Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
B14-0172 Structural Calcs.pdf
Structural Calculations For Solaris — Unit 701 Expansion Deck Vail, Colorado SCI # 14-012-00 PREPARED FOR Davis Partnership Architects April 1, 2014 STRUCTURAL CONSULTANTS INCORPORATED 3400 E. Bayaud Avenue 00•REG�sf� � Suite 300 •.cr e • � . Denver, Colorado 80209 13819 • � o-� 'y,`lo*f.• or itel& `Psk4IDNAl_ . STRUCTURAL Job Title 5'0 /' l-v/ r 7a/ Job no. /9—b/Z CONSULTANTS INCORPORATED Client At"fl— By /2#0 Date 41'///g Sheet of I Design Slvndords; A. Internolluwel Building Code 2012 Edition end Tarsi of yril Amendments B. ASCE 7aO minfamenDesIgn Leads for Building'and Other Structures C. ACI 318-II Ball ding Lode Requireeenl' for Strualerei Concrete 0. MSC 360-10 Specilicollan fol Structural Steel 0ul1d10g1(ASOJ E. AISI 5100-07 North beerleon Specification for the Design of Caid-forted Steal Structural Members Including Supplement I.doled 2010 2, Gravity Loads Used in Design: A. Roof Live Lead(Esi=ling Oils Floor Design eopelity) 200 psf B- Superimposed Root 0eod load Tfrx Eidratlon7_.,.. 10 psf Concrete slob end'tone paving 100 psi C. Snow toed,Stair LIee Lend 3. Wind Load Design Criteria;N/A 100 psf A. Boric Hind Spead V3S(3-aecand quel).90 mph B. Exposure Category B C. Risk Category II 4. Salmis Lead Design Criteria:N/A A. Seismic Design Cnlegory C B. BeFiding Risk Category II t. Sall Site Clers C 5. Foundations:N/A 6. Concrete: A. All concrete shall be made with stone aggregate and shall develop a 28 day compressive strength of 3500 psi. B. Welded wire lobric shall conform to ASTM A105 or ASTM A497. C. Wire fabric reinforcement must lap one full mesh plus 2"at side and end laps, but not less than 6',and shall be wired together. D. Detail bars in accordance with the ACI Detailing Manuel and ACI Building Code Requirements for Structural Concrete. E. Provide all accessories necessary to support reinlorcing at positions shown on the plans. F, Slabs shall not have Joints In a horizontal plane. Any slop in concrete work must be mode at center one-third of span with vertical bulkheads and tapered 2s4 horizontal keyways spaced 12'on center, unless otherwise shown. All construction Joints shall be as detailed or as approved by the Engineer. 7, Steel: A. Structural steel shall be detailed, fabricated and erected in accordance with the AISC'Steel Construction Manual.' B. All structural steel shall conform to ASTM A36.except wide flange shapes which shall conform to ASTM A992(Grade 50), oioe sections which shall centorm le ASTM 033 Made 01.eel stalaless steel•bleb Matt nominees In ASTU Ass's Ir ,,de 304). • 3400 E.Bayaud,#300,Denver,CO 80209 303/399-5154 FAX 303/333-9501 Town of Vail * * Page 1 of 1 Town of Vail Adopted Building Codes Building Codes Town of Vail has adopted the 2012 version of the following: s International Building Code s International Residential Code s International Fire Code International Plumbing Code s International Mechanical Code s International Fuel Gas Code s International Energy Conservation Code s International Performance Code for Building and Facilities s And the 2011 National Electrical Code To purchase copies of the 2012 International Codes please contact ICC. Town of Vail Structural Design Criteria s Ground Snow Load is 145 pounds per square foot s Wind Speed is 90 miles per hour(3 second gust) and Exposure B s Minimum Frost Depth of 48 inches s Site Class to be determined by the Soils Report Copyright©2014 I Town of Vail 75 S.Frontage Road,Vail,CO 81657 I Toll Free:(866)650-9020 I(970)479-2100 http://www.vailgov.com/subpageprint.asp?page_id=920 3/25/2014 Sterling Codifiers, Inc. Page 1 of 9 Chapter 1 BUILDING CODESe 10-1-1: PREAMBLE: 10-1-2: CODES ADOPTED BY REFERENCE: 10-1-3: AMENDMENTS TO BUILDING CODE: 10-1-4: AMENDMENTS TO RESIDENTIAL CODE: 10-1-5: AMENDMENTS TO FIRE CODE: 10-1-6: RESERVED: 10-1-7: AMENDMENTS TO PLUMBING CODE: 10-1-8: AMENDMENTS TO FUEL GAS CODE: 10-1-9: AMENDMENTS TO ENERGY CONSERVATION CODE: 10-1-10: AMENDMENTS TO ABATEMENT OF DANGEROUS BUILDINGS CODE: 10-1-11: COPIES OF CODES AVAILABLE: 10-1-12: PENAIrTIES: 10-1-1: PREAMBLE:J The charter of the town of Vail and the statutes of the state of Colorado provide that standard codes may be adopted by reference with amendments and the town of Vail wishes to adopt the 2012 editions of the international building code, the international residential code, the international fire code, the international mechanical code, the international plumbing code, the international fuel gas code, the international energy conservation code, the international performance code, 1997 edition of the uniform code for the abatement of dangerous buildings and the 2011 edition of the national electric code. (Ord. 12(2012) § 1) 10-1-2: CODES ADOPTED BY REFERENCE:4E 0 The codes adopted by this section shall be effective for all building permit applications received by the town of Vail, community development department, building safety and inspection services on or after January 1, 2013. A. Building Code: The international building code, 2012 edition, including appendix chapters B, C, E, G, J and K, and the international residential code, 2012 edition, including appendix chapters F and G are hereby adopted by reference. The international building code, 2012 edition, and the international residential code, 2012 edition, are published by the International Code Council, 4051 West Flossmoor Road, Country Club Hills, IL 60478-5795. B. Fire Code: The international fire code, 2012 edition, including appendix chapters A, B, C, D, E, G, H and J as amended, is hereby adopted by reference. The international fire code, 2012 edition, is published by the International Code Council, 4051 West Flossmoor Road, Country Club Hills, IL 60478-5795. http://www.sterlingcodifiers.com/codebook/getBookData.php?chapter_id=34560 4/3/2014 Sterling Codifiers, Inc. Page 2 of 9 C. Mechanical Code: The international mechanical code, 2012 edition, is hereby adopted by reference. The international mechanical code, 2012 edition, is published by the International Code Council, 4051 West Flossmoor Road, Country Club Hills, IL 60478-5795. D. Plumbing Code: The international plumbing code, 2012 edition, is hereby adopted by reference. The international plumbing code, 2012 edition, is published by the International Code Council, 4051 West Flossmoor Road, Country Club Hills, IL 60478-5795. E. Fuel Gas Code: The international fuel gas code, 2012 edition, is hereby adopted by reference. The international fuel gas code, 2012 edition, is published by the International Code Council, 4051 West Flossmoor Road, Country Club Hills, IL 60478-5795. F. Energy Code: The international energy conservation code, 2012 edition, is hereby adopted by reference. The international energy conservation code, 2012 edition, is published by the International Code Council, 4051 West Flossmoor Road, Country Club Hills, IL 60478-5795. G. Electrical Code: The national electrical code, 2011 edition, is hereby adopted by reference. The national electrical code, 2011 edition, is published by the National Fire Protection Association Inc., 1 Batterymarch Park, Quincy, MA 02269. H. Performance Code: The international performance code, 2012 edition, is hereby adopted by reference. The international performance code, 2012 edition, is published by the International Code Council, 4051 West Flossmoor Road, Country Club Hills, IL 60478-5795. I. Abatement Code: The uniform code for the abatement of dangerous buildings, 1997 edition, is hereby adopted by reference. The uniform code for the abatement of dangerous buildings is published by the International Code Council, 4051 West Flossmoor Road, Country Club Hills, IL 60478-5795. (Ord. 12 (2012) §§ 1, 2) 10-1-3: AMENDMENTS TO BUILDING CODE:e The following amendments are hereby made to the international building code, 2012 edition: Section 101.1 - Title: Title is amended as follows: These regulations shall be known as the building code of the town of Vail, hereinafter referred to as "this code." Section 101.4 - Referenced Codes: Section 101.4, Referenced Codes, is hereby amended to read as follows: The other codes listed in 101.4.1 through 101.4.7 and referenced elsewhere in this code shall not be considered part of this code. Section 105.1.1 -Annual Permit: Delete section in its entirety. Section 105.2 -Work Exempt From Permit: Section 105.2, Work Exempt From Permit, is hereby amended http://www.sterlingcodifiers.com/codebook/getBookData.php?chapter_id=34560 4/3/2014 Sterling Codifiers, Inc. Page 3 of 9 as follows: Item 2: Fences not over 6 feet. Note: Fences required per IBC section 3109 are not exempt from a permit. Section 1503.7 - Snowguards/Retention: With the addition of this new section to read as follows: The design of snow retention devices/snow guards shall be designed by a licensed engineer or as determined by the building official. Section 1505.6 - Fire Retardant Treated Wood Shingles And Shakes: This section is deleted in its entirety and shall be replaced with the following text: All roof coverings and roof assemblies shall comply with section 14-10-5F, which requires class A roof coverings or class A roof assemblies for all structures within the town of Vail. Wood shingles and shake coverings or assemblies are prohibited except where exempted for replacement or repair per section 14-10-5F, Vail town code. Section 1510.4 - Roof Covering: This section is amended to read as follows: Existing wood shingles or wood shakes shall be removed prior to installation of a new roof covering. Section 1510.7 - Snow Retention: With the addition of this new section to read as follows: Roofs shall be designed to prevent accumulations of snow from shedding onto exterior balconies, decks, pedestrian and vehicular exits from buildings, stairways, sidewalks, streets, alleys, areas directly above or in front of gas and electrical utility meters, or adjacent properties. The design of snow retention devices shall be provided by a licensed structural engineer or as determined by the building official. Exception: Roof areas with a horizontal dimension of no more than 48 inches'that will not receive snow shedding from a higher roof. The horizontal projection shall be measured perpendicular to the exterior wall line from the edge of the roof or eave to any intersecting vertical surface. Section 1603.2 - Boulder Walls: With the addition of this new section to read as follows: Boulder or rock walls more than four feet tall shall be designed by a licensed engineer. Section 1604.1.1 - Hazard Area Requirements: With the addition of this new section to read as follows: All new construction and additions to existing structures located in mapped debris flow, rock fall, avalanche and flood hazards shall be designed as required by chapter 12-21, Hazard Regulations. Section 1608.2 - Ground Snow Loads: This section is to be deleted in its entirety and shall be replaced with the following text: Designs for roof snow loads shall be as follows: Roof pitches of less than 4:12 shall be designed to carry a one hundred (100) pound per square foot snow load and roof pitches of 4:12 ---> and greater shall be designed to carry an eighty (80) pound per square foot snow load. There is no allowance for pitch reduction nor is there a requirement to increase loading due to wind, valleys, snow drifting or type of roof covering. Any modification for snow load design shall