-framing). 250psf total load assumed (service)
Moment Connections As indicated on contract documents
Braced Frame As indicated on contract documents
HSS Wind Girt Frames
Material Assumptions:
Plates, angles and channels: A36
Sheet Steel: Gr 36 or better
Pipe: A53 Gr. B
Welds: E70xx
High Strength Bolts: A325
Rods: ASTM F1552 Gr. 55 weldable
Design Assumptions:
Column panel zone shear By EOR
Connections at column transfers By EOR
Beam over column connections By EOR
Page 2 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Pa
g
e
3
o
f
2
1
3
10
/
0
3
/
2
0
1
4
St
r
a
t
a
V
a
i
l
S
p
e
c
i
a
l
C
o
n
n
P
a
c
k
a
g
e
1
2
0
1
4
-
1
0
-
0
3
.
p
d
f
RE
F
:
S
2
.
0
2
-
B
QC
-
0
0
2
-
A
#1
-
W
3
0
x
1
7
3
-
2
4
1
k
i
p
s
#2
-
W
2
7
x
3
0
7
-
1
6
3
k
i
p
s
#5
-
W
3
0
x
1
7
3
-
1
5
5
k
i
p
s
#8
-
W
1
2
x
1
4
-
1
8
k
i
p
s
#7
-
W
8
x
1
0
-
7
k
i
p
s
#6
-
W
8
x
1
0
-
7
k
i
p
s
#4
-
W
2
7
x
1
2
9
-
1
9
2
k
i
p
s
#3
-
W
2
7
x
3
6
8
-
2
2
0
k
i
p
s
#9
-
W
1
2
x
1
5
2
-
6
9
k
i
p
s
P=
8
k
a
t
c
o
n
n
e
c
t
i
o
n
(
1
8
k
oc
c
u
r
s
o
v
e
r
c
o
l
u
m
n
)
.
OK
p
e
r
1
2
/
S
C
-
1
2
St
a
n
d
a
r
d
d
o
u
b
l
e
a
n
g
l
e
co
n
n
e
c
t
i
o
n
w
i
t
h
5
/
8
"
t
o
p
an
d
b
o
t
t
o
m
c
o
p
e
d
e
p
t
h
Se
e
r
e
v
i
s
e
d
sk
e
t
c
h
St
a
n
d
a
r
d
d
o
u
b
l
e
a
n
g
l
e
co
n
n
e
c
t
i
o
n
.
T
o
p
c
o
p
e
d
e
p
t
h
=
2
"
.
B
o
t
t
o
m
c
o
p
e
d
e
p
t
h
=
5
.
5
"
.
Se
e
s
k
e
t
c
h
St
a
n
d
a
r
d
d
o
u
b
l
e
a
n
g
l
e
co
n
n
e
c
t
i
o
n
.
I
n
s
t
a
l
l
m
a
x
i
m
u
m
nu
m
b
e
r
o
f
b
o
l
t
s
w
i
t
h
m
i
n
i
m
a
l
co
p
e
d
e
p
t
h
s
.
St
a
n
d
a
r
d
d
o
u
b
l
e
a
n
g
l
e
co
n
n
e
c
t
i
o
n
.
I
n
s
t
a
l
l
m
a
x
i
m
u
m
nu
m
b
e
r
o
f
b
o
l
t
s
w
i
t
h
m
i
n
i
m
a
l
co
p
e
d
e
p
t
h
s
.
U
s
e
3
/
4
"
A3
9
0
X
b
o
l
t
s
.
Page 4 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
REF: S2.02-B
QC-002-B
#12-W36x232 - 230kips
#10-W12x72 - 25kips
#11-W12X72 - 25kips
Standard double angle
connection with 1.375" top
and bottom cope depth
See sketch
See revised sketch
Page 5 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf REF: S2.02-B QC-002-C
#15-W12x65 - 6kips
#13-W12x53 - 25kips
#14-W12x79 - 28kips
#16-W12x136 - 61kips
Standard double angle connection
OK. Use 1.375" top cope depth
and 1.5" bottom cope depth.
Vertical spacing = 2.75"
OK per 12/SC-12
OK per 12/SC-12
See sketch
Page 6 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
#17-W12x152 - 173kips
QC-002-D
REF: A2.06-B
Suggest running W12x190 over HSS
column. Extend 12" beyond Grid B4.
Reaction on W12x152 is only 28k.
Please confirm acceptability prior to
us creating a detail (if required).
(2
)
L
8
x
4
x
1
/
2
(1
2
)
7
/
8
"
B
O
L
T
S
T
O
GI
R
D
E
R
QC
-
0
0
2
-
#
1
1 7/8"
1 3/4"3"
3 1/4"
5/
1
6
ES
O
F
B
M
WE
B
Pa
g
e
7
o
f
2
1
3
10
/
0
3
/
2
0
1
4
St
r
a
t
a
V
a
i
l
S
p
e
c
i
a
l
C
o
n
n
P
a
c
k
a
g
e
1
2
0
1
4
-
1
0
-
0
3
.
p
d
f
SI
N
G
L
E
P
L
5/
8
x
6
1
/
2
x
0
'
-
9
3
/
4
2 1/4"
1/
2
"
1
1
/
2
"
2
1
/
2
"
2
1
/
2
"
1
1
/
2
"
1 7/8"
3"3"
1 7/8"
7/
1
6
7/
1
6
8
1
/
2
"
ST
R
I
P
N
S
B
O
T
F
L
G
(9
)
3
/
4
"
Ø
A4
9
0
X
B
O
L
T
S
1/
4
1/
4
1/
2
"
QC
-
0
0
2
-
#
9
Pa
g
e
8
o
f
2
1
3
10
/
0
3
/
2
0
1
4
St
r
a
t
a
V
a
i
l
S
p
e
c
i
a
l
C
o
n
n
P
a
c
k
a
g
e
1
2
0
1
4
-
1
0
-
0
3
.
p
d
f
(2
)
L
8
x
8
x
1
/
2
2 1/4"
1
1
/
2
"
2
3
/
4
"
3"
1 1/2"
6"
1 1/2"
8"
ST
R
I
P
N
S
&
F
S
B
O
T
FL
G
A
S
R
E
Q
D
(4
)
7
/
8
"
Ø
A
3
2
5
BO
L
T
S
T
O
B
E
A
M
,
(6
)
7
/
8
"
B
O
L
T
S
T
O
GI
R
D
E
R
QC
-
0
0
2
-
#
1
0
Pa
g
e
9
o
f
2
1
3
10
/
0
3
/
2
0
1
4
St
r
a
t
a
V
a
i
l
S
p
e
c
i
a
l
C
o
n
n
P
a
c
k
a
g
e
1
2
0
1
4
-
1
0
-
0
3
.
p
d
f
SI
N
G
L
E
P
L
7/
8
x
1
2
x
2
'
-
3
1
/
2
2 1/2"
6"
1
1
/
2
"
2
1
/
2
"
1
1
/
2
"
1 3/4"3"3"3"3"3"3"3"3"
1 3/4"
9/
1
6
9/
1
6
(1
8
)
7
/
8
"
Ø
A3
2
5
B
O
L
T
S
QC
-
0
0
2
-
#
1
2
Pa
g
e
1
0
o
f
2
1
3
10
/
0
3
/
2
0
1
4
St
r
a
t
a
V
a
i
l
S
p
e
c
i
a
l
C
o
n
n
P
a
c
k
a
g
e
1
2
0
1
4
-
1
0
-
0
3
.
p
d
f
SI
N
G
L
E
P
L
1/
2
x
6
1
/
2
x
0
'
-
9
3
/
4
2 1/4"
1/
2
"
1
1
/
2
"
3"
1
1
/
2
"
1 7/8"
3"3"
1 7/8"
5/
1
6
5/
1
6
7"
ST
R
I
P
N
S
B
O
T
F
L
G
(6
)
7
/
8
"
Ø
A3
2
5
B
O
L
T
S
QC
-
0
0
2
-
#
1
6
Pa
g
e
1
1
o
f
2
1
3
10
/
0
3
/
2
0
1
4
St
r
a
t
a
V
a
i
l
S
p
e
c
i
a
l
C
o
n
n
P
a
c
k
a
g
e
1
2
0
1
4
-
1
0
-
0
3
.
p
d
f
Page 12 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Page 13 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Page 14 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Page 15 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
RISAConnection version 4.0.2
10/02/2014
Global Parameters -Description:
Project Title Strata Vail
Company Martin/Martin
Designer ERS
Job Number 14.0430
Notes
Global Parameters -Solution:
Design Method AISC 14th (360-10): ASD
Bolt Group Analysis Method Center of Rotation
Weld Analysis Method Center of Rotation
Consider Bolt Hole Deformation?Yes
Check Weld Filler Material Matching?Yes
Check Rotational Ductility?Yes
Project Explorer Summary:
QC-002 #01 weld FAIL(UC-1.1)
QC-002 #02 FAIL(UC-1.0)
QC-002 #03 FAIL(UC-1.0)
QC-002 #04 FAIL(UC-1.0)
QC-002 #05 PASS(UC-0.9)
QC-002 #06 PASS(UC-0.5)
QC-002 #09 FAIL(UC-1.4)
QC-002 #10 PASS(UC-1.0)
QC-002 #11 PASS(UC-0.8)
QC-002 #12 FAIL(UC-1.0)
QC-002 #14 PASS(UC-1.0)
QC-002 #16 FAIL(UC-1.2)
QC-002 #01 weld: 3D View
Girder/Beam Clip Angle Shear Connection
Page 16 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
See calculations for specific
comments. These are generally
within 5% or a limit state that
doesn't really control.
QC-002 #01 weld: 2D Views
Girder/Beam Clip Angle Shear Connection
Side view
Page 17 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Front view
ASDQC-002 #01 weld: ASD Results Report
Girder/Beam Clip Angle Shear Connection
Material Properties:
Girder W24X131 A992 Fy = 50.00 ksiFu = 65.00 ksi
Beam W30X173 A992 Fy = 50.00 ksiFu = 65.00 ksi
Angle L8X4X10 A36 Fy = 36.00 ksiFu = 58.00 ksi
Input Data:
Shear Load 241.00 kips User Input Shear Load
Axial Load 0.00 kips User Input Axial Force
Note: Unless specified, all code references are from AISC 360-10 Governing LC: N/A
Limit State Required Available Unity Check Result
Geometry Restrictions at Girder PASS
Check Min Bolt Spacing Pass Condition: Smin >= (2+2/3) * dbolt (J3.3)
Smin 3.00 in Min bolt spacing
dbolt 0.88 in Bolt diameter
Check Max Bolt Spacing Pass Condition: Smax<= min(12.00 in, 24*t) (J3.5a)
Smax 3.00 in Max bolt spacing
t0.60 in Thickness of governing element (Girder)
Check Min Edge Distance Pass Condition: EDmin >= EDallow (J3.4)
Check Max Edge Distance Pass Condition: EDmax <= min (6.00 in, 12*t) (J3.5)
Beam Weld Limitations PASS
Page 18 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Weld Max/Min Size, Length (J2.2b)
Check Weld Max Size Pass
D0.31 in Weld size
Dmax 0.56 in Max Size Allowed
t0.63 in Min shelf dimension
Check Weld Min Size Pass
D0.31 in Weld size
Dmin 0.25 in Min size allowed
tmin 0.63 in Controlling member thickness
Check Weld Min Length Pass Condition: Lmin >= 4*D
D0.31 in Weld size
Lmin 3.50 in Min weld segment length
Rotational Ductility, Erection Stability PASS
Check Rotational Ductility Pass Condition: t <= 5/8''
t0.63 in Connector thickness
Check Erection Stability Pass Condition: Ly >= (d -2* kdes)/2
Ly 18.50 in Connector length (vertical)
d30.44 in Beam depth
kdes 1.85 in Beam fillet
Lmin 13.37 in Min connector length
Beam Shear Yield 241.00 kips277.33 kips 0.87 PASS
Rn = 0.6 *Fy*Agv*Cv = 1.50 (G2-1)
Fy 50.00 ksi Minimum yield stress of material
Agv 13.87 in2 Gross area subject to shear
Cv 1.00 Web shear coefficient (G2-2)
Rn/277.33 kips Shear yield strength
Clip Angle Shear Yield 241.00 kips333.00 kips 0.72 PASS
Rn = 2 * 0.6 *Fy*Agv = 1.50 (J4-3)
Fy 36.00 ksi Minimum yield stress of material
Agv 11.56 in2 Gross area subject to shear
Rn/333.00 kips Shear yield strength
Beam Shear Rupture 241.00 kips270.39 kips 0.89 PASS
Rn = 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 65.00 ksi Minimum tensile stress of material
Anv 13.87 in2 Net area subject to shear
Rn/270.39 kips Shear rupture strength
Clip Angle Shear Rupture at Beam 241.00 kips402.37 kips 0.60 PASS
Rn = 2 * 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 58.00 ksi Minimum tensile stress of material
Anv 11.56 in2 Net area subject to shear
Rn/402.37 kips Shear rupture strength
Clip Angle Shear Rupture at Girder 241.00 kips271.88 kips 0.89 PASS
Rn = 2 * 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 58.00 ksi Minimum tensile stress of material
Anv 7.81 in2 Net area subject to shear
Rn/271.88 kips Shear rupture strength
Clip Angle Block Shear at Girder 241.00 kips280.50 kips 0.86 PASS
Rn = 2 * [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 10.47 in2 Gross area subject to shear
Anv 7.03 in2 Net area subject to shear
Ubs 0.50 Non uniform tension stress factor
Ant 1.88 in2 Net area subject to tension
Fu 58.00 ksi Minimum tensile stress of material
Page 19 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Fy 36.00 ksi Minimum yield stress of material
Rn/280.50 kips Block shear strength
Coped Beam Flexural Rupture 241.00 kips240.01 kips 1.00 FAIL
Rn = Fu*Snet/e = 2.00 (AISC 14th Eq. 9-6)
Fu 65.00 ksi Minimum tensile stress of material
Snet 48.93 in3 Snet=In/Ymax elastic section modulus of the
cross section
e 6.63 in Distance from the face of the cope to the point of
inflection
In 517.87 in4 Moment of inertia with respect to the neutral axis
Ymax 10.59 in Maximum distance from the neutral plane = ho-
yc
ho 21.17 in Overal depth of coped section
yc 2.79 in Position of the neutral plane
Rn/240.01 kips Coped beam flexural rupture
Coped Beam Lateral Torsional Buckling 241.00 kips221.11 kips 1.09 FAIL
Rn = min(Fcr, Fy) * Snet/e = 1.67 (AISC 14th Eq. 9-12)
Fcr 568.94 ksi Available buckling Fcr = 0.62**E*tw
2*fd /(c*ho)
Fy 50.00 ksi Minimum yield stress of material
Snet 48.93 in3 Snet=In/Ymax elastic section modulus of the
cross section
e 6.63 in Distance from the face of the cope to the point of
inflection
E 29000.00 ksi Modulus of elasticity of steel
tw 0.66 in Beam web thickness
ho 21.17 in Reduced beam depth
c 6.13 in Cope length
fd 3.04 Adjustment factor
Rn/221.11 kips Coped beam local web buckling
Bolt Bearing on Girder 241.00 kips389.66 kips 0.62 PASS
Rn = 2 * Nrows*Ncols*Rn-spacing = 2.00 (J3-6a)
Nrows 2 Number of rows of bolts
Ncols 6 Number of bolts per row
d 0.88 in Bolt diameter
Fu 65.00 ksi Minimum tensile stress of material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 82.58 kips Bearing = 2.4*d*t*Fu
Rn-spacing-tearout 97.33 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/389.66 kips Bolt bearing strength
Bolt Bearing on Clip Angle at Girder 241.00 kips389.66 kips 0.62 PASS
Rn = 2 * Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 2 Number of rows of bolts
Ncols 6 Number of bolts per row
d 0.88 in Bolt diameter
Fu 58.00 ksi Minimum tensile stress of material
Lc-edge 1.28 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-edge 32.47 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 76.13 kips Bearing = 2.4*d*t*Fu
Page 20 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Welded/bolted double angles will
restrain buckling. Use Znet. OK
by inspection.
