Loading...
HomeMy WebLinkAboutB18-0060_REV1 approved documents_1539699519.pdf 75 South Frontage Road Construction West, TOWN OF VAIL B18-0060/Revision 001 Vail, CO 81657 Issued: 10/16/2018 TOWN of VAILOFOffice:970.479.2139 Inspections: inspections@vailgov.com Property Information Address: 551 N FRONTAGE RD W(210106302013) Unit#: ParcelNumber: 210106302013 LegalDescription: RED SANDSTONE ELEMENTARY SCHOOL Contacts ContactType: Applicant Full Name: M.Gonzalez Address: 56 Edwards Village Boulevard 210 Edwards,CO 81632 Phone: 9707661470 ContactType: PropertyOwner Full Name: EAGLE COUNTYSCHOOL DISTRICTRE-50J Address: Phone: None ContactType: Site Superintendent Full Name: Tom Highsmith Address: 6950 S Potomac St Centennial,CO 80112 Phone: 303-751-1478 ContactType: Site Superintendent Full Name: Justin Fahnestock Address: 6950 S Potomac StreetCentennial,CO 80112 Phone: 3037511478 Contractor Contractor Type: General Company: HaseldenConstructiorinc State License#: Phone: 303-751-1478 Projectlnformation ProjectName: Red Sandstone Elementary2017 REV1-Revisions to Civil Drawings.Geometryof site stairs,waterline location revisions,relocationof ProjectDescription: public utilities onwestend of site,existing storm outletrevisions,correctionof waste line size per actual vs drawings,curb and gutterconnectionaddition. Fees Paid Conditions CONDITIONS UNDERWHICH PERMITS BECOME VOID: If construction is not begun within6 months from the date permitwas issued. If more than 5 months elapses betweeninspections. Ifincorrectinformationis given on the applicationat the time the permitwas issued. -All penetrations in walls,ceilings,and floors to be sealed withan approved fire material. -A copyof the soils compactiontestwill be required at time of a footing inspection. '',./A, .. . illP ,,,• dit, ChristopherJarecki-Townof Vail Building Official NOTICE: By issuance of this Permitthe applicantagrees to complywithall Titles of the Townof Vail Code and all applicable State and Federal law. Failure to do so will void this Permitand the applicantshall forfeitall applicable fees. 5TRE55CRN3210 Astrozon Boulevard Colorado Springs,Colorado 80910 ell qty and Sbucturell PreceptConcrete Phone: 719.390.5041 MWORN Comp y Fax: 719.390.5564 Precast/Prestressed Concrete Calculations Prepared For: Red Sandstone Elementary Parking Vail, CO 6209 03-30-2018 Project Name V I HASELDEN -t---9,11,0 0 LJce , II RS Parking Garage b ggxsTxugilgx =O�0 ••••••••• � ++ G4•••p 1 KU4k, ell++e IID REVIEWED El REJECTED 0 APPROVED ❑REVISE NID 521 ^� AS NOTED RESUBMT A / 14. i BY Eric Sparwasser DATE 4/3/2018 1' 11 • SUBMITTAL# 034100-06 SPEC 034100 1 00110 1+ ' fp il Subcontractor review Is p or general pons ole or the Contract d Doeomns,s. t�� = ,01001% n ( Subcontractor or Supplier are responsible s, eyingall f field dimensions, 1 • Aty 0 V f affected d construction means,methods,sequences and coordination with of f ecled trades.This review does not alter,supersede or replace the ".\ii,,,,‘"v0 requirements of the Subcontract Agreement or Purchase Agreement.This review does not relieve the Architect and/or Engineers of their contractual responsibilities. SUBMITTAL CALCULATIONS LOG Submittal # Date Purpose Remarks 1 03/30/2018 Approval The seal of fabricator's professional engineer affixed hereto applies only to this firm's fabricated products designed to meet structural criteria provided by the Engineer of Record. It is requested that the Engineer of Record review this work for conformance with the design concept of the project and compliance with the information given in the contract documents. 4660 5TRE55CON Architectural and Structural Precast Concrete An DrCOr Company TABLE OF CONTENTS 1.0—Summary of Design Parameters Included 2.0— Double Tee Design Included 3.0— Flat Slab/ Hollow Core Design Included 4.0— Beam Design Included 5.0—Spandrel Design Included 6.0—Column Design Included 7.0—Wall Design Included 8.0—Special Other Design N/A 9.0—Connection Design Included eg 5TRE55CON Architectural and Structural Precast Concrete An ENCOM Company 1.0 SUMMARY OF DESIGN PARAMETERS Section General Description 1.1 Design Team 1.2 Design Codes and Standards 1.3 Material Properties 1.4 Loads and Design Criteria el. 5TRE55CON Architectural and Structural Precast Concrete An ENCox Company 1.1 Design Team 1.1.1 Project Manager • Mark Glass 1.1.2 Project Engineer • Fadjar Kusumo 1.1.3 Project Coordinator • Ray Sherrier 1.2 Design Codes and Standards 1.2.1 Building Codes • 2015 International Building Code (IBC). 1.2.2 Concrete Design Codes • ACI 318— 14 Building Codes and Commentary. • ACI 315—99, Details and Detailing of Concrete Reinforcement. • CRSI Manual of Standard Practice. 1.2.3 Steel Design Codes • AISC Steel Construction Manual, 13th E d. • AISC Steel Construction Manual, ASD 9th E d. • AISC Steel Construction Manual, LRFD 3rd E d. 1.2.4 Welding Design Codes • AWS Structural Welding Code D1.1—(2008) (Steel). • AWS Structural Welding Code D1.4—(2008) (Reinforcing Steel). I* el. 5TRE55CON Architectural and Structural Precast Concrete An ENCox Company 1.2.5 Design Loads • ASCE 7— 10, Minimum Design Loads for Buildings and Other Structures. • ASCE 37 —02. Design Loads on Structures During Construction. • Sheet S1.0 of Contract Drawings—Structural engineer's general notes. 1.2.6 Prestressed / Precast Concrete Design Codes • PCI MNL— 120, Design Handbook, 8th Ed. • PCI MNL— 138, Precast Connections Manual. • PCI TR -7—05, PCI Standard Design Practice. • PCI MNL— 127, Erectors Manual. • PCI MNL— 116, Quality Control Manual for Precast and Prestressed Concrete. • PCI MNL— 117, Quality Control Manual for Architectural Precast and Prestressed Concrete. • PCI MNL— 135, Tolerance Manual. • PCI MNL— 122, Architectural Precast Concrete Design Handbook, 3rd Ed. • PCI MNL— 129, Parking Structures. • PCI MNL— 124, Design for fire Resistance of Precast Prestressed concrete. 1.3 Material Properties 1.3.1 Concrete 1.3.1.1 Precast • Minimum Compressive Strength (Stripping) = 2,500 psi • Minimum Compressive Strength (28 Day) = 5,000 psi or as required by design specified in the design summaries 1.3.1.2 Prestressed I* elo 5TRE55CON Architectural and Structural Precast Concrete An ENCox Company • Minimum Compressive Strength (Stripping) = 3,500 psi • Minimum Compressive Strength (28 Day) = 5,000 psi or as required by design specified in the design summaries 1.3.1.3 Cast in Place (Topping) • Minimum Compressive Strength (28 Day) = 5,000 psi 1.3.1.4 Unit Weights • Hard Rock Concrete (HR) = 150 pcf • Light Weight Concrete (LW) = 118 pcf • Hybrid Concrete (LW/HR) = 129— 135 pcf 1.3.1.5 Cement • ASTM C150,Type Ill 1.3.1.6 Fly Ash • ASTM C618,Type C 1.3.2 Steel 1.3.2.1 Reinforcing Bars • ASTM A615, Grade 60 for sizes 8-11 • ASTM A706 (low Alloy), Grade 60 for sizes 3-7 1.3.2.2 Prestressing Tendons • ASTM A416,7—Wire Low— Lax,fpu = 270 ksi 1.3.2.3 Welded Wire • ASTM A185, Fy = 65 ksi • ASTM A82-90 = 60 ksi I* el. 5TRE55CON Architectural and Structural Precast Concrete An ENCox Company 1.3.2.4 Structural Steel • ASTM 36, Structural Carbon Steel, Fy= 36 ksi • ASTM 53, Tube Sections, Fy= 46 ksi 1.3.2.5 HAS Headed Anchor Studs — • ASTM A108-07, A29, A276, A493, A496,A479 A1022, • Minimum Fy (1/4"—3/8" diameter stud) = 49 ksi • Minimum Fy (1/2"— 1" diameter stud) = 51 ksi 1.3.3 Grout • ASTM C— 1107, Grade B 1.4 Loads and Design Criteria 1.4.1 Wind • Risk Category = II • Basic Wind Speed = 115 mph (3-second gust) • Exposure Category = C 1.4.2 Seismic • Risk Category = II • Importance Factor= 1 • Design Spectral Response Coefficient, SDs= 0.273 • Design Spectral Response Coefficient, Sol = 0.116 • Structural Seismic Lateral System = Ordinary precast shear wall, R = 3 • Seismic Design Category = B • Design base shear= 830k I* el. 5TRE55CON Architectural and Structural Precast Concrete An ENCox Company 1.4.3 Snow • Snow load = 100 psf(Flat roof snow load) 1.4.4 Gravity Dead Loads • Precast Self Weight (HR) = 150 pcf • Topping = 37.5 psf(3"); 62.5 psf(5") • Superimposed Dead Load = 10 psf(Garage) = 15 psf(Stair) 1.4.5 Gravity Live Loads • Passenger vehicle= 40 psf • Stair live load = 100 psf • Concentrated load = 3000 lbs on 4.5"x4.5" (floor); 10000 lbs/wheel (roof) Caterpillar 950 1.4.6 Fire Rating • Fire rating = 0 hour 1.4.7 Soil Pressure • Soil pressure = 65 psf/ft • Horizontal pressure from surcharge = 57 psf/ft I* elo 5TRE55CON Architectural and Structural Precast Concrete An ENCox Company 1.4.8 Future vertical expansion • Gravity along grid A & D: Dead load = 200 k(min), 250 k(max) Live load = 125k Snow load = 95k • Lateral force: 265 k along grid 2 and 10 (2) 265k along grid A • Vertical force due to lateral force: 365k at 2-A, 2-B, 10-A,and 10-B 270 k at 4-A, 5-A, 7-A, and 8-A. I* 926M, 930M, 938M Wheel Loader SpecificationsA 1.4.9 Dimensions with Bucket A A 'Ilir 13 ' 12 �� � �pA 2ii .� T 21 i 11 10 F 14 1 = 22 o T' Ilii 25 - 'I 16 i 15 4 \� y v v 4 <—7 6 p < 8 18 < 20 . < 5 > *Vary with bucket. Standard Lift **Vary with tire. 926M 930M 938M ** 1 Height:Ground to Cab 3340 mm 10'11" 3340 mm 10'11" 3340 mm 10'11" ** 2 Height:Ground to Beacon 3707 mm 12'1" 3707 mm 12'1" 3707 mm 12'1" ** 3 Height:Ground Axle Center 685 mm 2'2" 685 mm 2'2" 685 mm 2'2" ** 4 Height:Ground Clearance 397 mm 1'3" 397 mm 1'3" 386 mm 1'3" * 5 Length:Overall 7451 mm 24'5" 7530 mm 24'8" 7656 mm 25'1" 6 Length:Rear Axle to Bumper 1986 mm 6'6" 1993 mm 6'6" 1968 mm 6'5" 7 Length:Hitch to Front Axle 1500 mm 4'11" 1500 mm 4'11" 1525 mm 5'0" 8 Length:Wheel Base 3000 mm 9'10" 3000 mm 9'10" 3050 mm 10'0" * 9 Clearance:Bucket at 45° 2885 mm 9'5" 2828 mm 9'3" 2834 mm 9'3" **10 Clearance:Load over Height 3330 mm 10'11" 3331 mm 10'11" 3354 mm 11'0" **11 Clearance:Level Bucket 3580 mm 11'8" 3580 mm 11'8" 3641 mm 11'11" **12 Height:Bucket Pin 3907 mm 12'9" 3907 mm 12'9" 3969 mm 13'0" **13 Height:Overall 5076 mm 16'7" 5147 mm 16'10" 5273 mm 17'3" *14 Reach:Bucket at 45° 1024 mm 3'4" 1064 mm 3'5" 1146 mm 3'9" 15 Carry Height:Bucket Pin 460 mm 1'6" 460 mm 1'6" 473 mm 1'6" **16 Dig Depth 100 mm 3.9" 100 mm 3.9" 101 mm 3.9" 17 Width:Bucket 2550 mm 8'4" 2550 mm 8'4" 2750 mm 9'0" 18 Width:Trcad Center 1930 mm 6'3" 1930 mm 6'3" 2083 mm 6'10" 19 Turning Radius:Over Bucket 5924 mm 19'5" 5946 mm 19'6" 6134 mm 20'1" 20 Width:Over Tires 2540 mm 8'4" 2540 mm 8'4" 2693 mm 8'10" 21 Turning Radius:Outside of Tires 5402 mm 17'8" 5402 mm 17'8" 5546 mm 18'2" 22 Turning Radius:Inside of Tires 2851 mm 9'4" 2851 mm 9'4" 2843 mm 9'3" 23 Rack Angle at Full Lift 54° 54° 54° 24 Dump Angle at Full Lift 50° 49° 49° 25 Rack Angle at Carry 45° 45° 46° 26 Departure Angle 33° 33° 33° 27 Articulation Angle 40° 40° 40° Unless otherwise noted,all Standard Lift dimensions and specifications listed are for a machine configured with the following: Optional Equipment Full Fluids,80 kg(176 lb)Operator,Secondary Steering,Ride Control,Crankcase, Power Train and Driveshaft Guards,Bucket with Bolt-on Cutting Edge Tires—Michelin 20.5R25(L-3)XHA2 20.5R25(L-3)XHA2 20.5R25(L-3)XHA2 Pressure in Front Tires 4.14 bar 60 psi 4.14 bar 60 psi 4.48 bar 65 psi Pressure in Rear Tires 2.76 bar 40 psi 2.76 bar 40 psi 2.76 bar 40 psi Counterweight Group Heavy Heavy Heavy 16 Operating Specifications 1.4.9.1 Operating Specifications with High Dump Buckets - z Pin On A 7 / ® 5 _ r Fusion s LI ' Ila4111.1 ISO 23727 Pin On Fusion ISO 23727 High Lift 926M 930M 938M 926M 930M 938M 926M 930M 938M 926M 930M 938M Rated Capacity m3 3.0 3.5 4.1 3.0 3.5 4.1 3.0 3.5 4.1 yd3 4.0 4.6 5.4 3.9 4.6 5.4 3.9 4.6 5.4 Capacity-Rated at 110% m3 3.3 3.9 4.5 3.3 3.9 4.5 3.3 3.9 4.5 Fill Factor yd3 4.4 5.0 5.9 4.3 5.0 5.9 4.3 5.0 5.9 Bucket Width mm 2528 2728 3030 2528 2728 3032 2528 2728 3032 ft/in 8'3" 8'11" 9'11" 8'3" 8'11" 9'11" 8'3" 8'11" 9'11" Nominal Material Density kg/m3 962 946 1062 954 915 916 885 867 878 110%Fill Factor lb/yd3 1,604 1,605 1,790 1,615 1,553 1,544 1,498 1,473 1,480 1 Length:Overall mm 7907 7914 8044 7913 7986 8126 8176 8183 8313 +642 +794 +737 ft/in 25'11" 25'11" 26'4" 25'11" 26'2" 26'7" 26'9" 26'10" 27'3" +2'1" +2'7" +2'5" 2 Dump Clearance: mm 4252 4252 4264 4275 4332 4354 4399 4523 4539 +440 +568 +545 Full Lift Rolled Out ft/in 13'11" 13'11" 13'11" 14'0" 14'2" 14'3" 14'5" 14'10" 14'10" +1'5" +1'10" +1'9" 3 Clearance:Level Bucket mm 4592 4592 4647 4606 4609 4725 4751 4849 4904 +451 +574 +553 ft/in 15'0" 15'0" 15'2" 15'1" 15'1" 15'6" 15'7" 15'10" 16'1" +1'5" +1'10" +1'9" 4 Height:Overall mm 6255 6298 6367 6268 6315 6446 6413 6555 6605 +451 +574 +553 ft/in 20'6" 20'7" 20'10" 20'6" 20'8" 21'1" 21'0" 21'6" 21'8" +1'5" +1'10" +1'9" 5 Reach:Full Lift Rolled Out mm 1425 1425 1489 1421 1458 1530 1613 1561 1626 +253 +329 +278 ft/in 4'8" 4'8" 4'10" 4'7" 4'9" 5'0" 5'3" 5'1" 5'4" +0'9" +1'0" +0'10" 6 Dig Depth mm 80 80 96 100 100 116 94 94 109 +35 +35 +35 in 3.2" 3.2" 3.8" 3.9" 3.9" 4.6" 3.7" 3.7" 4.3" +1.4" +1.4" +1.4" 7 Maximum Dump Angle degree 52 52 51 50 49 49 55 48 48 8 Rack Angle at Carry degree 43 43 55 45 45 46 43 43 44 Tipping Load- kg 7560 8637 11 395 7465 8389 9903 6941 7967 9494 -1946 -2473 -3161*** Straight ISO 14397-1* lb 16,666 19,041 25,120 16,457 18,495 21,832 15,301 17,564 20,931 -4,290 -5,450 -6,966 Tipping Load- kg 7875 8997 11 869 7776 8739 10 315 7230 8299 9890 -2027 -2576 -3292*** Straight Rigid Tire** lb 17,360 19,834 26,167 17,143 19,265 22,741 15,938 18,295 21,803 -4,469 -5,677 -7,256 Tipping Load- kg 6404 7281 9580 6299 7043 8266 5844 6680 7921 -1717 -2171 -2742*** Full Turn ISO 14397-1* lb 14,117 16,051 21,119 13,886 15,528 18,223 12,884 14,726 17,462 -3,784 -4,784 -6,043 Tipping Load- kg 6812 7746 10 191 6701 7493 8794 6217 7106 8426 -1826 -2309 -2917*** Full Turn Rigid Tire** lb 15,018 17,076 22,467 14,773 16,519 19,386 13,706 15,666 18,577 -4,026 -5,089 -6,429 Breakout Force kg 6560 8584 9491 6727 8373 8959 5500 7258 7845 -361 -219 -369 lb 14,463 18,925 20,923 14,829 18,458 19,750 12,125 16,000 17,295 -795 -482 -812 Operating Weight kg 13 531 14 534 17 014 13 834 14 836 17 427 13 793 14 795 17 327 +278 +232 -102*** lb 29,830 32,042 37,509 30,499 32,706 38,419 30 409 32,616 38,199 612 511 -224 *Full compliance to ISO 14397-1 (2007)Sections 1 thru 6,which requires 2%verification .-tween calculation and testing. **Compliance to ISO 14397-1 (2007)Sections 1 thru 5. assume 40,000 lbs ***938M High Lift is configured with standard counterweight. 30 go 5TRE55CON Architectural and Structural Precast Concrete An ENCow Company 2.0 DOUBLE TEE DESIGNS Design General Description 2.1 28" + 3" - Floor tee 2.2 40" + 5" - Roof tee 2.3 28" + 7" - Floor tee 2.4 Flange design 1° 3 DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION A 0 E E 3 N C ._(3) ♦1 n F —————_a I - II i— `'` ■ - / CI � 1 M �� mo /// ii o c I l e �, — N a� =C —% _ O 1-) 123/8" DAP N SEE SHEET 9.12 'C' 13 P D ll 0) I , .II -1 - - I� , ..,_ 0 !� - - // 1 �� _ i Ii C .IIS �I c , # IL e LU �I� -- — O) flr = C - - - BEARING PLATE 0 0_ SEE SHEET 9.6 0 DT TO LIGHTWALL E SEE SHEET 9.5 DT TO COLUMN E DT TO SPANDREL SEE SHEET 4) SEE SHEET 9.5 DT TO DT DT TO BEAM SEE SHEET 9.18 4 SEE SHEET 'f40 / I IPA ?,_ 4-.= 11.7 . _iii 0 c>t . I . ) AI) ,.__. . / \ / \ / = =imi V V V v DT TO SHEARWALL DT TO SPANDREL SEE SHEET 9.17 SEE SHEET A M DT TO COLUMN P. P SEE SHEET N 6>` DOUBLE TEE DESIGN SUMMARY G 6209 N o z RED SANDSTONE (floor) Lil 5TRE55LON fik LL Architectural and Structural Precast Concrete o _ a 2 O .1 An ENCoN Company C SHEET 1 OF 1 0_ CD DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION 0 4-; PRELIMINARY A E O NOT FOR CONSTRUCTION E 3 C DATA SHEET/DOUBLE TEE/COMPOSITE `6'.) i i i- 0 O SPAN (Z TO CL BRG): DOUBLE TEE LENGTH - Z BEARING 61.2' FT. Q 3 0 O LOADING: D.L. WEIGHT OF P.C. MEMBER INCLUDED IN PROGRAM 575 PLF 0 N SDL 10 psf 90 PLF C TOPPING 3 inch COMPOSITE TOPPING 337 PLF j LL 40 psf 360 PLF Li-) SNOW PLF C O PRECAST SECTION: UNIT WT: 150 PCF. (HARD ROCK) 28 DAY CONC. f'c = 5000 PSI _U STRIPPING CONC. f'ci = 3900 PSI O U COMPOSITE TOPPING: UNIT WT: 150 PCF. (HARD ROCK) 28 DAY CONC. f'c = 5000 PSI 0) TOPPING: t1 = 3 IN. •c 6 c NUMBER OF 0.6"0 STRANDS IN EACH LEG 6 STRAND c P (INITIAL PULL) ( 12 STR X 41 KIPS) = TOTAL 492 KIP w — O CAMBER © RELEASE: 0.75" C CAMBER O ERECTION: 1.5" 0 a- a' 0 c i E i SS STEM MESH: STM28 rS 615' EA END/STEM DECK MESH: 12x6-W1.4xW2.9 co DOUBLE TEE X XIN. x X x �,. cm PRECAST SECTION PROPERTIES A = 552 IW I = 42169 IN4 • • • AilYb = 18.89 IN "'. N • N+ N Sb = 2232 IN3 J N • N o N• • N• St = 4629 IN3 fi bw = 12.86 IN al; 5'1• • N+ A N• •• • N• • M D< © ENDS @ MIDSPAN cs N RH o RED SANDSTONE DOUBLE TEE DESIGN SUMMARY o 6209 ENCON ° 2.1.1 a O 3 COLORADO,LLC U a SHEET 1 OF 1 Summary Report Concise Beam 4.61d, Copyright 2002-2018 Black Mint Software, Inc. 2.1.