be accomplished using section 1604.1. Section 1608.2.1 -Alternative Roof Systems: With the addition of this new section to read as follows: Alternative roof systems shall be designed to carry a roof snow load resulting from a ground snow load of one hundred forty five (145) pound per square foot. All provisions of section 1608 shall apply to the analysis of the roof structure except for reductions for unobstructed slippery surfaces. A licensed engineer shall be responsible for determining increased localized snow loading due to architectural building features. Section 1803.2.1 - Soils Report: With the addition of this new section to read as follows: Site specific soils and foundation investigation reports shall be prepared by a registered soils engineer for the completion of construction documents. Assumption and open-hole investigations are allowed for additions to an existing building of less than two thousand (2,000) square feet of floor area. http://www.sterlingcodifiers.com/codebook/getBookData.php?chapter_id=34560 4/3/2014 Sterling Codifiers, Inc. Page 4 of 9 Section 2406.4.5 - Glazing And Wet Surfaces: Exception amended to read as follows: Exception: Glazing that is more than sixty (60) inches (1524 mm) measured horizontally and in a straight line from the water's edge of a bathtub, shower, hot tub, spa, whirlpool or swimming pool. Table 2902.1 - Minimum Number Of Required Plumbing Fixtures: This table is amended to read as follows: 1. Footnote f is amended as follows: Drinking fountains are not required for an occupant load of 100 or less, or in A-2, B, M occupancies regardless of occupant load. 2. Footnote g is hereby added to read: Service sinks are recommended, but not required in B or M occupancies with an occupant load of 50 or less if a lavatory is provided. Section 2902.2 - Separate Facilities: Exception 2 and 3 of this section are amended to read as follows: Exception 2: Separate facilities shall not be required in structures or tenant spaces with a total occupant load including both employees and customers of 30 or less. Exception 3: Separate facilities shall not be required in mercantile occupancies in which the maximum occupant load is 100 or less. (Ord. 12(2012) § 1) 10-1-4: AMENDMENTS TO RESIDENTIAL CODE:JO The following amendments are hereby made to the international residential code, 2012 edition: Section RI01.1 -Title: Title is amended to read as follows: These regulations shall be known as the building code of the town of Vail, hereinafter referred to as "this code." Section R102.4 -Applicability: Section R102.4, Referenced Codes And Standards, is hereby amended by adding the following text: Reference to other codes such as plumbing, mechanical and electrical shall refer only to the currently adopted code of that type. Section RI05.2 -Work Exempt From Permit: This section is hereby amended to read as follows: Item 2, Fences not over six (6) feet(1829 mm) high. Section R301.2.4 - Floodplain Construction: This section is to be deleted in its entirety and shall be replaced with the following text: Buildings and structures constructed in flood hazard areas are subject to chapter 12-21, Hazard Regulations, Vail town code. Section R313.2 - One And Two Family Dwellings Automatic Fire Systems: This section is to be deleted in its entirety and replaced with the following text: An automatic residential fire sprinkler system shall be required as determined by the Vail fire and emergency services criteria for requirements to install fire sprinkler systems. Section R313.2.1 - Design And Installation: This section is to be deleted in its entirety and replaced with the following text: Automatic residential fire sprinkler systems shall be designed and installed in accordance to the international fire code, 2012 edition, section 903 and Vail fire and emergency services http://www.sterlingcodifiers.com/codebook/getBookData.php?chapter_id=34560 4/3/2014 STRUCTURAL Job Title 5.6.64-/L-/..rV NIT 7 0/ Job no. l'/—o/y CONSULTANTS INCORPORATED Client 47)2/1 By 3 Date 14////11 Sheet of 1.1 / ii !. 6-k/Mi I/v f [� G 7e/t7 Pt& 7/ ( (T4vy) 7as7.rl#'ivt�f iz V XG hoz m Q ore-g_ /S L I44,7EO 70 /rZ"D,C. LLiv > iIA, 1,1 /2-0 5/7C Q- /ZPea,c. 5�,E 7/2-6"-X sfi��t aL=/dPsF L/75-C/r1r4 1-1,.a 441 /( L,,o e /4 sa Lem _ //o<t'') (//z) . ;880 es-A-s►v a �P� Z �.0r6 37-4/2 5-Ctip5 Q eA °boas-/41-Scf 600S-16Z c. Q 1111 S k-A0 PC _ I61'vC• Cl(,i,o0 3400 E.Bayaud,#300,Denver,CO 80209 303/399-5154 FAX 303/333-9501 !•••• \i, . ... \.,..„) .... ..,.. 4 ,.„.• ...... .. ...... • 1 t, • • ' ' ji".•2::•-•• . r , •• ..•I •i ,,,,Z. , r 1:••' ... .•••4 sr.,....or- •;• "....:-.0. •.1.,- • -• ...a -.,..... ... .41, .„ • ....k...,.,• .. . ... ..0• •,A,(.... • . • e ,.• 14.,. ,... 4,--- -. • .t. ....• ...t 7, e•••....;-; ...•1&., -...•: - ... 1"-•---._''...-'.'....-------.....*-:--..------::.1:::::-.-----....------..' . .., ... . .. • .. -.,.... N---....:_,------:. 0 tiC.14'. •-) ' . .... •.. ... ... . .. ,: ..•. •• _ • ...... ••, ._ • . • ". • • . •. .• , . ,..0,,,,, ••1. „..„.....„,... ,. •• ... _.... •• :0_. "-••"9:16:•4%.• -.. . T"'"."------_, ." • ,•ri:irc, .' '' •.:• . •• •-. . .. Ar ..:',,a,,,,,.th'ej • ... • 7;.-,• -4.....1iirsi.77:„ ... r------„,, ....;:::;•:"...... ..:•;• .-.•:, _ •l•" .. . •. •,.... . .......40'... . r .. 1 .,... ,... ,.. . .. '. %.' ;114 .' •'rr-• • '..• ..*.:e0* . . "•7- • • ... ..: ••1 1'.Air' .. .•''..c.-sve;•, •:„..',.......7" . '.. ••-. -,---.•`;•' •••;=.14•• . -:7.'-..,:..---• : Ir. .......,. ..... ...• .-. - . .' " .•••• ...• •,,,,.. •.,,. . ,...-1,. .-..-444pic.,•i. . 4..•.. • :., ..- .• 1 •''' .. -....._ . • . .....• ,11%. . I ,gt • ' •,.., -.C•••'• 1 .• . :' e ' ,. .. . • • .._•.. •: .-.... ":' .. - ! ...:.it -,9111118!NI-..r. ,.. •,. '.• . 41 ' •:';..r.s V.-V,'..-:-. .k 1.Ri. ::.•-' .\, • . • . ..i..• . . Imik''..,...:.1;,•-_:l.'I hi # ompair - • . .., .: ,. . . . , ;"*. or.,::-.:e.1. ..!,...4.:•,• 44... . .... ; • -ill; , .:...•...„.: . I —.. --4.I ..• .. .....1 • . ...... . .. . • k.:+511 NINI or. J 4 ... „, 414 lk • k ..4 ..,,.. - • II I t .. - . •- ._ - I;1,.. ! •'-sii;,..........:'.--. .• •'' ....., • - • .. ____._ ...„ . :.. . --....,, . . , . „ ----- .,„,•..'T-------------------- ,, ,. . ..,..... . .,.. ••... ..... ._.. „.„ „.... ,.......... •......7,,,N . ...... ..... . .„,. .„. .....• R. Trez..., Eievations . •••••,... ._..........„.•:::: ""__.._"..• STEEL DECK FRAMING PERFECTION FROM THE GROUND UP TREX ELEVATIONSTM SPAN CHART 100 PSF TOTAL LOAD TABLE E-100 RESIDENTIAL Table Instructions: Enter the table with a pis'span and cantilever len.th,Then read the maximum allowable box team scan, JOIST SPAN LIMITS(FEET I CENTIMETERS) j 12"JOIST SPACING O.C. 16"JOl9't8PACING'.,•+»�._ 4 .,'OL'•^ins: MAXIMUM JOIST SPAN(LEDGER TO BOX BEAM)I 12'•0- 365 8 cm MAXIMUM JOIST SPAN(LEDGER TO BOX BEAM' IF-0' 335 3 cm MAXIMUM CANTILEVER LENGTH 4•0 121 9 cm MAXIMUM CANTILEVER LENGTH 3'•0• 91 4 cm (Single Trex 1 5+8';. (SAnylu!fox 1 5AI'Jois11 MAXIMUM BOX BEAM SPAN (SINGLE BOX BEAM BETWEEN POSTS) JOIST SPAN(LEDGER TO BOX SEAM)(FEET)CENTIMETERS) 0'-0" 1'-0" ' 2'-d`. 3'-0" 4'-0" 5'-0" 6'-0" T-0" 6'.0" 9'-0" 10'.0" 11'-0- 12'-5'I 13'-0" 14'.6' 15'.8" 9,3 30.6 w _ 2 1 61..... �,ni41.4 � 127,9 152.4 162.9 213.4 243.8 274.3 304.8 385.7 388.6 3962 426.7 4673 0'-0„ f 2 0.0 765.9 607,9 531 0 482 5 447.9 421 5 400,4 362 9 368 2 3555 344.4 334.5 ~ 0-6" 19,_11""1T-5' 15'-10" 14'_8.' 13'-10" 13'_2" 12'_7" 12•_1" 11'_0" 11'_4" 11'-0" 10'-8" ✓ 15.2 607 9 531.0 4825 447 9 421.5 400.4 3629 368.2 355.5 344.4 3345 325.7 1'-0" W 30.5 462.5 447.9 421.5 400.4 382.9 3682 355.5 344.4 334.5 325.7 317.8 13'-10' 13'-2" 12-7" 17-1" 11'-8" 11'-4" 11'-0" 10'-8" 10'-5" 10'-2" LL = 45.7 421 5 400.4 382.9 368.2 355.5 344.4 334.5 325.7 317 8 310 5 61.0 382 9 368.2 355.5 344.4 3345 325.7 317.8 310-5 301 1 W 2•-6" 11'-8" 11,_4„ 11'_0" 10'_8" 10'_5• 10' 2" 9'-11" 9•_7" 76,2 3556 3444 334,5 325.7 317.8 310.5 301.1 292.1_ re3'•0" 11'-u'^ 16-8' 10'-5' 16-2" 9'-7' 9'-A- 91.4 334 5 325.7 317.8 310.5 301-1 292.1 263 9 -I 3'-6" Z 106.7 • - 317.8 310 5 301.1 2921 293.9 276.3 • V 121.9 301 1 I 2921 283.9 2763 269 3 MAXIMUM BOX BEAM SPAN (DOUBLE BOX BEAM BETWEEN POSTS) JOIST SPAN(LEDGER TO BOX BEAM)(FEET tCENTIMETERS) 0'-0' 1'-0" 2'-0" r 3'-0" 4'-0" 5'-0" 6'-0" 7'-0" 8'-0" 9'-0" ' 16'-0" 11'-0" 17.0" 13'-0" 14'-0" 15'-0" 0.0 30.5 61.0 91.4 121,9 .152.4 1929 213.4. 243.8 274.3 304.6 ..335.3 385.6 396.2 426,7 457.2 W 0'-0" 31'-8" 25.2' 21'-11" 19'-11" 16-6' 17'-5' 16-7' --15'-10' 15'-3" 14'-8" 14'-3" 13'-10" 2 0.0 964 9 765 9 669.1 607.9 564.3 531 0 504 4 482 5 463 9 447 9 433 9 421 5 Z 0'-8" 25.-'2' 21'_11•. 19._11,. 18,_6.. 17._5.. 16._7.. 15-10" 15'_3.' 14'_8" 14'_3" 13'_10" 13'_6" U15.2 7659 6691 607.9 564,3 531,0 504.4 402.5 4639 447,9 433.9 4213 410.4 1 2. 1'• -0" - 19'_11.' 18'_6„ 17'_5" 16•_7" 15'_10" 15'_3" 14•_0" 14' 3" 13'-10" 13,_6• 13'_2" ' la 30.5 607 9 564.3531.0 504.4 4825 463.9 4479 433-9 421.5 410.4 400.4 LL 1 -6 17'_5" -16'_7" 15'-10" 15'-3' 14,_8" 14'.3" 13'-10" 17-6' 13'-2' 17-10' = 45.7 5310 _ 504.4 492.5 463.9 447,9 433.9 421.5 410.4 400.4 391.3 15'-10" 15'-3" 14'-8" 14'-3" 13'-TO" 17-6" 13'-7' 17-10' 12-7" • 01.0 482 5 463 9 447.9 433,9 421.5 410.4 400,4 391.3 302 9 W 2'-6" 14'-8" ' 14'-3" 13'-10" 13'-6" 13• 2" 12'-10" 12'-7" 12• 4" ' 76.2 447 9 433.9 421.5 410.4 400.4 393.3 382.9 375.3 ill3'-0 13'-10" 13'-6" -13'-2" •12'-10" 12' 7" 12'-4" 12' I' .� > 91.4 " 421.5 410.4 402,4 391.3 202,9 375.3 3682 SSf J 3'-6•' 17-7' 12'-1D^ 12'-7" 17-4" 12'-1' 11'-10" 2 106.7 400.4 391.3 3829 375,3 368.2 3616 4'-0" 12'-7" 12'-4" 12'-1" 11'-10" 11'-8" 121.9 - , 382.9 375.3 360.2 , 361.6 355 5 NOTES: 1.Allloads and load combinations are determined using ASCE 7-05,DL=Dead Load,LL-LLvo Load.SL-Some Lead. When LL<SL,the total load(TL)is 1,2DL+1.65L*0.5LL,otherwise TL=1.20Li1.6LL+0.5SL. 2•Loads used to produce the tables above are as follows:DL=10psh LL=40psi,SL=50psf. 3,Deflection limits for joists are determined using IBC-2009 Seclion R505,Steel Floor Framing. Joists-Live load deflection is limited to L/480,total deflection is limited to L/240,where Lis the span length, Box Beams-Live load deflection is limited to LJ360,total deflection is limited to U240,where Lis the span length 4.Grey areas in tables indicate instances where the joists do not backspen twice the cantilever distance or where the maximum joist span is exceeded. 5.Grey areas are established based on 12 in,0.C.joist capacity. 6.A partial list of section properties for each member is provided in the Trex Elevations Deck Framing/Inspection Details Table, 7-Joist and box beam capacity are determined with AISI-5100-07(LRFD). B.Joist yield stress is assumed as 3365. 9.Box beam yield stress is assumed as 50ksL • 10.If a box beam is supported by more than two posts,then its span selected above should be multiplied by 0.85 for a single box beam and 490 for a double box beam. 11,If a box beam is provided as an intermediate joist support,then its span selected above or modified by Note 10 should be multiplied by 0,60 for a-dropped'box beam and 0.70 fora'flush"box beam 12,This span chart should not be used for decks located in a hurricane zone(minimum load of 125 psf should be considered to hurricane zones) T©zElevations® STEEL DECK FRAMING — 2.06 f125— • tigl TREX ELEVATIONS TRACK r7 cci o 0 cd TREX ELEVATIONS 2"JOIST I 1 1.63 C l O TREX ELEVATIONS ; TREX ELEVATIONS BEAM TRACK cd ` BGA °FIE ' 4.rs 46P0Ar In TREX ELEVATIONS JOIST ATI Evaluation Service .aNsi 71'1D sign of Architectural Testing — Certification Services Code Compliance Research Report CCRR-0186 Subject to Renewal: 08/09/2014 Issued: 08/09/2013 Visit www.ati-es.com for current status Revised: 08/12/2013 Page 1 of 27 Trex Company, Inc. 3.2.4 A double box beam is field- assembled 160 Exeter Drive with 2 single box beams fastened together Winchester,VA 22603 through the webs with 1/2 inch diameter, 5 inch 540-542-6854 long carriage style bolts staggered at 24 inches www.Trex.com on center. See Figure 5 for nominal section profile. 