OK
Rn-edge-tearout 55.73 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 89.72 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/389.66 kips Bolt bearing strength
Bolt Shear at Girder 241.00 kips389.66 kips 0.62 PASS
Rn = 2 * Fnv*Ab*Nbolt*C = 2.00 (J3-1)
Fnv 54.00 ksi Shear stress N type
Ab 0.60 in2 Area of bolt
Nbolt 12 Number of bolts
C 1.00 Eccentricity coefficient
Rn/389.66 kips Bolt shear rupture strength
Bolt Prying PASS
(AISC 14th p.9-10)
Check Angle Leg Thickness:Fail Condition: tmin<=tangle
Check Prying Force:Pass
tangle 0.63 in Clip angle leg thickness
P 0.00 kips User input axial load
Fu 58.00 ksi Minimum tensile stress of material
nb 24 Number of bolts
Tbolt 12.25 kips Tension Load per bolt due to moment (See
'BoltTension Check')
db 0.88 in Bolt diameter
dhole 0.94 in Bolt hole diameter
b'2.44 in Distance from the inner edge of the bolt hole to
the face of the stem, b' = (b -db / 2)
p 3.00 in Length of flange tributary to each bolt along the
longitudinal axis of the angle
T 12.25 kips Total tension force with moment, T = Tbolt + (P/
nb)
tmin 1.07 in Minimum thickness required to eliminate prying
action, tmin = (* 4 * T * b' / (p * Fu))0.5, =1.67
a 4.50 in Distance from bolt centerline to the outer edge
of the leg
b 2.88 in Distance from bolt centerline to the face of the
stem
a'4.03 in Distance from inner edge of bolt hole to the
outer edge of the leg, a' = (a + db / 2) <= (1.25 *
b + db / 2)
0.60 Ratio of b' to a', = b' / a'
0.69 Ratio of the net area at the bolt line to the gross
area at the face of the stem, = 1 -dhole/ p
B 27.06 kips Total tensile capacity per bolt, B = Ab * Fnt / ,
= 2.0
tc 1.59 in Flange thickness required to develop the
available strength of the bolt without prying
action, tc = (* 4 * B * b' / (p * Fu))0.5, =1.67
2.81 Ratio of moment at bolt line to moment at stem
line, = max[1/[T/B (tc/t) 2 -1, 0]
q 4.88 kips Factored prying force per bolt, q = B [(t/tc)2]
Tu 17.13 kips Total tension on the bolt including the prying
force, Tu = T + q
Bolt Tension at Girder 17.13 kips18.44 kips 0.93 PASS
Rn = F'nt * Ab = 2.00 (J3-2)
Check User Note Limit:frt/(Fnt/) <= 0.3
frt 20.36 ksi Required tensile stress = (Tbolt-P/nb)/Ab
Fnt 90.00 ksi Nominal tensile stress, per Table J3.2
Because frt/(Fnt/) > 0.3, the Bolt Tensile Check is required
Page 21 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Check Interaction Limit:frv/(Fnv/) <= 0.3
frv 16.70 ksi Required shear stress: frv = (V / nb) / Ab
Fnv 54.00 ksi Nominal shear stress, per Table J3.2
Because frv/(Fnv/) > 0.3, this check shall use the modified F'nt stress
F'nt 61.34 ksi Modified nominal tensile stress = min(1.3*Fnt-(
*Fnt/Fnv)*frv), Fnt)
V 241.00 kips User input shear load
P 0.00 kips User input axial load
Ab 0.60 in2 Bolt cross sectional area
nb 24 Number of bolts
Tbolt 12.25 kips Max tension load per bolt due to eccentricity =
0.5 * (6*Me/(b*d2))*At*k_eff
Me 848.23 kips-in Moment due to eccentricity = (V * ex) -(P * ey)
ex 3.52 in Horizontal eccentricity
ey 2.72 in Vertical eccentricity
b 8.00 in Connector width
d 18.50 in Connector depth
At 16.25 in2 Maximum tributary area per bolt
k_eff 0.81 Coefficient correction factor
Tu 17.13 kips Required tensile strength including prying (see
'Bolt Prying' check)
Rn/18.44 kips Bolt tensile strength
Beam Weld Strength 241.00 kips241.24 kips 1.00 PASS
Rn = 2 * C1 * * C * D16 * L = 2.00
Single Fillet
C1 1.00 Electrode strength coefficient (AISC 14th table
8-3)
1.00 Base material proration factor (re-arrangement
of AISC 14th Eqn 9-2)
C 2.61 Eccentricity modification factor (AISC 14th Eqn
8-13)
D16 5.00 Weld fillet size in sixteenths of an inch
L 18.50 in Weld length per side
Rn/241.24 kips Weld strength
QC-002 #02: 3D View
Girder/Beam Clip Angle Shear Connection
Page 22 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
QC-002 #02: 2D Views
Girder/Beam Clip Angle Shear Connection
Side view
Page 23 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Front view
ASDQC-002 #02: ASD Results Report
Girder/Beam Clip Angle Shear Connection
Material Properties:
Girder W24X131 A992 Fy = 50.00 ksiFu = 65.00 ksi
Beam W27X307 A992 Fy = 50.00 ksiFu = 65.00 ksi
Angle L4X3.5X6 A36 Fy = 36.00 ksiFu = 58.00 ksi
Input Data:
Shear Load 163.00 kips User Input Shear Load
Axial Load 0.00 kips User Input Axial Force
Note: Unless specified, all code references are from AISC 360-10 Governing LC: N/A
Limit State Required Available Unity Check Result
Geometry Restrictions at Beam PASS
Check Min Bolt Spacing Pass Condition: Smin >= (2+2/3) * dbolt (J3.3)
Smin 3.00 in Min bolt spacing
dbolt 0.75 in Bolt diameter
Check Max Bolt Spacing Pass Condition: Smax<= min(12.00 in, 24*t) (J3.5a)
Smax 3.00 in Max bolt spacing
t0.38 in Thickness of governing element (Angle)
Check Min Edge Distance Pass Condition: EDmin >= EDallow (J3.4)
Check Max Edge Distance Pass Condition: EDmax <= min (6.00 in, 12*t) (J3.5)
Geometry Restrictions at Girder PASS
Page 24 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Check Min Bolt Spacing Pass Condition: Smin >= (2+2/3) * dbolt (J3.3)
Smin 3.00 in Min bolt spacing
dbolt 0.88 in Bolt diameter
Check Max Bolt Spacing Pass Condition: Smax<= min(12.00 in, 24*t) (J3.5a)
Smax 3.00 in Max bolt spacing
t0.38 in Thickness of governing element (Angle)
Check Min Edge Distance Pass Condition: EDmin >= EDallow (J3.4)
Check Max Edge Distance Pass Condition: EDmax <= min (6.00 in, 12*t) (J3.5)
Rotational Ductility, Erection Stability PASS
Check Rotational Ductility Pass Condition: t <= 5/8''
t0.38 in Connector thickness
Check Erection Stability Pass Condition: Ly >= (d -2* kdes)/2
Ly 19.00 in Connector length (vertical)
d29.61 in Beam depth
kdes 2.88 in Beam fillet
Lmin 11.93 in Min connector length
Beam Shear Yield 163.00 kips445.21 kips 0.37 PASS
Rn = 0.6 *Fy*Agv*Cv = 1.50 (G2-1)
Fy 50.00 ksi Minimum yield stress of material
Agv 22.26 in2 Gross area subject to shear
Cv 1.00 Web shear coefficient (G2-2)
Rn/445.21 kips Shear yield strength
Clip Angle Shear Yield 163.00 kips205.20 kips 0.79 PASS
Rn = 2 * 0.6 *Fy*Agv = 1.50 (J4-3)
Fy 36.00 ksi Minimum yield stress of material
Agv 7.13 in2 Gross area subject to shear
Rn/205.20 kips Shear yield strength
Beam Shear Rupture 163.00 kips315.32 kips 0.52 PASS
Rn = 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 65.00 ksi Minimum tensile stress of material
Anv 16.17 in2 Net area subject to shear
Rn/315.32 kips Shear rupture strength
Clip Angle Shear Rupture at Beam 163.00 kips179.44 kips 0.91 PASS
Rn = 2 * 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 58.00 ksi Minimum tensile stress of material
Anv 5.16 in2 Net area subject to shear
Rn/179.44 kips Shear rupture strength
Clip Angle Shear Rupture at Girder 163.00 kips169.65 kips 0.96 PASS
Rn = 2 * 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 58.00 ksi Minimum tensile stress of material
Anv 4.88 in2 Net area subject to shear
Rn/169.65 kips Shear rupture strength
Clip Angle Block Shear at Girder 163.00 kips159.45 kips 1.02 FAIL
Rn = 2 * [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 6.38 in2 Gross area subject to shear
Anv 4.31 in2 Net area subject to shear
Ubs 1.00 Uniform tension stress factor
Ant 0.38 in2 Net area subject to tension
Fu 58.00 ksi Minimum tensile stress of material
Fy 36.00 ksi Minimum yield stress of material
Rn/159.45 kips Block shear strength
Beam Block Shear 163.00 kips315.74 kips 0.52 PASS
Page 25 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
OK
Rn = [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 19.72 in2 Gross area subject to shear
Anv 14.14 in2 Net area subject to shear
Ubs 1.00 Uniform tension stress factor
Ant 1.23 in2 Net area subject to tension
Fu 65.00 ksi Minimum tensile stress of material
Fy 50.00 ksi Minimum yield stress of material
Rn/315.74 kips Block shear strength
Clip Angle Block Shear at Beam 163.00 kips160.81 kips 1.01 FAIL
Rn = 2 * [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 6.38 in2 Gross area subject to shear
Anv 4.57 in2 Net area subject to shear
Ubs 1.00 Uniform tension stress factor
Ant 0.40 in2 Net area subject to tension
Fu 58.00 ksi Minimum tensile stress of material
Fy 36.00 ksi Minimum yield stress of material
Rn/160.81 kips Block shear strength
Coped Beam Flexural Rupture 163.00 kips349.26 kips 0.47 PASS
Rn = Fu*Snet/e = 2.00 (AISC 14th Eq. 9-6)
Fu 65.00 ksi Minimum tensile stress of material
Snet 71.20 in3 Snet=In/Ymax elastic section modulus of the
cross section
e 6.63 in Distance from the face of the cope to the point of
inflection
In 683.13 in4 Moment of inertia with respect to the neutral axis
Ymax 9.59 in Maximum distance from the neutral plane = ho-
yc
ho 19.19 in Overal depth of coped section
yc 2.21 in Position of the neutral plane
Rn/349.26 kips Coped beam flexural rupture
Coped Beam Lateral Torsional Buckling 163.00 kips321.75 kips 0.51 PASS
Rn = min(Fcr, Fy) * Snet/e = 1.67 (AISC 14th Eq. 9-12)
Fcr 1771.92 ksi Available buckling Fcr = 0.62**E*tw
2*fd /(c*ho)
Fy 50.00 ksi Minimum yield stress of material
Snet 71.20 in3 Snet=In/Ymax elastic section modulus of the
cross section
e 6.63 in Distance from the face of the cope to the point of
inflection
E 29000.00 ksi Modulus of elasticity of steel
tw 1.16 in Beam web thickness
ho 19.19 in Reduced beam depth
c 6.13 in Cope length
fd 2.74 Adjustment factor
Rn/321.75 kips Coped beam local web buckling
Bolt Bearing on Girder 163.00 kips194.83 kips 0.84 PASS
Rn = 2 * Nrows*Ncols*Rn-spacing = 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 6 Number of bolts per row
d 0.88 in Bolt diameter
Fu 65.00 ksi Minimum tensile stress of material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 82.58 kips Bearing = 2.4*d*t*Fu
Page 26 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
OK
Rn-spacing-tearout 97.33 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/194.83 kips Bolt bearing strength
Bolt Bearing on Clip Angle at Girder 163.00 kips194.83 kips 0.84 PASS
Rn = 2 * Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 6 Number of bolts per row
d 0.88 in Bolt diameter
Fu 58.00 ksi Minimum tensile stress of material
Lc-edge 1.53 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-edge 32.47 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 45.68 kips Bearing = 2.4*d*t*Fu
Rn-edge-tearout 39.97 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 53.83 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/194.83 kips Bolt bearing strength
Bolt Bearing on Beam 163.00 kips222.66 kips 0.73 PASS
Rn = Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 6 Number of bolts per row
d 0.75 in Bolt diameter
Fu 65.00 ksi Minimum tensile stress of material
Lc-edge 1.59 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.19 in Vertical distance from edges of adjacent holes
Rn-edge 74.22 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 74.22 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 135.72 kips Bearing = 2.4*d*t*Fu
Rn-edge-tearout 144.20 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 197.92 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 74.22 kips Bolt shear strength Rn-bolt=2*Fnv*Abolt
Fnv 84.00 ksi Nominal shear stress of bolt
Rn/222.66 kips Bolt bearing strength
Bolt Bearing on Clip Angle at Beam 163.00 kips222.66 kips 0.73 PASS
Rn = 2 * Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 6 Number of bolts per row
d 0.75 in Bolt diameter
Fu 58.00 ksi Minimum tensile stress of material
Lc-edge 1.59 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.19 in Vertical distance from edges of adjacent holes
Rn-edge 37.11 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 37.11 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 39.15 kips Bearing = 2.4*d*t*Fu
Page 27 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Rn-edge-tearout 41.60 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 57.09 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 37.11 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 84.00 ksi Nominal shear stress of bolt
Rn/222.66 kips Bolt bearing strength
Bolt Shear at Girder 163.00 kips194.83 kips 0.84 PASS
Rn = 2 * Fnv*Ab*Nbolt*C = 2.00 (J3-1)
Fnv 54.00 ksi Shear stress N type
Ab 0.60 in2 Area of bolt
Nbolt 6 Number of bolts
C 1.00 Eccentricity coefficient
Rn/194.83 kips Bolt shear rupture strength
Bolt Shear at Beam 163.00 kips202.08 kips 0.81 PASS
Rn = 2 * Fnv*Ab*Nbolt*C = 2.00 (J3-1)
Fnv 84.00 ksi Shear stress X type
Ab 0.44 in2 Area of bolt
Nbolt 6 Number of bolts
C 0.91 Eccentricity coefficient
Rn/202.08 kips Bolt shear rupture strength
Bolt Group Eccentricity 0.910.910.910.91
IC method (AISC 14th p.7-6)
C 0.91 Coefficient (5.4455 / 6)
Nrows 1 Number of rows of bolts
Ncols 6 Number of bolts per row
Dx 0.00 in Horizontal bolt spacing
Dy 3.00 in Vertical bolt spacing