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4> in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Cast-in-Place Pour Concrete Density Wt = 150 lb/ftA3 wt = 150 lb/ftA3 Compressive Strength f'c = 5000.0 psi f'c = 5000.0 psi Modulus of Elasticity Ec = 4.279E+6 psi Ec = 4.279E+6 psi Strength at Transfer f'c = 3500.0 psi Modulus of Elast. at Transfer Ec = 3.580E+6 psi Strength at Lifting f'c = 3500.0 psi Modulus of Elast. at Lifting Ec = 3.580E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age cast-in-Place is composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset I INol From I To I Length I Folder I Section I Section I Z I Y 1 I I ft I ft I ft I Name I Name I Type I in I in I 111 0.0001 61.2001 61.2001 DoubleTee I 9DT28 I Double Tee I 0.001 0.001 CAST-IN-PLACE POUR LAYOUT I Segment/Length I Slab/Topping Parameters I Haunch Paramaters (vertical' INol From I To I Length I Thick. I Width I Offset I Thick. I Width I Offset I Offset I I I ft I ft I ft I in I in I in I in I in 1 in I in I I 1 1 0.0001 61.2001 61.2001 3.001 108.001 0.001 0.001 0.001 0.001 0.001 Beam is UNSHORED during the cast-in-place pour and superimposed dead load. * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 61.200 ft, Centre of Supports, Left @ 0.000 ft, Right @ 61.200 ft Span Length during Lift = 0.000 ft, centre of Supports, Left @ 0.000 ft, Right @ 61.200 ft Loop Height = 0.00 ft Span Length in Service = 61.200 ft, Centre of Supports, Left @ 0.000 ft, Right @ 61.200 ft Total Beam Length = 61.200 ft, Bearing Length, Left = 6.00 in, Right = 6.00 in First flexural frequency of beam is approximately 0.11 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties I Section' Section' Shear 'volume /1 Section Moduli I I No•I A I I I yb I Height I Width I Width I Surfacel Sb I St I I I inA2 I inA4 I in I in I in I in I in I inA3 I inA3 I I 1' 552.4 I 42169 I 18.891 28.001 108.001 12.861 1.731 -2232 I 4629 I GROSS COMPOSITE SECTION PROPERTIES (based on Ec of the precast beam - transformed area of rebar and strand NOT included) 'Seg.' Section Properties I SectionI Section Moduli I I No.' Ac I Ic I yb I Height I Sb I St I Sbc I Stc I I I inA2 I inA4 I in I in I inA3 I inA3 I inA3 I inA3 I I 11 876.4 I 65402 I 22.811 31.001 -2867 I 12607 I 12607 I 7988 I Note: Sb & St = bottom and top of the precast beam, Sbc & Stc = bottom and top of the cast-in-place pour. UNCRACKED SECTION PROPERTIES SUMMARY I I Net Precast Section I Transformed Precast Section I Transformed Precast Section (Transformed Composite SectionI I I at Transfer (based on Eci) I at Transfer (based on Eci) I in Service (based on Ec) I in Service (based on Ec) I I I(include rebar,deduct strand)I (include rebar and strand) I (include rebar and strand) I (include rebar and strand) I Engineer: Company: File: Floor Tee 2.1 1 of 7 Wed Jan 10 07:58:27 2018 Summary Report Concise Beam 4.61d, Copyright 2002-2018 Black Mint Software, Inc. 2.1.3 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: x I A I yb 1 A I yb 1 A I yb 1 Ac Ic ybc 1 ft I inA2 inA4 in 1 inA2 inA4 in 1 inA2 inA4 in 1 inA2 inA4 in 1 0.0001 549.8 41913 18.94 552.5 42172 18.89 552.5 42171 18.89 876.5 65406 22.81 3.6721 549.8 41848 18.94 570.9 44381 18.57 567.5 43978 18.63 891.5 68600 22.58 9.7921 549.8 41848 18.94 570.9 44381 18.57 567.5 43978 18.63 891.5 68600 22.58 15.9121 549.8 41848 18.94 570.9 44381 18.57 567.5 43978 18.63 891.5 68600 22.58 22.0321 549.8 41848 18.94 570.9 44381 18.57 567.5 43978 18.63 891.5 68600 22.58 28.1521 549.8 41848 18.94 570.9 44381 18.57 567.5 43978 18.63 891.5 68600 22.58 30.6001 549.8 41848 18.94 570.9 44381 18.57 567.5 43978 18.63 891.5 68600 22.58 33.0481 549.8 41848 18.94 570.9 44381 18.57 567.5 43978 18.63 891.5 68600 22.58 34.2721 549.8 41848 18.94 570.9 44381 18.57 567.5 43978 18.63 891.5 68600 22.58 39.1681 549.8 41848 18.94 570.9 44381 18.57 567.5 43978 18.63 891.5 68600 22.58 45.2881 549.8 41848 18.94 570.9 44381 18.57 567.5 43978 18.63 891.5 68600 22.58 51.4081 549.8 41848 18.94 570.9 44381 18.57 567.5 43978 18.63 891.5 68600 22.58 57.5281 549.8 41848 18.94 570.9 44381 18.57 567.5 43978 18.63 891.5 68600 22.58 61.2001 549.8 41913 18.94 552.5 42172 18.89 552.5 42171 18.89 876.5 65406 22.81 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. Transformed composite Section in Service properties are used with external loads applied to the composite precast beam. PRESTRESSING STEEL TENDONS 1 Offsets 'End Offset & Type Tendon Jacking Force 1 ID Qty1 Grade ITypel Strand size x 1 y 'Left ** Right ** Area Pj %fpul ksi 1 * ft 1 in 1 ft ft inA2 kip 1 1 2 270.01 LR5 0.6" (3/5) 0.0001 2.00 0.000 B 0.000 B 0.434 82.03 0.701 I 61.2001 2.00 1 2 2 270.01 LRS 0.6" (3/5) 0.0001 4.00 0.000 B 0.000 B 0.434 82.03 0.701 I 61.2001 4.00 1 3 2 270.01 LRS 0.6" (3/5) 0.0001 8.00 0.000 B 0.000 B 0.434 82.03 0.701 1 61.2001 8.00 1 4 2 270.01 LRS 0.6" (3/5) 0.0001 10.00 0.000 B 0.000 B 0.434 82.03 0.701 I 61.2001 10.00 1 5 2 270.01 LRS 0.6" (3/5) 0.0001 14.00 0.000 B 0.000 B 0.434 82.03 0.701 I 61.2001 14.00 1 6 2 270.01 LRS 0.6" (3/5) 0.0001 16.00 0.000 B 0.000 B 0.434 82.03 0.701 1 61.2001 16.00 I note: * Type = LRS - Low-Relaxation Strand, SRS - Stress-Relieved Strand, PB - Plain Bar, DB - Deformed Bar, SW - Single Wire ** End Types = B - Fully Bonded (B), D - Debonded (D), C - Cut (C), A - Anchored (A) (fully developed) Calculated Losses: Initial = 5.1%, Final = 14.7% Maximum Total Prestress Forces: Pj(jacking) = 492.16 kip, Pi(transfer) = 467.24 kip, Pe(effective) = 419.61 kip @ x = 30.600 ft, See the "Development Length" text report for details of the strand transfer and development lengths TRANSVERSE SHEAR STEEL Shear Stirrups 1 From I To 1 Grade I Size I # of Legs'Total Areal Spacing 1 ft 1 ft I ksi I I 1 inA2 1 in 1 0.0001 61.2001 58.0 1 15M 1 21 0.62 1 0.001 Interface Shear Ties 1 From I To 1 Grade I Size I # of LegslTotal Areal Spacing 1 ft 1 ft I ksi I I 1 inA2 1 in I 0.0001 61.2001 58.0 1 15M 1 01 0.00 I 0.001 APPLIED LOADS 10/1000 x 9' Load Group Stages Applied Load Details & Type & Distribution (left to right) unnamed Transfer to Final Service 10 psf- Vertical: 0.09 kip/ft full length D: DL, General No Load Distribution Beam Weight * Transfer to Final Service Segment #0- Vertical: 0.575 kip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Weight, Cable Angle: 90 degrees CIP Weight * CIP Placement to Final Service Segment #0- Vertical: 0.337 kip/ft full length D: DL, Cast-in-Place Concrete No Load Distribution Live Load Final Service sta9e only 40 psf- Vertical: 0.36 kip/ft full length L: LL, General No Load Distribution 40/1000 x 9' 1-/ Engineer: Company: File: Floor Tee 2.1 2 of 7 Wed Jan 10 07:58:28 2018 summary Report concise Beam 4.61d, copyright 2002-2018 Black Mint Software, Inc. 2.1.4 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: * indicates load groups generated automatically by concise Beam. LOAD COMBINATIONS serviceability (sLs) & Fatigue (FLs) Limit state Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00ws + 0.60wu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr ultimate (Strength) Limit State (uLS) combinations (searched collectively to obtain envelope) 1: uLs Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: uLS Combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: uLS Combo 5 : 1.20D + 0.50L + 1.00L1 + 1.60Lr 6: uLS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: ULS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: ULS Combo 8 : 1.20D + 1.6OLr + 0.80ws + 0.50wu 9: uLS Combo 9 : 1.20D + 1.60S + 0.80ws + 0.50wu 10: ULS Combo 10 : 1.20D + 1.60R + 0.80Ws + 0.50Wu 11: uLS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60ws + 1.00wu 12: uLS combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60ws + 1.00wu 13: uLs Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60Ws + 1.00Wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: uLS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60Ws + 1.00Wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Station' SLS (stress) Load combination uLS Load Envelopes I Moment Moment shear Moment x I Sustained Total Load Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip combo.' kip.ft combo.I I min max min max min max min max min max 0.0001 0.00 0.00 0.00 27.59 54.41 15 2 0.00 0.00 1 1 3.6721 105.82 105.82 143.84 24.28 47.88 15 2 95.23 187.82 15 2 9.7921 252.16 252.16 342.77 18.76 37.00 15 2 226.94 447.57 15 2 15.9121 360.98 360.98 490.69 13.24 26.12 15 2 324.88 640.71 15 2 22.0321 432.27 432.27 587.60 7.73 15.24 15 2 389.04 767.25 15 2 28.1521 466.04 466.04 633.51 2.21 4.35 15 2 419.44 827.20 15 2 30.6001 469.04 469.04 637.59 0.00 0.00 1 1 422.14 832.52 15 2 33.0481 466.04 466.04 633.51 -4.35 -2.21 2 15 419.44 827.20 15 2 34.2721 462.29 462.29 628.41 -6.53 -3.31 2 15 416.06 820.54 15 2 39.1681 432.27 432.27 587.60 -15.24 -7.73 2 15 389.04 767.25 15 2 45.2881 360.98 360.98 490.69 -26.12 -13.24 2 15 324.88 640.71 15 2 51.4081 252.16 252.16 342.77 -37.00 -18.76 2 15 226.94 447.56 15 2 57.5281 105.82 105.82 143.84 -47.88 -24.28 2 15 95.23 187.82 15 2 61.2001 0.00 0.00 0.00 -54.41 -27.59 2 15 0.00 0.00 1 1 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) unfactored Load Group Effects I I Initial Lifting I Truck Transport I Erection Lifting 1 In Service 1 I Load I Left I Right 1 Left I Right I Left 1 Right 1 Left I Right 1 I Group I Vertical I Vertical 1 Vertical I Vertical I Vertical 1 Vertical 1 Vertical[*]1 Torsion[*] I Vertical[*]I Torsion[*] I I I kip I kip.ft 1 kip I kip.ft I kip 1 kip.ft 1 kip I kip.ft I kip I kip.ft 1 lunnamed I 2.75 I 2.75 1 2.75 I 2.75 I 2.75 1 2.75 1 2.75 I 0.00 I 2.75 I 0.00 I 'Beam weight' 17.59 I 17.59 1 17.59 I 17.59 I 17.59 1 17.59 1 17.59 I 0.00 I 17.59 I 0.00 I ICIP Weight I I I I I I I 10.31 I 0.00 I 10.31 I 0.00 I 'Live Load I I I I I I I 11.02 I 0.00 I 11.02 I 0.00 I Load Envelope Effects sLs DL I 30.66 I 0.00 I 30.66 I 0.00 1 SLS Sustain' 30.66 1 0.00 I 30.66 1 0.00 1 SLS Minimum I 20.34 20.34 20.34 20.34 20.34 20.34 30.66 I 0.00 1 30.66 I 0.00 1 sLs Maximum' 20.34 20.34 20.34 20.34 20.34 20.34 41.67 I 0.00 I 41.67 I 0.00 1 ULS Minimum' 27.59 [1511 0.00 [ 111 27.59 [1511 0.00 [ 171 uLS maximum' 54.41 [ 2]1 0.00 [ 1]1 54.41 [ 2]1 0.00 [ 1]1 * Governing uLS Load Combination (below) CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) I x I Stress I Limit I Overstress Location I ft I psi I psi I Notice STRESSES AT TRANSFER Critical Compression Top of Beam I 30.6001 642 I 2100 I 0% Bottom of Beam I 55.0801 2310 I 2100 I 10% Longitudinal Tensile Rebar Needed (inA2) critical Tension Required Provided Additional Top of Beam I 59.9761 -30 I -355 I 0% Bottom of Beam I 0.0001 3 I -355 I 0% STRESSES DURING INITIAL LIFTING Engineer: Company: File: Floor Tee 2.1 3 of 7 wed Jan 10 07:58:28 2018 summary Report concise Beam 4.61d, copyright 2002-2018 Black Mint Software, Inc. 2.1.5 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: critical compression Top of Beam 1 30.6001 642 I 2100 I 0% Bottom of Beam I 55.0801 2310 I 2100 1 10% Longitudinal Tensile Rebar Needed (inA2) critical Tension Required Provided Additional Top of Beam 1 59.9761 -30 I -355 1 0% Bottom of Beam I 0.0001 3 I -355 1 0% STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam 1 30.6001 652 I 3000 I 0% Bottom of Beam I 55.0801 2070 I 3000 1 0% Longitudinal Tensile Rebar Needed (inA2) critical Tension Required Provided Additional Top of Beam 1 59.9761 -24 I -424 I 0% Bottom of Beam I 0.0001 3 I -424 I 0% STRESSES DURING CAST-IN-PLACE POUR Critical Compression Top of Beam 1 30.6001 1055 I 3000 I 0% Bottom of Beam I 58.7521 2207 I 3000 I 0% critical Tension Top of Beam 1 0.0001 0 1 -530 I 0% Bottom of Beam 1 0.0001 3 1 -530 I 0% STRESSES IN SERVICE Critical Compression Top of Beam 1 30.6001 1217 I 3000 I 0% Bottom of Beam 1 58.7521 1925 I 3000 1 0% Top of CIP Pour' 30.6001 248 I 3000 1 0% critical Tension Top of Beam 1 0.0001 0 I -849 1* 0% Class u member - not cracked Bottom of Beam 1 30.6001 -383 1 -849 1* 0% Class u member - not cracked Top of CIP Pour' 0.0001 0 1 -530 1* 0% STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 30.6001 1057 1 2250 1 0% Bottom of Beam I 58.752' 1925 1 2250 I 0% * Tensile stress limit given is for Class T (controlled cracking). Beyond this limit crack control is required. Tensile stress limit given for the cast-in-place pour is the flexural cracking strength of the concrete. At Transfer During Lifting In Service Modulus of Rupture, fr = -444 psi -444 psi -530 psi strength Required for Transfer, f'ci = 3849.6 psi (f'c specified = 3500.0 psi) Strength Required for Initial Lifting, f'c = 3849.6 psi (f'c assumed = 3500.0 psi) CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING 1 I Bottom 1 Top of 1 1 I of Beam I Beam 1 1 dc 0.00 I 0.00 I in concrete cover to center of steel closest to tension face 1 cc I 0.00 I 0.00 I in Clear concrete cover to steel closest to tension face 1 fs I 0.0 I 0.0 I ksi Steel stress nearest to tension face (after decompression) for crack control 1 Max spacing I 0.00 I 0.00 I in Maximum centre-to-centre spacing of steel closest to tension face to control cracking Beam not cracked, cracking is controlled, or crack depth is less than concrete cover. DEFLECTION ESTIMATE AT ALL STAGES Design Code used: ACI 318-14 A. Deflections at All stages (-ve = deflection down, +ve = camber up) I Net Deflection Change in Deflection LocationI Net @ Net @ Net @ Net DL Net Total DL growth LL Span/Deflection x I Transfer Erection completion @ Final @ Final + LL alone DL growth LL ft I in in in in in in in + LL alone Column 1 A B C D E E - C E - D L / (E-C) L / (E-D)' 0.0001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 3.6721 0.208 0.396 0.313 0.175 0.102 -0.212 -0.074 3467 9957 9.7921 0.460 0.883 0.649 0.289 0.100 -0.549 -0.189 1337 3891 15.9121 0.615 1.191 0.817 0.266 -0.018 -0.834 -0.284 880 2586 22.0321 0.703 1.368 0.888 0.202 -0.149 -1.037 -0.351 708 2092 28.1521 0.740 1.445 0.911 0.158 -0.226 -1.137 -0.384 646 1913 30.6001 0.743 1.452 0.913 0.154 -0.233 -1.146 -0.387 640 1898 33.0481 0.740 1.445 0.911 0.158 -0.226 -1.137 -0.384 646 1913 34.2721 0.736 1.437 0.909 0.164 -0.217 -1.125 -0.380 652 1931 39.1681 0.703 1.368 0.888 0.202 -0.149 -1.037 -0.351 708 2092 45.2881 0.615 1.191 0.817 0.266 -0.018 -0.834 -0.284 880 2586 51.4081 0.460 0.883 0.649 0.289 0.100 -0.549 -0.189 1337 3891 57.5281 0.208 0.396 0.313 0.175 0.102 -0.212 -0.074 3467 9957 61.2001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 Col. A: Net deflection at transfer includes prestressing and beam weight on temporary supports. col. B: Net deflection at erection includes prestressing and all dead loads applied before the cast-in-place pour plus long-time deflection growth of the prestressing and beam weight up to erection Engineer: Company: File: Floor Tee 2.1 4 of 7 wed Jan 10 07:58:28 2018 summary Report concise Beam 4.61d, copyright 2002-2018 Black Mint Software, Inc. 2.1.6 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: col. C: Net deflection at completion of construction includes prestressing and all dead loads plus long-time deflection growth of the prestressing and dead load up to completion Col. D: Net DL deflection at final includes prestressing, all dead loads, and sustained live loads,. plus long-time deflection growth. col. E: Net total deflection at final includes prestressing, all dead loads, and all live loads, plus long-time deflection growth. Deflection growth is estimated by use of the PCI suggested multipliers - see the Deflection Multipliers report. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design code used: ACI 318-14 B. unrestrained support Rotations at All stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation change in Rotation SupportI Net @ Net @ I Net @ Net DL I Net Total DL growth I LL Location' Transfer Erection I Completion I @ Final I @ Final + LL I alone I degrees degrees I degrees degrees I degrees degrees I degrees Column I A I B I C D I E E - C I E - D Left I -0.0113 I -0.0215 I -0.0174 I -0.0103 I -0.0065 0.0109 I 0.0038 Right I 0.0113 I 0.0215 I 0.0174 I 0.0103 I 0.0065 -0.0109 I -0.0038 c. unrestrained Longitudinal change of Length Due to creep and Shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = -0.1658 in I I Total change of Length (after elastic shortening) I Difference in change I I I I Erection 'completion' Final I I to Comp1.1 to Final I to Final I I I I in 1 in 1 in I I in 1 in I in 1 I I I B I c I D I I c - B I D - C I D - B 1 I Creep I I -0.13891 -0.19341 -0.30281 1 -0.05451 -0.10951 -0.16401 I Shrink.I I -0.20521 -0.30861 -0.40021 1 -0.10341 -0.09161 -0.19501 I Total I -0.34411 -0.50201 -0.70301 I -0.15791 -0.20101 -0.35891 FLEXURAL DESIGN CHECK Design code used: ACI 318-14 Concrete compressive stress-strain model used: PCA Parabola-Rectangle curve Modulus of Rupture of Precast concrete, fr = 530 psi (tension) I Factored Design cracking Minimum Depth in Net TensileI Flexural 0 I warnings I Moment strength Moment Required compression' Strain Iclassication 1 & Notes x I Mu 0Mn Mcr Strength c 1 I ft I kip.ft kip.ft kip.ft kip.ft in 1 I 0.0001 0.00 0.64 127.41 0.00 0.04 0.03501Tension 0.75 3 3.6721 187.82 610.01 706.37 847.64 1.56 0.03041Tension 0.78 B 3 9.7921 447.57 1108.88 693.67 832.40 2.12 0.03001Tension 0.90 3 15.9121 640.71 1108.67 684.22 821.07 2.12 0.02971Tension 0.90 3 22.0321 767.25 1108.62 678.03 813.64 2.12 0.02951Tension 0.90 3 28.1521 827.20 1108.63 675.10 810.12 2.12 0.02941Tension 0.90 3 30.6001 832.52 1108.63 674.84 809.81 2.12 0.02941Tension 0.90 3 33.0481 827.20 1108.63 675.10 810.12 2.12 0.02941Tension 0.90 3 34.2721 820.54 1108.64 675.43 810.52 2.12 0.02951Tension 0.90 3 39.1681 767.25 1108.62 678.03 813.64 2.12 0.02951Tension 0.90 3 45.2881 640.71 1108.67 684.22 821.07 2.12 0.02971Tension 0.90 3 51.4081 447.56 1108.88 693.67 832.40 2.12 0.03001Tension 0.90 3 57.5281 187.82 610.01 706.37 847.64 1.56 0.03041Tension 0.78 B 3 61.2001 0.00 0.64 127.41 0.00 0.04 0.03501Tension 0.75 3 Points of Maximum and Minimum Factored Moment I 30.6001 832.52 I 1108.63 I 674.84 I 809.81 I 2.12 I 0.02941Tension I 0.901 31 I 0.0001 0.00 1 -0.26 I 204.51 I 0.00 1 0.10 I 0.03501Tension 10.751 31 Points of Maximum Ratio of Factored Moment to Design Strength I 30.6001 832.52 I 1108.63 1 674.84 I 809.81 I 2.12 I 0.02941Tension I 0.901 31 I 0.0001 0.00 1 -0.26 1 204.51 I 0.00 1 0.10 I 0.03501Tension 10.751 31 Points of Maximum Ratio of Minimum Strength to Design Strength I 59.9761 65.27 I 292.41 1 452.14 I 542.57 I 1.00 I 0.03201Tension I 0.751 B 31 I 0.0001 0.00 I -0.26 1 204.51 I 0.00 1 0.10 I 0.03501Tension 10.751 31 warnings & Notes B - WARNING, 0Mn < 1.2Mcr and min < 2.0Mu, minimum reinforcement requirement not met [ACI 318-14::7.6.2/9.6.2]. 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. see the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design code used: ACT 318-14 I I Design I Prestress' concrete 1 Strength Provided I Min. Strength Req'd I warnings 1 I I Shear I component' Strength 1 stirrups I Total 1 Stirrups 1 Total I & Notes 1 I x I vu I vp I 0vc I 0vs I 0vn I Ovs I 0vn I I I ft I kip I kip I kip I kip I kip I kip I kip I 1 Engineer: Company: File: Floor Tee 2.1 5 of 7 wed Jan 10 07:58:28 2018 Summary Report Concise Beam 4.61d, Copyright 2002-2018 Black Mint Software, Inc. 2.1.7 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 0.0001 51.67 0.00 59.23 0.00 59.23 0.00 59.24 1 3 3.672 47.88 0.00 93.88 0.00 93.88 6.22 100.10 1 9.792 37.00 0.00 51.13 0.00 51.13 9.15 60.28 1 15.9121 26.12 0.00 30.21 0.00 30.21 9.15 39.36 1 22.032 15.24 0.00 28.75 0.00 28.75 9.15 37.91 1 28.152 4.35 0.00 28.75 0.00 28.75 0.00 28.75 30.600 0.00 0.00 28.75 0.00 28.75 0.00 28.75 30.600 0.00 0.00 -28.75 0.00 -28.75 0.00 -28.75 33.048 -4.35 0.00 -28.75 0.00 -28.75 0.00 -28.75 34.272 -6.53 0.00 -28.75 0.00 -28.75 0.00 -28.75 39.168 -15.24 0.00 -28.75 0.00 -28.75 -9.15 -37.91 1 45.2881 -26.12 0.00 -30.21 0.00 -30.21 -9.15 -39.36 1 51.408 -37.00 0.00 -51.13 0.00 -51.13 -9.15 -60.28 1 57.528 -47.88 0.00 -93.88 0.00 -93.88 -6.22 -100.10 1 61.200 -51.67 0.00 -59.23 0.00 -59.23 0.00 -59.24 1 3 Warnings & Notes 1 - Note, transverse shear or torsion steel is required. See the Shear/Torsion Transvese Reinforcing Design Check report. 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. SHEAR TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 (Shear Steel Shear Steel Stirrup Stirrup Spacing Warnings I Required Provided Provided Provided Max. Allow' & Notes x I Av/s Av/s Av s s ft I inA2/ft inA2/ft inA2 in in 0.0001 0.00 0.00 0.62 0.00 23.25 1 4 5 3.672 0.07 0.00 0.62 0.00 23.25 1 5 9.792 0.10 0.00 0.62 0.00 23.25 1 5 15.9121 0.10 0.00 0.62 0.00 23.25 1 5 22.032 0.10 0.00 0.62 0.00 23.25 1 5 28.152 0.00 0.00 0.62 0.00 23.25 30.600 0.00 0.00 0.62 0.00 23.25 30.600 0.00 0.00 0.62 0.00 23.25 33.048 0.00 0.00 0.62 0.00 23.25 34.272 0.00 0.00 0.62 0.00 23.25 39.168 0.10 0.00 0.62 0.00 23.25 1 5 45.2881 0.10 0.00 0.62 0.00 23.25 1 5 51.408 0.10 0.00 0.62 0.00 23.25 1 5 57.528 0.07 0.00 0.62 0.00 23.25 1 5 61.200 0.00 0.00 0.62 0.00 23.25 1 4 5 Warnings & Notes 1 - Note, amount of shear steel required represents minimum code requirements [ACI 318-14::9.6.3.3]. 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). Note, additional long. steel in compression side of section has been reduced [ACI 318-14::9.5.4.5]. * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. HORIZONTAL SHEAR DESIGN CHECK BY SECTION Design Code Used: ACI 318-14 Top of precast beam is considered intentionally roughened. (Horizontal Strength Maximum Required Tie Size Spacing Spacing Strength Strength Warnings 1 Shear with no Limit Ties Provided Required Provided Required Provided & Notes x I Vu ties OVnh Max Av/s Av s s OVnh OVnh ft I kip kip kip inA2/ft inA2 in in kip kip 0.0001 51.67 160.70 1004.40 0.00 0.00 0.00 0.00 51.67 160.70 1 3.6721 47.88 160.70 1004.40 0.00 0.00 0.00 0.00 47.88 160.70 1 9.7921 37.00 160.70 1004.40 0.00 0.00 0.00 0.00 37.00 160.70 1 15.9121 26.12 160.70 1004.40 0.00 0.00 0.00 0.00 26.12 160.70 1 22.0321 15.24 160.70 1004.40 0.00 0.00 0.00 0.00 15.24 160.70 1 28.1521 4.35 160.70 1004.40 0.00 0.00 0.00 0.00 4.35 160.70 1 30.6001 0.00 160.70 1004.40 0.00 0.00 0.00 0.00 0.00 160.70 1 33.0481 -4.35 -160.70 -1004.40 0.00 0.00 0.00 0.00 -4.35 -160.70 1 34.2721 -6.53 -160.70 -1004.40 0.00 0.00 0.00 0.00 -6.53 -160.70 1 39.1681 -15.24 -160.70 -1004.40 0.00 0.00 0.00 0.00 -15.24 -160.70 1 45.2881 -26.12 -160.70 -1004.40 0.00 0.00 0.00 0.00 -26.12 -160.70 1 51.4081 -37.00 -160.70 -1004.40 0.00 0.00 0.00 0.00 -37.00 -160.70 1 57.5281 -47.88 -160.70 -1004.40 0.00 0.00 0.00 0.00 -47.88 -160.70 1 61.2001 -51.67 -160.70 -1004.40 0.00 0.00 0.00 0.00 -51.67 -160.70 1 Warnings & Notes 1 - Note, no ties required [ACI 318-14::16.4.4.2]. HORIZONTAL SHEAR DESIGN CHECK BY MOMENT REGION Design Code Used: ACI 318-14 Top of precast beam is considered intentionally roughened. I Region of Beam I Shear 1 Peak 1 Horizontal I Strength 1 Maximum 1 Tie Area * 1 Tie Area I Maximum I Warnings 1 I I Length I Moment I Shear I with no I Limit I Required 1 Provided I Spacing I & Notes I I x I lv I m I Fh 1 ties 1 OVnh Max I Acs 1 Acs I s I 1 I ft 1 ft 1 kip.ft I kip 1 kip I kip I inA2 I inA2 I in I 1 I 0.000 to 30.6001 30.6001 832.52 I 697.62 I 2379.46 1 26174.01 I 0.00 I 0.00 1 12.00 1 1 1 30.600 to 61.2001 30.6001 832.52 I 697.62 1 2379.46 1 26174.01 I 0.00 I 0.00 1 12.00 I 1 Engineer: Company: File: Floor Tee 2.1 6 of 7 Wed Jan 10 07:58:28 2018 3 DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION iij A 0 E E 3 N C CD •1 4) ---- ----I a M 1 a -1 MI 0 � l M �1 ,� _ N .. �■ �I► — �.���— ������■ o Ta o163/8" DAP NO DAP SEE SHEET 9.11 SEE SHEET 9.7 o ti I' U oIII I - II IL - 0) !■ I --- —— %% C � — i II .(TD1 c , II LU/ •0) C rtor.__Sii, -..i VIc BEARING PLATE 0 0_ SEE SHEET 9.7 a- 0 DT TO LIGHTWALL E SEE SHEET 9.5 DT TO COLUMN E DT TO SPANDREL SEE SHEET m SEE SHEET 9.5 DT TO DT DT TO BEAM SEE SHEET 9.18 E SEE SHEET c'r, VIR 0 . ._ 4A -_. . ., 0 ib7. . c..t / AI) „ . / \ / \ / . .,3 DT TO SHEARWALL DT TO SPANDREL SEE SHEET 9.17 SEE SHEET .o M DT TO COLUMN SEE SHEET csN 6o RED SANDSTONE E DOUBLE TEE DESIGN SUMMARY o 6209 ENCON o' 2 2.2 O 3 COLORADO,LLC 0 a SHEET 1 OF 1 CD DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION PRELIMINARY A E O NOT FOR CONSTRUCTION E 3 C DATA SHEET/DOUBLE TEE/COMPOSITE 0 a 0 0 i- 0 0 SPAN (CL TO CL BRG): DOUBLE TEE LENGTH — Z BEARING 61.2' FT. _o 3 0 0 LOADING: D.L. WEIGHT OF P.C. MEMBER INCLUDED IN PROGRAM 651 PLF o N SDL 10 psf 68 PLF c TOPPING 5 inch COMPOSITE TOPPING 421 PLF U LL 20k axle load (10k per wheel) (2) 10 k a) Li, SNOW 100 psf 675 PLF N C O PRECAST SECTION: UNIT WT: 150 PCF. (HARD ROCK) 28 DAY CONC. f'c = 6000 PSI o STRIPPING CONC. f'ci = 3550 PSI U COMPOSITE TOPPING: UNIT WT: 150 PCF. (HARD ROCK) 28 DAY CONC. f'c = 5000 PSI 0) TOPPING: t1 = 5 IN. c 6 c NUMBER OF 0.5"0 STRANDS IN EACH LEG 7 STRAND c P (INITIAL PULL) ( 1A STR X . KIPS) = TOTAL 434 (after harp) KIP w 0) CAMBER ® RELEASE: 0.85" c CAMBER © ERECTION: 1.6" 0 a_ STEM MESH: DECK MESH: O STM40 x FL 12x6—W1.4xW2.9 c 0 E —a O _ X x X f X A 'x 4 X - • O 4 O 4 Q �� I Q ea) _ • SS x Sx x N x X x N rn 61 1 1. c Q I 1 . i 1 72 t 1 72 co 1o g 1 v A DOUBLE TEE J o 0 PRECAST SECTION • 27k PROPERTIES cm •I -N• 28k N 3 r. `� A = 625.8 IN2 1 `V• 28k , i �, I = 96191 IN4 i Yb = 25.25 IN J • 31k Sb = 3810 IN3 il `'• 31k 1 6(t) St = 6521 IN3 •: Summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 2.2.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Wheel load @ midspan Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-O5 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce (I) in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Cast-in-Place Pour Concrete Density Wt = 150 lb/ftA3 wt = 150 lb/ftA3 Compressive strength f'c = 6000.0 psi f'c = 5000.0 psi Modulus of Elasticity Ec = 4.688E+6 psi Ec = 4.279E+6 psi Strength at Transfer f'c = 3850.0 psi Modulus of Elast. at Transfer Ec = 3.755E+6 psi Strength at Lifting f'c = 3850.0 psi Modulus of Elast. at Lifting Ec = 3.755E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I offset 1 INol From I To I Length I Folder I Section I Section I Z I Y 1 I I ft I ft I ft I Name I Name I Type I in I in 1 111 0.0001 61.2001 61.2001 DoubleTee I 6.75DT40 I Double Tee 1 0.001 0.001 CAST-IN-PLACE POUR LAYOUT I Segment/Length I Slab/Topping Parameters I Haunch Paramaters IverticalI INol From I To I Length I Thick. I Width I Offset I Thick. I Width I Offset I Offset I I I ft I ft I ft I in I in I in I in I in I in I in I I 11 0.0001 61.2001 61.2001 5.001 81.001 0.001 0.001 0.001 0.001 0.001 Beam is UNSHORED during the cast-in-place pour and superimposed dead load. * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 61.200 ft, Centre of Supports, Left @ 0.000 ft, Right @ 61.200 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 2.000 ft, Right @ 59.200 ft Loop Height = 0.00 ft Span Length in Service = 61.200 ft, Centre of Supports, Left @ 0.000 ft, Right @ 61.200 ft Total Beam Length = 61.200 ft, Bearing Length, Left = 6.00 in, Right = 6.00 in First flexural frequency of beam is approximately 0.17 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) 'Seg.' Section Properties I Section' Section' Shear 'volume /1 Section Moduli I I No•I A I I I yb I Height I Width I Width I Surfacel Sb I St I I I inA2 I inA4 I in I in I in I in I in I inA3 I inA3 I I 11 625.8 I 96191 I 25.251 40.001 81.001 12.041 2.001 -3810 I 6521 I GROSS COMPOSITE SECTION PROPERTIES (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties I SectionI Section Moduli I I No.1 Ac I Ic 1 yb I Height I Sb I St I Sbc I Stc I I I inA2 I inA4 I in I in I inA3 I inA3 I inA3 I inA3 I I 11 995.5 I 166116 I 31.661 45.001 -5247 I 19910 I 19910 I 12449 I Note: Sb & St = bottom and top of the precast beam, Sbc & Stc = bottom and top of the cast-in-place pour. UNCRACKED SECTION PROPERTIES SUMMARY I I Net Precast Section I Transformed Precast Section I Transformed Precast Section 'Transformed Composite SectionI I I at Transfer (based on Eci) I at Transfer (based on Eci) I in Service (based on Ec) I in Service (based on Ec) I I '(include rebar,deduct strand)I (include rebar and strand) I (include rebar and strand) I (include rebar and strand) I Engineer: Company: File: Roof Tee 2.2 - harped 1 of 7 Mon Feb 12 18:10:57 2018 summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 2.2.3 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: x I A I yb 1 A I yb 1 A I yb 1 Ac Ic ybc ft 1 inA2 inA4 in 1 inA2 inA4 in 1 inA2 inA4 in 1 inA2 inA4 in 0.000 623.6 95813 25.301 625.8 96194 25.25 625.8 96194 25.25 995.5 166121 31.66 2.4481 623.6 95678 25.301 640.1 99571 24.941 636.9 98809 25.01 1006.6 171145 31.43 8.568 623.6 95620 25.301 640.1 99940 24.91 636.9 99096 24.98 1006.6 171638 31.42 14.688 623.6 95548 25.311 640.1 100410 24.87 636.9 99462 24.96 1006.6 172210 31.40 20.808 623.6 95460 25.311 640.1 100984 24.84 636.9 99907 24.93 1006.6 172861 31.39 26.928 623.6 95356 25.321 640.1 101659 24.81 636.9 100431 24.91 1006.6 173593 31.37 30.600 623.6 95287 25.321 640.1 102113 24.79 636.9 100783 24.89 1006.6 174069 31.36 31.824 623.6 95311 25.321 640.1 101958 24.80 636.9 100663 24.90 1006.6 173907 31.36 34.272 623.6 95356 25.321 640.1 101659 24.81 636.9 100431 24.91 1006.6 173593 31.37 40.392 623.6 95460 25.311 640.1 100984 24.84 636.9 99907 24.93 1006.6 172861 31.39 46.512 623.6 95548 25.311 640.1 100410 24.87 636.9 99462 24.96 1006.6 172210 31.40 52.632 623.6 95620 25.301 640.1 99940 24.91 636.9 99096 24.98 1006.6 171638 31.42 58.752 623.6 95678 25.301 640.1 99571 24.941 636.9 98809 25.01 1006.6 171145 31.43 61.200 623.6 95813 25.301 625.8 96194 25.25 625.8 96194 25.25 995.5 166121 31.66 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast section in service properties are used with external loads applied to the non-composite precast beam. Transformed Composite Section in Service properties are used with external loads applied to the composite precast beam. PRESTRESSING STEEL TENDONS I Offsets 'End Offset & Type Tendon Jacking Force 1 ID'Qty' Grade 'Type' strand size x I y 'Left ** Right ** Area Pj I %fpul k si I * ft 1 in 1 ft ft inA2 k ip I I 1 2 270.01 LRs 0.5" (1/2) 0.000 2.00 0.000 B 0.000 B 0.306 61.96 0.751 I 61.200 2.00 1 2 2 270.01 LRS 0.5" (1/2) 0.000 4.00 0.000 B 0.000 B 0.306 61.96 0.751 I 61.200 4.00 I 3 2 270.01 LRS 0.5" (1/2) 0.000 8.00 0.000 B 0.000 B 0.306 61.96 0.751 I 30.600 4.501[hold-down force = 1.18 kip] 1 I 61.200 8.00 I I I 4 2 270.01 LRS 0.5" (1/2) 0.000 10.00 0.000 BI 0.000 BI 0.306 61.96 0.751 1 30.600 5.001[hold-down force = 1.69 kip] 1 I 61.200 10.00 I I I 5 2 270.01 LRS 0.5" (1/2) 0.000 18.00 0.000 BI 0.000 BI 0.306 61.96 0.751 1 30.600 5.501[hold-down force = 4.22 kip] 1 I 61.200 18.00 I I I 6 2 270.01 LRs 0.5" (1/2) 0.000 20.001 0.000 131 0.000 BI 0.306 61.96 0.751 I 30.600 6.001[hold-down force = 4.72 kip] 1 I 61.200 20.001 I I I 7 2 270.01 LRS 0.5" (1/2) 0.000 22.001 0.000 131 0.000 BI 0.306 61.96 0.751 I 30.600 6.501[hold-down force = 5.23 kip] 1 1 61.200 22.001 I I I note: * Type = LRs - Low-Relaxation strand, SRS - stress-Relieved strand, PB - Plain Bar, DB - Deformed Bar, Sw - Single wire ** End Types = B - Fully Bonded (B), D - Debonded (D), C - Cut (C), A - Anchored (A) (fully developed) Calculated Losses: Initial = 5.4%, Final = 16.7% Maximum Total Prestress Forces: Pj(jacking) = 433.75 kip, Pi(transfer) = 410.19 kip, Pe(effective) = 361.44 kip @ x = 42.840 ft, see the "Development Length" text report for details of the strand transfer and development lengths TRANSVERSE SHEAR STEEL 1 Shear Stirrups 1 1 From 1 To I Grade 1 size 1 # of LegslTotal Areal spacing I ft I ft I k si I 1 I inA2 1 in I 0.0001 61.2001 58.0 I 15M I 21 0.62 I 0.001 Interface Shear Ties 1 From I To I Grade 1 size I # of LegslTotal Areal Spacing I ft 1 ft 1 k si I I I inA2 I in 1 0.0001 61.2001 58.0 I 15M I 01 0.00 1 0.001 APPLIED LOADS 10/1000 x 6.75' Load Group Stages Applied Load Details & Type & Distribution left to right) unnamed Transfer to Final Service 10 psf- vertical: 0.068 kip/ft full length D: DL, General No Load Distribution Beam weight * Transfer to Final Service Segment #0- vertical: 0.651 kip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam weight, cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam weight, Cable Angle: 90 degrees Engineer: Company: File: Roof Tee 2.2 - harped 2 of 7 Mon Feb 12 18:10:57 2018 summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 2.2.4 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: CIP weight * cIP Placement to Final Service Segment #0- vertical: 0.421 kip/ft full length D: DL, Cast-in-Place Concrete No Load Distribution Live Load Final Service stage only 10k wheel left- vertical: 10 kip at 27.475 ft L: LL, General No Load Distribution 10k wheel right- Vertical: 10 kip at 33.725 ft LL, Roof Publ Final Service stage only 100 psf- Vertical: 0.675 kip/ft full length L: LL, Roof (Public Use) No Load Distribution * indicates load groups generated automatically by concise Beam. 100/1000 x 6.75' 10k @ 6.25'apart LOAD COMBINATIONS Serviceability (SLS) & Fatigue (FLS) Limit state Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00ws + 0.60wu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr ultimate (Strength) Limit State (uLS) Combinations (searched collectively to obtain envelope) 1: ULS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: uLS Combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + O.