1. Subject 4. Performance Characteristics Trex Elevations 4.1 Allowable maximum spans for 1-5/8 inch 2. Research Scope joists, single box beams and double box beams are given in Tables 1 thru 6 with respect to joist 2.1 Building Codes: spacing of 12 or 16 inches. See Figures 1 and 2 2009 International Building Code(IBC) for definition of joist span, cantilever length and box beam span. 2009 International Residential Code (IRC) 4.2 Trex Elevations steel deck framing system 2.2 Properties: is designed to resist a concentrated load as described in IRC Table R301.5 for up to 36 inch Structural Performance high rail posts. 3. Description 5. Installation 3.1 General — Trex Elevations is a steel Installation shall be in accordance with the framing system used for the substructure of an manufacturer's installation instructions and this exterior deck. report. Where differences occur between this 3.2 Materials and Processes— Trex Elevations report and the manufacturer's installation is an assemblage of cold-formed steel instructions, this report shall govern. components installed with metal hangers and 5.1 Joists may bear on top flange of box beam fasteners. (dropped beam construction) or joists may be 3.2.1 Steel 1-5/8 inch joists are manufactured fastened to face of box• beam (flush beam from galvanized G60 18 gauge Structural Steel construction). Double box beams are used in Grade 33 in accordance with ASTM dropped beam construction only. See Table 7 A653/A653M, including 2 levels of proprietary, and Figures 7, 8 and 10 for installation details. exterior grade, baked on coating. See Figure 3 5.2 Joist blocking is required every other bay for nominal section profile. above dropped beams for all joist spans and 3.2.2 Steel 2 inch joists and 1-1/4 inch tracks every bay at joist midspan for joist spans greater are manufactured from galvanized G60 14 than 8 feet. Joist blocking members are gauge Structural Steel Grade 50 Class 1 in fabricated from 1-5/8 inch joists. All joist accordance with ASTM A653/A653M, including blocking shall be installed with angle brackets. 2 levels of proprietary, exterior grade, baked on See Figure 6 for blocking details. coating. See Figures 3 and 4 for nominal 5.3 Splicing of joists and box beams is outside section profiles. the scope of this report. 3.2.3 Single box beams consist of one 2 inch 5.4 See Table 7 for metal to metal component joist and one 1-1/4 inch track. The joist and track fastening schedule. components are factory assembled with .100" dia. zinc-plated helical pins pneumatically driven 5.5 See Table 10 for approved Trex Elevations into the top and bottom flange at 12 inches on fasteners. center. See Figure 5 for nominal section profile. Architectural Testing 130 Derry Court• York, PA 17406 717-764-7700 www.archtest.corn `17© 'Elevations STEEL DECK FRAMING CONCRETE FOUNDATION WALL SIDING ‹) COMPOSITE FASCIA 1 X 8 NOMINAL EXISTING WALL FLASHING TYP. ATTACH LEDGER/TRACK EXISTING SUBFLOOR (see Vex elevations ledger d chart for size,qty,and RIM TIMBER WASHER Q lag screw spacing) - ATTACH LEDGER/ ACK ❑ TRIm.. ■ 1•- • (see Vex elevations ledger - L70Z OR chartfor size,qty,and11 •� lag screw spacing) EQUIVALENT d � TYP. ill iiiiii.:, / f • i L70Z OR .1.-........ lirmw.w.. EQUIVALENT TYP. TREX ELEVATIONS JOIST Zi ❑ TREX ELEVATIONS JOIST TREX ELEVATIONS TRACK TREX ELEVATIONS TRACK EXISTING FLOOR JOIST LEDGER LEDGER WEDGE ANCHOR A l-. LEDGER TRACK ATTACHMENT TO LEDGER TRACK ATTACHMENT TO STRUCTURAL FRAMING OR FLOOR BOX TIMBER FOUNDATION WALL Requirements: • B'lag screws are used to connect the steel ledger to the wood Rim Plate of the structure. • Screws are long enough to penetrate through the entire thickness of the wood Rim Plate. • The maximum length of unthreaded shank of the lag screws is a inch. • The minimum length of unthreaded shank of the lag screws is 1s inch. • Wood Rim Plate is assumed to be 1.5 in.thick and from southern pine(specific gravity of 0.55). • 5 in.end spacing is required from two ends of the wood Rim Plate. • 2 or 3 rows of fasteners are considered. • 1.5 in.minimum edge distance from the top and bottom fasteners to the edge of the wood Rim Plate is required. • When 2 rows of lag screws are used,minimum vertical distance of 4 in.between the rows of fasteners is required. • When 3 rows of lag screws are used,minimum vertical distance of 2 in.between the rows of fasteners is required. LEDGER TRACK On Center Spacing -3/8" x 2.5" Hot-dipped Galvanized Lag Screws .,,444pk.- ! 2 Screws Joist Span 1011 Combined Load T 12' 13' 4' 5 6' 7' I8' f 9 110' 111' 12' 13' 14' 15' 50 psf 24" 11 19 i 75 psf 24" I_ 16" 10" "LAG 100 psf 24' 16" - 9" SCREW Over 100 psf 20051 kt mit)your engineer or local building code official, LEDGER TRACK • On Center Spacing -3/8" x 2.5" Hot-dipped Galvanized Lag Screws .44, 3 Screws Joist Span Combined Load 1' 12' I3' 14' i5' 16' 7' 8' 9' 10' I11' 12' 13' 1114' 115' 50 psf 24 lir "LAG 75 psf INF2e I -......116' 6" SCREW 100 psf 24' 14" Over 100 psf Consult wilh your engineer or local building nrl 1e official. TYP. LEDGER CONNECTIONS Miscellaneous I SIMPSON L & S/LS Reinforcing&Skewable Angles Stron Tie S L and S/LS angles are load rated and provide the correct thickness fl and number of fasteners the specifier is looking for compared with field r i m I ., 23/e'' tae•. fabricated clip angles. General utility reinforcing angles with multiple uses. / 1 • S/LS—Field-adjustable angles attach members intersecting at angles. I I L90 -- MATERIAL:L-54 mil(16 ga);S/LS-43 mil(18 ga) FINISH:Galvanized.Some products available in stainless steel or ZMAX®; 155Q -• `I o < see Corrosion Information,page 12-13. INSTALLATION:•Use all specified fasteners. S/Lszo O I Lso •S/LS—field-skewable;bend one time only. o ~ • SOLS 1, 1 ,) •Joist must be constrained against rotation when using LX I r a single S/LS per connection. U.S.Patent No.4,230,416 1 iy CODE:See page 8 for Code Listing Key Chart. • L90 it •Available with additional corrosion protection.Check with Simpson Strong-Tie. Allowable Loads :Fi Model Code Length Fasteners ^33 mil(20 ga) 43 mil(18 ga) 54 mil(16 ga) No. Ref, Ft F2 Ft Fs F2 Typical S/LS70 p 1 0, Installation L30 3 4-#10 200 60 420 610 – ILC1, c • L50 5 6-#10 475 – 630 750 110 LC1, o 'o L70 7 8 #10 705 FC1 ADJUSTABLE 840 1100 100 FROM TEOTIME135° BEND a L90 9 10-#10 795 – 1050 1740 – 170 ONLY. - S/LS50 Ws 4-#10 200 – 420 500 – ILC1, LC1. SHIPPED Typical L50 Installation S/LS70 6% 6-#10 465 – 630 715 – FC1 AT 45° yp 1. Loads are for one part only. 2. Code approval is limited+for specific steel thickness.Refer to Code Report for additional information. S/LS Top View 0 PSCL/PSCA Panel Sheathing Clips n cis do Simpson Strong Tie®Panel Sheathing Clips are NN, used to brace unsupported sheathing edges. Span Wood Maximum Root Span PSCLs Code a Q. The PSCA is a new version of the PSCL with , Rating Panel Per Span Ref. I less material for a more cost effective solution. Thickness 'With PSCL Without PSCL A PSCL �' Model sizes include:PSCL3/e,PSCA?/,s, 24/0 3/B 24 20 1 (PSCA similar) PSCU/s,PSCA15/32,PSCL15/3z,PSCL7/z, 24/16 qhs 24 24 1 PSCL%;PSCL1%2,PSCL3/4. MATERIAL:33 mil(20 ga) 32/16 15/32,1/2 32 28 1 180 I FINISH:Galvanized 40/20 5/8,19/32 40 32 1 INSTALLATION: 48/24 3/4 48 36 2 •Use the same size sheathing clip 1. Span rating and Maximum Roof Sheathing Spans FFl as the wood panel thickness. are for reference only,refer to IBC Table 2304.7(3) •Spans may be reduced for low slopes for additional important information. h°GAPS' %'I z (per the APA Residential Design/ 2. Max.roof sheathing span with single PSCA is 24". Construction Guide). For spans greater than 24"use two PSCAs. .Typical PSCL o CODES:See page 8 for Code Listing Key Chart. Installation U W z T P/T PA Tie Plates O 6 1– o TPs are screw on tie plates. Model Dimensions Number of Code I 'r TPAs are flanged for added support. No. w L Nail Holes Ref. a roro MATERIAL:33 mil(20 ga) a t s FINISH:Galvanized TP15 113/,s 5 13 _ ` uJ p INSTALLATION: TPA37 31/2 7 32 �o a o 0 •Holes are sized for#8 or TPA39 3% 9 41 ',.„ a�n o a ` • / #10 screw. I. TP35 31/ 5 23 0 0 0 ° B 0 `� CODES:See page 8 for TP37 31/s 7 32 , a o 5 '� ., o Code Listing Key Chart. TP39 3% 9 41 ' I. G a O TP311• (1111) _ 31/s 11 50 180 - TPR 0 G E 0 0 O TP45 41/s 5 ' 30 � o • r n f a .o ° TP47 41/s 7 42 E o a o TP49 41/e _ 9 54 NI 00 TP411 41/s 11 66 0 c � L i TP57 — 53/4 7 60 TP TPA57 5 7 49 1. Connectors are not load rated. 73 Steel Bar Grating Steel Bar Grating offers many important 24'-0",both in plain mill,black painted,or hot advantages as a commercial and industrial dipped galvanized. " material. Bar Grating offers maximum strength with r''r'A. Because it can be fabricated to fit any minimal weight.The load bearing bars corn- shape,(including cutouts),and coated with a bined with the cross rods offer the capability of 1111111001, �;r variety of finishes,Steel Bar Grating is the most supporting loads ranging from light pedestrian economical choice for most applications.Bar traffic to the heaviest vehicular loads,while Grating as trench covers is just one of its many remaining lighter than similar cast iron prod- Steel Bar Grating is uses.Its adaptability and strength make it well ucts. Bar Grating is designed with up to 80%of manufactured by a forge suited for uses such as catwalks,stairs,plat- the square footage being open area.This allows welding process that forms,grates,grills,fencing,vaults, ventilated free flowing of fluids,mud,and other debris, insures a completely bin floors,ramps,docks, fire escapes,window keeping the area clean,while still catching fused joint. This joint can and machinery guards,wash racks,running most falling tools and other dangerous objects. withstand severe bending boards,ventilation screens, and many more With it's great economy,adaptability, excel- without separating, applications. At Peterson Company,we have a lent strength-to-weight ratio,and high percent- making welded gratings full fabrication shop,able to meet any project age of open area,Bar Grating is a good choice ideal for most industrial designs you might have and at a competitive for most pedestrian walkways,work platforms, applications. price. Our ready-to-ship inventory includes stairs,and anywhere vehicle traffic is expected. standard panel sizes of 2'-0"X 24'-0"or 3'-0"X COMMON SPACINGS How Peterson Grating is designated. Example: TYPE 1 g - 10-C4) iI 1 The first numerals designate number of sixteenths The letter shows type of grating: The second numeral designates center of an inch center to center of bearing bars. W-Welded SG-Swaged to center of cross bars in inches. 4" Bearing bars spaced at 1-3/16"on 4" -.0-11.- center. Cross rods at 4"centers. —al—ow- 1 3/16" `. — " Because this spacing is used in the 7/16 ■Inner IIIIMIM �� � majority of applications,we stock ■,■im.■ i—gam large quantities of this product at v 7-SGCS-4 ■1 1 19W4 all times. 