Ex 2.00 in Horizontal eccentricity
Ey 0.00 in Vertical eccentricity
Ang 90.00 Angle of force in degrees, relative X axis
ICx -12.51 in Center of rotation, X
ICy -0.00 in Center of rotation, Y
Bolt Prying PASS
(AISC 14th p.9-10)
Check Angle Leg Thickness:Fail Condition: tmin<=tangle
Check Prying Force:Pass
tangle 0.38 in Clip angle leg thickness
P 0.00 kips User input axial load
Fu 58.00 ksi Minimum tensile stress of material
nb 12 Number of bolts
Tbolt 7.49 kips Tension Load per bolt due to moment (See
'BoltTension Check')
db 0.88 in Bolt diameter
dhole 0.94 in Bolt hole diameter
b'1.69 in Distance from the inner edge of the bolt hole to
the face of the stem, b' = (b -db / 2)
p 3.00 in Length of flange tributary to each bolt along the
longitudinal axis of the angle
T 7.49 kips Total tension force with moment, T = Tbolt + (P/
nb)
tmin 0.70 in Minimum thickness required to eliminate prying
action, tmin = (* 4 * T * b' / (p * Fu))0.5, =1.67
a 1.50 in Distance from bolt centerline to the outer edge
of the leg
b 2.13 in Distance from bolt centerline to the face of the
stem
a'1.94 in Distance from inner edge of bolt hole to the
outer edge of the leg, a' = (a + db / 2) <= (1.25 *
b + db / 2)
Page 28 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
0.87 Ratio of b' to a', = b' / a'
0.69 Ratio of the net area at the bolt line to the gross
area at the face of the stem, = 1 -dhole/ p
B 27.06 kips Total tensile capacity per bolt, B = Ab * Fnt / ,
= 2.0
tc 1.32 in Flange thickness required to develop the
available strength of the bolt without prying
action, tc = (* 4 * B * b' / (p * Fu))0.5, =1.67
3.56 Ratio of moment at bolt line to moment at stem
line, = max[1/[T/B (tc/t) 2 -1, 0]
q 4.63 kips Factored prying force per bolt, q = B [(t/tc)2]
Tu 12.12 kips Total tension on the bolt including the prying
force, Tu = T + q
Bolt Tension at Girder N/A
Rn = F'nt * Ab = 2.00 (J3-2)
Check User Note Limit:frt/(Fnt/) <= 0.3
frt 12.45 ksi Required tensile stress = (Tbolt-P/nb)/Ab
Fnt 90.00 ksi Nominal tensile stress, per Table J3.2
Because frt/(Fnt/) <= 0.3, the Bolt Tensile Check is not required
F'nt 41.70 ksi Modified nominal tensile stress = min(1.3*Fnt-(
*Fnt/Fnv)*frv), Fnt)
V 163.00 kips User input shear load
P 0.00 kips User input axial load
Ab 0.60 in2 Bolt cross sectional area
nb 12 Number of bolts
Tbolt 7.49 kips Max tension load per bolt due to eccentricity =
0.5 * (6*Me/(b*d2))*At*k_eff
Me 326.00 kips-in Moment due to eccentricity = (V * ex) -(P * ey)
ex 2.00 in Horizontal eccentricity
ey -0.26 in Vertical eccentricity
b 4.00 in Connector width
d 19.00 in Connector depth
At 14.00 in2 Maximum tributary area per bolt
k_eff 0.79 Coefficient correction factor
QC-002 #03: 3D View
Girder/Beam Clip Angle Shear Connection
Page 29 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
QC-002 #03: 2D Views
Girder/Beam Clip Angle Shear Connection
Side view
Page 30 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Front view
ASDQC-002 #03: ASD Results Report
Girder/Beam Clip Angle Shear Connection
Material Properties:
Girder W27X84 A992 Fy = 50.00 ksiFu = 65.00 ksi
Beam W27X368 A992 Fy = 50.00 ksiFu = 65.00 ksi
Angle L4X3.5X8 A36 Fy = 36.00 ksiFu = 58.00 ksi
Input Data:
Shear Load 220.00 kips User Input Shear Load
Axial Load 0.00 kips User Input Axial Force
Note: Unless specified, all code references are from AISC 360-10 Governing LC: N/A
Limit State Required Available Unity Check Result
Geometry Restrictions at Beam PASS
Check Min Bolt Spacing Pass Condition: Smin >= (2+2/3) * dbolt (J3.3)
Smin 3.00 in Min bolt spacing
dbolt 0.88 in Bolt diameter
Check Max Bolt Spacing Pass Condition: Smax<= min(12.00 in, 24*t) (J3.5a)
Smax 3.00 in Max bolt spacing
t0.50 in Thickness of governing element (Angle)
Check Min Edge Distance Pass Condition: EDmin >= EDallow (J3.4)
Check Max Edge Distance Pass Condition: EDmax <= min (6.00 in, 12*t) (J3.5)
Geometry Restrictions at Girder PASS
Page 31 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Check Min Bolt Spacing Pass Condition: Smin >= (2+2/3) * dbolt (J3.3)
Smin 3.00 in Min bolt spacing
dbolt 0.88 in Bolt diameter
Check Max Bolt Spacing Pass Condition: Smax<= min(12.00 in, 24*t) (J3.5a)
Smax 3.00 in Max bolt spacing
t0.46 in Thickness of governing element (Girder)
Check Min Edge Distance Pass Condition: EDmin >= EDallow (J3.4)
Check Max Edge Distance Pass Condition: EDmax <= min (6.00 in, 12*t) (J3.5)
Rotational Ductility, Erection Stability PASS
Check Rotational Ductility Pass Condition: t <= 5/8''
t0.50 in Connector thickness
Check Erection Stability Pass Condition: Ly >= (d -2* kdes)/2
Ly 22.00 in Connector length (vertical)
d30.39 in Beam depth
kdes 3.27 in Beam fillet
Lmin 11.93 in Min connector length
Beam Shear Yield 220.00 kips610.51 kips 0.36 PASS
Rn = 0.6 *Fy*Agv*Cv = 1.50 (G2-1)
Fy 50.00 ksi Minimum yield stress of material
Agv 30.53 in2 Gross area subject to shear
Cv 1.00 Web shear coefficient (G2-2)
Rn/610.51 kips Shear yield strength
Clip Angle Shear Yield 220.00 kips316.80 kips 0.69 PASS
Rn = 2 * 0.6 *Fy*Agv = 1.50 (J4-3)
Fy 36.00 ksi Minimum yield stress of material
Agv 11.00 in2 Gross area subject to shear
Rn/316.80 kips Shear yield strength
Beam Shear Rupture 220.00 kips406.88 kips 0.54 PASS
Rn = 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 65.00 ksi Minimum tensile stress of material
Anv 20.87 in2 Net area subject to shear
Rn/406.88 kips Shear rupture strength
Clip Angle Shear Rupture at Beam 220.00 kips261.00 kips 0.84 PASS
Rn = 2 * 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 58.00 ksi Minimum tensile stress of material
Anv 7.50 in2 Net area subject to shear
Rn/261.00 kips Shear rupture strength
Clip Angle Shear Rupture at Girder 220.00 kips261.00 kips 0.84 PASS
Rn = 2 * 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 58.00 ksi Minimum tensile stress of material
Anv 7.50 in2 Net area subject to shear
Rn/261.00 kips Shear rupture strength
Clip Angle Block Shear at Girder 220.00 kips245.00 kips 0.90 PASS
Rn = 2 * [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 10.00 in2 Gross area subject to shear
Anv 6.75 in2 Net area subject to shear
Ubs 1.00 Uniform tension stress factor
Ant 0.50 in2 Net area subject to tension
Fu 58.00 ksi Minimum tensile stress of material
Fy 36.00 ksi Minimum yield stress of material
Rn/245.00 kips Block shear strength
Beam Block Shear 220.00 kips408.13 kips 0.54 PASS
Page 32 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Rn = [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 27.60 in2 Gross area subject to shear
Anv 18.63 in2 Net area subject to shear
Ubs 1.00 Uniform tension stress factor
Ant 1.38 in2 Net area subject to tension
Fu 65.00 ksi Minimum tensile stress of material
Fy 50.00 ksi Minimum yield stress of material
Rn/408.13 kips Block shear strength
Clip Angle Block Shear at Beam 220.00 kips245.00 kips 0.90 PASS
Rn = 2 * [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 10.00 in2 Gross area subject to shear
Anv 6.75 in2 Net area subject to shear
Ubs 1.00 Uniform tension stress factor
Ant 0.50 in2 Net area subject to tension
Fu 58.00 ksi Minimum tensile stress of material
Fy 36.00 ksi Minimum yield stress of material
Rn/245.00 kips Block shear strength
Coped Beam Flexural Rupture 220.00 kips552.07 kips 0.40 PASS
Rn = Fu*Snet/e = 2.00 (AISC 14th Eq. 9-6)
Fu 65.00 ksi Minimum tensile stress of material
Snet 112.54 in3 Snet=In/Ymax elastic section modulus of the
cross section
e 6.63 in Distance from the face of the cope to the point of
inflection
In 1244.67 in4 Moment of inertia with respect to the neutral axis
Ymax 11.06 in Maximum distance from the neutral plane = ho-
yc
ho 22.12 in Overal depth of coped section
yc 0.86 in Position of the neutral plane
Rn/552.07 kips Coped beam flexural rupture
Coped Beam Lateral Torsional Buckling 220.00 kips508.59 kips 0.43 PASS
Rn = min(Fcr, Fy) * Snet/e = 1.67 (AISC 14th Eq. 9-12)
Fcr 2138.17 ksi Available buckling Fcr = 0.62**E*tw
2*fd /(c*ho)
Fy 50.00 ksi Minimum yield stress of material
Snet 112.54 in3 Snet=In/Ymax elastic section modulus of the
cross section
e 6.63 in Distance from the face of the cope to the point of
inflection
E 29000.00 ksi Modulus of elasticity of steel
tw 1.38 in Beam web thickness
ho 22.12 in Reduced beam depth
c 6.13 in Cope length
fd 2.69 Adjustment factor
Rn/508.59 kips Coped beam local web buckling
Bolt Bearing on Girder 220.00 kips227.30 kips 0.97 PASS
Rn = 2 * Nrows*Ncols*Rn-spacing = 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 7 Number of bolts per row
d 0.88 in Bolt diameter
Fu 65.00 ksi Minimum tensile stress of material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 62.79 kips Bearing = 2.4*d*t*Fu
Page 33 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Rn-spacing-tearout 74.00 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/227.30 kips Bolt bearing strength
Bolt Bearing on Clip Angle at Girder 220.00 kips227.30 kips 0.97 PASS
Rn = 2 * Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 7 Number of bolts per row
d 0.88 in Bolt diameter
Fu 58.00 ksi Minimum tensile stress of material
Lc-edge 1.53 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-edge 32.47 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 60.90 kips Bearing = 2.4*d*t*Fu
Rn-edge-tearout 53.29 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 71.78 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/227.30 kips Bolt bearing strength
Bolt Bearing on Beam 220.00 kips227.30 kips 0.97 PASS
Rn = Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 7 Number of bolts per row
d 0.88 in Bolt diameter
Fu 65.00 ksi Minimum tensile stress of material
Lc-edge 1.53 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-edge 64.94 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 64.94 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 188.37 kips Bearing = 2.4*d*t*Fu
Rn-edge-tearout 164.82 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 222.01 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 64.94 kips Bolt shear strength Rn-bolt=2*Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/227.30 kips Bolt bearing strength
Bolt Bearing on Clip Angle at Beam 220.00 kips227.30 kips 0.97 PASS
Rn = 2 * Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 7 Number of bolts per row
d 0.88 in Bolt diameter
Fu 58.00 ksi Minimum tensile stress of material
Lc-edge 1.53 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-edge 32.47 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 60.90 kips Bearing = 2.4*d*t*Fu
Page 34 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Rn-edge-tearout 53.29 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 71.78 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/227.30 kips Bolt bearing strength
Bolt Shear at Girder 220.00 kips227.30 kips 0.97 PASS
Rn = 2 * Fnv*Ab*Nbolt*C = 2.00 (J3-1)
Fnv 54.00 ksi Shear stress N type
Ab 0.60 in2 Area of bolt
Nbolt 7 Number of bolts
C 1.00 Eccentricity coefficient
Rn/227.30 kips Bolt shear rupture strength
Bolt Shear at Beam 220.00 kips210.48 kips 1.05 FAIL
Rn = 2 * Fnv*Ab*Nbolt*C = 2.00 (J3-1)
Fnv 54.00 ksi Shear stress N type
Ab 0.60 in2 Area of bolt
Nbolt 7 Number of bolts
C 0.93 Eccentricity coefficient
Rn/210.48 kips Bolt shear rupture strength
Bolt Group Eccentricity 0.930.930.930.93
IC method (AISC 14th p.7-6)
C 0.93 Coefficient (6.4820 / 7)
Nrows 1 Number of rows of bolts
Ncols 7 Number of bolts per row
Dx 0.00 in Horizontal bolt spacing
Dy 3.00 in Vertical bolt spacing
Ex 2.00 in Horizontal eccentricity
Ey 0.00 in Vertical eccentricity
Ang 90.00 Angle of force in degrees, relative X axis
ICx -17.35 in Center of rotation, X
ICy -0.00 in Center of rotation, Y
Bolt Prying PASS
(AISC 14th p.9-10)
Check Angle Leg Thickness:Fail Condition: tmin<=tangle
Check Prying Force:Pass
tangle 0.50 in Clip angle leg thickness
P 0.00 kips User input axial load
Fu 58.00 ksi Minimum tensile stress of material
nb 14 Number of bolts
Tbolt 7.81 kips Tension Load per bolt due to moment (See
'BoltTension Check')
db 0.88 in Bolt diameter
dhole 0.94 in Bolt hole diameter
b'1.56 in Distance from the inner edge of the bolt hole to
the face of the stem, b' = (b -db / 2)
p 3.00 in Length of flange tributary to each bolt along the
longitudinal axis of the angle
T 7.81 kips Total tension force with moment, T = Tbolt + (P/
nb)
tmin 0.68 in Minimum thickness required to eliminate prying
action, tmin = (* 4 * T * b' / (p * Fu))0.5, =1.67
a 1.50 in Distance from bolt centerline to the outer edge
of the leg
b 2.00 in Distance from bolt centerline to the face of the
stem
a'1.94 in Distance from inner edge of bolt hole to the
outer edge of the leg, a' = (a + db / 2) <= (1.25 *
b + db / 2)
Page 35 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Right at 105%
acceptable limit. OK.