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: uLS combo 5 : 1.20D + 0.50L + 1.00L1 + 1.60Lr 6: uLS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: ULS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: uLS combo 8 : 1.20D + 1.60Lr + 0.80ws + 0.50wu 9: uLS Combo 9 : 1.20D + 1.60S + 0.80ws + O.50wu 10: ULS Combo 10 : 1.20D + 1.60R + 0.80Ws + 0.50wu 11: uLS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.5OLr + 1.60ws + 1.00wu 12: uLS Combo 12 : 1.20D + 0.50L + 1.00L1 + O.50S + 1.60ws + 1.00wu 13: ULS Combo 13 : 1.20D + 0.50L + 1.0OL1 + 0.50R + 1.60ws + 1.00Wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: uLS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60ws + 1.00Wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Station) SLS (stress) Load Combination ULS Load Envelopes I Moment Moment shear Moment X I Sustained Total Load Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip Combo.) kip.ft Combo.) I min max min max min max min max min max 0.000 0.00 0.00 0.00 31.41 90.92 15 2 0.00 0.00 1 1 2.4481 82.01 82.01 155.03 28.89 84.93 15 2 73.81 215.24 15 2 8.568 257.13 257.13 495.01 22.61 69.94 15 2 231.42 689.16 15 2 14.688 389.54 389.54 766.99 16.33 54.96 15 2 350.58 1071.37 15 2 20.808 479.24 479.24 970.98 10.05 39.98 15 2 431.31 1361.87 15 2 26.928 526.22 526.22 1106.97 3.77 24.99 15 2 473.60 1560.66 15 2 30.600 533.91 533.91 1124.68 0.00 0.00 1 1 480.52 1585.92 15 2 31.824 533.05 533.05 1123.32 -3.00 -1.26 2 15 479.75 1584.09 15 2 34.272 526.22 526.22 1106.97 -24.99 -3.77 2 15 473.60 1560.66 15 2 40.392 479.24 479.24 970.98 -39.98 -10.05 2 15 431.31 1361.87 15 2 46.512 389.54 389.54 766.99 -54.96 -16.33 2 15 350.58 1071.37 15 2 52.632 257.13 257.13 495.01 -69.94 -22.61 2 15 231.42 689.16 15 2 58.752 82.01 82.01 155.03 -84.93 -28.89 2 15 73.81 215.24 15 2 61.200 0.00 0.00 0.00 -90.92 -31.41 2 15 0.00 0.00 1 1 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) Unfactored Load Group Effects I Initial Lifting Truck Transport Erection Lifting In Service Load I Left Right Left Right Left Right Left Right Group I Vertical Vertical Vertical Vertical Vertical Vertical Vertical[*] Torsion[*] Vertical[*]I Torsion[*] I kip kip.ft kip kip.ft kip kip.ft kip kip.ft kip kip.ft unnamed I 2.08 2.08 2.08 2.08 2.08 2.08 2.08 0.00 2.08 0.00 Beam weight) 19.92 19.92 19.92 19.92 19.92 19.92 19.92 0.00 19.92 0.00 CIP weight I 12.89 0.00 12.89 0.00 Live Load I 10.00 0.00 10.00 0.00 LL, Roof Put 20.66 0.00 20.66 0.00 Load Envelope Effects SLS DL I 34.90 I 0.00 I 34.90 I 0.00 SLS Sustain) 34.90 I 0.00 I 34.90 I 0.00 SLS Minimum) 22.00 22.00 22.00 22.00 22.00 22.00 34.90 I 0.00 I 34.90 0.00 SLS Maximum) 22.00 22.00 22.00 22.00 22.00 22.00 65.55 I 0.00 I 65.55 0.00 ULS Minimum' 31.41 [15]1 0.00 [ l]1 31.41 [15]I 0.00 [ 1] ULS Maximum) 90.92 [ 211 0.00 [ 111 90.92 [ 211 0.00 [ 1] * Governing uLS Load Combination (below) CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) Engineer: Company: File: Roof Tee 2.2 - harped 3 of 7 Mon Feb 12 18:10:57 2018 Summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 2.2.5 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: I x I Stress 1 Limit 1 Overstress Location I ft I psi 1 psi 1 Notice STRESSES AT TRANSFER Critical Compression Top of Beam I 42.8401 57 1 2310 I 0% Bottom of Beam I 6.1201 1890 1 2310 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 2.0001 -117 1 -372 1 0% Bottom of Beam I 0.0001 2 1 -372 1 0% STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam I 0.0001 0 I 2695 1 0% Bottom of Beam I 6.1201 2022 I 2310 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 6.1201 -127 1 -186 1 0% Bottom of Beam I 0.0001 2 I -372 1 0% STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam I 41.6161 7 I 3600 1 0% Bottom of Beam I 6.1201 1870 I 3600 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 6.1201 -109 1 -232 1 0% Bottom of Beam I 0.0001 2 1 -465 1 0% STRESSES DURING CAST-IN-PLACE POUR Critical Compression Top of Beam I 23.2561 414 I 3600 1 0% Bottom of Beam I 58.7521 1756 I 3600 1 0% Critical Tension Top of Beam I 59.2001 -59 I -581 1 0% Bottom of Beam I 0.0001 2 I -581 1 0% STRESSES IN SERVICE Critical Compression Top of Beam I 27.4751 783 1 3600 1 0% Bottom of Beam I 58.7521 1592 1 3600 1 0% Top of CIP Pourl 30.6001 507 1 3000 1 0% Critical Tension Top of Beam I 59.2001 -39 1 -930 1* 0% Class U member - not cracked Bottom of Beam I 27.4751 -374 1 -930 1* 0% Class U member - not cracked Top of CIP Pour' 0.0001 0 1 -530 1* 0% STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 27.4751 432 I 2700 I 0% Bottom of Beam I 58.752' 1592 I 2700 I 0% * Tensile stress limit given is for Class T (controlled cracking). Beyond this limit crack control is required. Tensile stress limit given for the cast-in-place pour is the flexural cracking strength of the concrete. At Transfer During Lifting In Service Modulus of Rupture, fr = -465 psi -465 psi -581 psi Strength Required for Transfer, f'ci = 3149.5 psi (f'c specified = 3850.0 psi) Strength Required for Initial Lifting, f'c = 3369.3 psi (f'c assumed = 3850.0 psi) CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING 1 I Bottom I Top of I 1 I of Beam I Beam I 1 dc I 0.00 I 0.00 I in Concrete cover to center of steel closest to tension face 1 cc I 0.00 I 0.00 I in Clear concrete cover to steel closest to tension face 1 fs I 0.0 I 0.0 I ksi Steel stress nearest to tension face (after decompression) for crack control 1 Max spacing I 0.00 I 0.00 I in Maximum centre-to-centre spacing of steel closest to tension face to control cracking Beam not cracked, cracking is controlled, or crack depth is less than concrete cover. DEFLECTION ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) 1 Net Deflection change in Deflection LocationI Net @ Net @ Net @ Net DL Net Total' DL growth LL Span/Deflection x 1 Transfer Erection Completion @ Final @ Final + LL alone DL growth LL ft 1 in in in in in in in + LL alone Column I A B C D E E - C E - D L / (E-C) L / (E-D)1 0.0001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 2.4481 0.123 0.225 0.213 0.176 0.118 -0.095 -0.058 7727 12730 8.5681 0.383 0.703 0.653 0.523 0.327 -0.325 -0.196 2257 3749 14.6881 0.577 1.059 0.969 0.758 0.443 -0.526 -0.315 1397 2330 20.8081 0.710 1.303 1.180 0.909 0.505 -0.675 -0.404 1088 1816 26.9281 0.781 1.434 1.293 0.990 0.536 -0.758 -0.454 969 1616 Engineer: Company: File: Roof Tee 2.2 - harped 4 of 7 Mon Feb 12 18:10:57 2018 Summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 2.2.6 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 30.600 0.793 1.456 1.313 1.004 0.541 -0.772 -0.463 951 1587 31.824 0.792 1.454 1.310 1.002 0.540 -0.770 -0.462 953 1590 34.272 0.781 1.434 1.293 0.990 0.536 -0.758 -0.454 969 1616 40.392 0.710 1.303 1.180 0.909 0.505 -0.675 -0.404 1088 1816 46.512 0.577 1.059 0.969 0.758 0.443 -0.526 -0.315 1397 2330 52.632 0.383 0.703 0.653 0.523 0.327 -0.325 -0.196 2257 3749 58.752 0.123 0.225 0.213 0.176 0.118 -0.095 -0.058 7727 12730 61.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 Col. A: Net deflection at transfer includes prestressing and beam weight on temporary supports. Col. B: Net deflection at erection includes prestressing and all dead loads applied before the cast-in-place pour plus long-time deflection growth of the prestressing and beam weight up to erection Col. C: Net deflection at completion of construction includes prestressing and all dead loads plus long-time deflection growth of the prestressing and dead load up to completion Col. D: Net DL deflection at final includes prestressing, all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes prestressing, all dead loads, and all live loads, plus long-time deflection growth. Deflection growth is estimated by use of the PCI suggested multipliers - see the Deflection Multipliers report. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 B. Unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation change in Rotation SupportI Net @ I Net @ I Net @ I Net DL I Net Total DL growth I LL Location' Transfer I Erection I Completion I @ Final I @ Final + LL I alone I degrees I degrees I degrees 1 degrees 1 degrees degrees 1 degrees Column I A I B I C I D 1 E E - C I E - D Left I -0.2442 I -0.4468 I -0.4245 1 -0.3518 1 -0.2390 0.1856 I 0.1128 Right I 0.2442 I 0.4468 I 0.4245 1 0.3518 1 0.2390 -0.1856 1 -0.1128 C. Unrestrained Longitudinal Change of Length Due to Creep and Shrink age (-ve = shortening, +ve = elongation) Elastic Shortening = -0.1237 in I I Total Change of Length (after elastic shortening) 1 Difference in Change I I I I Erection 'Completion' Final 1 1 to Compl.l to Final 1 to Final I I I I in I in 1 in 1 1 in 1 in 1 in I I I I B I C I D I I C - B I D - C I D - B I I Creep I I -0.09341 -0.13441 -0.21701 1 -0.04111 -0.08261 -0.12371 I Shrink.1 I -0.18811 -0.29171 -0.38911 1 -0.10361 -0.09741 -0.20101 I Total I I -0.28141 -0.42611 -0.60611 I -0.14461 -0.18011 -0.32471 FLEXURAL DESIGN CHECK Design Code Used: ACI 318-14 Concrete compressive stress-strain model used: PCA Parabola-Rectangle Curve Modulus of Rupture of Precast Concrete, fr = 581 psi (tension) I Factored Design Cracking Minimum Depth in Net Tensile' Flexural 0 I warnings I Moment Strength Moment Required Compression' Strain Iclassication I & Notes x I Mu 0Mn Mcr Strength c 1 I ft I kip.ft kip.ft kip.ft kip.ft in 1 I 0.000 0.00 0.85 254.97 0.00 0.07 0.03501Tension 0.751 3 2.4481 215.24 747.87 1079.76 1295.72 1.90 0.03111Tension 0.751 B 3 8.568 689.16 1468.15 1092.35 1310.82 2.53 0.03091Tension 0.901 3 14.688 1071.37 1530.60 1119.89 1343.87 2.53 0.03081Tension 0.901 3 20.808 1361.87 1593.11 1159.47 1391.37 2.53 0.03081Tension 0.901 3 26.928 1560.66 1655.68 1207.51 1449.01 2.53 0.03081Tension 0.901 3 30.600 1585.92 1693.25 1238.64 1486.37 2.53 0.03081Tension 0.901 3 31.824 1584.09 1680.72 1228.15 1473.79 2.53 0.03081Tension 0.901 3 34.272 1560.66 1655.68 1207.51 1449.01 2.53 0.03081Tension 0.901 3 40.392 1361.87 1593.11 1159.47 1391.37 2.53 0.03081Tension 0.901 3 46.512 1071.37 1530.60 1119.89 1343.87 2.53 0.03081Tension 0.901 3 52.632 689.16 1468.15 1092.35 1310.82 2.53 0.03091Tension 0.901 3 58.752 215.24 747.87 1079.76 1295.72 1.90 0.03111Tension 0.751 B 3 61.200 0.00 0.85 254.97 0.00 0.07 0.03501Tension 0.751 3 Points of Maximum and Minimum Factored Moment I 30.6001 1585.92 1 1693.25 1 1238.64 1 1486.37 1 2.53 1 0.03081Tension 10.901 31 I 0.0001 0.00 I -0.31 1 315.62 1 0.00 1 0.11 1 0.03501Tension I 0.751 31 Points of Maximum Ratio of Factored Moment to Design Strength I 27.4751 1573.97 1 1661.27 1 1212.07 I 1454.49 1 2.53 1 0.03081Tension 10.901 31 I 0.0001 0.00 I -0.31 1 315.62 1 0.00 1 0.11 1 0.03501Tension I 0.751 31 Points of Maximum Ratio of Minimum Strength to Design Strength I 60.5331 60.07 I 234.44 1 507.41 1 608.89 1 0.97 I 0.03311Tension I 0.751 B 31 I 0.0001 0.00 I -0.31 I 315.62 1 0.00 1 0.11 1 0.03501 Tensi on I 0.751 31 Warnings & Notes B - WARNING, 0Mn < 1.2Mcr and 0Mn < 2.OMu, minimum reinforcement requirement not met [ACI 318-14::7.6.2/9.6.2]. 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. Engineer: Company: File: Roof Tee 2.2 - harped 5 of 7 Mon Feb 12 18:10:57 2018 Summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 2.2.7 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code Used: ACI 318-14 1 Design Prestress Concrete strength Provided Min. strength Req'd warnings 1 Shear Component Strength Stirrups Total Stirrups Total & Notes x 1 Vu Vp 0Vc 0Vs 0Vn 0Vs 0Vn ft 1 kip kip kip kip kip kip kip 0.000 85.72 0.00 88.17 0.00 88.17 0.00 88.18 1 3 2.4481 84.93 7.19 125.04 0.00 125.04 6.10 131.14 1 8.568 69.94 7.18 94.47 0.00 94.47 9.38 103.85 1 14.688 54.96 7.18 56.33 0.00 56.33 9.44 65.77 1 20.808 39.98 7.16 45.08 0.00 45.08 9.62 54.70 1 26.928 24.99 7.08 46.79 0.00 46.79 9.80 56.59 1 30.600 0.00 7.01 47.82 0.00 47.82 0.00 47.82 30.600 0.00 -7.01 -47.82 0.00 -47.82 0.00 -47.82 31.824 -3.00 -7.04 -47.48 0.00 -47.48 0.00 -47.48 34.272 -24.99 -7.08 -46.79 0.00 -46.79 -9.80 -56.59 1 40.392 -39.98 -7.16 -45.08 0.00 -45.08 -9.62 -54.70 1 46.512 -54.96 -7.18 -56.33 0.00 -56.33 -9.44 -65.77 1 52.632 -69.94 -7.18 -94.47 0.00 -94.47 -9.38 -103.85 1 58.752 -84.93 -7.19 -125.04 0.00 -125.04 -6.10 -131.14 1 61.200 -85.72 0.00 -88.17 0.00 -88.17 0.00 -88.18 1 3 Warnings & Notes 1 - Note, transverse shear or torsion steel is required. See the Shear/Torsion Transvese Reinforcing Design Check report. 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. SHEAR TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 (Shear SteelIShear Steell Stirrup Stirrup Spacing Warnings 1 Required Provided Provided Provided Max. Allow' & Notes x 1 Av/s Av/s Av s s ft 1 inA2/ft inA2/ft inA2 in in 0.000 0.00 0.00 0.62 0.00 24.00 1 4 5 2.4481 0.05 0.00 0.62 0.00 24.00 1 5 8.568 0.07 0.00 0.62 0.00 24.00 1 5 14.688 0.07 0.00 0.62 0.00 24.00 1 5 20.808 0.07 0.00 0.62 0.00 24.00 1 5 26.928 0.07 0.00 0.62 0.00 24.00 1 5 30.600 0.00 0.00 0.62 0.00 24.00 30.600 0.00 0.00 0.62 0.00 24.00 31.824 0.00 0.00 0.62 0.00 24.00 34.272 0.07 0.00 0.62 0.00 24.00 1 5 40.392 0.07 0.00 0.62 0.00 24.00 1 5 46.512 0.07 0.00 0.62 0.00 24.00 1 5 52.632 0.07 0.00 0.62 0.00 24.00 1 5 58.752 0.05 0.00 0.62 0.00 24.00 1 5 61.200 0.00 0.00 0.62 0.00 24.00 1 4 5 Warnings & Notes 1 - Note, amount of shear steel required represents minimum code requirements [ACI 318-14::9.6.3.3]. 