2" 2„ Bearing bars spaced at 7/16"on center. Swaged cross rods at 4"centers. —I- 1 3/16" 4 Mwri Bearing bars spaced at 1-3/16"on — center. Cross rods at 2"centers. f�f�! 2"" 2" .. . � _ .� 19W2 * r 7/16" ' 1iA• II .-MND= ■---- 411 v 7-SGCS-2 ■_rrr�rr --0—ir- . 11-11 r 15/16" t I—I Bearing bars spaced at 15/16"on Bearing bars spaced at 7/16"on center. _� center. Cross rods at 4"centers. Swaged cross rods at 2"centers. Imes 15W4 *Note:Conforms with the spacing requirements of ADA(July 1991)when installed with the elongated 2" 2" opening perpendicular to the dominant direction — of travel.See ADA Guidelines 15/16" ��,,,,.,�I�I Bearing bars spaced at 15/16"on -I—I—I— `_iii�_i center. Cross rods at 4"centers.iii Other spacings available. Please 15W2 call our sales department for details. •A /1 ENQINEEQEQ PETERSON COMPANY Quality Products &Service Since 1931 isi EQUIPMENT Light Duty Welded Steel Load Table 4 _ 2''_ 2" . To determine the load capacity for alternative bar _` spacings,multiply the loads given by the following rr. ... = = conversion factors(DEFLECTION REMAINS CONSTANT) •1 3/16" T -� 1 3/16" I- '� FOR TYPES 15-4 AND 15-2 MULTIPLY BY 1.18 ��� X1-1- am FOR TYPES 7-4 AND 7-2 MULTIPLY BY 2.71 19-4/19-2 LOAD TABLE WEIGHT PER SQ. BEARING BAR UNSUPPOIFED SPAN FT.(LBS.) SIZE 2'-0" 2'-6" 3'-0" 3'-6" 4'-0" 4'-6" 5'-0" 5'-6" I 6'-0' 6'-6" 7'-0" 8'-0" 9'-0" 19-4 19-2 U 355 227 158 116 89 70 3/4 X 1/8 D 0.099 0.155 0.223 0.304 0.397 0.503 4 4.8 C _ 355 284 237 203 178 158 D 0.079 0.124 0.179 0.243 0.318 0.402 _ - U 533 341 237 174 133 105 _. 3/4 X 3/16 D 0.099 0.155 0.223 0.304 0.397 0.503 • _ 5.6 6.4 C 533 426 , 355 _ 305 266 237 - - D 0.079 0.124 0.179 0.243 0.318 0.402 I _ U 632 404 281 206 156 125 101 84 70 1X1/8 D 0.074 0.116 0.168 0.228 0.298 0.377 0466 0.563 . 0.670 5.1 5.9 C 632 505 421 361 316 281 253 230 211 D 0.060 0.093 0.134 0.182 0.238 0.302 0.372 0.451 0.536 U 947 606 421 309 0 237 187 152 125 105 1 X 3/16 D . 0.074 0.116 0.168 0.228 0.298 , 0.377 0.466 0.563 0.670 7.4 8.4 C 947 758 632 541 474 421 379 , 344 _, 316 D 0.060 0.093 0.134 0.182 0.238 0.302 0.372 0.4510.536 • U 987 632 439 322 247 195 158 130 ^ 110 93 81 1 1/4 X 1/8 D 0.060 0.093 0.134 0.182 0.238 0.302 0.372 0.451 0.536 0.629 0 730 - 6.4 7.4 C 987 789 _ 658 564 493 439 395 _ 359 _ 329 . 304 423 D 0 048 0.074 0.107 0.146 0.191 0.241 0.298 0.360 0.429 0.504 0.584 U 1480 947 658 483 370 292237 196 164 _ 140 _ 121 1-1/4 X 3/16 0 0.060 0.093 0.134 - 0,182 0.238 0.302 __ 0.372 0.451 - 0.536 0.629 0.730 9 10 C 1480 1184 987 846 740 658 592 538 493 455 282 • D 0.048 0.074 0.107 0.146 0.191 0.241 0.2980.360 0.429 0.504 0.584 U 1421 909 632 464 355 281 227 _ 188 158 135 W 116 89 70 1-1/2 X 1/8 D 0.050 0.078 0.112 0.152 0.199 0.251 0.310 0.376 _ 0.447 0.524 0.608 _ 0.794 1.006 7.4 8.4 C 1421 1137 947 812 711 632 568 517 474 437 406 355 316 D 0.040 0.062 0.089 0.122 0.159 0.201 0.248 0.300 0.358 0.420 0.487 0.636 0.804 U 2132 1364 947 696 533 421 341 282 237 202 174 133 105 1-1/2 X 3/16 _D 0.050 0.078 0.112 0.152 0.199 0.251 0.310 0.376 0.447 0.524 0.608 0.794 1.006 . 11 1 12.5 C 2132 1705 1421 1218 1066 947 853 , 775 711 _ 656 609 533 474 D 0.040 0.062 0.089 0.122 0.159 0.201 0.248 , 0.300 0.358 0.420 0.487 0.636 0.804 , U 2901 1857 1289 _ 947 725 573 1 464 384 322 275 ' 237 181 143 1-3/4 X 3/16 D 0.043 0.067 0.096 0.130 0.170 0.215 0.266 0.322 0.383 0.450 0.521 0.681 0.862 12 7 14 1 C 2901 2321 1934 1658 1451 1289 1161 1055 967 893 829 725 645 D 0.034 0.053 0.077 0.104 0.136 0.172 0.213 0.257 0.306 0.360 0.417 _ 0.545 0.689 U 3789 2425 1684 1237 947 749 606 501 421 359 309 237 • 187 2 X 3/16 0 0.037 0.058 0.084 0.114 0.149 w 0.189 0.233 0.282 - 0.335 _ 0.393 - 0.456 0.596 - 0.754 - 14.3 15.7 C 3789 3032 2526 2165 1895 1684 1516 , 1376 1263 1166 1083 947 842 D 0.030 0.047 0.067 0.091 0.119 0.151 0.186 0.225 0.268 0.315 0.365 0.477 0.603 U 4796 3069 2132 1566 1199 947 767 634 533 454 392 300 237 2-1/4 X 3/16 D 0.033 0.052 0.074 mm 0.101 0.132 0.168 0.207 0.250 0.298 0.350 0.406 0.530 0.670 15.9 17.4 C 4796 3837 3197 2741 2398 2132 . 1918 1744 1599 1476 - 1370 1199 1066 D 0.026 0.041 0.060 0.081 0,106 0.134 0.166 0.200 0.238 _ 0.280 _ 0.324 0.424 0.536 U 5921 3789 2632 1933 1480 1170 947 783 658 561 483 370 292 2-1/2 X 3/16 0 0.030 , 0.047 0.067 0.091 0.119 0.151 0.186 0.225 0.268 0.315 0.365 0.477 - 0.603 17 5 19 C 5921 4737 3947 3383 2961 2632 2368 2153 1974 1822 1692 1480 1316 D 0.024 0.037 0.054 0.073 0.095 0.121 0.149 0.180 0.215 0.252 0.292 0.381 0 483 NOTE:When gratings with serrated bearing bars are selected,the depth of grating required to service a specified load will be 1/4"greater than that shown in the tables above. D=deflection in inches U=safe uniform load,lbs.Per sq ft. C=safe concentrated mid-span load,lbs.Per ft.of grating width Loads and deflections are theoretical values based on 18,000 psi unit stress.For pedestrian comfort,deflections in excess of 1/4"are not recommended. WHEAT RIDGE,CO SALT LAKE CITY 10 - www.peterson-co.com Phone:303.388.6322 Phone:801.972.3328 Fax: 303.399.0033 Fax:801.974.5716 STRUCTURAL Job Title Saic-/S, v n.17 7a / Job no. /�o/L CONSULTANTS INCORPORATED Client Pf'// By E 211.) Date Sheet of CSG p- /'am o.O FW.g.•-,fA/G, /, (, ) G/�-`AGL 3G2:_S - Sy C-1101149,C • F , 5 '//3c 12 ' �r w14, 5f2 o,/ ) , I Ki.4F , 5 ,4? r-.LF //t . 67147,n7v P L yo9 ok see ss'/ti L o AO C151447 2, (e ) 7(-D.5 u/ AppE-42Lveo,wG Gci/1ti�/�r + GdOS/42,-54/4e /6,if 4,,C, F FM s'el 11 I9n L = 5 = 4,95-3 w3 k Z" = fivq ot-- #71,1yIK &et ) = -49b'1/14 Z7,161/4 aK• 3400 E.Bayaud,#300,Denver,CO 80209 303/399-5154 FAX 303/333-9501 Section Properties Structural (S) Stud Section Properties Design &il'.- 1�.k ..S 17� ar.Aw.ce•�,',l. Y( z..1- Lzitbatter .1111111111111111 'Maness Area Wats 1 lxx Sxx Rx 1yy Ry txx 5xx Ma Ya Y lxx Sxx Ma a¢ ' Seclicn • ..1 Ire I Inc A In In' itt Is' n? ) .` s9,. b . En ' In in 2505137-33 0.0346 0.197 0.67 0.203 0.163 1.015 0.052 0.515 0.203 0.156 3.09 1040 1.272 0.079 0.075 -1.170 1.633 0.486 2505137.43 0.0451 0.255 0.87 0.261 0.208 1.010 0.067 0.511 0.261 0.205 4.53 1350 1.260 0.173 0.094 -1.158 1.620 0.489 2505137-54 0.0566 0.316 1.07 0.318 0.255 1.004 0.080 0.504 0.318 0.255 5.76 1656 1.250 0.318 0.244 8.22 2510 1.274 0.337 0.113 -1.150 1.608 0.488 250S137-68 0.0713 0.390 1.33 0.386 0.309 0.994 0.095 0.495 0.386 0.309 7.19 2017 1.250 0.386 0.308 10.65 3057 1.251 0.661 0.134 -1.142 1.593 0.486 250S162-33 0.0346 0.223 0.76 0.235 0.188 1,027 0.087 0.624 0.235 0.180 3.55 1040 1.274 0.089 0.144 -1,501 1.923 0.390 250S162-43 0.0451 0.289 0.98 0.302 0.242 1.022 0.111 0.620 0.302 0.240 5.22 1350 1.263 0.198 0.182 -1.489 1.909 0.392 250S162-54 0.0566 0.356 1.22 0.370 0296 1.016 0.135 0.613 0.370 0.296 6.67 1656 1.250 0.370 0.288 8.62 2510 1.267 0.383 0.219 -1.482 1.898 0.391 2505162.66 0.0713 0.443 1.51 0.450 0.360 1.007 0.162 0.605 0.450 0.350 8.21 2017 1240 0.455 0.357 12.10 3057 1.255 0.752 0.262 -1.474 1.885 0.389 liblommoolor3. - 3505162-33 0.0346 0.258 0.88 0.508 0.290 1.404 0.098 0.617 0.508 0.279 5.50 1046 1.779 0.103 0.273 -1.351 2.044 0.563 350S162-43 0.0451 0.334 1.14 0.654 0.374 1.400 0.125 0.612 0.654 0.372 8.08 1777 1.755 0.227 0.345 -1.339 2.031 0.565 350S162-54 0.0566 0.415 1.41 0.804 0.460 1.392 0.152 0.606 0.804 0.460 10.20 2403 1.750 0.804 0.447 13.37 3446 1.773 0.443 0.418 -1.331 2.019 0.566 350S162-68 0.0713 0.515 1.75 0.985 0.563 1.383 0.184 0.597 0.985 0.563 12.83 2959 1.750 0.985 0.557 18.89 4483 1.758 0.872 0.503 -1.321 2.004 0.565 3623137-33 0.0346 0.236 0.80 0.479 0.264 1.424 0.059 0.501 0.479 0254 5.02'1039 1.842 0.094 0.162 -1.026 1.826 0.684 3625137-43 0.0451 0.306 1.04 0.616 0.340 1.419 0.075 0.497 0.616 0.334 7.38 1777 1.826 0.207 0.204 -1.015 1.814 0.687 3625137-54 0.0566 0.379 1.29 0.756 0.417 1.411 0.091 0.490 0.756 0.417 9.43 2497 1.812 0.756 0.400 13.47 3446 1.844 0.405 0.246 -1.006 1.801 0.688 3625137.68 0.0713 0.470 1.60 0.922 0.509 1.401 0.109 0.480 0.922 0.509 11.87 3076 1.812 0.922 0.508 17.56 4661 1.814 0.797 0.294 -0.996 1.784 0.889 3625162-33 0.0346 0.262 0.89 0.551 0.304 1.450 0.099 0.616 0.551 0.292 5.77 1039 1.843 0.105 0.293 -1.335 2.065 0.582 3625162.43 0.0451 0.340 1.16 0.710 0.392 1.445 0.127 0.611 0.710 0.389 8.46 1777 1.818 0.230 0.371 -1.323 2.052 0.585 3625162-54 0.0566 0.422 1.44 0.673 0.481 1.438 0.154 0.604 0.873 0.481 10.69 2497 1.812 0.873 0.468 14.00 3446 1.836 0.451 0.449 -1.314 2.040 0.585 362S162-68 0.0713 0.524 1.78 1.069 0.590 1.429 0.186 0.596 1.069 0.590 13.44 3076 1.812 1.069 0.584 19.80 4661 1.820 0.887 0.540 -1.305 2.024 0.585 362S200.33 0.0346 0.297 1.01 0.648 0.358 1.478 0.177 0.772 0.643 0.318 6.29 1039 1.898 0.118 0.571 -1.770 2.432 0.470 362S200-43 0.0451 0.385 1.31 0.836 0.461 1.474 0.227 0.767 0.836 0.446 8.85 1777 1.834 0.261 0.726 -1.758 2.419 0.472 362S200-54 0.0566 0.479 1.63 1.030 0.568 1.467 0.277 0.761 1.030 0.568 12.36 2497 1.812 1.030 0.509 15.25 3446 1.898 0.511 0.884 -1.750 2.407 0.471 362S200.68 0.0713 0.595 2.02 1.265 0.698 1.458 0.337 0.753 1.265 0.698 15.54 3076 1.812 1.265 0.673 22.34 4661 1.844 1.008 1.070 -1.741 2.393 0.470! 1 4005137-33 0.0346 0.249 0.85 0.603 0.301 1.556 0.061 0.496 0.603 0.290 5.74 936 2.031 0.099 0.200 -0.987 1.908 0.732 4005137-43 0.0451 0.323 1.10 0.776 0.388 1.551 0.078 0.491 0.776 0.382 8.43 1777 2.014 0.219 0.253 -0.976 1.897 0.735 4005137-54 0.0566 0.401 1.36 0.953 0.477 1.542 0.094 0.484 0.953 0.477 10.78 2777 2.000 0.953 0.457 15.40 3446 2.034 0.428 0.305 -0.967 1.884 0.737 400S137-68 0.0713 0.497 1.69 1.165 0.582 1.531 0.112 0.475 1.165 0.582 13.58 3429 2.000 1.165 0.581 20.10 5196 2.002 0.842 0.365 -0.956 1.866 0.738 4005162-33 0.0346 0.275 0.94 0.692 0.346 1.586 0.103 0.611 0.692 0.332 6.57 936 2.032 0.110 0.358 -1.288 2.133 0.635 g 4005162-43 0.0451 0.357 1.21 0.892 0.446 1.581 0.131 0.606 0.892 0.443 9.63 1777 2.006 0.242 0.453 -1.276 2.121 0.636 4005162-54 0.0566 0.443 1.51 1.098 0.549 1.574 0.159 0.600 1.098 0.549 12.18 2777 2.000 1.096 0.533 15.96 3446 2.026 0.473 0.550 -1.268 2.108 0.638 400S162.68 0.0713 0.550 1.87 1.346 0.673 1.564 0.192 0.591 1.346 0.673 15.34 3429 2.000 1.346 0.666 22.60 5196 2.009 0.933 0.663 -1.258 2.092 0.639 4005200-33 0.0346 0.310 1.05 0.812 0.406 1.619 0.183 0.769 0.805 0.362 7.16 936 2.091 0.124 0.689 -1.715 2.481 0.522 4005200-43 0.0451 0.402 1.37 1.047 0.524 1.615 0.235 0.764 1.047 0.509 10.06 1777 2.023 0.272 0.876 -1.703 2.468 0.524 4005200.54 0.0566 0.500 1.70 1.292 0.646 1.608 0.287 0.758 1.292 0.646 14.06 2777 2.000 1.292 0.580 17.36 3446 2.091 0.534 1.068 -1.695 2.456 0.524 4005200-68 0.0713 0.622 212 1.589 0.795 1.599 0.349 0.750 1.589 0.795 17.68 3429 2.000 1.589 0.766 25.41 5196 2.035 1.054 1.295 -1.686 2.441 0.523 W __ _ : :xr 5505162-33 0.0346 0.327 1.11 1.458 0.530 2.112 0.113 0.589 1.458 0.512 10.11 670 2.787 0.130 0.704 -1.134 2.468 0.789 5505162.43 0.0451 0.424 1.44 1.883 0.685 2.107 0.145 0.584 1.883 0.681 14.79 1487 2.757 0.288 0.894 -1.123 2.458 0.791 5503162-54 0.0566 0.528 1.80 2.324 0.845 2.098 0.176 0.577 i 2.324 0.845 18.76 2799 2.750 2.324 0.821 24.59 2967 2.782 0.564 1.088 -1.114 2.445 0.792 5503162-68 0.0713 0.657 2.24 2.861 1.040 2.086 0.212 0.568 2.861 1.040 23.72 4442 2.750 2.861 1.031 34.94 5468 2.761 1.114 1.316 -1.103 2.427 0.793 6005137-33 0.0346 0.318 1.08 1.582 0.527 2.229 0.069 0.464 1.582 0.510 10.07 612 3.039 0.127 0.493 -0.823 2.421 0.884 6005137-43 0.0451 0.413 1.41 2.042 0.681 2.223 0.087 0.459 2.042 0.670 14.80 