0.81 Ratio of b' to a', = b' / a'
0.69 Ratio of the net area at the bolt line to the gross
area at the face of the stem, = 1 -dhole/ p
B 27.06 kips Total tensile capacity per bolt, B = Ab * Fnt / ,
= 2.0
tc 1.27 in Flange thickness required to develop the
available strength of the bolt without prying
action, tc = (* 4 * B * b' / (p * Fu))0.5, =1.67
1.27 Ratio of moment at bolt line to moment at stem
line, = max[1/[T/B (tc/t) 2 -1, 0]
q 2.94 kips Factored prying force per bolt, q = B [(t/tc)2]
Tu 10.75 kips Total tension on the bolt including the prying
force, Tu = T + q
Bolt Tension at Girder N/A
Rn = F'nt * Ab = 2.00 (J3-2)
Check User Note Limit:frt/(Fnt/) <= 0.3
frt 12.99 ksi Required tensile stress = (Tbolt-P/nb)/Ab
Fnt 90.00 ksi Nominal tensile stress, per Table J3.2
Because frt/(Fnt/) <= 0.3, the Bolt Tensile Check is not required
F'nt 29.89 ksi Modified nominal tensile stress = min(1.3*Fnt-(
*Fnt/Fnv)*frv), Fnt)
V 220.00 kips User input shear load
P 0.00 kips User input axial load
Ab 0.60 in2 Bolt cross sectional area
nb 14 Number of bolts
Tbolt 7.81 kips Max tension load per bolt due to eccentricity =
0.5 * (6*Me/(b*d2))*At*k_eff
Me 440.00 kips-in Moment due to eccentricity = (V * ex) -(P * ey)
ex 2.00 in Horizontal eccentricity
ey -0.92 in Vertical eccentricity
b 4.00 in Connector width
d 22.00 in Connector depth
At 14.00 in2 Maximum tributary area per bolt
k_eff 0.82 Coefficient correction factor
QC-002 #04: 3D View
Girder/Beam Clip Angle Shear Connection
Page 36 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
QC-002 #04: 2D Views
Girder/Beam Clip Angle Shear Connection
Side view
Page 37 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Front view
ASDQC-002 #04: ASD Results Report
Girder/Beam Clip Angle Shear Connection
Material Properties:
Girder W24X207 A992 Fy = 50.00 ksiFu = 65.00 ksi
Beam W27X129 A992 Fy = 50.00 ksiFu = 65.00 ksi
Angle L4X3.5X8 A36 Fy = 36.00 ksiFu = 58.00 ksi
Input Data:
Shear Load 192.00 kips User Input Shear Load
Axial Load 0.00 kips User Input Axial Force
Note: Unless specified, all code references are from AISC 360-10 Governing LC: N/A
Limit State Required Available Unity Check Result
Geometry Restrictions at Beam PASS
Check Min Bolt Spacing Pass Condition: Smin >= (2+2/3) * dbolt (J3.3)
Smin 3.00 in Min bolt spacing
dbolt 0.75 in Bolt diameter
Check Max Bolt Spacing Pass Condition: Smax<= min(12.00 in, 24*t) (J3.5a)
Smax 3.00 in Max bolt spacing
t0.50 in Thickness of governing element (Angle)
Check Min Edge Distance Pass Condition: EDmin >= EDallow (J3.4)
Check Max Edge Distance Pass Condition: EDmax <= min (6.00 in, 12*t) (J3.5)
Geometry Restrictions at Girder PASS
Page 38 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Check Min Bolt Spacing Pass Condition: Smin >= (2+2/3) * dbolt (J3.3)
Smin 3.00 in Min bolt spacing
dbolt 0.88 in Bolt diameter
Check Max Bolt Spacing Pass Condition: Smax<= min(12.00 in, 24*t) (J3.5a)
Smax 3.00 in Max bolt spacing
t0.50 in Thickness of governing element (Angle)
Check Min Edge Distance Pass Condition: EDmin >= EDallow (J3.4)
Check Max Edge Distance Pass Condition: EDmax <= min (6.00 in, 12*t) (J3.5)
Rotational Ductility, Erection Stability PASS
Check Rotational Ductility Pass Condition: t <= 5/8''
t0.50 in Connector thickness
Check Erection Stability Pass Condition: Ly >= (d -2* kdes)/2
Ly 21.00 in Connector length (vertical)
d27.63 in Beam depth
kdes 1.70 in Beam fillet
Lmin 12.12 in Min connector length
Beam Shear Yield 192.00 kips263.15 kips 0.73 PASS
Rn = 0.6 *Fy*Agv*Cv = 1.50 (G2-1)
Fy 50.00 ksi Minimum yield stress of material
Agv 13.16 in2 Gross area subject to shear
Cv 1.00 Web shear coefficient (G2-2)
Rn/263.15 kips Shear yield strength
Clip Angle Shear Yield 192.00 kips302.40 kips 0.63 PASS
Rn = 2 * 0.6 *Fy*Agv = 1.50 (J4-3)
Fy 36.00 ksi Minimum yield stress of material
Agv 10.50 in2 Gross area subject to shear
Rn/302.40 kips Shear yield strength
Beam Shear Rupture 192.00 kips183.72 kips 1.05 FAIL
Rn = 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 65.00 ksi Minimum tensile stress of material
Anv 9.42 in2 Net area subject to shear
Rn/183.72 kips Shear rupture strength
Clip Angle Shear Rupture at Beam 192.00 kips258.82 kips 0.74 PASS
Rn = 2 * 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 58.00 ksi Minimum tensile stress of material
Anv 7.44 in2 Net area subject to shear
Rn/258.82 kips Shear rupture strength
Clip Angle Shear Rupture at Girder 192.00 kips243.60 kips 0.79 PASS
Rn = 2 * 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 58.00 ksi Minimum tensile stress of material
Anv 7.00 in2 Net area subject to shear
Rn/243.60 kips Shear rupture strength
Clip Angle Block Shear at Girder 192.00 kips239.60 kips 0.80 PASS
Rn = 2 * [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 9.75 in2 Gross area subject to shear
Anv 6.50 in2 Net area subject to shear
Ubs 1.00 Uniform tension stress factor
Ant 0.50 in2 Net area subject to tension
Fu 58.00 ksi Minimum tensile stress of material
Fy 36.00 ksi Minimum yield stress of material
Rn/239.60 kips Block shear strength
Beam Block Shear 192.00 kips190.48 kips 1.01 FAIL
Page 39 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Right at 105%
acceptable limit. OK
OK
Rn = [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 12.16 in2 Gross area subject to shear
Anv 8.69 in2 Net area subject to shear
Ubs 1.00 Uniform tension stress factor
Ant 0.65 in2 Net area subject to tension
Fu 65.00 ksi Minimum tensile stress of material
Fy 50.00 ksi Minimum yield stress of material
Rn/190.48 kips Block shear strength
Clip Angle Block Shear at Beam 192.00 kips241.41 kips 0.80 PASS
Rn = 2 * [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 9.75 in2 Gross area subject to shear
Anv 6.91 in2 Net area subject to shear
Ubs 1.00 Uniform tension stress factor
Ant 0.53 in2 Net area subject to tension
Fu 58.00 ksi Minimum tensile stress of material
Fy 36.00 ksi Minimum yield stress of material
Rn/241.41 kips Block shear strength
Coped Beam Flexural Rupture 192.00 kips232.05 kips 0.83 PASS
Rn = Fu*Snet/e = 2.00 (AISC 14th Eq. 9-6)
Fu 65.00 ksi Minimum tensile stress of material
Snet 47.30 in3 Snet=In/Ymax elastic section modulus of the
cross section
e 6.63 in Distance from the face of the cope to the point of
inflection
In 510.15 in4 Moment of inertia with respect to the neutral axis
Ymax 10.79 in Maximum distance from the neutral plane = ho-
yc
ho 21.57 in Overal depth of coped section
yc 0.96 in Position of the neutral plane
Rn/232.05 kips Coped beam flexural rupture
Coped Beam Lateral Torsional Buckling 192.00 kips213.77 kips 0.90 PASS
Rn = min(Fcr, Fy) * Snet/e = 1.67 (AISC 14th Eq. 9-12)
Fcr 467.42 ksi Available buckling Fcr = 0.62**E*tw
2*fd /(c*ho)
Fy 50.00 ksi Minimum yield stress of material
Snet 47.30 in3 Snet=In/Ymax elastic section modulus of the
cross section
e 6.63 in Distance from the face of the cope to the point of
inflection
E 29000.00 ksi Modulus of elasticity of steel
tw 0.61 in Beam web thickness
ho 21.57 in Reduced beam depth
c 6.13 in Cope length
fd 2.94 Adjustment factor
Rn/213.77 kips Coped beam local web buckling
Bolt Bearing on Girder 192.00 kips227.30 kips 0.84 PASS
Rn = 2 * Nrows*Ncols*Rn-spacing = 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 7 Number of bolts per row
d 0.88 in Bolt diameter
Fu 65.00 ksi Minimum tensile stress of material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 118.76 kips Bearing = 2.4*d*t*Fu
Page 40 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Rn-spacing-tearout 139.96 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/227.30 kips Bolt bearing strength
Bolt Bearing on Clip Angle at Girder 192.00 kips227.30 kips 0.84 PASS
Rn = 2 * Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 7 Number of bolts per row
d 0.88 in Bolt diameter
Fu 58.00 ksi Minimum tensile stress of material
Lc-edge 1.03 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-edge 32.47 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 60.90 kips Bearing = 2.4*d*t*Fu
Rn-edge-tearout 35.89 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 71.78 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/227.30 kips Bolt bearing strength
Bolt Bearing on Beam 192.00 kips249.79 kips 0.77 PASS
Rn = Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 7 Number of bolts per row
d 0.75 in Bolt diameter
Fu 65.00 ksi Minimum tensile stress of material
Lc-edge 1.52 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.19 in Vertical distance from edges of adjacent holes
Rn-edge 71.37 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 71.37 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 71.37 kips Bearing = 2.4*d*t*Fu
Rn-edge-tearout 72.50 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 104.08 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 74.22 kips Bolt shear strength Rn-bolt=2*Fnv*Abolt
Fnv 84.00 ksi Nominal shear stress of bolt
Rn/249.79 kips Bolt bearing strength
Bolt Bearing on Clip Angle at Beam 192.00 kips259.77 kips 0.74 PASS
Rn = 2 * Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 7 Number of bolts per row
d 0.75 in Bolt diameter
Fu 58.00 ksi Minimum tensile stress of material
Lc-edge 1.09 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.19 in Vertical distance from edges of adjacent holes
Rn-edge 37.11 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 37.11 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 52.20 kips Bearing = 2.4*d*t*Fu
Page 41 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Rn-edge-tearout 38.06 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 76.13 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 37.11 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 84.00 ksi Nominal shear stress of bolt
Rn/259.77 kips Bolt bearing strength
Bolt Shear at Girder 192.00 kips227.30 kips 0.84 PASS
Rn = 2 * Fnv*Ab*Nbolt*C = 2.00 (J3-1)
Fnv 54.00 ksi Shear stress N type
Ab 0.60 in2 Area of bolt
Nbolt 7 Number of bolts
C 1.00 Eccentricity coefficient
Rn/227.30 kips Bolt shear rupture strength
Bolt Shear at Beam 192.00 kips240.55 kips 0.80 PASS
Rn = 2 * Fnv*Ab*Nbolt*C = 2.00 (J3-1)
Fnv 84.00 ksi Shear stress X type
Ab 0.44 in2 Area of bolt
Nbolt 7 Number of bolts
C 0.93 Eccentricity coefficient
Rn/240.55 kips Bolt shear rupture strength
Bolt Group Eccentricity 0.930.930.930.93
IC method (AISC 14th p.7-6)
C 0.93 Coefficient (6.4820 / 7)
Nrows 1 Number of rows of bolts
Ncols 7 Number of bolts per row
Dx 0.00 in Horizontal bolt spacing
Dy 3.00 in Vertical bolt spacing
Ex 2.00 in Horizontal eccentricity
Ey 0.00 in Vertical eccentricity
Ang 90.00 Angle of force in degrees, relative X axis
ICx -17.35 in Center of rotation, X
ICy -0.00 in Center of rotation, Y
Bolt Prying PASS
(AISC 14th p.9-10)
Check Angle Leg Thickness:Fail Condition: tmin<=tangle
Check Prying Force:Pass
tangle 0.50 in Clip angle leg thickness
P 0.00 kips User input axial load
Fu 58.00 ksi Minimum tensile stress of material
nb 14 Number of bolts
Tbolt 6.72 kips Tension Load per bolt due to moment (See
'BoltTension Check')
db 0.88 in Bolt diameter
dhole 0.94 in Bolt hole diameter
b'1.56 in Distance from the inner edge of the bolt hole to
the face of the stem, b' = (b -db / 2)
p 3.00 in Length of flange tributary to each bolt along the
longitudinal axis of the angle
T 6.72 kips Total tension force with moment, T = Tbolt + (P/
nb)
tmin 0.63 in Minimum thickness required to eliminate prying
action, tmin = (* 4 * T * b' / (p * Fu))0.5, =1.67
a 1.50 in Distance from bolt centerline to the outer edge
of the leg
b 2.00 in Distance from bolt centerline to the face of the
stem
a'1.94 in Distance from inner edge of bolt hole to the
outer edge of the leg, a' = (a + db / 2) <= (1.25 *
b + db / 2)
Page 42 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
0.81 Ratio of b' to a', = b' / a'
0.69 Ratio of the net area at the bolt line to the gross
area at the face of the stem, = 1 -dhole/ p
B 27.06 kips Total tensile capacity per bolt, B = Ab * Fnt / ,