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option 58). Note, additional long. steel in compression side of section has been reduced [ACI 318-14::9.5.4.5]. * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. HORIZONTAL SHEAR DESIGN CHECK BY SECTION Design Code Used: ACI 318-14 Top of precast beam is considered intentionally roughened. (Horizontal Strength Maximum Required Tie Size Spacing Spacing Strength Strength warnings 1 Shear with no Limit Ties Provided Required Provided Required Provided & Notes x 1 Vu ties OVnh Max Av/s Av s s OVnh OVnh ft 1 kip kip kip inA2/ft inA2 in in kip kip 0.000 85.72 174.96 1093.50 0.00 0.00 0.00 0.00 85.72 174.96 1 2.4481 84.93 174.96 1093.50 0.00 0.00 0.00 0.00 84.93 174.96 1 8.568 69.94 174.96 1093.50 0.00 0.00 0.00 0.00 69.94 174.96 1 14.688 54.96 177.23 1107.72 0.00 0.00 0.00 0.00 54.96 177.23 1 20.808 39.98 184.24 1151.47 0.00 0.00 0.00 0.00 39.98 184.24 1 26.928 24.99 191.24 1195.25 0.00 0.00 0.00 0.00 24.99 191.24 1 30.600 0.00 195.44 1221.53 0.00 0.00 0.00 0.00 0.00 195.44 1 31.824 -3.00 -194.04 -1212.77 0.00 0.00 0.00 0.00 -3.00 -194.04 1 34.272 -24.99 -191.24 -1195.25 0.00 0.00 0.00 0.00 -24.99 -191.24 1 40.392 -39.98 -184.24 -1151.47 0.00 0.00 0.00 0.00 -39.98 -184.24 1 46.512 -54.96 -177.23 -1107.72 0.00 0.00 0.00 0.00 -54.96 -177.23 1 52.632 -69.94 -174.96 -1093.50 0.00 0.00 0.00 0.00 -69.94 -174.96 1 58.752 -84.93 -174.96 -1093.50 0.00 0.00 0.00 0.00 -84.93 -174.96 1 61.200 -85.72 -174.96 -1093.50 0.00 0.00 0.00 0.00 -85.72 -174.96 1 Warnings & Notes 1 - Note, no ties required [Ad' 318-14::16.4.4.2]. HORIZONTAL SHEAR DESIGN CHECK BY MOMENT REGION Engineer: Company: File: Roof Tee 2.2 - harped 6 of 7 Mon Feb 12 18:10:57 2018 summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 2.2.8 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: Design Code used: ACI 318-14 Top of precast beam is considered intentionally roughened. I Region of Beam 1 Shear I Peak I Horizontal I Strength I Maximum I Tie Area * I Tie Area I Maximum I Warnings I I I Length I Moment I Shear I with no I Limit I Required I Provided I Spacing I & Notes I I x I lv I M I Fh I ties I OVnh Max 1 ACS I ACs 1 5 I I I ft I ft I kip.ft I kip I kip I kip I inA2 I inA2 I in I I I 0.000 to 30.6001 30.6001 1585.92 I 572.18 I 1784.59 I 19630.51 I 0.00 I 0.00 I 20.00 I I I 30.600 to 61.2001 30.6001 1585.92 I 572.18 I 1784.59 I 19630.51 I 0.00 I 0.00 I 20.00 I I * Required ties should be distributed in proportion to distribution of shear force (or stirrups). Engineer: Company: File: Roof Tee 2.2 - harped 7 of 7 Mon Feb 12 18:10:57 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 2.2.9 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Wheel load @ end Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4> in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Cast-in-Place Pour Concrete Density Wt = 150 lb/ftA3 wt = 150 lb/ftA3 Compressive Strength f'c = 6000.0 psi f'c = 5000.0 psi Modulus of Elasticity Ec = 4.688E+6 psi Ec = 4.279E+6 psi Strength at Transfer f'c = 3850.0 psi Modulus of Elast. at Transfer Ec = 3.755E+6 psi Strength at Lifting f'c = 3850.0 psi Modulus of Elast. at Lifting Ec = 3.755E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset 1 INol From I To I Length 1 Folder I Section I section I Z I Y 1 I I ft I ft I ft I Name I Name I Type I in I in I 111 0.0001 61.2001 61.2001 DoubleTee I 6.75DT40 I Double Tee I 0.001 0.001 CAST-IN-PLACE POUR LAYOUT I Segment/Length 1 Slab/Topping Parameters I Haunch Paramaters IverticalI INol From I To I Length I Thick. I Width I Offset I Thick. I Width I Offset I Offset 1 I I ft I ft I ft I in I in I in I in I in 1 in I in I I 11 0.0001 61.2001 61.2001 5.001 81.001 0.001 0.001 0.001 0.001 0.001 Beam is UNSHORED during the cast-in-place pour and superimposed dead load. * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 61.200 ft, Centre of Supports, Left @ 0.000 ft, Right @ 61.200 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 2.000 ft, Right @ 59.200 ft Loop Height = 0.00 ft Span Length in Service = 61.200 ft, Centre of Supports, Left @ 0.000 ft, Right @ 61.200 ft Total Beam Length = 61.200 ft, Bearing Length, Left = 6.00 in, Right = 6.00 in First flexural frequency of beam is approximately 0.17 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties I Section' Section' Shear 'volume /1 Section Moduli 1 I No•I A I I I yb I Height I width I Width I Surfacel Sb I St 1 I I inA2 I inA4 I in I in 1 in 1 in I in I inA3 I inA3 1 I 11 625.8 I 96191 I 25.251 40.001 81.001 12.041 2.001 -3810 I 6521 I GROSS COMPOSITE SECTION PROPERTIES (based on Ec of the precast beam - transformed area of rebar and strand NOT included) 'Seg.' Section Properties I SectionI Section Moduli I I No.' Ac 1 Ic 1 yb I Height 1 Sb I St 1 Sbc 1 Stc I I I inA2 I inA4 I in I in I inA3 I inA3 I inA3 I inA3 I I 11 995.5 I 166116 I 31.661 45.001 -5247 I 19910 I 19910 I 12449 I Note: Sb & St = bottom and top of the precast beam, Sbc & Stc = bottom and top of the cast-in-place pour. UNCRACKED SECTION PROPERTIES SUMMARY I I Net Precast Section I Transformed Precast Section I Transformed Precast Section (Transformed Composite SectionI I I at Transfer (based on Eci) I at Transfer (based on Eci) I in Service (based on Ec) I in Service (based on Ec) I I I(include rebar,deduct strand)I (include rebar and strand) I (include rebar and strand) I (include rebar and strand) I Engineer: Company: File: Roof Tee 2.2 - harped wheel at end 1 of 7 Tue Mar 20 12:01:36 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 2.2.10 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: x I A I yb I A I yb I A I yb I Ac Ic ybc ft 1 inA2 inA4 in I inA2 inA4 in I inA2 inA4 in 1 inA2 inA4 in 0.000 623.6 95813 25.30 625.8 96194 25.25 625.8 96194 25.25 995.5 166121 31.66 2.000 623.6 95693 25.30 638.6 99185 24.97 635.6 98509 25.04 1005.4 170567 31.46 7.250 623.6 95634 25.30 640.1 99852 24.91 636.9 99027 24.99 1006.6 171525 31.42 12.240 623.6 95579 25.31 640.1 100210 24.89 636.9 99306 24.97 1006.6 171971 31.41 18.3601 623.6 95497 25.31 640.1 100742 24.85 636.9 99719 24.94 1006.6 172591 31.39 24.480 623.6 95399 25.32 640.1 101377 24.82 636.9 100212 24.92 1006.6 173291 31.38 29.376 623.6 95311 25.32 640.1 101958 24.80 636.9 100663 24.90 1006.6 173907 31.36 30.600 623.6 95287 25.32 640.1 102113 24.79 636.9 100783 24.89 1006.6 174069 31.36 34.272 623.6 95356 25.32 640.1 101659 24.81 636.9 100431 24.91 1006.6 173593 31.37 40.392 623.6 95460 25.31 640.1 100984 24.84 636.9 99907 24.93 1006.6 172861 31.39 46.512 623.6 95548 25.31 640.1 100410 24.87 636.9 99462 24.96 1006.6 172210 31.40 52.632 623.6 95620 25.30 640.1 99940 24.91 636.9 99096 24.98 1006.6 171638 31.42 58.752 623.6 95678 25.30 640.1 99571 24.94 636.9 98809 25.01 1006.6 171145 31.43 61.200 623.6 95813 25.30 625.8 96194 25.25 625.8 96194 25.25 995.5 166121 31.66 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. Transformed Composite Section in Service properties are used with external loads applied to the composite precast beam. PRESTRESSING STEEL TENDONS I Offsets 'End Offset & Type Tendon Jacking Force I ID Qty1 Grade ITypel Strand size x 1 y 'Left ** Right ** Area Pj %fpul ksi I * ft 1 in I ft ft inA2 kip I 1 2 270.01 LRS 0.5" (1/2) 0.000 2.00 0.000 B 0.000 B 0.306 61.96 0.751 I 61.200 2.00 I 2 2 270.01 LRS 0.5" (1/2) 0.000 4.00 0.000 B 0.000 B 0.306 61.96 0.751 1 61.200 4.00 I 3 2 270.01 LRS 0.5" (1/2) 0.000 8.00 0.000 B 0.000 B 0.306 61.96 0.751 I 30.600 4.501[hold-down force = 1.18 kip] I 1 61.200 8.00 I I I 4 2 270.01 LRS 0.5" (1/2) 0.000 10.00 0.000 BI 0.000 B1 0.306 61.96 0.751 I 30.600 5.001[hold-down force = 1.69 kip] I 1 61.200 10.00 I I I 5 2 270.01 LRS 0.5" (1/2) 0.000 18.00 0.000 BI 0.000 B1 0.306 61.96 0.751 I 30.600 5.501[hold-down force = 4.22 kip] I 1 61.200 18.00 I I I 6 2 270.01 LRS 0.5" (1/2) 0.000 20.00 0.000 BI 0.000 B1 0.306 61.96 0.751 I 30.600 6.001[hold-down force = 4.72 kip] I 1 61.200 20.00 I I I 7 2 270.01 LRS 0.5" (1/2) 0.000 22.00 0.000 BI 0.000 B1 0.306 61.96 0.751 I 30.600 6.501[hold-down force = 5.23 kip] I 1 61.200 22.00 I I I note: * Type = LRS - Low-Relaxation Strand, SRS - Stress-Relieved Strand, PB - Plain Bar, DB - Deformed Bar, SW - Single Wire ** End Types = B - Fully Bonded (B), D - Debonded (D), C - Cut (C), A - Anchored (A) (fully developed) Calculated Losses: Initial = 5.4%, Final = 16.7% Maximum Total Prestress Forces: Pj(jacking) = 433.75 kip, Pi(transfer) = 410.19 kip, Pe(effective) = 361.44 kip @ x = 42.840 ft, See the "Development Length" text report for details of the strand transfer and development lengths TRANSVERSE SHEAR STEEL Shear Stirrups I From I To 1 Grade I Size I # of LegslTotal Areal Spacing I ft I ft I ksi I I 1 inA2 I in I 0.0001 61.2001 58.0 1 15M 1 21 0.62 I 0.001 Interface Shear Ties I From I To I Grade I size I # of LegslTotal Areal spacing I ft I ft I ksi 1 1 I inA2 I in I 0.0001 61.2001 58.0 I 15M I 01 0.00 I 0.001 APPLIED LOADS Load Group Stages Applied Load Details & Type & Distribution (left to right) unnamed Transfer to Final Service 10 psf- Vertical: 0.068 kip/ft full length D: DL, General No Load Distribution Beam Weight * Transfer to Final Service Segment #0- Vertical: 0.651 kip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Engineer: Company: File: Roof Tee 2.2 - harped wheel at end 2 of 7 Tue Mar 20 12:01:36 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 2.2.11 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: CIP weight * CIP Placement to Final Service Segment #0- vertical: 0.421 kip/ft full length D: DL, cast-in-Place concrete No Load Distribution Live Load Final Service stage only 10k wheel left- vertical: 10 kip at 1 ft L: LL, General No Load Distribution 10k wheel right- vertical: 10 kip at 7.25 ft LL, Roof Publ Final service sta9e only 100 psf- Vertical: 0.675 kip/ft full lengt L: LL, Roof (Public use) No Load Distribution * indicates load groups generated automatically by Concise Beam. 100/1000 x 6.75' 10k @ 6.25'apart LOAD COMBINATIONS serviceability (sLs) & Fatigue (FLs) Limit state Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00ws + 0.6OWu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr ultimate (Strength) Limit State (uLS) combinations (searched collectively to obtain envelope) 1: uLs Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS Combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: uLS Combo 5 : 1.20D + 0.50L + 1.00L1 + 1.6OLr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: uLs Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: ULS Combo 8 : 1.20D + 1.6OLr + 0.80ws + 0.50wu 9: ULS Combo 9 : 1.20D + 1.60S + 0.80ws + 0.50wu 10: ULS Combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: ULS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60ws + 1.00wu 12: ULS Combo 12 : 1.20D + 0.50L + 1.00L1 + 0.505 + 1.60ws + 1.00wu 13: ULS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60ws + 1.00wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: ULS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60ws + 1.00wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Station SLS (stress) Load combination ULS Load Envelopes I Moment Moment shear Moment x I Sustained Total Load Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip combo.) kip.ft combo.) I min max min max min max min max min max 0.000 0.00 0.00 0.00 31.41 104.77 15 2 0.00 0.00 1 1 2.000 67.51 67.51 134.77 29.35 83.87 15 2 60.76 188.64 15 2 7.250 223.02 223.02 427.76 23.97 71.01 15 2 200.72 595.21 15 2 7.250 223.02 223.02 427.76 21.81 57.17 15 2 200.72 595.21 15 2 12.240 341.70 341.70 609.95 16.69 44.95 15 2 307.53 839.25 15 2 18.3601 448.48 448.48 771.69 10.41 29.97 15 2 403.63 1055.31 15 2 24.480 512.55 512.55 865.43 4.12 14.98 15 2 461.30 1179.67 15 2 29.376 533.05 533.05 891.47 -0.90 3.00 15 2 479.75 1213.13 15 2 30.600 533.91 533.91 891.18 -2.16 0.00 2 1 480.52 1212.32 15 2 34.272 526.22 526.22 873.99 -11.15 -3.77 2 15 473.60 1187.90 15 2 40.392 479.24 479.24 790.95 -26.13 -10.05 2 15 431.31 1073.82 15 2 46.512 389.54 389.54 639.91 -41.12 -16.33 2 15 350.58 868.04 15 2 52.632 257.13 257.13 420.88 -56.10 -22.61 2 15 231.42 570.55 15 2 58.752 82.01 82.01 133.85 -71.09 -28.89 2 15 73.81 181.36 15 2 61.200 0.00 0.00 0.00 -77.08 -31.41 2 15 0.00 0.00 1 1 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) unfactored Load Group Effects I Initial Lifting Truck Transport Erection Lifting In service Load I Left Right Left Right Left Right Left Right Group I vertical Vertical Vertical Vertical Vertical Vertical Vertical[*] Torsion[*] Vertical[*]I Torsion[*] I kip kip.ft kip kip.ft kip kip.ft kip kip.ft kip kip.ft unnamed I 2.08 2.08 2.08 2.08 2.08 2.08 2.08 0.00 2.08 0.00 Beam weight' 19.92 19.92 19.92 19.92 19.92 19.92 19.92 0.00 19.92 0.00 CIP weight I 12.89 0.00 12.89 0.00 Live Load I 18.65 0.00 1.35 0.00 LL, Roof Pul 20.66 0.00 20.66 0.00 Load Envelope Effects SLS DL I 34.90 I 0.00 I 34.90 I 0.00 I SLS Sustain' 34.90 I 0.00 I 34.90 I 0.00 1 SLS Minimum' 22.00 22.00 22.00 22.00 22.00 22.00 34.90 I 0.00 I 34.90 I 0.00 1 SLS Maximum' 22.00 22.00 22.00 22.00 22.00 22.00 74.20 I 0.00 I 56.90 I 0.00 1 ULS Minimum' 31.41 [1511 0.00 [ 111 31.41 [1511 0.00 [ 111 uLS Maximum' 104.77 [ 211 0.00 [ 1]1 77.08 [ 2]1 0.00 [ 1]1 * Governing uLs Load Combination (below) Use 9.11 @ dap CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) 9.14 @ column (+ve = compression, -ve = tension) Engineer: Company: File: Roof Tee 2.2 - harped wheel at end 3 of 7 Tue Mar 20 12:01:36 2018 Summary Report 2.2.12 Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: I x I Stress I Limit I Overstress Location I ft I psi I psi I Notice STRESSES AT TRANSFER Critical Compression Top of Beam I 42.8401 57 I 2310 1 0% Bottom of Beam I 6.1201 1890 I 2310 I 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 2.0001 -117 I -372 I 0% Bottom of Beam I 0.0001 2 1 -372 1 0% STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam I 0.0001 0 I 2695 I 0% Bottom of Beam I 6.1201 2022 I 2310 I 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 6.1201 -127 I -186 I 0% Bottom of Beam I 0.0001 2 I -372 1 0% STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam I 41.6161 7 I 3600 1 0% Bottom of Beam I 6.1201 1870 I 3600 I 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 6.1201 -109 I -232 I 0% Bottom of Beam I 0.0001 2 1 -465 I 0% STRESSES DURING CAST-IN-PLACE POUR Critical Compression Top of Beam I 23.2561 414 I 3600 1 0% Bottom of Beam I 58.7521 1756 I 3600 I 0% Critical Tension Top of Beam I 59.2001 -59 I -581 I 0% Bottom of Beam I 0.0001 2 1 -581 I 0% STRESSES IN SERVICE Critical Compression Top of Beam I 24.4801 654 I 3600 1 0% Bottom of Beam I 58.7521 1592 I 3600 I 0% Top of CIP Pourl 28.1521 308 I 3000 1 0% Critical Tension Top of Beam I 59.2001 -39 I -930 I* 0% Class U member - not cracked Bottom of Beam I 0.0001 2 1 -930 1* 0% Class U member - not cracked Top of CIP Pourl 0.0001 0 1 -530 1* 0% STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 24.4801 444 I 2700 I 0% Bottom of Beam I 58.7521 1592 I 2700 I 0% * Tensile stress limit given is for Class T (controlled cracking). Beyond this limit crack control is required. Tensile stress limit given for the cast-in-place pour is the flexural cracking strength of the concrete. At Transfer During Lifting In Service Modulus of Rupture, fr = -465 psi -465 psi -581 psi Strength Required for Transfer, f'ci = 3149.5 psi (f'c specified = 3850.0 psi) Strength Required for Initial Lifting, f'c = 3369.3 psi (f'c assumed = 3850.0 psi) CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING I I Bottom 1 Top of I 1 I of Beam I Beam I I dc I 0.00 I 0.00 I in Concrete cover to center of steel closest to tension face I cc 0.00 I 0.00 I in Clear concrete cover to steel closest to tension face 1 fs I 0.0 I 0.0 I ksi Steel stress nearest to tension face (after decompression) for crack control I Max spacing I 0.00 I 0.00 I in Maximum centre-to-centre spacing of steel closest to tension face to control cracking Beam not cracked, cracking is controlled, or crack depth is less than concrete cover. DEFLECTION ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) 1 Net Deflection Change in Deflection I LocationI Net @ Net @ Net @ Net DL Net Total DL growth LL Span/Deflection I x I Transfer Erection Completion @ Final @ Final + LL alone DL growth LL I ft I in in in in in in in + LL alone I Column I A B C D E E - C E - D L / (E-C) L / (E-D)1 0.0001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 I 2.0001 0.101 0.185 0.175 0.145 0.109 -0.066 -0.036 11113 20638 I 7.2501 0.333 0.611 0.569 0.459 0.340 -0.230 -0.120 3196 6142 I 12.2401 0.507 0.930 0.856 0.675 0.486 -0.369 -0.189 1989 3886 I 18.3601 0.664 1.219 1.107 0.858 0.604 -0.503 -0.254 1459 2895 I Engineer: Company: File: Roof Tee 2.2 - harped wheel at end 4 of 7 Tue Mar 20 12:01:36 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 2.2.13 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 24.480 0.760 1.395 1.260 0.966 0.673 -0.586 -0.293 1252 2509 29.376 0.792 1.454 1.310 1.002 0.699 -0.612 -0.304 1200 2418 30.600 0.793 1.456 1.313 1.004 0.700 -0.612 -0.304 1199 2418 34.272 0.781 1.434 1.293 0.990 0.693 -0.600 -0.297 1223 2475 40.392 0.710 1.303 1.180 0.909 0.646 -0.534 -0.263 1375 2789 46.512 0.577 1.059 0.969 0.758 0.553 -0.416 -0.205 1767 3580 52.632 0.383 0.703 0.653 0.523 0.396 -0.257 -0.127 2862 5778 58.752 0.123 0.225 0.213 0.176 0.140 -0.073 -0.036 10000 20350 61.