1358 3.018 0.280 0.625 -0.813 2.411 0.886 600S137-54 0.0566 0.514 1.75 2.518 0.839 2.213 0.105 0.452 2.518 0.839 18.98 2708 3.000 2.518 0.809 27.23 2708 3.042 0.549 0.757 -0.804 2.398 0.888 6005137-68 0.0713 0.640 2.18 3.094 1.031 2.200 0.125 0.443 3.094 1.031 24.05 4442 3.000 3.094 1.029 35.60 5468 3.002 1.084 0.911 -0.793 2.380 0.889 600S137-97 0.1017 0.889 3.03 4.188 1.396 2.170 0.159 0.422 4.188 1.396 34.48 7372 3.000 4.188 1.396 50.80 11124 3.000 3.066 1.179 -0.770 2.341 0.892 6005162-33 0.0346 0.344 1.17 1.793 0.598 2.282 0.116 0.581 1.793 0.577 11.41 612 3.039 0.137 0.851 -1.091 2.595 0.623 6003162-43 0.0451 0.447 1.52 2.316 0.772 2.276 0.148 0.576 2.316 0.767 16.68 1358 3.007 0.303 1.082 -1.081 2.585 0.825 6005162-54 0.0566 0.556 1.89 2.860 0.953 2.267 0.180 0.570 2.860 0.953 21.17 2708 3.000 2.860 0.927 27.76 2708 3.034 0.594 1.318 -1.072 2.572 0.826 600S162-68 0.0713 0.693 2.36 3.525 1.175 2.255 0.218 0.560 3.525 1.175 26.79 4442 3.000 3.525 1.164 39.46 5468 3.011 1.174 1.596 -1.061 2.554 0.828 600S162-97 0.1017 0.966 3.29 4.797 1.599 2.229 0.283 0.541 4.797 1.599 38.37 7372 3.000 4.797 1.599 56.73 11124 3.000 3.329 2.093 -1.039 2.518 0.830 6005200-33 0.0346 0.379 1.29 2.075 0.692 2.340 0.209 0.743 2.059 0.617 12.20 612 3.135 0.151 1.577 -1.479 2.866 0.734 600S200-43 0.0451 0.492 1.67 2.683 0.694 2.335 0.268 0.739 2.683 0.873 17.24 1358 3.028 0.334 2.012 -1.468 2.855 0.736 600S200-54 0.0566 0.613 2.09 3.319 1.106 2.327 0.328 0.732 3.319 1.106 24.07 2708 3.000 3.319 1.002 30.01 2708 3.117 0.655 2.461 -1.459 2.842 0.737 6005200-68 0.0713 0.764 2.60 4.101 1.367 2.316 0.400 0.723 4.101 1.367 30.42 4442 3.000 4.101 1.317 43.71 5468 3.047 1.295 2.997 -1.448 2.826 0.737 6005200.97 0.1017 1.067 3.63 5.612 1.871 2.293 0.530 0.705 5.612 1.871 43.49 7372 3.000 5.612 1.871 64.53 11124 3.000 3.679 3.981 -1.427 2.791 0.739 6003250.43 0.0451 0.537 1.83 3.082 1.027 2.396 0.458 0.923 3.082 0.918 18.14 1358 3.134 0.364 3.379 -1.898 3.193 0.647 6003250-54 0.0566 0.670 2.28 3.819 1.273 2.388 0.562 0.917 3.819 1.159 22.90 2708 3.115 3.760 1.069 32.00 2708 3.207 0.715 4.146 -1.889 3.180 0.647 600S250-68 0.0713 0.836 2.84 4.727 1.576 2.378 0.668 0.908 4.727 1.522 30.08 4442 3.045 4.727 1.342 40.19 5468 3.191 1.416 5.071 -1.878 3.164 0.647 6003250-97 0.1017 1.169 3.98 6.496 2 165 2.357 0.923 0.889 6.496 2.160 48.80 7372 3.003 6.496 2.063 69.38 11124 3.062 4.030 6.798 -1.857 3.130 0.648 1 Web-height to thickness ratio exceeds 200. Web stiffeners are required at all support points and concentrated loads See Section Property Table Notes on page 6. ~' 7 SSMA Combined Axial and Lateral Load Tables Combined Loading Allowable Axial Load Table Notes �? 1. Allowable loads based on weak axis and torsional bracing at 48" o.c. maximum for axial load calculation and continuous support of each flange for flexural calculation. 2. Lateral and axial load multiplied by 0.75 for strength determination per AISI A5.1.3. 3. Check lateral end reactions for web crippling. 4. Allowable axial load in kips/stud (1 kip= 1000 lbs). 5 •sf Lateral Load Wall Spacing 3305182..(niIfs) 3523137-Imus) 3623162-(i11i[s) 3625200-lmt0 Height (fn.) 33 k31 50 kel 33 kai 50 lei 33 hal 50 k&l 33 ks€ I 50 ksf (ft) o.c. - 33 43 54 88 33 43 54 68 33 43 54 68 33 43 ! 54 68 8 12 2.03 2.76 4.09 5.14 1.68 2.32 3.42 4.42 2.08 2.85 4.27 5.44 2.49 3.50 5.34 6.76 16 2.03 2.76 4.09 5.14 1.68 2.32 3.42 4.42 2.08 2.85 4.27 5 44 2.49 3.50 5.34 6.76 24 2 03 2.76 4.09 5.14 1.68 2.32 3.42 4.42 2.08 2.85 4.27 5.44 2.49 3.50 5.34 6.76 9 12 1.95 2.66 3.83 4.80 1.63 2.26 3.27 4.19 2.01 2.75 4.04 5.12 2.41 3.37 5.02 6.32 16 1.95 2.66 3.83 4.80 1.63 2.26 3.27 4.19 2.01 2.75 4.04 5.12 2.41 3.37 5.02 6.32 24 1.95 2.66 3.83 4.80 1.63 2.26 3.27 4.19 2.01 2.75 4.04 5:12 2.41 3.37 5.02 6.32 10 12 1.86 2.54 3.53 4.43 1.57 2.18 3.07 3.91 1.93 2.63 3.78 4.75 2.32 3.22 4.68 5.85 16 ' 1.86 2.54 3.53 4.43 1 57 2.18 3.07 3.91 1.93 2.63 3.78 4.75 2.32 3.22 4.68 5.85 24 1.82 2.54 3.53 4.43 1.50 2.18 3.07 3.91 1.92 2.63 3.78 4.75 2.32 3.22 4.68 5.85 12 12 1.66 2.26 2.92 3.64 1.43 1.98 2.62 3.30 1.73 2.37 3.17 3.94 2.11 2.87 3.89 4.82 16 1.59 7 2.26 2.92 3.64 1.35' 1.98 2.62 3.30 1.70 2.37 i 3.17 3.94 2.11 2.87 3.89 4.82 24 1.34° 2.13° 2.92 3.64 1.11° 1.82° 2.62 7 3.30 1.44° 2.28 7 3.17 3.94 1.82° 2.80 3.89 4.62 14 12 1.33 6 1.94 2.40 2.97 1.14 6 1.73 7 2.19 2.73 1.43 7 2.06 2.61 3.23 1.79 2.50 3.17 3.92 16 1.186 1.84° 2.407 2.97 1.006 1.61° 2.197 2.73 1.286 1.997 2.61 3.23 1.61 6 2.437 3.17 3.92 24 0.913 1.566 2.356 2.976 0.753 1.343 2.156 2.736 1.003 1.706 2.586 3.237 1.29 2.096 3.176 3.92 16 12 0.98 6 1.50° 1.97 7 2.44 0.84 6 1.34° 1.81 6 2.25' 1.07 6 1.66° 2.15 7 2.65 1.34° 2.03' 2.60 3.21 16 0.83° 1.35° 1.97° 2.44° 0.703 1.19° 1.816 2.25° 0.913 1.49° 2.15° 2.65' 1.16° 1.83° 2.60° 3.21 24 0.562 1.073 1.732 2.406 0.452 0.922 1.603 2.1731 0.642 1.203E 1.923 2.646 0.853 1.493 2.388 3.216 5 sf Lateral Load Wall Spacing MINls.' 1 G1 i.= :WI. i,'L_�,�. : �•!..!:°A s. ° -u'S162-(rnlis) Hoiglil (in.) Sinsi ,... ft a.c. ii ; e.l`Y i=3ie3till li ". 54 8 12 1.79 2.49 3.77 5.08 2.22 3.05 4.73 6.25 2.63 3.76 5.92 7.72 2.53 3.49 5.74 7.58 16 1.79 2.49 3.77 5.08 2.22 3.05 4.73 6.25 2.63 3.76 5.92 7.72 2.53 3.49 5.74 7.58 24 1.79 2.49 3.77 5.08 2.22 3.05 4.73 6.25 2.63 3.76 5.92 7.72 2.53 3.49 5.74 7.58 9 12 1.75 2.43 3.65 4.90 2.17 2.97 4.54 6.00 2.57 3.65 5.65 7.36 2.51 3.47 5.67 7.58 16 1.75 2.43 3.65 4.90 2.17 2.97 4.54 6.00 2.57 3.85 5.65 7.36 2.51 3.47 5.67 7.58 24 1.75 2.43 3.65 4.90 2.17 2.97 4.54 6.00 2.57 3.65 5.65 7.36 2.51 3.47 5.67 7.58 10 12 1.71 2.37 3.50 4.67 2.10 2.88 4 32 5.69 2.49 3.52 5.34 6.95 2.48 3.43 5.58 7.47 16 1.71 2.37 3.50 4.67 2.10 2.88 4.32 5.69 2.49 3.52 5.34 6.95 2.48 3.43 5.58 7.47 24 1.71 2.37 3.50 4.67 2.10 2.88 4.32 5.69 2.49 3.52 5.34 6.95 2.48 3.43 5.58 7.47 12 12 1.59 2.21 3.13 4.08 1.93 2.65 3.80 4.92 2.31 3.21 4.66 5.99 2.40 3.32 5.32 7.13 16 1.59 2.21 3.13 4.08 1.93 2.65 3.80 4.92 2.31 3.21 I 4.66 5.99 2.40 3.32 5.32 7.13 24 1.35° 2.17 7 3.13 4.08 1.74 7 2.65 3.80 4.92 2.15 3.21 I 4.66 5.99 2.40 3.32 5.32 7.13 14 12 1.39 7 2.00 2.70 3.43 1.73 2.38 3.22 4.07 2.10 2.87 ; 3.91 4.93 2.29 3.18 4.96 6.64 16 1.24° 1.97 7 2.70 3.43 1.57 6 2.38 3.22 4.07 1.96 7 2.87 3.91 4.93 2.29 3.18 4.96 6.64 24 0.983 1.696 2.70° 3.437 1.286 2.126 3.227 4.07 1.636 2.597 3.91 4.93 2.22 3.18 4.96 6.64 16 12 1.09° 1.70 6 2.30 2.85 1.35° 2.08 7 2.72 3.36 1.69 7 2.51 3.27 4.05 2.15 2.98 4.51 6.02 16 0.923 1.54° 2.30° 2.85' 1.19° 1.90° 2.727 3.36 1.508 2.327 3.27 4.05 2.14 2.98 4.51 6.02 24 0.652 1.243 2.14° 2.85° 0.893 1.583• 2.54° 3.366 1.15° 1.946 3,136 4.05' 1.83° 2.92 4.51 6.02 1 Deflection exceeds L/120 6 Deflection exceeds L1600 2 Deflection exceeds L1240 7 Deflection exceeds L1720 3 Deflection exceeds U360 - If not noted,deflection is less than L/720 20 SSMA STRUCTURAL Job Title //NI% 7D/ Job no. / /2-- CONSULTANTS INCORPORATED Client 243, By 2./ Date 40h Sheet of Cc"rif ,v .7 TJ&Tk'lG N (e) /45-5 .4,4/4 sr (/u) 1-K10.4,516' It SS .4.>ri ,91-y o ;y 30 ga/i e o 2 g v v v / 6v) 5'7 //t- 672- Z JLZ ►?(.F LL =;ID1 PSF rt. DC 3 o ps 6-7v ri-F 72E-AP = 4 o PSF /y. `b /r✓G c g-o 4 Z,. 6 4 S =G• ?g-l d 3 IAAA- /t? (1q0:/, S ' 9P1,z.., fl /�&14, _ 48h :yI3 /N G G ■�.3u14- /4/.15 "Cs 3� = 2 IA (3'4) A = • 3)o'I.Sl y—�? o z. " e 2.Go a/[. 4 c.t -.1�/" Q/ 5 2 c� L)C7,4.v re, 444,0 i4,4 A,Cvq -/ /' ' .z 4 dS l A4.7= n.i. i z: s4 N k hfs3 S t S '/4( v IG SP c e er/I-e a.4 . a s-fez/ S S T" r• 4-tic `y , Igoe 30 5 3�8 f %q,. Y Sf k-Z -O 3400 E.Bayaud,#300,Denver,CO 80209 303/399-5154 FAX 303/333-9501 File=C:1PROGRA-21ENERCA-1 Steed Beam ENERCALC,INC.1963-2014,Build:6.14.1,23,Ver:6.14.1.23 Lic.#: KW-06002110 Licensee:STRUCTURAL CONSULTANTS, INC. Description: SS Stair Landing Beam CODE REFERENCES Calculations per Load Combination Set:ASCE 7-02 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 30.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 28,000.0 ksi Bending Axis: Major Axis Bending Load Combination ASCE 7-02 D(1 1)10_11 D(1 1)L(1 1) 1.. -- 1 f 1 I Span=1 0 ft Span=5,750 fl / Span=1,0 fl HSS5x5x1/4 HSS5x5x1/4 HSS5x5x1/4 Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load(s)for Span Number 1 Point Load: D=1.10, L=1.10 k 0,0.0 ft Load(s)for Span Number 3 Point Load: D=1.10, L=1.10kna,1.0ft DESIGN SUMMARY Desi•n OK Maximum Bending Stress Ratio = 0.194: 1 Maximum Shear Stress Ratio= 0.103 : 1 Section used for this span HSS5x5x1/4 Section used for this span HSS5x5x1/4 Ma :Applied 2.208 k-ft Va:Applied 2.216 k Mn/Omega:Allowable 11.392 k-ft Vn/Omega:Allowable 21.603 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 1.000ft Location of maximum on span 5.750 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#2 Maximum Deflection Max Downward L+Lr+S Deflection 0.014 in Ratio= 1,761 Max Upward L+Lr+S Deflection -0.018 in Ratio= 3,837 Max Downward Total Deflection 0.027 in Ratio= 893 Max Upward Total Deflection -0.035 in Ratio= 1959 Maximum Forces&Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax- Ma-Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega D Only ___ Dsgn.L= 1.00 ft 1 0.097 0.052 -1.11 1.11 19.03 11.39 1.00 1.00 1.12 36.08 21.60 Dsgn.L= 5.75 ft 2 0.097 0.052 -0.00 -1.11 1.11 19.03 11.39 1,00 1.00 1.12 36.08 21.60 Dsgn.L= 1.00 ft 3 0.097 0.052 -1.11 1.11 19.03 11.39 1.00 1.00 1.12 36.08 21.60 +D+L+H Dsgn.L= 1.00 ft 1 0.194 0.103 -2.21 2.21 19.03 11.39 1.00 1.00 2.22 36.08 21.60 Dsgn.L= 5.75 ft 2 0,194 0.103 -0.00 -2.21 2.21 19.03 11.39 1.00 1.00 2.22 36.08 21.60 Dsgn.L= 1.00 ft 3 0.194 0.103 -2.21 2.21 19.03 11.39 1.00 1.00 2.22 36.08 21.60 +D+Lr+H Dsgn.L= 1.00 ft 1 0.097 0.052 -1.11 1.11 19.03 11.39 1.00 1.00 1.12 36.08 21.60 Dsgn.L= 5.75 ft 2 0.097 0.052 -0.00 -1.11 1.11. 19.03 11.39 1.00 1.00 1.12 36.08 21.60 Dsgn.L= 1.00 ft 3 0.097 0.052 -1.11 1.11 19.03 11.39 1.00 1.00 1.12 36.08 21.60 +D+S+H Dsgn.L= 1.00 ft 1 0.097 0.052 -1.11 1.11 19.03 11.39 1.00 1.00 1.12 36.08 21.60 Dsgn.L= 5.75 ft 2 0.097 0.052 -0.00 -1.11 1.11 19.03 11.39 1.00 1.00 1.12 36.08 21.60 Dsgn.L= 1.00 ft 3 0.097 0.052 -1.11 1.11 19.03 11.39 1.00 1.00 1.12 36.08 21.60 +D+0.750Lr+0.750L+H Dsgn.L= 1.00 ft 1 0.170 0.090 -1.93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 Dsgn.L= 5.75 ft 2 0.170 0.090 -0.00 -1.93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 Dsgn.L= 1.00 ft 3 0.170 0.090 -1.93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 +D+0.750L+0.750S+H Steel Beam File=CitROCRA-2ENERCA-1 ENERCALC,INC.1983.21314,1301d16.14 1.23,Ver:6.14.1.23 LIc.'