= 2.0
tc 1.27 in Flange thickness required to develop the
available strength of the bolt without prying
action, tc = (* 4 * B * b' / (p * Fu))0.5, =1.67
0.89 Ratio of moment at bolt line to moment at stem
line, = max[1/[T/B (tc/t) 2 -1, 0]
q 2.06 kips Factored prying force per bolt, q = B [(t/tc)2]
Tu 8.77 kips Total tension on the bolt including the prying
force, Tu = T + q
Bolt Tension at Girder N/A
Rn = F'nt * Ab = 2.00 (J3-2)
Check User Note Limit:frt/(Fnt/) <= 0.3
frt 11.17 ksi Required tensile stress = (Tbolt-P/nb)/Ab
Fnt 90.00 ksi Nominal tensile stress, per Table J3.2
Because frt/(Fnt/) <= 0.3, the Bolt Tensile Check is not required
F'nt 40.98 ksi Modified nominal tensile stress = min(1.3*Fnt-(
*Fnt/Fnv)*frv), Fnt)
V 192.00 kips User input shear load
P 0.00 kips User input axial load
Ab 0.60 in2 Bolt cross sectional area
nb 14 Number of bolts
Tbolt 6.72 kips Max tension load per bolt due to eccentricity =
0.5 * (6*Me/(b*d2))*At*k_eff
Me 384.00 kips-in Moment due to eccentricity = (V * ex) -(P * ey)
ex 2.00 in Horizontal eccentricity
ey -0.14 in Vertical eccentricity
b 4.00 in Connector width
d 21.00 in Connector depth
At 12.00 in2 Maximum tributary area per bolt
k_eff 0.86 Coefficient correction factor
QC-002 #05: 3D View
Girder/Beam Clip Angle Shear Connection
Page 43 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
QC-002 #05: 2D Views
Girder/Beam Clip Angle Shear Connection
Side view
Page 44 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Front view
ASDQC-002 #05: ASD Results Report
Girder/Beam Clip Angle Shear Connection
Material Properties:
Girder W27X84 A992 Fy = 50.00 ksiFu = 65.00 ksi
Beam W30X173 A992 Fy = 50.00 ksiFu = 65.00 ksi
Angle L4X3.5X6 A36 Fy = 36.00 ksiFu = 58.00 ksi
Input Data:
Shear Load 155.00 kips User Input Shear Load
Axial Load 0.00 kips User Input Axial Force
Note: Unless specified, all code references are from AISC 360-10 Governing LC: N/A
Limit State Required Available Unity Check Result
Geometry Restrictions at Beam PASS
Check Min Bolt Spacing Pass Condition: Smin >= (2+2/3) * dbolt (J3.3)
Smin 3.00 in Min bolt spacing
dbolt 0.88 in Bolt diameter
Check Max Bolt Spacing Pass Condition: Smax<= min(12.00 in, 24*t) (J3.5a)
Smax 3.00 in Max bolt spacing
t0.38 in Thickness of governing element (Angle)
Check Min Edge Distance Pass Condition: EDmin >= EDallow (J3.4)
Check Max Edge Distance Pass Condition: EDmax <= min (6.00 in, 12*t) (J3.5)
Geometry Restrictions at Girder PASS
Page 45 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Check Min Bolt Spacing Pass Condition: Smin >= (2+2/3) * dbolt (J3.3)
Smin 3.00 in Min bolt spacing
dbolt 0.88 in Bolt diameter
Check Max Bolt Spacing Pass Condition: Smax<= min(12.00 in, 24*t) (J3.5a)
Smax 3.00 in Max bolt spacing
t0.38 in Thickness of governing element (Angle)
Check Min Edge Distance Pass Condition: EDmin >= EDallow (J3.4)
Check Max Edge Distance Pass Condition: EDmax <= min (6.00 in, 12*t) (J3.5)
Rotational Ductility, Erection Stability PASS
Check Rotational Ductility Pass Condition: t <= 5/8''
t0.38 in Connector thickness
Check Erection Stability Pass Condition: Ly >= (d -2* kdes)/2
Ly 20.50 in Connector length (vertical)
d30.44 in Beam depth
kdes 1.85 in Beam fillet
Lmin 13.37 in Min connector length
Beam Shear Yield 155.00 kips300.51 kips 0.52 PASS
Rn = 0.6 *Fy*Agv*Cv = 1.50 (G2-1)
Fy 50.00 ksi Minimum yield stress of material
Agv 15.03 in2 Gross area subject to shear
Cv 1.00 Web shear coefficient (G2-2)
Rn/300.51 kips Shear yield strength
Clip Angle Shear Yield 155.00 kips221.40 kips 0.70 PASS
Rn = 2 * 0.6 *Fy*Agv = 1.50 (J4-3)
Fy 36.00 ksi Minimum yield stress of material
Agv 7.69 in2 Gross area subject to shear
Rn/221.40 kips Shear yield strength
Beam Shear Rupture 155.00 kips203.59 kips 0.76 PASS
Rn = 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 65.00 ksi Minimum tensile stress of material
Anv 10.44 in2 Net area subject to shear
Rn/203.59 kips Shear rupture strength
Clip Angle Shear Rupture at Beam 155.00 kips176.17 kips 0.88 PASS
Rn = 2 * 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 58.00 ksi Minimum tensile stress of material
Anv 5.06 in2 Net area subject to shear
Rn/176.17 kips Shear rupture strength
Clip Angle Shear Rupture at Girder 155.00 kips176.17 kips 0.88 PASS
Rn = 2 * 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 58.00 ksi Minimum tensile stress of material
Anv 5.06 in2 Net area subject to shear
Rn/176.17 kips Shear rupture strength
Clip Angle Block Shear at Girder 155.00 kips177.67 kips 0.87 PASS
Rn = 2 * [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 7.22 in2 Gross area subject to shear
Anv 4.78 in2 Net area subject to shear
Ubs 1.00 Uniform tension stress factor
Ant 0.38 in2 Net area subject to tension
Fu 58.00 ksi Minimum tensile stress of material
Fy 36.00 ksi Minimum yield stress of material
Rn/177.67 kips Block shear strength
Beam Block Shear 155.00 kips184.14 kips 0.84 PASS
Page 46 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Rn = [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 12.61 in2 Gross area subject to shear
Anv 8.35 in2 Net area subject to shear
Ubs 1.00 Uniform tension stress factor
Ant 0.65 in2 Net area subject to tension
Fu 65.00 ksi Minimum tensile stress of material
Fy 50.00 ksi Minimum yield stress of material
Rn/184.14 kips Block shear strength
Clip Angle Block Shear at Beam 155.00 kips177.67 kips 0.87 PASS
Rn = 2 * [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 7.22 in2 Gross area subject to shear
Anv 4.78 in2 Net area subject to shear
Ubs 1.00 Uniform tension stress factor
Ant 0.38 in2 Net area subject to tension
Fu 58.00 ksi Minimum tensile stress of material
Fy 36.00 ksi Minimum yield stress of material
Rn/177.67 kips Block shear strength
Coped Beam Flexural Rupture 155.00 kips355.63 kips 0.44 PASS
Rn = Fu*Snet/e = 2.00 (AISC 14th Eq. 9-6)
Fu 65.00 ksi Minimum tensile stress of material
Snet 57.45 in3 Snet=In/Ymax elastic section modulus of the
cross section
e 5.25 in Distance from the face of the cope to the point of
inflection
In 658.93 in4 Moment of inertia with respect to the neutral axis
Ymax 11.47 in Maximum distance from the neutral plane = ho-
yc
ho 22.94 in Overal depth of coped section
yc 1.75 in Position of the neutral plane
Rn/355.63 kips Coped beam flexural rupture
Coped Beam Lateral Torsional Buckling 155.00 kips327.62 kips 0.47 PASS
Rn = min(Fcr, Fy) * Snet/e = 1.67 (AISC 14th Eq. 9-12)
Fcr 668.81 ksi Available buckling Fcr = 0.62**E*tw
2*fd /(c*ho)
Fy 50.00 ksi Minimum yield stress of material
Snet 57.45 in3 Snet=In/Ymax elastic section modulus of the
cross section
e 5.25 in Distance from the face of the cope to the point of
inflection
E 29000.00 ksi Modulus of elasticity of steel
tw 0.66 in Beam web thickness
ho 22.94 in Reduced beam depth
c 4.75 in Cope length
fd 3.01 Adjustment factor
Rn/327.62 kips Coped beam local web buckling
Bolt Bearing on Girder 155.00 kips227.30 kips 0.68 PASS
Rn = 2 * Nrows*Ncols*Rn-spacing = 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 7 Number of bolts per row
d 0.88 in Bolt diameter
Fu 65.00 ksi Minimum tensile stress of material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 62.79 kips Bearing = 2.4*d*t*Fu
Page 47 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Rn-spacing-tearout 74.00 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/227.30 kips Bolt bearing strength
Bolt Bearing on Clip Angle at Girder 155.00 kips215.22 kips 0.72 PASS
Rn = 2 * Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 7 Number of bolts per row
d 0.88 in Bolt diameter
Fu 58.00 ksi Minimum tensile stress of material
Lc-edge 0.78 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-edge 20.39 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 45.68 kips Bearing = 2.4*d*t*Fu
Rn-edge-tearout 20.39 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 53.83 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/215.22 kips Bolt bearing strength
Bolt Bearing on Beam 155.00 kips214.78 kips 0.72 PASS
Rn = Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 7 Number of bolts per row
d 0.88 in Bolt diameter
Fu 65.00 ksi Minimum tensile stress of material
Lc-edge 0.78 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-edge 39.91 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 64.94 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 89.41 kips Bearing = 2.4*d*t*Fu
Rn-edge-tearout 39.91 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 105.37 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 64.94 kips Bolt shear strength Rn-bolt=2*Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/214.78 kips Bolt bearing strength
Bolt Bearing on Clip Angle at Beam 155.00 kips215.22 kips 0.72 PASS
Rn = 2 * Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 7 Number of bolts per row
d 0.88 in Bolt diameter
Fu 58.00 ksi Minimum tensile stress of material
Lc-edge 0.78 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-edge 20.39 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 45.68 kips Bearing = 2.4*d*t*Fu
Page 48 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Rn-edge-tearout 20.39 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 53.83 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/215.22 kips Bolt bearing strength
Bolt Shear at Girder 155.00 kips227.30 kips 0.68 PASS
Rn = 2 * Fnv*Ab*Nbolt*C = 2.00 (J3-1)
Fnv 54.00 ksi Shear stress N type
Ab 0.60 in2 Area of bolt
Nbolt 7 Number of bolts
C 1.00 Eccentricity coefficient
Rn/227.30 kips Bolt shear rupture strength
Bolt Shear at Beam 155.00 kips210.48 kips 0.74 PASS
Rn = 2 * Fnv*Ab*Nbolt*C = 2.00 (J3-1)
Fnv 54.00 ksi Shear stress N type
Ab 0.60 in2 Area of bolt
Nbolt 7 Number of bolts
C 0.93 Eccentricity coefficient
Rn/210.48 kips Bolt shear rupture strength
Bolt Group Eccentricity 0.930.930.930.93
IC method (AISC 14th p.7-6)
C 0.93 Coefficient (6.4820 / 7)
Nrows 1 Number of rows of bolts
Ncols 7 Number of bolts per row
Dx 0.00 in Horizontal bolt spacing
Dy 3.00 in Vertical bolt spacing
Ex 2.00 in Horizontal eccentricity
Ey 0.00 in Vertical eccentricity
Ang 90.00 Angle of force in degrees, relative X axis
ICx -17.35 in Center of rotation, X
ICy -0.00 in Center of rotation, Y
Bolt Prying PASS
(AISC 14th p.9-10)
Check Angle Leg Thickness:Fail Condition: tmin<=tangle
Check Prying Force:Pass
tangle 0.38 in Clip angle leg thickness
P 0.00 kips User input axial load
Fu 58.00 ksi Minimum tensile stress of material
nb 14 Number of bolts
Tbolt 5.34 kips Tension Load per bolt due to moment (See
'BoltTension Check')
db 0.88 in Bolt diameter
dhole 0.94 in Bolt hole diameter
b'1.69 in Distance from the inner edge of the bolt hole to
the face of the stem, b' = (b -db / 2)
p 3.00 in Length of flange tributary to each bolt along the
longitudinal axis of the angle
T 5.34 kips Total tension force with moment, T = Tbolt + (P/
nb)
tmin 0.59 in Minimum thickness required to eliminate prying
action, tmin = (* 4 * T * b' / (p * Fu))0.5, =1.67
a 1.50 in Distance from bolt centerline to the outer edge
of the leg
b 2.13 in Distance from bolt centerline to the face of the
stem
a'1.94 in Distance from inner edge of bolt hole to the
outer edge of the leg, a' = (a + db / 2) <= (1.25 *
b + db / 2)
Page 49 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
0.87 Ratio of b' to a', = b' / a'
0.69 Ratio of the net area at the bolt line to the gross
area at the face of the stem, = 1 -dhole/ p
B 27.06 kips Total tensile capacity per bolt, B = Ab * Fnt / ,
= 2.0
tc 1.32 in Flange thickness required to develop the
available strength of the bolt without prying
action, tc = (* 4 * B * b' / (p * Fu))0.5, =1.67
2.13 Ratio of moment at bolt line to moment at stem
line, = max[1/[T/B (tc/t) 2 -1, 0]
q 2.76 kips Factored prying force per bolt, q = B [(t/tc)2]
Tu 8.11 kips Total tension on the bolt including the prying
force, Tu = T + q
Bolt Tension at Girder N/A
Rn = F'nt * Ab = 2.00 (J3-2)
Check User Note Limit:frt/(Fnt/) <= 0.3