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 Col. A: Net deflection at transfer includes prestressing and beam weight on temporary supports. Col. B: Net deflection at erection includes prestressing and all dead loads applied before the cast-in-place pour plus long-time deflection growth of the prestressing and beam weight up to erection Col. C: Net deflection at completion of construction includes prestressing and all dead loads plus long-time deflection growth of the prestressing and dead load up to completion Col. D: Net DL deflection at final includes prestressing, all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes prestressing, all dead loads, and all live loads, plus long-time deflection growth. Deflection growth is estimated by use of the PCI suggested multipliers - see the Deflection Multipliers report. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 B. Unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation Change in Rotation SupportI Net @ I Net @ I Net @ 1 Net DL I Net Total DL growth I LL Location' Transfer I Erection I Completion I @ Final I @ Final + LL I alone I degrees I degrees I degrees I degrees I degrees degrees I degrees Column 1 A I B I C 1 D I E E - C I E - D Left 1 -0.2442 I -0.4468 I -0.4245 1 -0.3518 I -0.2618 0.1627 I 0.0900 Right 1 0.2442 I 0.4468 I 0.4246 I 0.3518 I 0.2875 -0.1370 I -0.0643 C. Unrestrained Longitudinal Change of Length Due to Creep and Shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = -0.1238 in 1 1 Total Change of Length (after elastic shortening) I Difference in Change I 1 1 1 Erection 'Completion' Final 1 I to Comp1.1 to Final 1 to Final I 1 1 1 in I in I in 1 I in I in 1 in I 1 1 1 B I c I D I I c - B I D - c I D - B I 1 Creep 1 1 -0.09341 -0.13451 -0.21721 I -0.04111 -0.08271 -0.12381 1 Shrink.I 1 -0.18811 -0.29171 -0.38911 I -0.10361 -0.09741 -0.20101 1 Total 1 1 -0.28151 -0.42611 -0.60631 I -0.14471 -0.18011 -0.32481 FLEXURAL DESIGN CHECK Design Code Used: ACI 318-14 Concrete compressive stress-strain model used: PCA Parabola-Rectangle Curve Modulus of Rupture of Precast Concrete, fr = 581 psi (tension) 1 Factored Design Cracking Minimum Depth in Net TensileI Flexural 0 I warnings 1 Moment Strength Moment Required compression' Strain Iclassication I & Notes x 1 Mu 0Mn Mcr Strength c ft 1 kip.ft kip.ft kip.ft kip.ft in I I 0.000 0.00 0.85 254.97 0.00 0.07 0.0350ITension 0.751 3 2.000 188.64 640.25 977.01 1172.42 1.74 0.0316ITension 0.751 B 3 7.250 595.21 1454.71 1088.29 1305.94 2.53 0.03091Tension 0.901 3 12.240 839.25 1505.61 1107.25 1328.70 2.53 0.03081Tension 0.901 3 18.3601 1055.31 1568.10 1142.41 1370.89 2.53 0.03081Tension 0.901 3 24.480 1179.67 1630.65 1187.54 1425.04 2.53 0.03081Tension 0.901 3 29.376 1213.13 1680.72 1228.15 1473.79 2.53 0.03081Tension 0.901 3 30.600 1212.32 1693.25 1238.64 1486.37 2.53 0.03081Tension 0.901 3 34.272 1187.90 1655.68 1207.51 1449.01 2.53 0.03081Tension 0.901 3 40.392 1073.82 1593.11 1159.47 1391.37 2.53 0.03081Tension 0.901 3 46.512 868.04 1530.60 1119.89 1343.87 2.53 0.03081Tension 0.901 3 52.632 570.55 1468.15 1092.35 1310.82 2.53 0.03091Tension 0.901 3 58.752 181.36 747.87 1079.76 1295.72 1.90 0.0311ITension 0.751 B 3 61.200 0.00 0.85 254.97 0.00 0.07 0.03501Tension 0.751 3 Points of Maximum and Minimum Factored Moment 1 29.3761 1213.13 I 1680.72 I 1228.15 1 1473.79 I 2.53 1 0.03081Tension I 0.901 31 1 0.0001 0.00 I -0.31 I 315.62 1 0.00 I 0.11 1 0.03501Tension 10.751 31 Points of Maximum Ratio of Factored Moment to Design Strength 1 26.9281 1203.74 I 1655.68 I 1207.51 1 1449.01 I 2.53 1 0.03081Tension 10.901 31 1 0.0001 0.00 I -0.31 I 315.62 1 0.00 I 0.11 1 0.03501Tension 10.751 31 Points of Maximum Ratio of Minimum Strength to Design Strength 1 60.5331 50.84 I 234.44 I 507.41 1 608.89 I 0.97 I 0.0331ITension I 0.751 B 31 1 0.0001 0.00 I -0.31 I 315.62 1 0.00 I 0.11 1 0.03501Tension 10.751 31 Warnings & Notes B - WARNING, 0Mn < 1.2Mcr and 0Mn < 2.OMu, minimum reinforcement requirement not met [ACI 318-14::7.6.2/9.6.2]. Engineer: Company: File: Roof Tee 2.2 - harped wheel at end 5 of 7 Tue Mar 20 12:01:36 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 2.2. 4 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code used: ACI 318-14 1 Design Prestress Concrete Strength Provided Min. Strength Req'd warnings 1 Shear Component Strength Stirrups Total Stirrups Total & Notes x 1 Vu Vp OVc 0Vs 0Vn 0Vs 0Vn ft 1 kip kip kip kip kip kip kip 0.000 83.56 0.00 88.17 0.00 88.17 0.00 88.18 1 3 2.000 83.56 6.15 119.78 0.00 119.78 5.27 125.05 1 3 7.250 71.01 7.18 107.23 0.00 107.23 9.38 116.61 1 7.250 57.17 7.18 81.22 0.00 81.22 9.38 90.60 1 12.240 44.95 7.18 54.23 0.00 54.23 9.38 63.61 1 18.3601 29.97 7.17 44.39 0.00 44.39 9.55 53.94 1 24.480 14.98 7.12 46.10 0.00 46.10 0.00 46.10 29.376 3.00 7.04 47.48 0.00 47.48 0.00 47.48 30.600 -2.16 7.01 -47.82 0.00 -47.82 0.00 -47.82 34.272 -11.15 -7.08 -46.79 0.00 -46.79 0.00 -46.79 40.392 -26.13 -7.16 -45.08 0.00 -45.08 -9.62 -54.70 1 46.512 -41.12 -7.18 -53.29 0.00 -53.29 -9.44 -62.73 1 52.632 -56.10 -7.18 -91.61 0.00 -91.61 -9.38 -100.98 1 58.752 -71.09 -7.19 -125.04 0.00 -125.04 -6.10 -131.14 1 61.200 -71.88 0.00 -88.17 0.00 -88.17 0.00 -88.18 1 3 Warnings & Notes 1 - Note, transverse shear or torsion steel is required. See the Shear/Torsion Transvese Reinforcing Design Check report. 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. SHEAR TRANSVERSE REINFORCING DESIGN CHECK Design Code used: ACI 318-14 (shear Steel Shear Steel Stirrup Stirrup Spacing Warnings 1 Required Provided Provided Provided Max. Allows & Notes x 1 Av/s Av/s Av s s ft 1 inA2/ft inA2/ft inA2 in in 0.000 0.00 0.00 0.62 0.00 24.00 1 4 5 2.000 0.04 0.00 0.62 0.00 24.00 1 4 5 7.250 0.07 0.00 0.62 0.00 24.00 1 5 7.250 0.07 0.00 0.62 0.00 24.00 1 5 12.240 0.07 0.00 0.62 0.00 24.00 1 5 18.3601 0.07 0.00 0.62 0.00 24.00 1 5 24.480 0.00 0.00 0.62 0.00 24.00 29.376 0.00 0.00 0.62 0.00 24.00 30.600 0.00 0.00 0.62 0.00 24.00 34.272 0.00 0.00 0.62 0.00 24.00 40.392 0.07 0.00 0.62 0.00 24.00 1 5 46.512 0.07 0.00 0.62 0.00 24.00 1 5 52.632 0.07 0.00 0.62 0.00 24.00 1 5 58.752 0.05 0.00 0.62 0.00 24.00 1 5 61.200 0.00 0.00 0.62 0.00 24.00 1 4 5 Warnings & Notes 1 - Note, amount of shear steel required represents minimum code requirements [ACI 318-14::9.6.3.3]. 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). Note, additional long. steel in compression side of section has been reduced [ACI 318-14::9.5.4.5]. * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. HORIZONTAL SHEAR DESIGN CHECK BY SECTION Design Code used: ACI 318-14 Top of precast beam is considered intentionally roughened. (Horizontal Strength Maximum Required Tie Size Spacing Spacing Strength Strength warnings 1 Shear with no Limit Ties Provided Required Provided Required Provided & Notes x 1 Vu ties OVnh Max Av/s Av s s OVnh OVnh ft 1 kip kip kip inA2/ft inA2 in in kip kip 0.000 83.56 174.96 1093.50 0.00 0.00 0.00 0.00 83.56 174.96 1 2.000 83.56 174.96 1093.50 0.00 0.00 0.00 0.00 83.56 174.96 1 7.250 71.01 174.96 1093.50 0.00 0.00 0.00 0.00 71.01 174.96 1 7.250 57.17 174.96 1093.50 0.00 0.00 0.00 0.00 57.17 174.96 1 12.240 44.95 174.96 1093.50 0.00 0.00 0.00 0.00 44.95 174.96 1 18.3601 29.97 181.43 1133.97 0.00 0.00 0.00 0.00 29.97 181.43 1 24.480 14.98 188.44 1177.74 0.00 0.00 0.00 0.00 14.98 188.44 1 29.376 3.00 194.04 1212.77 0.00 0.00 0.00 0.00 3.00 194.04 1 30.600 -2.16 -195.44 -1221.53 0.00 0.00 0.00 0.00 -2.16 -195.44 1 34.272 -11.15 -191.24 -1195.25 0.00 0.00 0.00 0.00 -11.15 -191.24 1 40.392 -26.13 -184.24 -1151.47 0.00 0.00 0.00 0.00 -26.13 -184.24 1 46.512 -41.12 -177.23 -1107.72 0.00 0.00 0.00 0.00 -41.12 -177.23 1 52.632 -56.10 -174.96 -1093.50 0.00 0.00 0.00 0.00 -56.10 -174.96 1 58.752 -71.09 -174.96 -1093.50 0.00 0.00 0.00 0.00 -71.09 -174.96 1 61.200 -71.88 -174.96 -1093.50 0.00 0.00 0.00 0.00 -71.88 -174.96 1 Warnings & Notes 1 - Note, no ties required [ACI 318-14::16.4.4.2]. Engineer: Company: File: Roof Tee 2.2 - harped wheel at end 6 of 7 Tue Mar 20 12:01:36 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 2.2.15 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: HORIZONTAL SHEAR DESIGN CHECK BY MOMENT REGION Design Code used: ACI 318-14 Top of precast beam is considered intentionally roughened. Region of Beam I shear I Peak I Horizontal I strength I Maximum I Tie Area * I Tie Area I Maximum I warnings I I Length I Moment I Shear I with no I Limit I Required I Provided I Spacing I & Notes I 1 x I lv I M I Fh I ties I 0vnh Max I Acs I Acs I s I I 1 ft I ft I kip.ft I kip I kip I kip I inA2 I inA2 I in I I 1 0.000 to 29.3761 29.3761 1213.13 I 572.03 I 1713.21 I 18845.29 I 0.00 I 0.00 I 20.00 I I 1 29.376 to 61.2001 31.8241 1213.13 I 572.03 I 1855.98 I 20415.73 I 0.00 I 0.00 I 20.00 I I * Required ties should be distributed in proportion to distribution of shear force (or stirrups). Engineer: Company: File: Roof Tee 2.2 - harped wheel at end 7 of 7 Tue Mar 20 12:01:36 2018 0) DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION O A C E D N C ,1 p 0 I i— pir • / 4) _ a z A .MTIE _ - I - - 0D 16—Will M �� — II 0O , = - I I e N is �� — - — / — �� ��— O } N 123/8" DAP N SEE SHEET 9.12 'C' ti p II U III -1 - II 1 - 0) 1 !- _I — — ',7_ � i i II *(Ty) 1 = , II LU �rtor.__Sii -J c • C BEARING PLATE 0_ SEE SHEET 9.6 a- 0 DT TO LIGHTWALL E SEE SHEET 9.5 DT TO COLUMN B DT TO SPANDREL SEE SHEET m SEE SHEET 9.5ai DT TO DT DT TO BEAM SEE SHEET 9.18 al SEE SHEET rs VIRi v i , /,' A . ,, .. ._ 0 --. . c..t / AI) •„ . / \ / \ / . .,3 DT TO SHEARWALL DT TO SPANDREL SEE SHEET 9.17 SEE SHEET ,D DT TO COLUMN SEE SHEET N o RED SANDSTONE N DOUBLE TEE DESIGN SUMMARY o 6209 c.iENCON 0 2 2.3 O 3 COLORADO,LLC 0 a SHEET 1 OF 1 0) DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION ui O A C B D Cr) 0) DATA SHEET/DOUBLE TEE/COMPOSITE .N a) 0 0 4) 0 SPAN (CL TO CL BRG): DOUBLE TEE LENGTH - CL BEARING 61.2' F, 1 D 0 0 LOADING: D.L. WEIGHT OF P.C. MEMBER INCLUDED IN PROGRAM 537 PLF o SDL 10 psf 75 PLF N c TOPPING 7 inch COMPOSITE TOPPING 655 PLF O v LL 40 psf 300 PLF Li, SNOW PLF C OPRECAST SECTION: UNIT WT: 150 PCF. (HARD ROCK) 28 DAY CONC. f'c = 5000 0 PSI _ STRIPPING CONC. f'ci = 3900 U PSI O COMPOSITE TOPPING: UNIT WT: 150 PCF. (HARD ROCK) 28 DAY CONC. f'c = 5000 PSI U 0) TOPPING: t1 = 3 IN. •c O NUMBER OF 0.6"0 STRANDS IN EACH LEG 6 STRAND c c P (INITIAL PULL) ( 12 STR X 41 KIPS) = TOTAL 492 KIP w 0) CAMBER © RELEASE: 0.75" C CAMBER ® ERECTION: 1.5" 0 a- a' 0 c 4) B N STEM MESH: DECK MESH: ,GA)� STM28 12x6-W1.4xW2.9 t' 5' EA END/STEM + #3 © 36" o.c. El r6 — — • — • ao °a A °Q ._ Z3, A °a M a x xx i, x—x x 1.[ ..C DOUBLE TEE x 21 x x x N. x—x x N. eN PRECAST SECTION 7----- cm PROPERTIES A = 516.4 IN2 I = 39627 IN4 •1 •• • • Yb = 18.33 IN '� N `I • ` • N N N Sb = 2162 IN3 • • • ' N• • IN. St = 4098 IN3 l bw = 12.86 IN . :-.A- :„ • • tzN � O "• • . 1 @ ENDS @ MIDSPAN cs N RED SANDSTONE DOUBLE TEE DESIGN SUMMARY o N o 1' (floor with 7"topping) 0 6209 ENCON ° 2.3.1 a O 3 COLORADO,LLC a SHEET 1 OF 1 Summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 2.3.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-O5 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Cast-in-Place Pour Concrete Density Wt = 150 lb/ftA3 wt = 150 lb/ftA3 Compressive strength f'c = 5000.0 psi f'c = 5000.0 psi Modulus of Elasticity Ec = 4.279E+6 psi Ec = 4.279E+6 psi Strength at Transfer f'c = 3500.0 psi Modulus of Elast. at Transfer Ec = 3.580E+6 psi Strength at Lifting f'c = 3500.0 psi Modulus of Elast. at Lifting Ec = 3.580E+6 psi cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT Segment/Length I Section Identification Offset Nol From I To I Length I Folder Section Section Z I Y ft I ft I ft I Name Name Type in I in 1 0.0001 18.4001 18.4001 DoubleTee 7_6DT28 Double Tee 0.001 0.00 2 18.4001 20.6001 2.2001 DoubleTee 6_10DT28 Double Tee 4.001 0.00 3 20.6001 40.8001 20.2001 DoubleTee 7_6DT28 Double Tee 0.001 0.00 4 40.8001 43.0001 2.2001 DoubleTee 6_10DT28 Double Tee 4.001 0.00 5 43.0001 61.2001 18.2001 DoubleTee 7_6DT28 Double Tee 0.001 0.00 CAST-IN-PLACE POUR LAYOUT Segment/Length I Slab/Topping Parameters I Haunch Paramaters 'verticalI Nol From 1 To 1 Length 1 Thick. I Width I Offset 1 Thick. I Width I Offset 1 Offset I ft I ft I ft I in I in I in I in I in I in I in I 1 0.0001 18.4001 18.4001 7.001 90.001 0.001 0.001 0.001 0.001 0.001 2 18.4001 20.6001 2.2001 7.001 82.001 0.001 0.001 0.001 0.001 0.001 3 20.6001 40.8001 20.2001 7.001 90.001 0.001 0.001 0.001 0.001 0.001 4 40.8001 43.0001 2.2001 7.001 82.001 0.001 0.001 0.001 0.001 0.001 5 43.0001 61.2001 18.2001 7.001 90.001 0.001 0.001 0.001 0.001 0.001 Beam is UNSHORED during the cast-in-place pour and superimposed dead load. * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 61.200 ft, Centre of Supports, Left @ 0.000 ft, Right @ 61.200 ft Span Length during Lift = 0.000 ft, centre of Supports, Left @ 0.000 ft, Right @ 61.200 ft Loop Height = 0.00 ft Span Length in Service = 61.200 ft, Centre of Supports, Left @ 0.000 ft, Right @ 61.200 ft Total Beam Length = 61.200 ft, Bearing Length, Left = 6.00 in, Right = 6.00 in First flexural frequency of beam is approximately 0.11 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) Seg. Section Properties Section' Section' Shear 'volume /1 Section Moduli No.1 A I yb Height I Width I Width I Surface' Sb St inA2 inA4 in in I in I in I in I inA3 inA3 1 516.4 39627 18.33 28.001 90.001 12.861 1.821 -2162 4098 2 500.4 38380 18.05 28.001 82.001 12.861 1.871 -2126 3857 3 516.4 39627 18.33 28.001 90.001 12.861 1.821 -2162 4098 4 500.4 38380 18.05 28.001 82.001 12.861 1.871 -2126 3857 5 516.4 39627 18.33 28.001 90.001 12.861 1.821 -2162 4098 GROSS COMPOSITE SECTION PROPERTIES (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties I SectionI Section Moduli I I No.1 Ac I Ic I yb I Height I Sb I St I Sbc I Stc 1 1 I inA2 I inA4 I in I in I inA3 I inA3 I inA3 I inA3 I Engineer: Company: File: Floor Tee 2.3 1 of 7 Mon Feb 12 18:15:47 2018 Summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 2.3.3 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: I 11 1146.4 I 91424 I 25.571 35.001 -3576 I 37581 I 37581 I 9692 I 1 21 1074.4 I 89088 1 25.241 35.001 -3530 I 32225 I 32225 I 9124 1 1 31 1146.4 I 91424 1 25.571 35.001 -3576 I 37581 I 37581 I 9692 I 1 41 1074.4 I 89088 I 25.241 35.001 -3530 I 32225 I 32225 I 9124 1 I 51 1146.4 I 91424 1 25.571 35.001 -3576 I 37581 I 37581 I 9692 1 Note: Sb & St = bottom and top of the precast beam, Sbc & Stc = bottom and top of the cast-in-place pour. UNCRACKED SECTION PROPERTIES SUMMARY 1 Net Precast Section Transformed Precast Section Transformed Precast Section Transformed Composite Section I at Transfer (based on Eci) at Transfer (based on Eci) in Service (based on Ec) in Service (based on Ec) I(include rebar,deduct strand)I (include rebar and strand) (include rebar and strand) (include rebar and strand) I x 1 A I yb A I yb A I yb Ac Ic ybc ft I inA2 inA4 in inA2 inA4 in inA2 inA4 in inA2 inA4 in 0.0001 513.8 39399 18.38 516.5 39629 18.33 516.5 39629 18.33 1146.5 91428 25.57 3.6721 513.8 39334 18.38 534.9 41643 18.01 531.5 41275 18.07 1161.5 95875 25.35 9.7921 513.8 39334 18.38 534.9 41643 18.01 531.5 41275 18.07 1161.5 95875 25.35 15.9121 513.8 39334 18.38 534.9 41643 18.01 531.5 41275 18.07 1161.5 95875 25.35 20.6001 497.8 38101 18.10 518.9 40303 17.73 515.5 39952 17.79 1089.5 93375 25.01 20.6001 513.8 39334 18.38 534.9 41643 18.01 531.5 41275 18.07 1161.5 95875 25.35 25.7041 513.8 39334 18.38 534.9 41643 18.01 531.5 41275 18.07 1161.5 95875 25.35 30.6001 513.8 39334 18.38 534.9 41643 18.01 531.5 41275 18.07 1161.5 95875 25.35 31.8241 513.8 39334 18.38 534.9 41643 18.01 531.5 41275 18.07 1161.5 95875 25.35 35.4961 513.8 39334 18.38 534.9 41643 18.01 531.5 41275 18.07 1161.5 95875 25.35 40.8001 513.8 39334 18.38 534.9 41643 18.01 531.5 41275 18.07 1161.5 95875 25.35 40.8001 497.8 38101 18.10 518.9 40303 17.73 515.5 39952 17.79 1089.5 93375 25.01 45.2881 513.8 39334 18.38 534.9 41643 18.01 531.5 41275 18.07 1161.5 95875 25.35 51.4081 513.8 39334 18.38 534.9 41643 18.01 531.5 41275 18.07 1161.5 95875 25.35 57.5281 513.8 39334 18.38 534.9 41643 18.01 