#.:KW-06002110 Licensee:STRUCTURAL CONSULTANTS,INC. Description: SS Stair Landing Beam Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax- Ma-Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega Dsgn.L= 1.00 ft 1 0.170 0.090 -1 93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 Dsgn.L= 5.75 ft 2 0.170 0.090 -0.00 -1 93 1.93 19.03 11.39 1.00 1 00 1.94 36.08 21.60 Dsgn.L= 1.00 ft 3 0.170 0.090 -1 93 1.93 19.03 11.39 1.00 1 00 1.94 36.08 21.60 +D+W+H Dsgn.L= 1.00 ft 1 0.097 0.052 -1.11 1.11 19.03 11.39 1.00 1.00 1.12 36.08 21.60 Dsgn.L= 5.75 ft 2 0.097 0.052 -0.00 -1.11 1.11 19.03 11.39 1.00 1.00 1 12 36.08 21.60 Dsgn.L= 1.00 ft 3 0.097 0.052 -1.11 1.11 19.03 11.39 1.00 1.00 1.12 36.08 21.60 +D+0.70E+H Dsgn.L= 1.00 ft 1 0.097 0.052 -1.11 1.11 19.03 11.39 1.00 1 00 1.12 36.08 21.60 Dsgn.L= 5.75 ft 2 0.097 0.052 -0.00 -1.11 1.11 19.03 11.39 7.00 1 00 1.12 36.08 21.60 Dsgn.L= 1.00 ft 3 0.097 0.052 -1.11 1.11 19.03 11.39 1.00 1 00 1.12 36.08 21.60 +D+0.750Lr+0.750L+0.750W+H Dsgn.L= 1.00 ft 1 0.170 0.090 -1.93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 Dsgn.L= 5.75 ft 2 0.170 0.090 -0.00 -1.93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 Dsgn.L= 1.00 ft 3 0.170 0.090 -1.93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 +D+0.750Lr+0.750L+0.5250E+H Dsgn.L= 1.00 ft 1 0.170 0.090 -1.93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 Dsgn.L= 5.75 ft 2 0.170 0.090 -0.00 -1.93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 Dsgn.L= 1.00 ft 3 0.170 0.090 -1.93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 +D+0.750L+0.750S+0.750W+H Dsgn.L= 1.00 ft 1 0.170 0.090 -1.93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 Dsgn.L= 5.75 ft 2 0.170 0.090 -0.00 -1.93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 Dsgn.L= 1.00 ft 3 0.170 0.090 -1.93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 +D+0.750L+0.750S+0.5250E+H Dsgn.L= 1.00 ft 1 0.170 0.090 -1.93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 Dsgn.L= 5.75 ft 2 0.170 0.090 -0.00 -1.93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 Dsgn.L= 1.00 ft 3 0.170 0.090 -1.93 1.93 19.03 11.39 1.00 1.00 1.94 36.08 21.60 +0.60D+W+H Dsgn.L= 1.00 ft 1 0.058 0.031 -0.66 0.66 19.03 11.39 1.00 1.00 0.67 36.08 21.60 Dsgn.L= 5.75 ft 2 0.058 0.031 -0.00 -0.66 0.66 19.03 11.39 1.00 1.00 0.67 36.08 21.60 Dsgn.L= 1.00 ft 3 0.058 0.031 -0.66 0.66 19.03 11.39 1.00 1.00 0.67 36.08 21.60 +0.60D+0.70E+H Dsgn.L= 1.00 ft 1 0.058 0.031 -0.66 0 66 19.03 11.39 1.00 1.00 0.67 36.08 21.60 Dsgn.L= 5.75 ft 2 0.058 0.031 -0.00 -0.66 0 66 19.03 11.39 1.00 1.00 0.67 36.08 21.60 Dsgn.L= 1.00 ft 3 0.058 0.031 -0.66 0.66 19.03 11.39 1.00 1.00 0.67 36.08 21.60 Overall Maximum Deflections-Unfactored Loads Load Combination Span Max."-Defl Location in Span Load Combination Max."+"Defl Location in Span D+L 1 0.0269 0.000 0.0000 0.000 2 0.0000 0.000 D+L -0.0352 2.911 D+L 3 0.0268 1.000 0.0000 2.911 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Support 4 Overall MAXimum 2.260 2.260 D Only 1.160 1.160 L Only 1.100 1.100 D+L 2.260 2.260 STRUCTURAL Job Title 5-4Z-42/5- u / 7 76/ Job no. /V-D/Z CONSULTANTS INCORPORATED Client By Date 41/4/1/- Sheet of Gtr lrc�- (E) IHSS /2y- V >/,L Pti Ps w, 1,L =-- 0,2 fv, / wi t' ' , s P, AC - 844-)(o, 2.) = Pz PL- ' 1,114' L - l, Jit- c r Cr"5/_CcFtc. /moi -rs4c7,r ( ) HSS /1-x Y x //9 /s' o/c. 3400 E.Bayaud,#300,Denver,CO 80209 303/399-5154 FAX 303/333-9501 rile=C:IPROGRA-21ENERCA-1 Steel Beam ENERCALC,INC.1993.2014,Bu1d:6.14.1.23,Vev:6.14.1.23 :.KW $Oip2110..:. Licensee:STRUCTURAL CONSULTANTS, Description: Review Added Loading on HSS 12x4x114 CODE REFERENCES Calculations per Load Combination Set:ASCE 7-02 Material Properties _ Analysis Method: Allowable Strength Design Fy:Steel Yield; 46.0 ksi Beam Bracing: Beam bracing is defined Beam-by-Beam E:Modulus' 29,000.0 ksi Bending Axis: Major Axis Bending Load Combination ASCE 7-02 Unbraced Lengths Span#1, Fully Braced D(1.1L(1.1) D(1 1)L(1 1) D[1.E),Llo.a; ON681 Liat1 r r • ■ � r r Span=11 50 fl HSS12x4x1/4 Applied Loads Service loads entered.Load Factors will be applied for calculations Beam self weight calculated and added to loads Load(s)for Span Number 1 Point Load: D=1.10, L=1.10 kan 5.70 ft Point Load: D=1.10, L=1.10k(a76.70ft Point Load: D=1.60, L=0.80kan7.70ft Uniform Load: D=0.30, L=0.10 k/ft,Extent=0.0->>7.70 ft, Tributary Width=1.0 ft DESIGN SUMMARY Desi n OK Maximum Bending Stress Ratio = 0.372: 1 Maximum Shear Stress Ratio= 0.059 : 1 Section used for this span HSS12x4x1/4 Section used for this span HSS12x4x114 Ma:Applied 21.865 k-ft Va :Applied 5.159 k Mn/Omega:Allowable 58.762 k-ft Vn/Omega:Allowable 87.035 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 6.613ft Location of maximum on span 11,500 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.054 in Ratio= 2,552 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.139 in Ratio= 991 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces&Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax- Ma-Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega D Only Dsgn.L= 11.50 ft 1 0.225 0.037 13.22 13.22 98.13 58.76 1.00 1.00 3.23 145.35 87.04 +D+L+H Dsgn.L= 11.50 ft 0.372 0.059 21.87 21.87 98.13 58.76 1.00 1.00 5.16 145.35 87.04 +D+Lr+H Dsgn.L= 11.50 ft 1 0.225 0.037 13.22 13.22 98.13 58.76 1.00 1.00 3.23 145.35 87.04 +D+S+H Dsgn.L= 11.50 ft 1 0.225 0.037 13.22 13.22 98.13 58.76 1.09 1.00 3.23 145,35 87.04 +D+0.750Lr+0.750L+H Dsgn.L= 11.50 ft 1 0.335 0.054 19.70 19.70 98.13 58.76 1.00 1.00 4.66 145.35 87.04 +D+0.750L+0.750S+H Dsgn.L= 11.50 ft 1 0.335 0.054 19.70 19.70 98.13 58.76 1.00 1.00 4.66 145.35 87.04 +D+W+H Dsgn.L= 11.50 ft 1 0.225 0.037 13.22 13.22 98.13 58.76 1.00 1.00 3.23 145.35 87.04 +D+0.70E+H Dsgn.L= 11.50 ft 1 0.225 0.037 13.22 13.22 98.13 58.76 1.00 1.00 3.23 145.35 87.04 +D+0.750Lr+0.750L+0.750W+H Dsgn.L= 11.50 ft 1 0.335 0.054 19.70 19.70 98.13 58.76 1.00 1.00 4.66 145.35 87.04 Steel Beam Fife=C:1PROGRA-2lENERCA-1 ENERCALC,INC.1983.2014,Build:6.14.1.23.Ver:6.14.1.23 LW.#::KW=060021.10 Licensee:STRUCTURAL CONSULTANTS,INC. Description: Review Added Loading on HSS 12x4x1/4 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V Mmax+ Mmax- Ma-Max Mnx Mnx/Omega Cb Rm Va Max Vnx VnxiOmega +D+0.750Lr+0.750L+0.5250E+H Dsgn.L= 11.50 ft 1 0.335 0.054 19.70 19.70 98.13 58.76 1.00 1.00 4.66 145.35 87.04 +D+0.750L+0.750S+0.750W+H Dsgn.L= 11.50 ft 1 0.335 0.054 19.70 19.70 98.13 58.76 1.00 1.00 4.66 145.35 87.04 +D+0.750 L+0.750 S+O.5250 E+H Dsgn.L= 11.50 ft 1 0.335 0.054 19.70 19.70 98.13 58.76 1.00 1.00 4.66 145.35 87.04 +0.60D+W+H Dsgn.L= 11.50 ft 1 0.135 0.022 7.93 7.93 98.13 58.76 1.00 1.00 1.94 145.35 87.04 +0.60D+0.70E+H Dsgn.L= 11.50 ft 1 0.135 0.022 7.93 7.93 98.13 58.76 1.00 1.00 1.94 145.35 87.04 Overall Maximum Deflections-Unfactored Loads Load Combination _ Span Max."-'Defl Location in Span Load Combination Max."+"Deft Location in Span D+L 1 0.1393 5.923 0.0000 0.000 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 5.018 5.159 D Only 3.228 3.179 L Only 1.790 1.980 D+L 5.018 5.159 ,ASTM A554 304 Stainless Steel Rectangular Tube I Buy Online I Cut to Size I No Minim... Page 1 of 2 ISCOUNT S?EEL.coM Discount Steel 1-800-522-5950 • METALS•HARDWARE•WEN•wluw+o•F rton ©2014 Discount Steel.All Rights Reserved. ASTM A554 304 Stainless Steel Rectangular Tube 1-800-522-5950/612-522-5956 -•Select One-- .� �•/�^ Select Your Size: - _ d - , 1 a y.)). Stock Length: NIAE X741 R2y0 /pt[-uy• 3e • ` Q Cut 7o Size: OD ft 0 Q and 0 E in. p-p r .F7e-ye, n All orders are processed in the order In which they are received.After placing an order you will receive order confirmation with an estimated time of when order will be available for pickup or shipment date.If we are currently out of stock on one or more items you purchased,you will be notified via email,and that will Include an • extra 1-3 business days for order processing.Prices,promotions,and availability may vary from in-store to online.While we do our best to provide accurate item availability information,we cannot guarantee in-stock status and availability as item quantities are constantly changing throughout the day. All sales are au bloc(to nvaliahHlty and ml ii Incre as aa. Features ASTM:ASTM A554(Standard Specification for Welded Stainless Steel Mechanical Tubing) Alloy:304 Characteristics:Semi-smooth,dull grey finish.Accurate dimensions throughout length. Workability:Good candidate for some processing techniques.Great corrosion resistance. Specifications Please Hotel Every effort has been made to ensure the reliability of the reported information,and is the result of a number of sources,including vendors and reference materials. Any use of the presented information is the user's responsibility and is intended for educational purposes only. Chemistry Data For 304/304L Stainless Steela 304 Stainless Steel Carbon Manganese Silicon Chromium Nickel Phosphorus Sulfur(S) Other (C) (Mn) (Si) (Cr) (Ni) (P) 0.08 2.0 1.0 18.0-20.0 8.0-10.5 0.045 0.03 - 304L Stainless Steel • Carbon Manganese Silicon Chromium Nickel Phosphorus Sulfur(S) Other (C) (Mn) (Si) (Cr) (Ni) (P) 0.03 2.0 1.0 18.0-20.0 8.0-10.5 0.045 0.03 (a)Iron constitutes the remainder.Amounts Indicated are maximums or ranges,unless indicated. Mechanical Data for 304/304L Stainless Steel Minimum 'Minimum Yield Stainless Steel Type Tensile Strength Hardnessb Strength(ksi) (0.2a/o,ksi) 304 Stainless Steel-Typical Values' 75 30 88 ...-..... 304L Stainless Steel-Typical Values` 70 25 L 88 (b)Rockwell Hardness (c)Contains typical data for all shapes,and does not represent data for any specific shape. http://www.discountsteel.com/items/304 Stainless_Steel_Rectangular_Tube.cfm 3/26/2014 ti. 5; Atlas Grade Data Sheet Steels 4VS : . 304 304L 304H Specified Properties These properties are specified for flat rolled product (plate, sheet and coil) in ASTM A240/A240M. Similar but not necessarily identical properties are specified for other products such as pipe and bar In their respective specifications. Minor changes to 304 and 304L composition limits were made in 2006-7 to harmonise with similar grades specified in ISO and European standards. Corn.osition S.ecification n/o G40Gra:40 c Mn Si P S Cr M9; Ni N 304 min. - - - - - 17.5 - 8.0 - _ - max. 0.07 2.0 0.75 0.045 , 0.030 19.5-_. _ 10:5 0.10 304L min. - - - - - 17.5 - 8.0 - max. .. 0.030 2.0 0.75 _0.045 0.030 19.5 12,0 _ 0.10 304H min. 0.04 - - - - 18.0 - 8.0 - max. 0.10 _ 2.0 0.75 , 0.045 0.030 20.0 10.5 Mechanical Pro, - S.ecification sin•le values are minima exce+t as noted Grade Tensile Yield Strength tIw*eLion Hardness ' Strength ❑.2°ln Priaf 4'a in tJ {i-. (MPh) (MPa) 50mm) Rockwell Brinell B (HR 8) (HB) mill . milli mil; . i'k,lk i'l l,.. 304 515 _ 205 40 92 201 304L 485 170 40 92 201 304H 515 205 40 92 201 304H also has a requirement for a grain size of ASTM No 7 or coarser. Ph sisal.Pro. -rties t ■ical values in the annealed condition Grade Density Elznss:ir Mean Coefficient of Ther,nal 1'hernial Specific Electrical (kt}/m ) Module.-. Cxlhant•:ion ConducIivity Heal iiesistivit•.y (GPa) 0-100°C i '0.3.5"G V-538"C at 100 .at iO0vC . 0-i00.0 (n[�.n�) ! •(llnr/m/°C) (iu i/rh/"C) (}im/m/°C) .(WYm.K:) (W/rn.H) ':(3/kg.K) 304 . H 7900 193 17.2 17.8 18.4 16.3 ® 500 720 Grade S.ecification Corn arison G raid . . I., ,. JNS Euvumarm Swedish .7;ria;3nehe No No li me SS _HS 304 $30400 1.4301 X5CrN118-10 2332 SUS 304 304L S30403 1.4307 X2CrN118-9 2352 SUS 304L 304H S30409 1.4948 X6CrNi18-11 These comparisons are approximate only. The list Is Intended as a comparison of functionally similar materials not as a schedule of contractual equivalents. If exact equivalents are needed original specifications must be consulted. Possible Alternative Grades • •21AtiP liiihy.itrr17 ig ht'b.4:. 11_1;tsiillO. eiid' . - , '?r-.. .. .- .2ru� - •-- . ,_ FP 301/L A higher work hardening rate grade is required for roll formed or stretch formed components. F2OS Lower cost needed in thin gauge sheet and coll. Durinox F2OS also has easier fabrication. 3p3 Higher machinability needed: lower corrosion resistance, formability &weldability are acceptable 316 Higher resistance to pitting and crevice corrosion Is required, In chloride environments _253MA Better resistance high temperatures Is needed. 