frt 8.89 ksi Required tensile stress = (Tbolt-P/nb)/Ab
Fnt 90.00 ksi Nominal tensile stress, per Table J3.2
Because frt/(Fnt/) <= 0.3, the Bolt Tensile Check is not required
F'nt 55.63 ksi Modified nominal tensile stress = min(1.3*Fnt-(
*Fnt/Fnv)*frv), Fnt)
V 155.00 kips User input shear load
P 0.00 kips User input axial load
Ab 0.60 in2 Bolt cross sectional area
nb 14 Number of bolts
Tbolt 5.34 kips Max tension load per bolt due to eccentricity =
0.5 * (6*Me/(b*d2))*At*k_eff
Me 310.00 kips-in Moment due to eccentricity = (V * ex) -(P * ey)
ex 2.00 in Horizontal eccentricity
ey 1.11 in Vertical eccentricity
b 4.00 in Connector width
d 20.50 in Connector depth
At 11.00 in2 Maximum tributary area per bolt
k_eff 0.88 Coefficient correction factor
QC-002 #06: 3D View
Girder/Beam Clip Angle Shear Connection
Page 50 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
QC-002 #06: 2D Views
Girder/Beam Clip Angle Shear Connection
Side view
Page 51 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Front view
ASDQC-002 #06: ASD Results Report
Girder/Beam Clip Angle Shear Connection
Material Properties:
Girder W8X10 A992 Fy = 50.00 ksiFu = 65.00 ksi
Beam W8X10 A992 Fy = 50.00 ksiFu = 65.00 ksi
Angle L4X3.5X6 A36 Fy = 36.00 ksiFu = 58.00 ksi
Input Data:
Shear Load 7.00 kips User Input Shear Load
Axial Load 0.00 kips User Input Axial Force
Note: Unless specified, all code references are from AISC 360-10 Governing LC: N/A
Limit State Required Available Unity Check Result
Geometry Restrictions at Beam PASS
Check Min Bolt Spacing Pass Condition: Smin >= (2+2/3) * dbolt (J3.3)
Smin 3.00 in Min bolt spacing
dbolt 0.88 in Bolt diameter
Check Max Bolt Spacing Pass Condition: Smax<= min(12.00 in, 24*t) (J3.5a)
Smax 3.00 in Max bolt spacing
t0.17 in Thickness of governing element (Beam)
Check Min Edge Distance Pass Condition: EDmin >= EDallow (J3.4)
Check Max Edge Distance Pass Condition: EDmax <= min (6.00 in, 12*t) (J3.5)
Geometry Restrictions at Girder PASS
Page 52 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Check Min Bolt Spacing Pass Condition: Smin >= (2+2/3) * dbolt (J3.3)
Smin 3.00 in Min bolt spacing
dbolt 0.88 in Bolt diameter
Check Max Bolt Spacing Pass Condition: Smax<= min(12.00 in, 24*t) (J3.5a)
Smax 3.00 in Max bolt spacing
t0.17 in Thickness of governing element (Girder)
Check Min Edge Distance Pass Condition: EDmin >= EDallow (J3.4)
Check Max Edge Distance Pass Condition: EDmax <= min (6.00 in, 12*t) (J3.5)
Rotational Ductility, Erection Stability PASS
Check Rotational Ductility Pass Condition: t <= 5/8''
t0.38 in Connector thickness
Check Erection Stability Pass Condition: Ly >= (d -2* kdes)/2
Ly 5.50 in Connector length (vertical)
d7.89 in Beam depth
kdes 0.51 in Beam fillet
Lmin 3.44 in Min connector length
Beam Shear Yield 7.00 kips22.58 kips 0.31 PASS
Rn = 0.6 *Fy*Agv*Cv = 1.50 (G2-1)
Fy 50.00 ksi Minimum yield stress of material
Agv 1.13 in2 Gross area subject to shear
Cv 1.00 Web shear coefficient (G2-2)
Rn/22.58 kips Shear yield strength
Clip Angle Shear Yield 7.00 kips59.40 kips 0.12 PASS
Rn = 2 * 0.6 *Fy*Agv = 1.50 (J4-3)
Fy 36.00 ksi Minimum yield stress of material
Agv 2.06 in2 Gross area subject to shear
Rn/59.40 kips Shear yield strength
Beam Shear Rupture 7.00 kips15.38 kips 0.46 PASS
Rn = 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 65.00 ksi Minimum tensile stress of material
Anv 0.79 in2 Net area subject to shear
Rn/15.38 kips Shear rupture strength
Clip Angle Shear Rupture at Beam 7.00 kips45.67 kips 0.15 PASS
Rn = 2 * 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 58.00 ksi Minimum tensile stress of material
Anv 1.31 in2 Net area subject to shear
Rn/45.67 kips Shear rupture strength
Clip Angle Shear Rupture at Girder 7.00 kips45.67 kips 0.15 PASS
Rn = 2 * 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 58.00 ksi Minimum tensile stress of material
Anv 1.31 in2 Net area subject to shear
Rn/45.67 kips Shear rupture strength
Clip Angle Block Shear at Girder 7.00 kips56.17 kips 0.12 PASS
Rn = 2 * [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 1.59 in2 Gross area subject to shear
Anv 1.03 in2 Net area subject to shear
Ubs 1.00 Uniform tension stress factor
Ant 0.38 in2 Net area subject to tension
Fu 58.00 ksi Minimum tensile stress of material
Fy 36.00 ksi Minimum yield stress of material
Rn/56.17 kips Block shear strength
Beam Block Shear 7.00 kips14.64 kips 0.48 PASS
Page 53 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Rn = [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 0.72 in2 Gross area subject to shear
Anv 0.47 in2 Net area subject to shear
Ubs 1.00 Uniform tension stress factor
Ant 0.17 in2 Net area subject to tension
Fu 65.00 ksi Minimum tensile stress of material
Fy 50.00 ksi Minimum yield stress of material
Rn/14.64 kips Block shear strength
Clip Angle Block Shear at Beam 7.00 kips56.17 kips 0.12 PASS
Rn = 2 * [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 1.59 in2 Gross area subject to shear
Anv 1.03 in2 Net area subject to shear
Ubs 1.00 Uniform tension stress factor
Ant 0.38 in2 Net area subject to tension
Fu 58.00 ksi Minimum tensile stress of material
Fy 36.00 ksi Minimum yield stress of material
Rn/56.17 kips Block shear strength
Coped Beam Flexural Rupture 7.00 kips16.24 kips 0.43 PASS
Rn = Fu*Snet/e = 2.00 (AISC 14th Eq. 9-6)
Fu 65.00 ksi Minimum tensile stress of material
Snet 1.25 in3 Snet=In/Ymax elastic section modulus of the
cross section
e 2.50 in Distance from the face of the cope to the point of
inflection
In 4.15 in4 Moment of inertia with respect to the neutral axis
Ymax 3.32 in Maximum distance from the neutral plane = ho-
yc
ho 6.64 in Overal depth of coped section
yc 0.00 in Position of the neutral plane
Rn/16.24 kips Coped beam flexural rupture
Coped Beam Lateral Torsional Buckling 7.00 kips14.96 kips 0.47 PASS
Rn = min(Fcr, Fy) * Snet/e = 1.67 (AISC 14th Eq. 9-12)
Fcr 357.21 ksi Available buckling Fcr = 0.62**E*tw
2*fd /(c*ho)
Fy 50.00 ksi Minimum yield stress of material
Snet 1.25 in3 Snet=In/Ymax elastic section modulus of the
cross section
e 2.50 in Distance from the face of the cope to the point of
inflection
E 29000.00 ksi Modulus of elasticity of steel
tw 0.17 in Beam web thickness
ho 6.64 in Reduced beam depth
c 2.00 in Cope length
fd 2.91 Adjustment factor
Rn/14.96 kips Coped beam local web buckling
Bolt Bearing on Girder 7.00 kips46.41 kips 0.15 PASS
Rn = 2 * Nrows*Ncols*Rn-spacing = 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 2 Number of bolts per row
d 0.88 in Bolt diameter
Fu 65.00 ksi Minimum tensile stress of material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-spacing 23.20 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 23.20 kips Bearing = 2.4*d*t*Fu
Page 54 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Rn-spacing-tearout 27.35 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/46.41 kips Bolt bearing strength
Bolt Bearing on Clip Angle at Girder 7.00 kips52.86 kips 0.13 PASS
Rn = 2 * Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 2 Number of bolts per row
d 0.88 in Bolt diameter
Fu 58.00 ksi Minimum tensile stress of material
Lc-edge 0.78 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-edge 20.39 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 45.67 kips Bearing = 2.4*d*t*Fu
Rn-edge-tearout 20.39 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 53.83 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/52.86 kips Bolt bearing strength
Bolt Bearing on Beam 7.00 kips16.78 kips 0.42 PASS
Rn = Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 2 Number of bolts per row
d 0.88 in Bolt diameter
Fu 65.00 ksi Minimum tensile stress of material
Lc-edge 0.78 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-edge 10.36 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 23.20 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 23.20 kips Bearing = 2.4*d*t*Fu
Rn-edge-tearout 10.36 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 27.35 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 64.94 kips Bolt shear strength Rn-bolt=2*Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/16.78 kips Bolt bearing strength
Bolt Bearing on Clip Angle at Beam 7.00 kips52.86 kips 0.13 PASS
Rn = 2 * Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 1 Number of rows of bolts
Ncols 2 Number of bolts per row
d 0.88 in Bolt diameter
Fu 58.00 ksi Minimum tensile stress of material
Lc-edge 0.78 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-edge 20.39 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 45.67 kips Bearing = 2.4*d*t*Fu
Page 55 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Rn-edge-tearout 20.39 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 53.83 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/52.86 kips Bolt bearing strength
Bolt Shear at Girder 7.00 kips64.94 kips 0.11 PASS
Rn = 2 * Fnv*Ab*Nbolt*C = 2.00 (J3-1)
Fnv 54.00 ksi Shear stress N type
Ab 0.60 in2 Area of bolt
Nbolt 2 Number of bolts
C 1.00 Eccentricity coefficient
Rn/64.94 kips Bolt shear rupture strength
Bolt Shear at Beam 7.00 kips38.24 kips 0.18 PASS
Rn = 2 * Fnv*Ab*Nbolt*C = 2.00 (J3-1)
Fnv 54.00 ksi Shear stress N type
Ab 0.60 in2 Area of bolt
Nbolt 2 Number of bolts
C 0.59 Eccentricity coefficient
Rn/38.24 kips Bolt shear rupture strength
Bolt Group Eccentricity 0.590.590.590.59
IC method (AISC 14th p.7-6)
C 0.59 Coefficient (1.1778 / 2)
Nrows 1 Number of rows of bolts
Ncols 2 Number of bolts per row
Dx 0.00 in Horizontal bolt spacing
Dy 3.00 in Vertical bolt spacing
Ex 2.00 in Horizontal eccentricity
Ey 0.00 in Vertical eccentricity
Ang 90.00 Angle of force in degrees, relative X axis
ICx -1.13 in Center of rotation, X
ICy -0.00 in Center of rotation, Y
Bolt Prying PASS
(AISC 14th p.9-10)
Check Angle Leg Thickness:Fail Condition: tmin<=tangle
Check Prying Force:Pass
tangle 0.38 in Clip angle leg thickness
P 0.00 kips User input axial load
Fu 58.00 ksi Minimum tensile stress of material
nb 4 Number of bolts
Tbolt 2.08 kips Tension Load per bolt due to moment (See
'BoltTension Check')
db 0.88 in Bolt diameter
dhole 0.94 in Bolt hole diameter
b'1.69 in Distance from the inner edge of the bolt hole to
the face of the stem, b' = (b -db / 2)
p 2.75 in Length of flange tributary to each bolt along the
longitudinal axis of the angle
T 2.08 kips Total tension force with moment, T = Tbolt + (P/
nb)
tmin 0.38 in Minimum thickness required to eliminate prying
action, tmin = (* 4 * T * b' / (p * Fu))0.5, =1.67
a 1.50 in Distance from bolt centerline to the outer edge
of the leg
b 2.13 in Distance from bolt centerline to the face of the
stem
a'1.94 in Distance from inner edge of bolt hole to the
outer edge of the leg, a' = (a + db / 2) <= (1.25 *
b + db / 2)
Page 56 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
0.87 Ratio of b' to a', = b' / a'
0.66 Ratio of the net area at the bolt line to the gross
area at the face of the stem, = 1 -dhole/ p
B 27.06 kips Total tensile capacity per bolt, B = Ab * Fnt / ,
= 2.0
tc 1.38 in Flange thickness required to develop the
available strength of the bolt without prying
action, tc = (* 4 * B * b' / (p * Fu))0.5, =1.67
0.07 Ratio of moment at bolt line to moment at stem
line, = max[1/[T/B (tc/t) 2 -1, 0]
q 0.08 kips Factored prying force per bolt, q = B [(t/tc)2]
Tu 2.16 kips Total tension on the bolt including the prying
force, Tu = T + q
Bolt Tension at Girder N/A
Rn = Fnt * Ab = 2.00 (J3-2)
Check User Note Limit:frt/(Fnt/) <= 0.3
frt 3.46 ksi Required tensile stress = (Tbolt-P/nb)/Ab
Fnt 90.00 ksi Nominal tensile stress, per Table J3.2
Because frt/(Fnt/) <= 0.3, the Bolt Tensile Check is not required
V 7.00 kips User input shear load
P 0.00 kips User input axial load
Ab 0.60 in2 Bolt cross sectional area
nb 4 Number of bolts
Tbolt 2.08 kips Max tension load per bolt due to eccentricity =
0.5 * (6*Me/(b*d2))*At*k_eff
Me 14.00 kips-in Moment due to eccentricity = (V * ex) -(P * ey)
ex 2.00 in Horizontal eccentricity
ey 0.57 in Vertical eccentricity