531.5 41275 18.07 1161.5 95875 25.35 61.2001 513.8 39399 18.38 516.5 39629 18.331 516.5 39629 18.331 1146.5 91428 25.57 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. Transformed Composite Section in Service properties are used with external loads applied to the composite precast beam. PRESTRESSING STEEL TENDONS I Offsets 'End Offset & Type Tendon Jacking Force 1 ID'Qty' Grade ITypel Strand Size x I y 'Left ** Right ** Area Pj %fpul k si I * ft 1 in 1 ft ft inA2 k ip 1 1 2 270.01 LRS 0.6" (3/5) 0.0001 2.00 0.000 B 0.000 B 0.434 82.03 0.701 I 61.2001 2.00 1 2 2 270.01 LRS 0.6" (3/5) 0.0001 4.00 0.000 B 0.000 B 0.434 82.03 0.701 I 61.2001 4.00 I 3 2 270.01 LRS 0.6" (3/5) 0.0001 8.00 0.000 B 0.000 B 0.434 82.03 0.701 I 61.2001 8.00 1 4 2 270.01 LRS 0.6" (3/5) 0.0001 10.00 0.000 B 0.000 B 0.434 82.03 0.701 I 61.2001 10.00 1 5 2 270.01 LRS 0.6" (3/5) 0.0001 14.00 0.000 B 0.000 B 0.434 82.03 0.701 I 61.2001 14.00 I 6 2 270.01 LRS 0.6" (3/5) 0.0001 16.00 0.000 B 0.000 B 0.434 82.03 0.701 I 61.2001 16.00 I note: * Type = LRS - Low-Relaxation Strand, SRS - Stress-Relieved Strand, PB - Plain Bar, DB - Deformed Bar, SW - Single Wire ** End Types = B - Fully Bonded (B), D - Debonded (D), C - cut (c), A - Anchored (A) (fully developed) Calculated Losses: Initial = 5.3%, Final = 12.7% Maximum Total Prestress Forces: Pj(jacking) = 492.16 kip, Pi(transfer) = 466.26 kip, Pe(effective) = 429.82 kip @ x = 30.600 ft, See the "Development Length" text report for details of the strand transfer and development lengths TRANSVERSE SHEAR STEEL 1 Shear Stirrups ' 1 From I To I Grade ' Size ' # of LegslTotal Areal Spacing ' 1 ft 1 ft 1 k si I I I inA2 1 in 1 1 0.0001 61.2001 58.0 1 15M 1 21 0.62 I 0.001 1 Interface Shear Ties ' 1 From I To I Grade ' Size ' # of LegslTotal Areal Spacing ' 1 ft I ft 1 k si I I I inA2 I in 1 1 0.0001 61.2001 58.0 1 15m 1 01 0.00 1 0.001 APPLIED LOADS Engineer: Company: File: Floor Tee 2.3 2 of 7 Mon Feb 12 18:15:47 2018 Summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 2.3.4 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: Load Group Stages Applied Load Details I & Type & Distribution (left to right) I unnamed Transfer to Final Service 10 psf- Vertical: 0.075 kip/ft full length I D: DL, General No Load Distribution I I Beam weight * Transfer to Final Service Segment #0- Vertical: 0.537 kip/ft from 0 to 18.4 ftl D: DL, Factory Produced No Load Distribution I segment #1- Vertical: 0.521 kip/ft from 18.4 to 20.6 ftl I Segment #2- Vertical: 0.537 kip/ft from 20.6 to 40.8 ftl I Segment #3- Vertical: 0.521 kip/ft from 40.8 to 43 ftl Segment #4- Vertical: 0.537 kip/ft from 43 to 61.2 ftl Initial Lift Dynamic Impact Initial Lift +/-0% of Beam weight, Cable Angle: 90 degrees I Erection Lift Dynamic Impact Erection Lift +/-0% of Beam weight, Cable Angle: 90 degrees CIP weight * CIP Placement to Final Service Segment #0- Vertical: 0.655 kip/ft from 0 to 18.4 ftl D: DL, Cast-in-Place Concrete No Load Distribution I Segment #1- Vertical: 0.597 kip/ft from 18.4 to 20.6 ftl segment #2- Vertical: 0.655 kip/ft from 20.6 to 40.8 ftl Segment #3- Vertical: 0.597 kip/ft from 40.8 to 43 ftl Segment #4- Vertical: 0.655 kip/ft from 43 to 61.2 ftl Live Load Final Service stage only 40 psf- Vertical: 0.3 kip/ft full length L: LL, General No Load Distribution * indicates load groups generated automatically by Concise Beam. LOAD COMBINATIONS Serviceability (SLS) & Fatigue (FLS) Limit State Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00W5 + 0.60Wu 5L5 Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr Ultimate (strength) Limit state (ULS) Combinations (searched collectively to obtain envelope) 1: ULS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS Combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50s 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + O.50R 5: ULS Combo 5 : 1.20D + 0.50L + 1.00L1 + 1.60Lr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60s 7: ULS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: ULS Combo 8 : 1.20D + 1.60Lr + 0.80Ws + 0.50Wu 9: ULS Combo 9 : 1.20D + 1.60s + 0.80Ws + 0.50Wu 10: ULS Combo 10 : 1.20D + 1.60R + 0.80Ws + 0.50Wu 11: ULS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60Ws + 1.00Wu 12: ULS Combo 12 : 1.20D + 0.50L + 1.00L1 + 0.505 + 1.60Ws + 1.00Wu 13: ULS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60Ws + 1.00Wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: ULS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60Ws + 1.00Wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Station' 5L5 (stress) Load Combination ULS Load Envelopes I Moment Moment Shear Moment x I Sustained Total Load Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip Combo.) kip.ft Combo.) I min max min max min max min max min max 0.0001 0.00 0.00 0.00 34.77 61.04 15 2 0.00 0.00 1 1 3.6721 133.30 133.30 164.99 30.58 53.69 15 2 119.97 210.66 15 2 9.7921 317.48 317.48 392.98 23.59 41.45 15 2 285.73 501.78 15 2 15.9121 454.17 454.17 562.27 16.61 29.20 15 2 408.75 717.96 15 2 20.6001 526.95 526.95 652.40 11.41 20.01 15 2 474.25 833.06 15 2 25.7041 575.14 575.14 712.00 5.59 9.80 15 2 517.63 909.14 15 2 30.6001 590.34 590.34 730.79 0.00 0.00 15 1 531.31 933.13 15 2 31.8241 589.39 589.39 729.62 -2.45 -1.40 2 15 530.45 931.63 15 2 35.4961 575.15 575.15 712.01 -9.80 -5.59 2 15 517.63 909.15 15 2 40.8001 524.40 524.40 649.24 -20.41 -11.64 2 15 471.96 829.03 15 2 45.2881 454.15 454.15 562.25 -29.20 -16.61 2 15 408.74 717.93 15 2 51.4081 317.47 317.47 392.97 -41.44 -23.59 2 15 285.72 501.77 15 2 57.5281 133.29 133.29 164.98 -53.69 -30.58 2 15 119.97 210.65 15 2 61.2001 0.00 0.00 0.00 -61.04 -34.77 2 15 0.00 0.00 1 1 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) Unfactored Load Group Effects 1 I Initial Lifting I Truck Transport I Erection Lifting I In service 1 1 Load I Left I Right I Left I Right I Left I Right 1 Left I Right 1 1 Group I Vertical I Vertical I Vertical I Vertical I Vertical I Vertical I Vertical[*]1 Torsion[*] I Vertical[*]I Torsion[*] I 1 I kip I kip.ft I kip I kip.ft I kip I kip.ft I kip I kip.ft I kip I kip.ft 1 lunnamed I 2.29 I 2.29 I 2.29 I 2.29 I 2.29 I 2.29 1 2.29 I 0.00 I 2.29 I 0.00 I 'Beam weight l 16.40 I 16.40 I 16.40 I 16.40 I 16.40 I 16.40 I 16.40 I 0.00 I 16.40 I 0.00 I Engineer: Company: File: Floor Tee 2.3 3 of 7 Mon Feb 12 18:15:47 2018 Summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 2.3.5 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: KIP weight I I I I I I I 19.93 I 0.00 I 19.93 I 0.00 I I Li ve Load I I I I I I I 9.18 I 0.00 I 9.18 I 0.00 I Load Envelope Effects SLS DL I 38.63 1 0.00 I 38.63 1 0.00 I SLS Sustain' 38.63 1 0.00 I 38.63 1 0.00 I SLS Minimum' 18.70 18.70 18.70 18.70 18.70 18.70 38.63 I 0.00 I 38.63 I 0.00 I SLS Maximum' 18.70 18.70 18.70 18.70 18.70 18.70 47.81 1 0.00 I 47.81 1 0.00 I ULS Minimum' 34.77 [15]I 0.00 [ 1]I 34.77 [15]I 0.00 [ 11I ULS Maximum' 61.04 [ 2]1 0.00 [ 1]1 61.04 [ 2]1 0.00 [ 1]1 * Governing ULS Load Combination (below) CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) I x I Stress I Limit I Overstress Location I ft I psi I psi I Notice STRESSES AT TRANSFER Critical Compression Top of Beam I 30.6001 666 I 2100 I 0% Bottom of Beam I 55.0801 2340 I 2100 I 11%I Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 59.9761 -31 I -355 I 0% Bottom of Beam I 0.0001 3 I -355 I 0% STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam I 30.6001 666 I 2100 I 0% Bottom of Beam I 55.0801 2340 I 2100 I 11%I Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 59.9761 -31 I -355 I 0% Bottom of Beam I 0.0001 3 I -355 I 0% STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam I 30.6001 674 I 3000 I 0% Bottom of Beam I 55.0801 2114 I 3000 I 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 59.9761 -26 I -424 I 0% Bottom of Beam I 0.0001 3 ' -424 I 0% STRESSES DURING CAST-IN-PLACE POUR Critical Compression Top of Beam I 30.6001 1553 I 3000 I 0% Bottom of Beam I 58.7521 2105 I 3000 I 0% Critical Tension Top of Beam I 0.0001 0 I -530 I 0% Bottom of Beam I 30.6001 -274 I -530 I 0% STRESSES IN SERVICE Critical Compression Top of Beam I 30.6001 1591 I 3000 I 0% Bottom of Beam I 58.7521 1830 I 3000 I 0% Top of CIP Pour' 30.6001 170 I 3000 I 0% Critical Tension Top of Beam I 0.0001 0 I -849 I* 0% Class U member - not cracked Bottom of Beam I 30.6001 -793 I -849 I* 0% Class T member - cracking controlled Top of CIP Pour' 0.0001 0 I -530 I* 0% STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 30.6001 1544 I 2250 I 0% Bottom of Beam I 58.7521 1830 I 2250 I 0% * Tensile stress limit given is for Class T (controlled cracking). Beyond this limit crack control is required. Tensile stress limit given for the cast-in-place pour is the flexural cracking strength of the concrete. At Transfer During Lifting In Service Modulus of Rupture, fr = -444 psi -444 psi -530 psi Strength Required for Transfer, f'ci = 3900.7 psi (f'c specified = 3500.0 psi) Strength Required for Initial Lifting, f'c = 3900.7 psi (f'c assumed = 3500.0 psi) CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING Bottom I Top of of Beam I Beam dc 2.00 1 0.00 in Concrete cover to center of steel closest to tension face As 1.7 0.0 inA2 Total area of steel in tension cc 1.70 0.00 in Clear concrete cover to steel closest to tension face fs 10.0 0.0 ksi Steel stress nearest to tension face (after decompression) for crack control Max spacing Not Required' 0.00 in Maximum centre-to-centre spacing of steel closest to tension face to control cracking CRACK WIDTH ESTIMATE Engineer: Company: File: Floor Tee 2.3 4 of 7 Mon Feb 12 18:15:47 2018 Summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 2.3.6 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: crack width estimates are only approximations based on idealized behaviour and average crack spacing. These estimates only represent a level of cracking and should only be used in comparison with appropriate limits such as those given below. It would not be appropriate to compare these estimates to measured crack widths. Bottom Top of of Beam Beam Cracked? Yes No Cracking at 30.600 0.000 ft Location of maximum crack width from left end of beam Ms 730.79 0.00 kip.ft External service moment (DL + LL) Pdc -1589.89 0.00 kip Prestress force at cracked centroid Mint 270.42 0.00 kip.ft Internal moment about cracked centroid c 20.36 0.00 in Concrete depth in compression Steel type Strand Rebar Type of steel in tension Method Suri-Dilger Gergely-Lutz Crack width estimate equation used k 18.271E-6 0.00 inA2/Kip Coefficient dependent on steel type kb 0.67 0.00 Adjustment coefficient for prestressing steel At 176.3 0.0 inA2 Area of concrete in tension below the neutral axis fs 10.0 0.0 ksi Stress in steel nearest to tension face (after decompression) for crack width Est Crack Widthl 0.004 0.000 in Estimated maximum crack width fc -321 -2 psi Maximum concrete compressive stress - opposite face to cracking limit -3000 -3000 psi Allowable concrete compressive stress Recommended Crack Width (in) - Maximum Limits (from PCI Design Handbook, 5th edition) 1 I Critical 1 Prestressed 1 Reinforced I 1 I Appearance 1 Concrete 1 Concrete I 'Exterior Exposure 1 0.0071 0.0101 0.0131 'Interior Exposure 1 0.0101 0.0121 0.0161 * Gergely & Lutz equation: w = k 1 x fs x h2 / hl x CubicRoot(dc * A) DEFLECTION ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) 1 Net Deflection Change in Deflection Location' Net @ Net @ Net @ Net DL Net Total' DL growth LL Span/Deflection x 1 Transfer Erection Completion @ Final @ Final + LL alone DL growth LL ft 1 in in in in in in in + LL alone Column 1 A B C D E E - C E - D L / (E-C) L / (E-D)' 0.0001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 3.6721 0.214 0.403 0.167 -0.076 -0.137 -0.304 -0.061 2412 11989 9.792' 0.474 0.899 0.275 -0.355 -0.513 -0.788 -0.159 931 4630 15.912' 0.636 1.215 0.252 -0.703 -0.947 -1.200 -0.244 612 3007 20.6001 0.712 1.364 0.204 -0.938 -1.237 -1.441 -0.299 509 2459 25.7041 0.757 1.456 0.160 -1.109 -1.452 -1.613 -0.343 455 2142 30.6001 0.771 1.484 0.144 -1.167 -1.526 -1.670 -0.359 439 2043 31.8241 0.770 1.482 0.145 -1.163 -1.521 -1.667 -0.358 440 2049 35.496' 0.757 1.456 0.160 -1.110 -1.453 -1.613 -0.343 455 2141 40.800' 0.709 1.359 0.205 -0.931 -1.227 -1.433 -0.297 512 2476 45.2881 0.636 1.214 0.251 -0.705 -0.949 -1.200 -0.244 611 3006 51.408' 0.474 0.899 0.274 -0.356 -0.514 -0.789 -0.159 931 4629 57.528' 0.214 0.403 0.167 -0.076 -0.138 -0.305 -0.061 2410 11985 61.2001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 Col. A: Net deflection at transfer includes prestressing and beam weight on temporary supports. Col. B: Net deflection at erection includes prestressing and all dead loads applied before the cast-in-place pour plus long-time deflection growth of the prestressing and beam weight up to erection Col. C: Net deflection at completion of construction includes prestressing and all dead loads plus long-time deflection growth of the prestressing and dead load up to completion Col. D: Net DL deflection at final includes prestressing, all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes prestressing, all dead loads, and all live loads, plus long-time deflection growth. Deflection growth is estimated by use of the PCI suggested multipliers - see the Deflection Multipliers report. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 B. Unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) 1 Net Rotation Change in Rotation Support' Net @ I Net @ 1 Net @ I Net DL I Net Total DL growth 1 LL Location' Transfer 1 Erection 1 Completion I @ Final I @ Final + LL I alone 1 degrees I degrees I degrees I degrees I degrees degrees I degrees Column 1 A I B I C I D 1 E E - C I E - D Left 1 -0.2950 I -0.5547 I -0.2512 I 0.0657 I 0.1457 0.3969 I 0.0800 Right 1 0.2945 1 0.5539 I 0.2497 1 -0.0678 I -0.1479 -0.3976 I -0.0801 Engineer: Company: File: Floor Tee 2.3 5 of 7 Mon Feb 12 18:15:47 2018 Summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 2'3'7 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: C. Unrestrained Longitudinal Change of Length Due to Creep and Shrink age (-ve = shortening, +ve = elongation) Elastic Shortening = -0.1775 in I I Total Change of Length (after elastic shortening) 1 Difference in Change I I I I Erection 'Completion' Final I I to comp'.' to Final 1 to Final I I I I in I in I in I I in I in I in I I I I B I C I D I I C - 13 I D - C I D - B I I Creep I I -0.14351 -0.20211 -0.31971 I -0.05851 -0.11761 -0.17611 I Shrink.' I -0.19931 -0.30281 -0.39641 I -0.10351 -0.09361 -0.19711 I Total I I -0.34281 -0.50481 -0.71601 I -0.16201 -0.21121 -0.37321 FLEXURAL DESIGN CHECK Design Code Used: ACI 318-14 Concrete compressive stress-strain model used: PCA Parabola-Rectangle Curve Modulus of Rupture of Precast Concrete, fr = 530 psi (tension) I Factored Design Cracking Minimum Depth in Net Tensile' Flexural 0 I Warnings I Moment Strength Moment Required Compression' Strain 1Classication I & Notes x I Mu OMn Mcr Strength c ft I kip.ft kip.ft kip.ft kip.ft in I I 0.0001 0.00 0.76 158.92 0.00 0.05 0.03501Tension 0.75 3 3.6721 210.66 723.75 835.69 1002.83 1.84 0.03041Tension 0.78 B 3 9.7921 501.78 1310.34 757.79 909.34 2.50 0.02991Tension 0.90 3 15.9121 717.96 1310.13 699.97 839.97 2.50 0.02951Tension 0.90 3 20.6001 833.06 1305.84 653.30 783.96 2.69 0.02931Tension 0.90 3 20.6001 833.06 1309.98 669.19 803.03 2.50 0.02931Tension 0.90 3 25.7041 909.14 1309.88 648.80 778.56 2.50 0.02921Tension 0.90 3 30.6001 933.13 1309.85 642.37 770.84 2.50 0.02921Tension 0.90 3 31.8241 931.63 1309.85 642.77 771.32 2.50 0.02921Tension 0.90 3 35.4961 909.15 1309.88 648.80 778.56 2.50 0.02921Tension 0.90 3 40.8001 829.03 1309.99 670.27 804.33 2.50 0.02931Tension 0.90 3 40.8001 829.03 1305.85 654.41 785.29 2.69 0.02931Tension 0.90 3 45.2881 717.93 1310.13 699.98 839.98 2.50 0.02951Tension 0.90 3 51.4081 501.77 1310.34 757.79 909.35 2.50 0.02991Tension 0.90 3 57.5281 210.65 723.75 835.70 1002.83 1.84 0.03041Tension 0.78 B 3 61.2001 0.00 0.76 158.92 0.00 0.05 0.03501Tension 0.75 3 Points of Maximum and Minimum Factored Moment I 30.6001 933.13 1 1309.85 I 642.37 1 770.84 1 2.50 I 0.02921Tension I 0.901 31 I 0.0001 0.00 I -0.26 I 181.05 I 0.00 1 0.10 I 0.03501Tension 10.751 31 Points of Maximum Ratio of Factored Moment to Design Strength I 30.6001 933.13 1 1309.85 I 642.37 I 770.84 I 2.50 I 0.02921Tension I 0.901 31 I 0.0001 0.00 I -0.26 I 181.05 I 0.00 1 0.10 I 0.03501Tension 10.751 31 Points of Maximum Ratio of Minimum Strength to Design Strength I 59.9761 73.22 I 344.42 I 545.99 I 655.19 I 1.19 I 0.03201Tension 10.751 B 31 I 0.0001 0.00 I -0.26 I 181.05 I 0.00 1 0.10 I 0.03501Tension 10.751 31 Warnings & Notes B - WARNING, OMn < 1.2Mcr and OMn < 2.0Mu, minimum reinforcement requirement not met [ACI 318-14::7.6.2/9.6.2]. 