253MA is optimised for temperatures to 1150°C. 430 A lower cost is required, and the reduced corrosion resistance and fabrication characteristics are _ acceptable. Limitation of Liability The information contained in this datasheet is not an exhaustive statement of all relevant Information. It Is a general guide for customers to the products and services available from Atlas Steels and no representation Is made or warranty given in relation to this document or the products or processes It describes. Revised Jan 2011 Page 2 of 2 www.atlassteels.com.au Atlas Grade Data Sheet a << 5 steels r 304 304L 304H Grade 304 is the standard "18/8" austenitic and pressure-containing applications at stainless; it is the most versatile and most temperatures above about 500°C and up to widely used stainless steel, available in the about 800°C. 304H will become sensitised in widest range of products, forms and finishes. It the temperature range of 425-860°C; this Is has excellent forming and welding not a problem for high temperature characteristics, applications, but will result in reduced aqueous corrosion resistance. Grade 304L, the low carbon version of 304, does not require post-weld annealing and so is Heat Treatment extensively used in heavy gauge components Solution Treatment (Annealing) (about 5mm and over). Grade 304H with Its Heat to 1010-1120°C and cool rapidly. These higher carbon content finds application at grades cannot be hardened by thermal elevated temperatures, The austenitic structure treatment. also gives these grades excellent toughness, even down to cryogenic temperatures. Welding Excellent weldability by all standard fusion Grade 304 can be severely deep drawn without methods, both with and without filler metals. intermediate annealing, which has made this AS 1554.6 pre-qualifies welding of 304 with grade dominant in the manufacture of drawn 308, and 304L with 308L rods or electrodes (or stainless parts such as sinks, hollow-ware and their high silicon equivalents). Heavy welded saucepans. For severe applications It Is sections in Grade 304 may require post-weld common to use special 304DDQ (Deep annealing for maximum corrosion resistance. Drawing Quality) variants. This is not required for Grade 304L. Grade 321 may also be used as an alternative to 304 if Corrosion Resistance heavy section welding is required and post- Very good in a wide range of atmospheric weld heat treatment is not possible. environments and many corrosive media. Subject to pitting and crevice corrosion In Machining warm chloride environments, and to stress A "Ugima" improved machinability. version of corrosion cracking above about 60°C. grade 304 is available in bar products. "Ugima" Considered resistant to pitting corrosion in machines significantly better than standard potable water with up to about 200mg/L 304, giving higher machining rates and lower chlorides at ambient temperatures, reducing to tool wear in many operations. about 150mg/L at 60°C. Consult Atlas Technical Assistance for specific environmental "Dual Certification" recommendations. It is common for 304 and 304L to be stocked in "Dual Certified" form, particularly in plate, pipe There Is usually no difference in corrosion and round bar. These items have chemical and resistance between 304 and 304L. mechanical properties complying with both 304 Heat Resistance and 304L specifications. Such dual certified product may be unacceptable for high Good oxidation resistance in intermittent temperature applications. service to 870°C and In continuous service to 925°C. Continuous use of 304 in the 425- Typical Applications 860°C range is not recommended if Food processing, transport and storage subsequent aqueous corrosion resistance is equipment, particularly in beer brewing, milk important. Grade 304L is resistant to carbide processing and wine making. Kitchen benches, precipitation and can be heated into this sinks, troughs, equipment and appliances. temperature range. Architectural panelling, railings & trim. Grade 304H has higher strength at elevated Chemical containers, including for transport. Heat Exchangers. Woven or welded screens. temperatures so is often used for structural Threaded fasteners. Springs. Revised Jan 2011 Page 1 of 2 www.atlassteels.com.au .R.K.Steels (India) Page 4 of 6 Forging, heading and other hot working should follow uniform heating to 2100-2300 F (1149-1260 C). Rapid cooling is necessary to attain maximum corrosion resistance in finished parts. Cold Working Readily fabricated by most cold working methods, 304 may require intermediate annealing to avoid cracking or tearing from radical deformation. Full annealing should follow any operation to reduce internal stress and optimize corrosion resistance. Annealing 1850-2050 F(1010-1121 C)followed by rapid cooling. Hardening This alloy does not respond to heat treatment. Cold work will cause an increase in both hardness and strength. Physical Data Density(lb/cu. in.) 0.285 Specific Gravity 7.9 Specific Heat (Btu/lb/Deg F - 0.12 [32-212 Deg F]) Electrical Resistivity 432 (microhm-cm (at 68 Deg F)) Melting Point(Deg F) 2650 Modulus of Elasticity Tension 28 Mechanical Data Form Strip Condition Extra Full Hard Temper 70 http://www.rksteels.com/SS304.htm 3/26/2014 STRUCTURAL Job Title .-52.e-07e..15" !i N/7 76 Job no. /`/—e)/Z CONSULTANTS INCORPORATED Client .DIPft By /54-r-) Date Y// 54 Sheet of am-rrce Gil,,,oia 6, /''i5oi,4-44-75-0 L.4-p .F (E) E" �G� • t = S /n"kp,/✓6 2,o VLI xG -/iia,/uw2, ! Fc. =3Soo P -3aK-fy L P ac -=- /, / K S.v /,2'' £.=L / /K ; ce•arf%si7• aee/k nor/6 ,J /744-.,0hOfri / 9'17 /n-r1,-v/97/ S /, -( - ,,.in. = ; Z. 00t,75 ( x/2) = , v27©ii Lo oy217/7' Ppb/OQD 3- r- Fy 33si m = r/ 7' 1- 6� r f (/ 2 —=/,Z fL, ' 1. 2` � 2,�J� L G,1.l /" / /11n { = ]20`l ��.'� } / `'b o,9 o'?5 ( ,2) /95.31, t /f /,/)(/,2 )67,, ) /� = 32 / / $ //K dK G=. Z 5 e Er 5"ace-67&40 4 F71,47 D Z.: /-/er'P$1,,A4 3400 E.Bayaud,#300,Denver,CO 80209 303/399-5154 FAX 303/333-9501 STEEL DECK INSTITUTE • COMPOSITE DECK DESIGN HANDBOOK March 1997 R.B.Heagler,P.E. L.D.Luttrell,Ph.D.,P.E. W.S.Easterling,Ph.D.,P.E. STEEL DECK INSTITUTE P.O. Box 25, Fox River Grove, IL 60021-0025 Phone: 847/458-4647 Fax: 847/458-4648 The equations in figures 1,2,and 3 are general. It is the responsibility of the user to apply the correct load factors to the various combinations of loads. Example problem 1 shows how the factors are applied to a three span condition.The maximum unshored spans for various slabs and deck combinations are shown in the tables.The LRFD calculations for the maximum spans use the American Iron and Steel Institute(AISI)load factors of 1.6 for concrete weight;1.4 for men and equipment;and,1.2 for deck weight. The resistance(4)factors from the AISI are 0.95 for bending,and 0.90 or 1.0 for shear depending on the web length to thickness ratio. The tabu- lated values for shear(Vii)are factored. Web crippling is checked at interior supports based on a 5" bearing width. In most cases steel beam flanges will be at least 5" wide,but even if they are less than 5" the temporary nature of the loading makes the calculation conservative(see figure 9). Web crippling at exterior supports is not a factor because if end crippling occurs the deck simply becomes hinged which is assumed in any case. For the calculation of maximum unshored spans web crippling is checked using ASD procedures for the deck uniformly loaded with concrete,deck weight,and 20 psf construction load, The LRFD load factors and the factor provide unacceptable results. This is the only instance where ASD is used in preparing the tables. Additionally,web crippling loads are very temporary so the traditional 1/3 stress increase is allowed in the ASD procedure. Slip off is much more critical so deck ends must be well connected to the framing members. Combined bending and shear is checked at the interior supports on multispan deck. Form deflection under the uniform loading of concrete and deck weight is limited to 1/180 of the span or 3/4"; no additional temporary construction loads or concrete loads are included in the calculations for the tables. For the purpose of the tables,the supporting structure is assumed to remain level as the frame flexibility is not known nor can any camber be anticipated. For concrete quantity calculations refer to the SDI publication Metal Deck and Concrete Quantities, 1994. B. Concrete; welded wire fabric; deck surfaces. The tables have been generated by using a concrete strength(Pt)of 3000 psi for both lightweight(115 pcf)and normal weight(145 pcf)concrete.Neither higher nor lower strength concrete will have much effect on the table values shown.However,if the measured concrete strength falls much below 2500 psi,the designer should check the total load carrying system including composite beams. Welded wire fabric has a beneficial effect on composite slabs.Experience has shown that at least a 10% load capacity increase is experienced when compared to deck/slabs without the welded wire fabric. The minimum wire mesh is 0.00075 times the area(per foot of width)of the concrete above the deck flutes. The wire mesh thus used is not enough to provide full negative bending reinforcement over supports so,unless the negative reinforcement is designed according to ACT requirements,the deck slabs are to be considered as simple spans. If the mesh is held close to the surface of the concrete(3/4" cover)over supports it will provide good crack control. Whether or not negative bending steel is designed,there should be sufficient steel area (0.00075 times the concrete area per foot above the flutes)in the transverse direction to help control shrinkage cracking. Although most testing was done with galvanized deck,deck that is not galvanized,and that has either a bare steel or rusted surface,will carry loads equivalent to galvanized deck provided that all other parameters (yield strength,area,etc.)are equal.The tables are intended to cover bare or rusted surfaces as well as galvanized. A painted surface in contact with the concrete would require a special investigation. 