b 4.00 in Connector width
d 5.50 in Connector depth
At 11.00 in2 Maximum tributary area per bolt
k_eff 0.55 Coefficient correction factor
QC-002 #09: 3D View
Column/Beam Shear Tab Shear Connection
Page 57 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
QC-002 #09: 2D Views
Column/Beam Shear Tab Shear Connection
Side view
Page 58 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Top view
ASDQC-002 #09: ASD Results Report
Column/Beam Shear Tab Shear Connection
Material Properties:
Column HSS8X8X8 A500
Gr.B
Rect
Fy = 46.00 ksiFu = 58.00 ksi
Beam W12X152 A992 Fy = 50.00 ksiFu = 65.00 ksi
Plate P0.88x16.81x9.50 A36 Fy = 36.00 ksiFu = 58.00 ksi
Input Data:
Shear Load 69.00 kips User Input Shear Load
Axial Load 0.00 kips User Input Axial Force
Column Force 50.00 kips User Input Column Force
Column Moment 48.00 kips-in User Input Column Moment
Note: Unless specified, all code references are from AISC 360-10 Governing LC: N/A
Limit State Required Available Unity Check Result
HSS Limitations PASS
Check Column Slenderness Pass (K1.3)
E29000.00 ksi Modulus of elasticity
Fy 46.00 ksi Column yield strength
t0.47 in Column wall thickness
B8.00 in Column face width
(B -3 * t) / t14.20 Column slenderness ratio for shear
((B -3 * t) / t)max 35.15 Slender wall limit for shear (Table K1.2A)
Check Column Material Pass (K1.3)
Fy 46.00 ksi Column yield strength
Page 59 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Fy-max 52.00 ksi Column yield strength limit (Table K1.2A)
Check Column Ductility Pass (Table K1.2A) Condition: Fy / Fu<= 0.8
Fy 46.00 ksi Column yield strength
Fu 58.00 ksi Column tensile strength
Geometry Restrictions at Beam PASS
Check Min Bolt Spacing Pass Condition: Smin >= (2+2/3) * dbolt (J3.3)
Smin 2.50 in Min bolt spacing
dbolt 0.75 in Bolt diameter
Check Max Bolt Spacing Pass Condition: Smax<= min(12.00 in, 24*t) (J3.5a)
Smax 3.00 in Max bolt spacing
t0.87 in Thickness of governing element (Beam)
Check Min Edge DistancePass Condition: EDmin >= EDallow (J3.4)
Check Max Edge Distance Pass Condition: EDmax <= min (6.00 in, 12*t) (J3.5)
Column Weld Limitations PASS
Weld Max/Min Size, Length (J2.2b)
Check Weld Max Size Pass
D0.44 in Weld size
Dmax 0.81 in Max Size Allowed
t0.88 in Min shelf dimension
Check Weld Min Size Pass
D0.44 in Weld size
Dmin 0.19 in Min size allowed
tmin 0.47 in Controlling member thickness
Check Weld Min LengthPass Condition: Lmin >= 4*D
D0.44 in Weld size
Lmin 9.50 in Min weld segment length
Rotational Ductility, Erection Stability PASS
Check Rotational Ductility Pass
t0.88 in Plate thickness
tmax-weld 1.04 in Max. plate thickness to avoid weld failure (AISC
14th p. 9-14)
tmax-bolts 1.96 in Max. plate thickness to avoid bolt failure (AISC
14th Eq. 10-3)
tmax-plate 1.60 in Max. plate thickness to avoid plate rupture
(AISC 14th p. 9-14)
Check Erection Stability Pass Condition: Ly >= (d -2* kdes)/2
Ly 9.50 in Connector length (vertical)
d13.71 in Beam depth
kdes 2.00 in Beam fillet
Lmin 4.86 in Min connector length
Beam Shear Yield 69.00 kips238.55 kips 0.29 PASS
Rn = 0.6 *Fy*Agv*Cv = 1.50 (G2-1)
Fy 50.00 ksi Minimum yield stress of material
Agv 11.93 in2 Gross area subject to shear
Cv 1.00 Web shear coefficient (G2-2)
Rn/238.55 kips Shear yield strength
Plate Shear Yield 69.00 kips119.70 kips 0.58 PASS
Rn = 0.6 *Fy*Agv = 1.50 (J4-3)
Fy 36.00 ksi Minimum yield stress of material
Agv 8.31 in2 Gross area subject to shear
Rn/119.70 kips Shear yield strength
Beam Shear Rupture 69.00 kips188.06 kips 0.37 PASS
Rn = 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 65.00 ksi Minimum tensile stress of material
Anv 9.64 in2 Net area subject to shear
Rn/188.06 kips Shear rupture strength
Page 60 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Plate Shear Rupture at Beam 69.00 kips104.67 kips 0.66 PASS
Rn = 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 58.00 ksi Minimum tensile stress of material
Anv 6.02 in2 Net area subject to shear
Rn/104.67 kips Shear rupture strength
Beam Block Shear 69.00 kips461.21 kips 0.15 PASS
Rn = [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 26.68 in2 Gross area subject to shear
Anv 24.78 in2 Net area subject to shear
Ubs 0.50 Non uniform tension stress factor
Ant 3.75 in2 Net area subject to tension
Fu 65.00 ksi Minimum tensile stress of material
Fy 50.00 ksi Minimum yield stress of material
Rn/461.21 kips Block shear strength
Plate Block Shear 69.00 kips127.95 kips 0.54 PASS
Rn = [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 6.78 in2 Gross area subject to shear
Anv 4.87 in2 Net area subject to shear
Ubs 0.50 Non uniform tension stress factor
Ant 3.77 in2 Net area subject to tension
Fu 58.00 ksi Minimum tensile stress of material
Fy 36.00 ksi Minimum yield stress of material
Rn/127.95 kips Block shear strength
Lateral Stability / Stabilizer Plates 69.00 kips4489.65 kips 0.02 PASS
Rn = 1.500 * * ( (L * tp
3) / a2)= 1.67 (AISC 14th Eq.10-6)
V 69.00 kips Applied shear force
P 0.00 kips Applied axial force
R=(V2 + P2)0.5 69.00 kips Resultant shear force
a 2.00 in Distance from the support to the first line of bolts
tp 0.88 in Thickness of plate
L 9.50 in Depth of plate
Rn/4489.65 kips Available strength to resist lateral displacement
Plate Flexural Yield 0.86 PASS
(Vr/Vc)2 + (Mr/Mc)2 <= 1 (AISC 14th Eq.10-5)
Pr 0.00 kips User input axial load
Vr 69.00 kips User input shear load
Fy 36.00 ksi Minimum yield stress of material
Ag 8.31 in2 Gross area of the plate
Zpl 19.74 in3 Plastic modulus of the shear plate
Vc 119.70 kips Available shear strength (see check 'Shear
Yield')
ex 4.50 in Horizontal eccentricity
ey 0.11 in Vertical eccentricity
Mr 310.50 kips-in Moment due to eccentricity = Vr*ex + Pr*ey
Mc 425.58 kips-in Available moment Mc=1/*(Fy* Z), =1.67
UC 0.86 Unity check per interaction equation, (Vr/Vc)2 +
(Mr/Mc)2 <= 1
Plate Flexural Rupture 0.95 PASS
(Vr/Vc)2 + (Mr/Mc)2 <= 1 (Eq.10-5)
Pr 0.00 kips User input axial load
Vr 69.00 kips User input shear load
Page 61 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Fu 58.00 ksi Minimum tensile stress of material
An 6.02 in2 Net area of the plate
Znet 14.98 in3 Plastic modulus of net section
Vc 104.67 kips Available shear strength (see check 'Shear
Rupture')
ex 4.50 in Horizontal eccentricity
ey 0.11 in Vertical eccentricity
Mr 310.50 kips-in Moment due to eccentricity = Vr*ex + Pr*ey
Mc 434.45 kips-in Available moment Mc= 1/*(Fu* Znet), =2.00
UC 0.95 Unity check per interaction equation, (Vr/Vc)2 +
(Mr/Mc)2 <= 1
Plate Flexural Buckling 69.00 kips49.00 kips 1.41 FAIL
Rn = Fcr * Snet / a = 1.67 (AISC 14th Edition)
Fy 36.00 ksi Plate yield strength
0.23 Buckling factor (eqn 9-18)
Q 1.00 Buckling factor (9-17)
Fcr 36.00 ksi Critical stress
Snet 10.23 in3 Section modulus of net section
a 4.50 in Design eccentricity
Rn/49.00 kips Plate flexural buckling
Bolt Bearing on Beam 69.00 kips167.00 kips 0.41 PASS
Rn = Nrows*Ncols*Rn-spacing = 2.00 (J3-6a)
Nrows 3 Number of rows of bolts
Ncols 3 Number of bolts per row
d 0.75 in Bolt diameter
Fu 65.00 ksi Minimum tensile stress of material
Lc-spacing 2.19 in Vertical distance from edges of adjacent holes
Rn-spacing 37.11 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 101.79 kips Bearing = 2.4*d*t*Fu
Rn-spacing-tearout 148.44 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 37.11 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 84.00 ksi Nominal shear stress of bolt
Rn/167.00 kips Bolt bearing strength
Bolt Bearing on Plate at Beam 69.00 kips167.00 kips 0.41 PASS
Rn = Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 3 Number of rows of bolts
Ncols 3 Number of bolts per row
d 0.75 in Bolt diameter
Fu 58.00 ksi Minimum tensile stress of material
Lc-edge 1.34 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.19 in Vertical distance from edges of adjacent holes
Rn-edge 37.11 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 37.11 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 91.35 kips Bearing = 2.4*d*t*Fu
Rn-edge-tearout 81.83 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 133.22 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 37.11 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 84.00 ksi Nominal shear stress of bolt
Rn/167.00 kips Bolt bearing strength
Bolt Shear at Beam 69.00 kips82.73 kips 0.83 PASS
Rn = Fnv*Ab*Nbolt*C = 2.00 (J3-1)
Fnv 84.00 ksi Shear stress X type
Page 62 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Won't buckle. Use Znet. OK
Ab 0.44 in2 Area of bolt
Nbolt 9 Number of bolts
C 0.50 Eccentricity coefficient
Rn/82.73 kips Bolt shear rupture strength
Bolt Group Eccentricity 0.500.500.500.50
IC method (AISC 14th p.7-6)
C 0.50 Coefficient (4.4588 / 9)
Nrows 3 Number of rows of bolts
Ncols 3 Number of bolts per row
Dx 2.50 in Horizontal bolt spacing
Dy 3.00 in Vertical bolt spacing
Ex 4.50 in Horizontal eccentricity
Ey 0.00 in Vertical eccentricity
Ang 90.00 Angle of force in degrees, relative X axis
ICx -2.42 in Center of rotation, X
ICy -0.00 in Center of rotation, Y
Weld at Column(Near)107.81 kips123.42 kips 0.87 PASS
Rn/= 2 * C1 * * 0.928 * D16 * L * (1 + (sin())1.5 / 2 )
Double Fillet
0.928 = 0.6 * FE70 * 20.5/2 * 1/16 / , =2.00 (AISC 14th Eqn 8-2b)
Vnear 107.81 kips Applied shear force Vnear = V + M / dcol
Pnear 0.00 kips Applied axial force Pnear = 0.5 * P
Rnear 107.81 kips Resultant force Rnear=(Vnear
2+Pnear
2)0.5
V 69.00 kips User input shear force
P 0.00 kips User input axial force
M 310.50 kips-in Moment due to eccentricity M = (V * ex) + (P *
ey)
ex 4.50 in Horizontal eccentricity
ey 0.11 in Vertical eccentricity
dcol 8.00 in Moment arm
C1 1.00 Electrode strength coefficient (AISC 14th table
8-3)
1.00 Base material proration factor (re-arrangement
of AISC 14th Eqn 9-2)
D16 7.00 Weld fillet size in sixteenths of an inch
L 9.50 in Weld length per side
0.00 Angle of force in degrees
Rn/123.42 kips Weld strength
Weld at Column(Far)38.81 kips70.53 kips 0.55 PASS
Rn/= 2 * C1 * * 0.928 * D16 * L * (1 + (sin())1.5 / 2 )
Double Fillet
0.928 = 0.6 * FE70 * 20.5/2 * 1/16 / , =2.00 (AISC 14th Eqn 8-2b)
Vfar 38.81 kips Applied shear force Vfar= V -Vnear
Pfar 0.00 kips Applied axial force Pfar = 0.5 * P
Rfar 38.81 kips Resultant force Rfar=(Vfar
2+Pfar
2)0.5
V 69.00 kips User input shear force
P 0.00 kips User input axial force
Vnear 107.81 kips Shear force at near weld Vnear = V + M / dcol
M 310.50 kips-in Moment due to eccentricity M = (V * ex) + (P *
ey)
ex 4.50 in Horizontal eccentricity
ey 0.11 in Vertical eccentricity
dcol 8.00 in Moment arm
C1 1.00 Electrode strength coefficient (AISC 14th table
8-3)
1.00 Base material proration factor (re-arrangement
Page 63 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
of AISC 14th Eqn 9-2)
D16 4.00 Weld fillet size in sixteenths of an inch
L 9.50 in Weld length per side
0.00 Angle of force in degrees
Rn/70.53 kips Weld strength
HSS Transverse Plastification 0.00 kips91.57 kips 0.00 PASS
Rn = 2 * Fy*t2 /(1-tp/B)*(2lb/B + 4*Qf*
(1-tp/B)0.5)
= 1.50 (K1-13)
Fy 46.00 ksi Column yield strength
t 0.47 in Column wall thickness
tp 0.88 in Plate thickness
lb 9.50 in Plate length
B 8.00 in Column width
Qf 1.00 Chord stress interaction parameter
Fc 27.60 ksi Available stress (K1.1)
Ag 13.46 in2 Column cross-sectional area
S 31.15 in3 Column section modulus
U 0.19 Utilization ratio (Eqn K1-6)
Rn/91.57 kips Transverse plastification
QC-002 #10: 3D View
Girder/Beam Clip Angle Shear Connection
QC-002 #10: 2D Views
Girder/Beam Clip Angle Shear Connection
Side view
Page 64 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Front view
ASDQC-002 #10: ASD Results Report
Girder/Beam Clip Angle Shear Connection
Material Properties:
Page 65 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Girder W30X116 A992 Fy = 50.00 ksiFu = 65.00 ksi
Beam W12X79 A992 Fy = 50.00 ksiFu = 65.00 ksi
Angle L8X8X8 A36 Fy = 36.00 ksiFu = 58.00 ksi
Input Data:
Shear Load 80.00 kips User Input Shear Load
Axial Load 0.00 kips User Input Axial Force