4 C. Explanation of the tables. The tables cover the generic open fluted trapezoidal sections shown in figure 4. •: , =:e ., is -• 1.5"x 6" 1.5"x 6" Inverted 1.5"x 12" ;aced;° `+,a::ao `•ad� 2"x12" 3 x 12" figure 4 COMPOSITE DECK PROFILES These profiles are described as 1.5" x 6", 2" x 12", etc. which indicate the depth and the rib spacing (pitch). Other cross sections may also be suitable for analysis by the methods shown in this handbook but have not been part of the SDI test program. Cellular deck, made by attaching a bottom plate to one of the ribbed profiles shown in figure 4 can pro- duce a section capable of greater unshored spans than shown in the tables. These cellular sections can be analyzed for composite live load by considering only the top ribbed sec- tion-the bottom plate simply hangs on for the ride. Each table is designed to cover one deck profile, one deck yield stress (either 33 ksi or 40 ksi), and concrete densities of 115 (structural light weight) and 145 pcf(normal weight). The strength,f'c, of each concrete type is taken as 3000 psi. These parameters affect the maximum spans of the deck as a form and the load carrying capacity of the composite slab system. The deck properties shown are values for the generic SDI profiles. The section property calculations have been done in accordance with the AISI specifications. All SDI member manufacturers of 1993 participated in the research programs at Virginia Polytechnic Insti- tute and at West Virginia University that are the basis of the tables. The section properties shown may not exactly match any individual manufacturer's profile but will be within 5% of those published for that profile by the manufacturer. Individual manufacturers can, by using the SDI methods, produce tables that apply to other gages or strengths within the limits of 16 gage (0.0598 in.) to 22 gage (0.028 min. inches) and yield strengths of 33 ksi to 40 ksi. In the deck property listings t is the base metal design thickness; w is the deck 5 weight in psf,A5 is the steel area in square inches, I is the moment of inertia in inches',Sp and Sr, are the section moduli for positive and negative bending in inches3,Rb is the ASD interior bearing capacity in pounds inluding the 33% increase for temporary loading.OVn is the fac- tored shear capacity in pounds. As,Rb,4N and the section properties are per foot of width. Rb is based on 5" of bearing. A bearing width of 5" was chosen because most structural steel flanges will equal or exceed this width. If a narrower flange (such as 4")is encountered, the chances of web crippling controlling the span are still small but,if there is concern, the indi- vidual manufacturer may be consulted. See figure 9 for ASD bearing and shear values. The required number of studs per foot shows the number of 3/4" diameter shear studs required to anchor the deck to achieve the full moment of the section. It is estimated that the number of studs required is given by the equation: NS =Fy(As—Awebs/2-Abf)/(0.221(f'cEc)1/2) Ns is the required number of studs per foot AS = the steel area per foot of width Aweb= the deck web area per foot Abf = the deck bottom flange area per foot F = the deck (steel) yield strength, ksi f Y = the concrete strength, ksi E� = the concrete modulus in ksi • The denominator of the above equation is equation I5-1 of the AISC LRFD Manual using a 3/4" stud. The As shown for the deck is based on the average blank width per foot minus an allow- ance for sidelaps and then rounded to the nearest 0.5 inches. The resulting blank widths are then somewhat conservative for calculating slab capacities. The calculation for the required number of studs also uses As and a low value (for slab strength calculations) also produces a lower answer for the required number of studs; however, the calculation of the stud number is by far less accurate and less important than the slab strength so the result is that the areas are conservative. The tabulation then provides the composite properties of the deck-slab combinations for the commonly used slab depths. The following generic profile information is used to determine the properties. Profile Blank width, l 1- lwebsa—Ibf r* 1.5" x 6" 16" 9.3" 0.65" 1.5" x 6" inverted 16" 5.9" 0.85" 1.5" x 12" 14.5" 7.7" 0.75" 2" x 12" 15" 7.7" 1.00" 3" x 12" 17" 8.8" 1.50" *measured from the top flange of the steel deck AS = It. Where t is the metal thickness and 1 is the developed width per foot of deck as siown in the table above. 6 s i . The calculation for the composite section properties requires the location of the centroid of the steel deck. The centroid of any of the symmetric sections is at mid-depth of the deck; the centroid of the 1.5" x 6" deck is 0.65" from the top and 0.85" from the bottom. The inverted 1.5" x 6" deck would of course have the centroid at 0.85" from the top. In calculating the I of the composite section the steel deck I is taken as the published bare deck value which is based on the reduced effective width of compression elements. It would be permissible to use the unreduced I since all compression zones are stabilized by concrete. The total slab depth (inches) measured from the bottom of the deck to the top of the slab is in the first column. 4)Mnf is the "full" factored moment that is obtained when sufficient (full required number) of shear studs are present on the beams and the concrete has at- tained its design strength. For flexure and for shear the 4)factor for the composite slab is 0.85 and standard reinforced concrete design is used. 4)M, = 4)AsF (d - a/2), where d is the distance from the top of the slab to the centroid of the deck and, a= AsFy/(0.85f'�b), where b is the width of the compression zone of the concrete (12"). The 4)M, value is the same for normal weight and lightweight concrete as long as the required number of studs are present. A, is the concrete area (square inches per foot of width) available for shear; it is obtained as shown in figure 5. Since negative bending rebars may or may not be used, it is up to the designer to check whether concrete area above any rebars should be deducted from the concrete area available to resist shear. The next sets of composite values depend on the concrete density and the properties for /• - 'L / ".1 I :, 1 I•... 1 total slab depth,h / 1 / ' • .1 J A •.l /• • '1 deck depth shaded areas represent area of pitch I concrete available to resist shear overlapping areas but if the slab depthA . : causes the areas to overlap then the area is adjusted to not exceed the shape provided with the deck pitch pitch as the top dimension. .%. 1� TI .7 rr •• figure 5 SHEAR AREA OF CONCRETE 7 bm l . 1 bm=b'+2t`+2t` r r _ `�Y.�di.SAY•:i' .�?:!:%y:!i!i:':!.�`:':!%ti:.'..!.!{.r }:{!ti%ir�i%!-.,.�}:}ti:_Y_i•. :n ti�.•_'•••%:R%'�s::;:;y!�'ti{!:::�%:_ {{�ti}:::r r • • • • • • '•• '• 4 'v - I 1 • • . • • • • •h • , I. . i • • .4 • • tt=thickness of a durable topping(if none is used t,=0) distribution steel bn,=b2+2t.+2t, single span bending: be=bm+2(1-x/1)x;where x is the location of the load. continuous span bending: be=bm+4/3(1-x//)x shear: b.=bm+(1-x/1)x P but in no case shall be>8.9(t./h),feet. weak axis Moment=Pipe be 15w w=1+b3; but not to exceed 1 / 2 Curved lines - "' b, II:. represent distributuion of force. ti •p i .1 figure 6 CONCENTRATED LOAD DISTRIBUTION 10 33 ksi (yield)steel, f'c=3ksi ~o:0.: '., ;� aro•° o_,;� Q.: "` ; oo:' Q 4 :�1,4 O • ;�.• : r.t• Q � � Slab Depth 12" 24" and 36" cover widths (36" shown) SECTION PROPERTIES OF 2"X 12" DECK T ' REO'D STUDS/FT. GAGE I t W A. I S, S. Re 4)V„ NW LW 22 n 0.0295 1.5 0.440 I 0.338 0.284 0.302 951 1990 0.36 0.43 20 0.0358 1.8 0,540 0.420 0.367 0.3871346 2410 0.43 0.52 19 0.0418 2.1 0.630 0.490 0.445 0,458 1772 2810 0.51 0.61 18 0.0474 2.4 0.710 0.560 0.523 0.529 2239 3180 0.57 0.69 16 0.0598 3.1 0.900 0.700 0.654 0.654 3292 39 0 0.72 0.87 COMPOSITE DATA OF 2" x 12" DECK NORMAL WEIGHT CONCRETE(145 PCF) LIGHT WEIGHT CONCRETE(115 PCF) Slab eM", W S. 1,,, QM", 4V,,, Max.unshored spans,ft. W S� I,, 4M,,, (V", Max.unshored spans,ft depth in.k in? psf in. in! in.k lbs. 1SPAN 2SPAN 3SPAN psf In.3 In.4 in.k lbs. 1SPAN 2SPAN 3SPAN 4.50 40.27 32.6 42 1.05 5.9 29.40 5030 5.82 7.83 7.92 34 1.00 4.4 28.13 4270 6.32 8.46 8.56 5.00 46.44 37.5 48 1.23 8.0 34.53 5480 5.54 7.47 7.56 38 1.18 6.0 33.12 4610 6.03 8.09 8.19 W 5.25 49.53 40.0 51 1.32 9.2 37.16 5720 5.41 7.31 7.39 41 1.27 6.9 35.69 4790 5.90 7.93 8.02 O 5.50 52.61 42.6 54 1.42 10.5 39.81 5960 5.30 7.16 7.24 43 1.36 7.9 38,29 4970 5.77 7,77 7.86 < 6.00 58.78 48.0 60 1.61 13.5 45.21 6460 5.09 6.89 6.97 48 1.55 10.1 43,58 5340 5.55 7.49 7.58 o 6.25 61.87 50.8 63 1.71 15.3 47.95 6720 5.03 6.76 6.84 50 1.65 11.3 46.26 5540 5.45 7.36 7.45 N 6.50 64.95 53.6 66 1.81 17.1 50.70 6980 4.97 6.65 6.72 53 1.75 12.7 48.97 5730 5.36 7.24 7.32 7.00 71.12 59.5 73 2.01 21.2 56.26 7530 4.85 6.43 6.51 56 1.94 15.7 54.44 6150 5.18 7.01 7.10 7.25 74.21 61.9 76 2.11 23.5 59.07 7750 4.79 6.32 6.41 60 2.04 17.4 57.20 6310 5.10 6.91 6.99 7.50 77.29 64.3 79 2.21 26.0 61.88 7970 4.74 6.22 6.31 62 2.14 19.2 59.97 6480 5.05 6.81 6.89 4.50 48.60 32.6 42 1.26 6.3 35.43 5450 6.81 8.97 9.27 34 1,20 4.8 33.77 4560 7.42 9.71 #0.03 5.00 56.18 37.5 48 1.48 8.6 41.65 5900 6.47 8.55 8.83 38 1.42 6.5 39.80 5030 7.07 9.28 9.59 5.25 59.96 40.0 51 1.60 9.8 44.84 6140 6.32 8.36 8.63 41 1.53 7.4 42.91 5210 6.91 9.09 9.39 U.1 5.50 63.75 42.6 54 1.71 11.3 48.07 6380 6.18 8.18 8.45 43 1.64 8.5 46.05 5390 6.76 8.91 9.20 < 6.00 71.32 48.0 60 1.95 14.5 54.63 6880 5.94 7.85 8.11 48 4.87 10.9 52.47 5760 6.49 8.57 8.86 (7 6.25 75.11 50.8 63 2.07 16.3 57.96 7140 5.86 7.70 7.95_ 50 1.99 12.2 55.73 5960 6.37 8.42 8.70 2 6.50 78,90 53.6 66 2.19 18.2 61.31 7400 5.79 7.56 7.80 53 2.10 13.7 59.02 6150 6.26 8.27 8.55 N 7.00 86.47 59.5 73 2.43 22.6 68.09 7950 5.65 7.29 7.53 58 2.34 16.9 65.67 6570 6,05 8.00 6.27 7.25 90.26 61.9 76 2.55 25.0 71.50 8170 5.58 7,17 7.41 60 2.46 18.7 69.03 6730 5.95 7.87 8.14 7.50 94.05 64.3 79 2.67 27.6 74.93 8390 5.52 7.05 7.28 62 2.58 20.6 72.41 6900 5.89 7.75 8.01 4.50 55.85 32.6 42 1.45 6.7 40.69 5850 7.65 9.76 10.08 34 1.38 5.4 38.67 4560 8.35 10.55 10.91 5.00 54.68 37.5 48 1.71 9.0 47.87 6300 7.26 9.30 9.61 38 1.63 6.9 45.61 5240 7.94 10.10 10.43 5.25 69.10 40.0 51 1.84 10.4 51.56 6540 7.09 9.09 9.39 41 1.75 7.9 49.19 5590 7.76 9.89 10.22 W• 5.50 73.52 42.6 54 1.97 11.9 55.30 6780 6.93 8.90 9.19 43 1.88 9.0 52.83 5790 7.59 9.69 10.01 < 6.00 82.35 48.0 60 2.24 15.2 62.90 7280 6.65 8.54 8.83 48 2.15 11.6 60.25 6160 7.29 9.33 9.64 • 6.25 86.77 50.8 63 2.38 17.1 66.78 7540 6.56 8.38 8.66 50 2.28 13.0 64.02 6360 7.15 9.16 9.47 C) 6.50 91.19 53.6 66 2.52 19.2 70.65 7800 6.48 8.23 8.50 53 2.42 14.5 67.83 6550 7.02 9.00 9.30 ▪ 7.00 100.03 59.5 73 2.80 23.8 78.50 8350 6.32 7.94 8.20 58 2.69 17,9 75.53 6970 6.78 8,71 9.00 7.25 104.44 61.9 76 2.94 26.3 82.46 8570 6.24 7.81 8.07 60 2.83 19.8 79.42 7130 6.67 8.57 8.86 7.50 108.86 64.3 79 3.08 29.0 86.45 8790 6.17 7.68 7.94 62 2.97 21.8 83.33 7300 6.59 8.44 8.72 4.50 62.08 32.6 42 1.62 7.0 45.34 6080 8.42 10.48 10.83 34 1.53 5.4 42.99 4560 9.20 11.33 11.71 5.00 72.04 37.5 48 1.90 9.5 53.36 6670 7.98 9.99 10.32 38 1.81 7.3 50.72 5240 8.75 10.84 11,20 5.25 77.02 40.0 51 2.05 10.9 57.48 6910 7.79 9.77 10.10 41 1.95 8.3 54.72 5590 8.54 10.62 10.97 O 5.50 82.00 42.6 54 2.20 12.4 61.66 7150 7.61 9.56 9.88 43 2.10 9.5 58.78 5950 8.35 10.41 10.76 < 6.00 91.95 48.0 60 2.50 15.9 70.18 7650 7.30 9.18 9.49 48 2.39 12.1 67.07 6530 8.01 10.02 10.36 • 6.25 96.93 50.8 63 2.66 17.9 74.50 7910 7.20 9.01 9.31 50 2.54 13.6 71.29 6730 7.86 9.84 10.17 • 6.50 101.91 53.6 66 2.81 20.0 78.85 8170 7.11 8.85 9.14 53 2.69 15.2 75.55 6920 7.71 9.68 10.00 7.00 111.87 59.5 73 3.13 24.8 87.66 8720 6.93 8.54 8.82 58 3.00 18.8 84.17 7340 7.44 9.36 9,67 7.25 116.85 61.9 76 3.28 27.4 92.10 8940 6.85 8.40 8.68 60 3.16 20.7 88.52 7500 7.32 9.21 9.52 7.50 121.83 64.3 79 3.44 30.2 96.57 9160 6.77 8.26 8.54 62 3.31 22.8 92.91 7670 7.24 9.07 9.38 4.50 62.08 32.6 42 1.99 7.7 45.34 6080 9.58 11.63 12.02 34 1.88 6.0 42.99 4560 10.49 12.57 12.99 5.00 72.04 37.5 48 2.35 10.4 53.36 6980 9.08 11.10 11.47 38 2.22 8,0 50,72 5240 9.96 12.03 12.43 W 5..25 77.02 40.0 51 2.53 11.9 57.48 7450 8.85 10.85 11.22 41 2.40 9.2 54.72 5590 9.72 11.78 12.18 O 5.50 82.00 42.6 54 2.72 13.6 61.66 7940 8.65 10.63 10.98 43 2.58 10,5 58.78 5950 9.50 11.55 11.94 • 6.00 91.95 48.0 60 3.10 17.4 70.18 8460 8.29 10.21 10.55 48 2.94 13.4 67.07 6700 9,11 11.13 11.50 • 6.25 96.93 50.8 63 3.29 19.5 74.50 8720 8.17 10.02 10.35 50 3.13 15.0 71.29 7090 8.93 10.94 11.30 • 6.50 101.91 53.6 66 3.48 21.8 78.85 8980 8.07 9.84 10.17 53 3.32 16.8 75.55 7490 8,76 10.75 11.11 7.00 111.87 59.5 73 3.88 27.0 87.66 9530 7.86 9.50 9.82 58 3.71 20.6 84.17 8150 8.45 10.40 10.75 7.25 116.85 61.9 76 4.08 29.8 92.10 9750 7.77 9.35 9.66 60 3.90 22.8 88.52 8310 8.31 10.24 10.59 7.50 121.83 64.3 79 4.28 32.8 96.57 9970 7.67 9.20 9.50 62 4.10 25.1 92.91 8480 8.22 10.09 10.43 32