Note: Unless specified, all code references are from AISC 360-10 Governing LC: N/A
Limit State Required Available Unity Check Result
Geometry Restrictions at Beam PASS
Check Min Bolt Spacing Pass Condition: Smin >= (2+2/3) * dbolt (J3.3)
Smin 3.00 in Min bolt spacing
dbolt 0.88 in Bolt diameter
Check Max Bolt Spacing Pass Condition: Smax<= min(12.00 in, 24*t) (J3.5a)
Smax 6.00 in Max bolt spacing
t0.47 in Thickness of governing element (Beam)
Check Min Edge Distance Pass Condition: EDmin >= EDallow (J3.4)
Check Max Edge Distance Pass Condition: EDmax <= min (6.00 in, 12*t) (J3.5)
Geometry Restrictions at Girder PASS
Check Min Bolt Spacing Pass Condition: Smin >= (2+2/3) * dbolt (J3.3)
Smin 3.00 in Min bolt spacing
dbolt 0.88 in Bolt diameter
Check Max Bolt Spacing Pass Condition: Smax<= min(12.00 in, 24*t) (J3.5a)
Smax 3.00 in Max bolt spacing
t0.50 in Thickness of governing element (Angle)
Check Min Edge Distance Pass Condition: EDmin >= EDallow (J3.4)
Check Max Edge Distance Pass Condition: EDmax <= min (6.00 in, 12*t) (J3.5)
Rotational Ductility, Erection Stability PASS
Check Rotational Ductility Pass Condition: t <= 5/8''
t0.50 in Connector thickness
Check Erection Stability Pass Condition: Ly >= (d -2* kdes)/2
Ly 9.00 in Connector length (vertical)
d12.38 in Beam depth
kdes 1.33 in Beam fillet
Lmin 4.86 in Min connector length
Beam Shear Yield 80.00 kips102.27 kips 0.78 PASS
Rn = 0.6 *Fy*Agv*Cv = 1.50 (G2-1)
Fy 50.00 ksi Minimum yield stress of material
Agv 5.11 in2 Gross area subject to shear
Cv 1.00 Web shear coefficient (G2-2)
Rn/102.27 kips Shear yield strength
Clip Angle Shear Yield 80.00 kips129.60 kips 0.62 PASS
Rn = 2 * 0.6 *Fy*Agv = 1.50 (J4-3)
Fy 36.00 ksi Minimum yield stress of material
Agv 4.50 in2 Gross area subject to shear
Rn/129.60 kips Shear yield strength
Beam Shear Rupture 80.00 kips81.39 kips 0.98 PASS
Rn = 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 65.00 ksi Minimum tensile stress of material
Page 66 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Anv 4.17 in2 Net area subject to shear
Rn/81.39 kips Shear rupture strength
Clip Angle Shear Rupture at Beam 80.00 kips121.80 kips 0.66 PASS
Rn = 2 * 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 58.00 ksi Minimum tensile stress of material
Anv 3.50 in2 Net area subject to shear
Rn/121.80 kips Shear rupture strength
Clip Angle Shear Rupture at Girder 80.00 kips104.40 kips 0.77 PASS
Rn = 2 * 0.6 *Fu*Anv = 2.0 (J4-4)
Fu 58.00 ksi Minimum tensile stress of material
Anv 3.00 in2 Net area subject to shear
Rn/104.40 kips Shear rupture strength
Clip Angle Block Shear at Girder 80.00 kips124.50 kips 0.64 PASS
Rn = 2 * [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 3.75 in2 Gross area subject to shear
Anv 2.50 in2 Net area subject to shear
Ubs 0.50 Non uniform tension stress factor
Ant 1.50 in2 Net area subject to tension
Fu 58.00 ksi Minimum tensile stress of material
Fy 36.00 ksi Minimum yield stress of material
Rn/124.50 kips Block shear strength
Beam Block Shear 80.00 kips81.07 kips 0.99 PASS
Rn = [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 3.88 in2 Gross area subject to shear
Anv 3.17 in2 Net area subject to shear
Ubs 0.50 Non uniform tension stress factor
Ant 1.41 in2 Net area subject to tension
Fu 65.00 ksi Minimum tensile stress of material
Fy 50.00 ksi Minimum yield stress of material
Rn/81.07 kips Block shear strength
Clip Angle Block Shear at Beam 80.00 kips146.25 kips 0.55 PASS
Rn = 2 * [ min(0.6*Fu*Anv, 0.6*Fy*Agv) +
Ubs*Fu*Ant ]
= 2.00 (J4-5)
Agv 3.75 in2 Gross area subject to shear
Anv 3.00 in2 Net area subject to shear
Ubs 0.50 Non uniform tension stress factor
Ant 2.25 in2 Net area subject to tension
Fu 58.00 ksi Minimum tensile stress of material
Fy 36.00 ksi Minimum yield stress of material
Rn/146.25 kips Block shear strength
Coped Beam Flexural Rupture 80.00 kips91.91 kips 0.87 PASS
Rn = Fu*Snet/e = 2.00 (AISC 14th Eq. 9-6)
Fu 65.00 ksi Minimum tensile stress of material
Snet 15.46 in3 Snet=In/Ymax elastic section modulus of the
cross section
e 5.46 in Distance from the face of the cope to the point of
inflection
In 133.10 in4 Moment of inertia with respect to the neutral axis
Ymax 8.61 in Maximum distance from the neutral plane = ho-
yc
ho 10.88 in Overal depth of coped section
Page 67 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
yc 3.92 in Position of the neutral plane
Rn/91.91 kips Coped beam flexural rupture
Coped Beam Local Web Buckling 80.00 kips84.67 kips 0.94 PASS
Rn = min(Fcr, Fy) * Snet/e = 1.67 (AISC 14th Eq. 9-7)
Fcr 314.95 ksi Available buckling Fcr=2*E*(tw/ho)2*f*k /(12*(1-
v2))
Fy 50.00 ksi Minimum yield stress of material
Snet 15.46 in3 Snet=In/Ymax elastic section modulus of the
cross section
e 5.46 in Distance from the face of the cope to the point of
inflection
E 29000.00 ksi Modulus of elasticity of steel
tw 0.47 in Beam web thickness
ho 10.88 in Reduced beam depth
v 0.30 Poisson's ratio
f 0.80 Plate buckling model adjustment factor
k 8.03 Plate buckling coefficient
Rn/84.67 kips Coped beam local web buckling
Bolt Bearing on Girder 80.00 kips194.83 kips 0.41 PASS
Rn = 2 * Nrows*Ncols*Rn-spacing = 2.00 (J3-6a)
Nrows 2 Number of rows of bolts
Ncols 3 Number of bolts per row
d 0.88 in Bolt diameter
Fu 65.00 ksi Minimum tensile stress of material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 77.12 kips Bearing = 2.4*d*t*Fu
Rn-spacing-tearout 90.89 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/194.83 kips Bolt bearing strength
Bolt Bearing on Clip Angle at Girder 80.00 kips194.83 kips 0.41 PASS
Rn = 2 * Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 2 Number of rows of bolts
Ncols 3 Number of bolts per row
d 0.88 in Bolt diameter
Fu 58.00 ksi Minimum tensile stress of material
Lc-edge 1.03 in Vertical distance from edge of hole to edge of
material
Lc-spacing 2.06 in Vertical distance from edges of adjacent holes
Rn-edge 32.47 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 60.90 kips Bearing = 2.4*d*t*Fu
Rn-edge-tearout 35.89 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 71.78 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/194.83 kips Bolt bearing strength
Bolt Bearing on Beam 80.00 kips128.31 kips 0.62 PASS
Rn = Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 2 Number of rows of bolts
Ncols 2 Number of bolts per row
d 0.88 in Bolt diameter
Page 68 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
Fu 65.00 ksi Minimum tensile stress of material
Lc-edge 1.78 in Vertical distance from edge of hole to edge of
material
Lc-spacing 5.06 in Vertical distance from edges of adjacent holes
Rn-edge 64.16 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 64.16 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 64.16 kips Bearing = 2.4*d*t*Fu
Rn-edge-tearout 65.30 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 185.59 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 64.94 kips Bolt shear strength Rn-bolt=2*Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/128.31 kips Bolt bearing strength
Bolt Bearing on Clip Angle at Beam 80.00 kips129.89 kips 0.62 PASS
Rn = 2 * Nrows*[Rn-edge+(Ncols -1)*
Rn-spacing]
= 2.00 (J3-6a)
Nrows 2 Number of rows of bolts
Ncols 2 Number of bolts per row
d 0.88 in Bolt diameter
Fu 58.00 ksi Minimum tensile stress of material
Lc-edge 1.03 in Vertical distance from edge of hole to edge of
material
Lc-spacing 5.06 in Vertical distance from edges of adjacent holes
Rn-edge 32.47 kips Strength at edge = min(Rn-edge-tearout, Rn-
bearing, Rn-bolt)
Rn-spacing 32.47 kips Strength at spaces = min(Rn-spacing-tearout, Rn-
bearing, Rn-bolt)
Rn-bearing 60.90 kips Bearing = 2.4*d*t*Fu
Rn-edge-tearout 35.89 kips Tear out at edge = 1.2*Lc-edge*t*Fu
Rn-spacing-tearout 176.18 kips Tear out at spaces = 1.2*Lc-spacing*t*Fu
Rn-bolt 32.47 kips Bolt shear strength Rn-bolt=Fnv*Abolt
Fnv 54.00 ksi Nominal shear stress of bolt
Rn/129.89 kips Bolt bearing strength
Bolt Shear at Girder 80.00 kips194.83 kips 0.41 PASS
Rn = 2 * Fnv*Ab*Nbolt*C = 2.00 (J3-1)
Fnv 54.00 ksi Shear stress N type
Ab 0.60 in2 Area of bolt
Nbolt 6 Number of bolts
C 1.00 Eccentricity coefficient
Rn/194.83 kips Bolt shear rupture strength
Bolt Shear at Beam 80.00 kips84.15 kips 0.95 PASS
Rn = 2 * Fnv*Ab*Nbolt*C = 2.00 (J3-1)
Fnv 54.00 ksi Shear stress N type
Ab 0.60 in2 Area of bolt
Nbolt 4 Number of bolts
C 0.65 Eccentricity coefficient
Rn/84.15 kips Bolt shear rupture strength
Bolt Group Eccentricity 0.650.650.650.65
IC method (AISC 14th p.7-6)
C 0.65 Coefficient (2.5916 / 4)
Nrows 2 Number of rows of bolts
Ncols 2 Number of bolts per row
Dx 3.00 in Horizontal bolt spacing
Dy 6.00 in Vertical bolt spacing
Ex 3.50 in Horizontal eccentricity
Ey 0.00 in Vertical eccentricity
Ang 90.00 Angle of force in degrees, relative X axis
Page 69 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
ICx -3.24 in Center of rotation, X
ICy -0.00 in Center of rotation, Y
Bolt Prying PASS
(AISC 14th p.9-10)
Check Angle Leg Thickness:Fail Condition: tmin<=tangle
Check Prying Force:Pass
tangle 0.50 in Clip angle leg thickness
P 0.00 kips User input axial load
Fu 58.00 ksi Minimum tensile stress of material
nb 12 Number of bolts
Tbolt 12.96 kips Tension Load per bolt due to moment (See
'BoltTension Check')
db 0.88 in Bolt diameter
dhole 0.94 in Bolt hole diameter
b'2.56 in Distance from the inner edge of the bolt hole to
the face of the stem, b' = (b -db / 2)
p 3.00 in Length of flange tributary to each bolt along the
longitudinal axis of the angle
T 12.96 kips Total tension force with moment, T = Tbolt + (P/
nb)
tmin 1.13 in Minimum thickness required to eliminate prying
action, tmin = (* 4 * T * b' / (p * Fu))0.5, =1.67
a 4.50 in Distance from bolt centerline to the outer edge
of the leg
b 3.00 in Distance from bolt centerline to the face of the
stem
a'4.19 in Distance from inner edge of bolt hole to the
outer edge of the leg, a' = (a + db / 2) <= (1.25 *
b + db / 2)
0.61 Ratio of b' to a', = b' / a'
0.69 Ratio of the net area at the bolt line to the gross
area at the face of the stem, = 1 -dhole/ p
B 27.06 kips Total tensile capacity per bolt, B = Ab * Fnt / ,
= 2.0
tc 1.63 in Flange thickness required to develop the
available strength of the bolt without prying
action, tc = (* 4 * B * b' / (p * Fu))0.5, =1.67
5.97 Ratio of moment at bolt line to moment at stem
line, = max[1/[T/B (tc/t) 2 -1, 0]
q 6.38 kips Factored prying force per bolt, q = B [(t/tc)2]
Tu 19.34 kips Total tension on the bolt including the prying
force, Tu = T + q
Bolt Tension at Girder 19.34 kips24.07 kips 0.80 PASS
Rn = F'nt * Ab = 2.00 (J3-2)
Check User Note Limit:frt/(Fnt/) <= 0.3
frt 21.56 ksi Required tensile stress = (Tbolt-P/nb)/Ab
Fnt 90.00 ksi Nominal tensile stress, per Table J3.2
Because frt/(Fnt/) > 0.3, the Bolt Tensile Check is required
Check Interaction Limit:frv/(Fnv/) <= 0.3
frv 11.09 ksi Required shear stress: frv = (V / nb) / Ab
Fnv 54.00 ksi Nominal shear stress, per Table J3.2
Because frv/(Fnv/) > 0.3, this check shall use the modified F'nt stress
F'nt 80.04 ksi Modified nominal tensile stress = min(1.3*Fnt-(
*Fnt/Fnv)*frv), Fnt)
V 80.00 kips User input shear load
P 0.00 kips User input axial load
Ab 0.60 in2 Bolt cross sectional area
Page 70 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf
nb 12 Number of bolts
Tbolt 12.96 kips Max tension load per bolt due to eccentricity =
0.5 * (6*Me/(b*d2))*At*k_eff
Me 280.00 kips-in Moment due to eccentricity = (V * ex) -(P * ey)
ex 3.50 in Horizontal eccentricity
ey 8.26 in Vertical eccentricity
b 8.00 in Connector width
d 9.00 in Connector depth
At 15.00 in2 Maximum tributary area per bolt
k_eff 0.67 Coefficient correction factor
Tu 19.34 kips Required tensile strength including prying (see
'Bolt Prying' check)
Rn/24.07 kips Bolt tensile strength
QC-002 #11: 3D View
Girder/Beam Clip Angle Shear Connection
QC-002 #11: 2D Views
Girder/Beam Clip Angle Shear Connection
Side view
Page 71 of 213 10/03/2014Strata Vail Special Conn Package 1 2014-10-03.pdf