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code Used: ACI 318-14 I Design Prestress Concrete strength Provided Min. Strength Req'd Warnings I Shear Component Strength Stirrups Total Stirrups Total & Notes x I Vu Vp 0Vc OVs 0Vn OVs OVn ft I kip kip kip kip kip kip kip 0.0001 57.62 0.00 66.85 0.00 66.85 0.00 66.86 1 3 3.6721 53.69 0.00 99.88 0.00 99.88 6.61 106.49 1 9.7921 41.45 0.00 56.13 0.00 56.13 9.73 65.86 1 15.9121 29.20 0.00 32.46 0.00 32.46 9.73 42.19 1 20.6001 20.01 0.00 32.46 0.00 32.46 9.73 42.19 1 25.7041 9.80 0.00 32.46 0.00 32.46 0.00 32.46 30.6001 0.00 0.00 32.46 0.00 32.46 0.00 32.46 31.8241 -2.45 0.00 -32.46 0.00 -32.46 0.00 -32.46 35.4961 -9.80 0.00 -32.46 0.00 -32.46 0.00 -32.46 40.8001 -20.41 0.00 -32.46 0.00 -32.46 -9.73 -42.19 1 45.2881 -29.20 0.00 -32.46 0.00 -32.46 -9.73 -42.19 1 51.4081 -41.44 0.00 -56.13 0.00 -56.13 -9.73 -65.86 1 57.5281 -53.69 0.00 -99.88 0.00 -99.88 -6.61 -106.49 1 61.2001 -57.62 0.00 -66.85 0.00 -66.85 0.00 -66.86 1 3 Warnings & Notes 1 - Note, transverse shear or torsion steel is required. see the Shear/Torsion Transvese Reinforcing Design Check report. 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. SHEAR TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 I 'Shear SteelIShear Steell Stirrup 1 Stirrup Spacing I Warnings I I I Required I Provided 1 Provided I Provided I Max. Allow' & Notes I I x I Av/s I Av/s I Av 1 s I s I I Engineer: Company: File: Floor Tee 2.3 6 of 7 Mon Feb 12 18:15:47 2018 Summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 2.3.8 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: ft I inA2/ft inA2/ft inA2 in in 0.0001 0.00 0.00 0.62 0.00 24.00 1 4 5 3.6721 0.07 0.00 0.62 0.00 24.00 1 5 9.7921 0.10 0.00 0.62 0.00 24.00 1 5 15.9121 0.10 0.00 0.62 0.00 24.00 1 5 20.6001 0.10 0.00 0.62 0.00 24.00 1 5 25.7041 0.00 0.00 0.62 0.00 24.00 30.6001 0.00 0.00 0.62 0.00 24.00 31.8241 0.00 0.00 0.62 0.00 24.00 35.4961 0.00 0.00 0.62 0.00 24.00 40.8001 0.10 0.00 0.62 0.00 24.00 1 5 45.2881 0.10 0.00 0.62 0.00 24.00 1 5 51.4081 0.10 0.00 0.62 0.00 24.00 1 5 57.5281 0.07 0.00 0.62 0.00 24.00 1 5 61.2001 0.00 0.00 0.62 0.00 24.00 1 4 5 Warnings & Notes 1 - Note, amount of shear steel required represents minimum code requirements [ACI 318-14::9.6.3.3]. 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). Note, additional long. steel in compression side of section has been reduced [ACI 318-14::9.5.4.5]. * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. HORIZONTAL SHEAR DESIGN CHECK BY SECTION Design Code Used: ACI 318-14 Top of precast beam is considered intentionally roughened. (Horizontal Strength Maximum Required Tie Size Spacing Spacing Strength Strength Warnings 1 Shear with no Limit Ties Provided Required Provided Required Provided & Notes x 1 vu ties 0vnh Max Av/s Av s s 0vnh 0vnh ft 1 kip kip kip inA2/ft inA2 in in kip kip 0.0001 57.62 151.20 945.00 0.00 0.00 0.00 0.00 57.62 151.20 1 3.6721 53.69 151.20 945.00 0.00 0.00 0.00 0.00 53.69 151.20 1 9.7921 41.45 151.20 945.00 0.00 0.00 0.00 0.00 41.45 151.20 1 15.9121 29.20 151.20 945.00 0.00 0.00 0.00 0.00 29.20 151.20 1 20.6001 20.01 137.76 861.00 0.00 0.00 0.00 0.00 20.01 137.76 1 25.7041 9.80 151.20 945.00 0.00 0.00 0.00 0.00 9.80 151.20 1 30.6001 0.00 151.20 945.00 0.00 0.00 0.00 0.00 0.00 151.20 1 31.8241 -2.45 -151.20 -945.00 0.00 0.00 0.00 0.00 -2.45 -151.20 1 35.4961 -9.80 -151.20 -945.00 0.00 0.00 0.00 0.00 -9.80 -151.20 1 40.8001 -20.41 -151.20 -945.00 0.00 0.00 0.00 0.00 -20.41 -151.20 1 45.2881 -29.20 -151.20 -945.00 0.00 0.00 0.00 0.00 -29.20 -151.20 1 51.4081 -41.44 -151.20 -945.00 0.00 0.00 0.00 0.00 -41.44 -151.20 1 57.5281 -53.69 -151.20 -945.00 0.00 0.00 0.00 0.00 -53.69 -151.20 1 61.2001 -57.62 -151.20 -945.00 0.00 0.00 0.00 0.00 -57.62 -151.20 1 warnings & Notes 1 - Note, no ties required [ACI 318-14::16.4.4.2]. HORIZONTAL SHEAR DESIGN CHECK BY MOMENT REGION Design Code Used: ACI 318-14 Top of precast beam is considered intentionally roughened. 1 Region of Beam 1 Shear I Peak I Horizontal 1 Strength 1 Maximum 1 Tie Area * I Tie Area I Maximum 1 warnings 1 I Length I Moment I Shear I with no I Limit 1 Required I Provided I spacing I & Notes 1 x 1 lv I M I Fh I ties I 0vnh Max 1 Acs I Acs I s I I ft 1 ft I kip.ft I kip I kip I kip 1 inA2 I inA2 I in I I 0.000 to 30.6001 30.6001 933.13 I 692.32 I 1982.88 I 21811.68 1 0.00 I 0.00 I 24.00 1 1 30.600 to 61.2001 30.6001 933.13 I 692.32 I 1982.88 I 21811.68 1 0.00 I 0.00 I 24.00 1 * Required ties should be distributed in proportion to distribution of shear force (or stirrups). Engineer: Company: File: Floor Tee 2.3 7 of 7 Mon Feb 12 18:15:47 2018 2.4 DOUBLE TEE FLANGE DESIGN 2" Tee deck for design 2.1 L 1 3"3" L2 3"3" L 1 \-1 \-1 PROPERTIES: MATERIALS: t Flange thickness (in): 2.00 Fe' (ksi)= 5 A Area (in^2/ft): 24 As (in2/ft)= 0.058 S Section modulus (in^3/ft): 8 Fy (ksi)= 65 d depth (in): 1 Fcr (psi)= 424.26 L1 Overhanging span (in): 21.0 L2 Inner span (in): 54.0 Wb Self weight(psf): 25 FLEXURE DESIGN a AsFy/[0.85Fc'*12] (in): 0.074 Mo Fcr*S(k-in)= 3.39 Mn 0.9As*Fy*[d-a/2] (k-in) = 3.27 (+)Bending (-)Bending Mb = (k-in) 0.30 0.46 Mo = (k-in) 3.09 2.93 Mn= (k-in) 2.85 2.62 L.L. = (psf) 58.59 89.27 Allowable Live Load (P � � s 59 b 1 b PUNCHING SHEAR DESIGN bl Width (in) = 4.25 b2 Length(in) = 4.25 1 Pn B 2+4/[b2/b 1] <=4 4 t b0 2[bl+t]+2[b2+t] (in) = 25 Pn 0.85*B*b0*t*SQRT[Fc'] = 12.0 kips 2.4.1 DOUBLE TEE FLANGE DESIGN 5" Tee deck for design 2.1 L 1 3"3" L2 3"3" L 1 \-1 \-1 PROPERTIES: MATERIALS: t Flange thickness (in): 5.00 Fe' (ksi)= 5 A Area (in^2/ft): 60 As (in2/ft)= 0.058 S Section modulus (in^3/ft): 50 Fy (ksi)= 65 d depth (in): 2.5 Fcr (psi)= 424.26 L1 Overhanging span (in): 21.0 L2 Inner span (in): 54.0 Wb Self weight(psf): 62.5 FLEXURE DESIGN a AsFy/[0.85Fc'*12] (in): 0.074 Mo Fcr*S(k-in)= 21.21 Mn 0.9As*Fy*[d-a/2] (k-in) = 8.36 (+)Bending (-)Bending Mb = (k-in) 0.75 1.15 Mo = (k-in) 20.46 20.06 Mn= (k-in) 7.31 6.75 L.L. = (psf) 150.35 229.57 Allowable Live Load (P � � s 150 b 1 b PUNCHING SHEAR DESIGN bl Width (in) = 4.25 1 Pn b2 Length(in) = 4.25 B 2+4/[b2/b 1] <=4 4 t b0 2[bl+t]+2[b2+t] (in) = 37 Pn 0.85*B*b0*t*SQRT[Fc'] = 44.5 kips 2.4.2 DOUBLE TEE FLANGE DESIGN L1 3"3" L2 3"3" L1 2" Tee deck for design 2.3 PROPERTIES: MATERIALS: t Flange thickness (in): 2.00 Fc' (ksi)= 5 A Area (inA2/ft): 24 As (in2/ft)= 0.10 S Section modulus (inA3/ft): 8 Fy (ksi)= 65 d depth(in): 1 Fcr (psi)= 424.26 Ll Overhanging span (in): 21.0 L2 Innerspan(in): 54.0 Wb Self weight (psf): 25 FLEXURE DESIGN a AsFy/[0.85Fc'*12] (in): 0.121 Mo Fcr*S(k-in) = 3.39 Mn 0.9As*Fy*[d-a/2] (k-in) = 5.22 (+)Bending (-)Bending Mb= (k-in) 0.30 0.46 Mo= (k-in) 3.09 2.93 Mn= (k-in) 4.80 4.58 L.L. = (psf) 98.79 155.71 Allowable Live Load(psi) 99 b 1 b PUNCHING SHEAR DESIGN bi Width (in)= 4.25 b2 Length(in)= 4.25 Pn f 1 t B 2+4/[b2/b 1] <=4 4 b0 2[b1+t]+2[b2+t] (in) = 25 Pn 0.85*B*b0*t*SQRT[Fc'] = 12.0 kips 2.4.3 DOUBLE TEE FLANGE DESIGN 2" Tee deck for design 2.2 L1 3"3" L2 3"3" L1 / / PROPERTIES: MATERIALS: t Flange thickness (in): 2.00 Fc' (ksi)= 5 A Area (inA2/ft): 24 As (in2/ft)= 0.058 S Section modulus (in^3/ft): 8 Fy (ksi)= 70 d depth(in): 1 Fcr (psi)= 424.26 Ll Overhanging span (in): 7.5 L2 Innerspan(in): 54.0 Wb Self weight (psf): 25 FLEXURE DESIGN a AsFy/[0.85Fc'*12] (in): 0.080 Mo Fcr*S(k-in) = 3.39 Mn 0.9As*Fy*[d-a/2] (k-in) = 3.51 (+)Bending (-)Bending Mb= (k-in) 0.70 0.06 Mo= (k-in) 2.69 3.34 Mn= (k-in) 2.53 3.43 L.L. = (psf) 52.01 913.74 Allowable Live Load(psi) 52 b 1 b PUNCHING SHEAR DESIGN bi Width (in)= 4.25 b2 Length(in)= 4.25 Pn 1 B 2+4/[b2/b 1] <=4 4 t b0 2[b 1+t]+2[b2+t] (in) = 25 Pn 0.85*B*b0*t*SQRT[Fc'] = 12.0 kips 2.4.4 DOUBLE TEE FLANGE DESIGN 7" Tee deck for design 2.2 L 1 3"3" L2 3"3" L 1 PROPERTIES: MATERIALS: t Flange thickness (in): 7.00 Fe' (ksi)= 5 A Area (in^2/ft): 84 As (in2/ft)= 0.095 S Section modulus (inA3/ft): 98 Fy (ksi)= 65 d depth (in): 5 Fcr (psi)= 424.26 L1 Overhanging span (in): 7.5 L2 Inner span (in): 54.0 Wb Selfweight(psf): 87.5 FLEXURE DESIGN a AsFy/[0.85Fc'*12] (in): 0.121 Mo Fcr*S(k-in)= 41.58 Mn 0.9As*Fy*[d-a/2] (k-in) = 27.36 (+)Bending (-)Bending Mb = (k-in) 2.45 0.21 Mo = (k-in) 39.13 41.37 Mn= (k-in) 23.92 27.07 L.L. = (psf) 492.22 7218.35 Allowable Live Load (P � � s 492 b 1 b PUNCHING SHEAR DESIGN bl Width (in) = 4.25 1 Pn b2 Length(in) = 4.25 B 2+4/[b2/b 1] <=4 4 t b0 2[bl+t]+2[b2+t] (in) = 45 Pn 0.85*B*b0*t*SQRT[Fc'] = 75.7 kips 4660 5TRE55CON Architectural and Structural Precast Concrete An DrCOr Company 3.0 [SLAB, HOLLOW CORE] DESIGNS Design General Description 3.1 Riser 3.2 8" + 2" slab 3.3 8" + 2" slab (supporting riser) 3.4 8" roof slab CD DRAWING ST AT US REVISION REVISION BY REVISION DATE DESCRIPT ION „,0 .. SUBMITTAL A. E E FOR APPROVAL- NOT FOR CONSTRUCTION E C C .0) 3'-11" 10'-1" 0 0 1 N M C O t #4 bar @ 12"o.c. CD cn N 11" c .C 0 U /O U / (9)#5 bars 0 'o C . N .0 -"8„ c_H . C (5)#4 bars • Lu O c O 1. O ^ 0 s?_' 13'-11i"(max) O . CD 10'-11i"(max) +y E � I S-0" O W N C r7F-1., I. + 0 1 (9)#5 bars 12� _LI rci l 6 \ DESIGN SUMMARY / (9)#5 bars f'ci =3000 psi (RELEASE STRENGTH) 1 f'c= 5000 psi (28 DAY STRENGTH) Q #4 bar @ 12"o.c' °' TOPPING f'c = 5000 psi U ; TOPPING THICKNESS = 2" (/) (5)#4 bars R/ .o e o . O N o z REDSANDSTONE w RISER DESIGN SUMMARY o 6209 1o r g 5TRE55CON o fik 3.1 ° Architectural and Structural Precast Concrete i LL An ENCoN Company ° SHEET 1 OF 1 Summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 3.1.1 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Cast-in-Place Pour Concrete Density Wt = 150 lb/ftA3 wt = 150 lb/ftA3 Compressive strength f'c = 5000.0 psi f'c = 5000.0 psi Modulus of Elasticity Ec = 4.279E+6 psi Ec = 4.279E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset I INol From I To I Length I Folder I Section I Section I Z I Y I I I ft I ft I ft I Name I Name I Type I in I in 1 111 0.0001 11.0001 11.0001 SolidFlatSlab I FS7 I Solid Slab 1 0.001 0.001 121 11.0001 14.0001 3.0001 SolidFlatSlab 1 FS6 1 Solid Slab 1 0.001 0.001 CAST-IN-PLACE POUR LAYOUT I Segment/Length 1 Slab/Topping Parameters 1 Haunch Paramaters Iverticall INol From I To I Length I Thick. I Width I Offset I Thick. I width I Offset I Offset I I I ft I ft I ft I in I in I in I in I in I in I in I 1 11 0.0001 11.0001 11.0001 0.001 0.001 0.001 0.001 0.001 0.00 I 0.001 I 21 11.0001 14.0001 3.0001 2.001 48.001 0.001 0.001 0.001 0.001 0.001 Beam is UNSHORED during the cast-in-place pour and superimposed dead load. * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 14.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 14.000 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 2.000 ft, Right @ 12.000 ft Loop Height = 0.00 ft Span Length in Service = 14.000 ft, centre of Supports, Left @ 0.000 ft, Right @ 14.000 ft Total Beam Length = 14.000 ft, Bearing Length, Left = 4.00 in, Right = 4.00 in First flexural frequency of beam is approximately 0.39 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties 1 Section! Section! Shear (volume /1 Section Moduli I I No•I A I I I Yb I Height I Width I Width I Surfacel Sb I St I I I inA2 I inA4 I in I in I in I in I in I inA3 I inA3 I I 11 336.0 I 1372 I 3.501 7.001 48.001 48.001 3.05 1 -392 I 392 I I 21 288.0 I 864 I 3.001 6.001 48.001 48.001 2.671 -288 I 288 I GROSS COMPOSITE SECTION PROPERTIES (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.l Section Properties 1 Section) Section Moduli I I No.1 Ac I Ic I yb I Height 1 Sb 1 St I sbc I stc I I I inA2 I inA4 I in I in I inA3 I inA3 I inA3 I inA3 I I 11 336.0 I 1372 I 3.501 7.001 -392 I 392 I 392 I 392 I I 21 384.0 I 2048 I 4.001 8.001 -512 I 1024 I 1024 I 512 I Note: Sb & St = bottom and top of the precast beam, Sbc & Stc = bottom and top of the cast-in-place pour. UNCRACKED SECTION PROPERTIES SUMMARY I I Net Precast Section I Transformed Precast Section I Transformed Precast Section (Transformed composite SectionI I I at Transfer (based on Eci) I at Transfer (based on Eci) I in Service (based on Ec) I in Service (based on Ec) I I ((include rebar,deduct strand)I (include rebar and strand) I (include rebar and strand) I (include rebar and strand) I Engineer: Company: File: Riser 3.1 1 of 7 Tue Feb 13 19:33:28 2018 Summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 3.1.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: x I A I yb I A I yb I A I yb I Ac Ic ybc ft 1 inA2 inA4 in I inA2 inA4 in I inA2 inA4 in I inA2 inA4 in 0.000 336.0 1372 3.50 336.0 1372 3.501 336.0 1372 3.50 336.0 1372 3.50 0.840 353.1 1409 3.43 353.1 1409 3.431 348.8 1400 3.45 348.8 1400 3.45 2.000 357.6 1418 3.41 357.6 1418 3.411 352.1 1407 3.43 352.1 1407 3.43 3.3601 357.6 1418 3.41 357.6 1418 3.411 352.1 1407 3.43 352.1 1407 3.43 4.760 357.6 1418 3.41 357.6 1418 3.411 352.1 1407 3.43 352.1 1407 3.43 6.160 357.6 1418 3.41 357.6 1418 3.411 352.1 1407 3.43 352.1 1407 3.43 7.000 357.6 1418 3.41 357.6 1418 3.411 352.1 1407 3.43 352.1 1407 3.43 7.560 357.6 1418 3.41 357.6 1418 3.411 352.1 1407 3.43 352.1 1407 3.43 8.120 357.6 1418 3.41 357.6 1418 3.411 352.1 1407 3.43 352.1 1407 3.43 9.520 357.6 1418 3.41 357.6 1418 3.411 352.1 1407 3.43 352.1 1407 3.43 10.920 357.6 1418 3.41 357.6 1418 3.411 352.1 1407 3.43 352.1 1407 3.43 12.000 309.6 884 2.93 309.6 884 2.931 304.1 879 2.95 400.1 2110 3.92 13.1601 305.1 880 2.941 305.1 880 2.941 300.8 876 2.96 396.8 2097 3.94 14.000 288.0 864 3.00 288.0 864 3.001 288.0 864 3.00 384.0 2048 4.001 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. Transformed Composite Section in Service properties are used with external loads applied to the composite precast beam. LONGITUDINAL REINFORCING STEEL Reinforcing Steel Groups 1IDIQtyI Steel I Bar I Bar 'End Location & Typel Bar I I Cross Iverticall offset ** I I I I Grade I Size I Area I From I I To I I Spacing) I Spacing' Offset I Reference I I I I ksi IC=coated I inA2 I ft I *1 ft I *1 in I I in I in I I 111 91 60.0 I # 5 I 2.790 1 0.000ISE114.0001SEI 6.001 I - I 2.001 Bottom of Precast Beam 1 * End Types: SE - Straight Embeddment, FD - Fully Developed, SH - Standard Hook, HB - Headed Bar ** Offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL 1 Shear Stirrups I 1 From I To I Grade I Size I # of Legs'Total Areal Spacing I 1 ft I ft I k si I I I inA2 I in I 1 0.0001 14.0001 58.0 1 15M 1 21 0.62 I 0.001 1 Interface Shear Ties I 1 From I To I Grade I Size I # of Legs'Total Areal Spacing I 1 ft I ft I k si I I I inA2 I in I 1 0.0001 14.0001 58.0 1 15m 1 01 0.00 1 0.001 APPLIED LOADS {[6.625"/2+(7.25"x(1/cos 31.36 -1)]x 0.150/12}x 4' Load Group Stages Applied Load Details & Type & Distribution (left to right) Beam weight * Stripping to Final Service segment #0- rtical: 0.35 kip/ft from 0 to 11 ft D: DL, Factory Produced No Load Distribution Segment #1- Ve tical: 0.3 kip/ft from 11 to 14 ft Initial Lift Dynamic Impact Initial Lift +/-0% of Beam We ht, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Wei t, Cable Angle: 90 degrees Add. Beam Self-weight Stripping to Final Service Risers- Vertical: .23 kip/ft from 0 to 11 ft D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam weight, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam weight, Cable Angle: 90 degrees CIP weight * CIP Placement to Final Service segment #0- Vertical: 0 kip/ft from 0 to 11 ft D: DL, Cast-in-Place Concrete No Load Distribution Segment #1- Vertical: 0.1 kip/ft from 11 to 14 ft Live Load Final Service stage only 100 psf- Vertical: 0.4 kip/ft from 0 to 14 ft L: LL, General No Load Distribution 1100/1000x4' * indicates load groups generated automatically by Concise Beam. LOAD COMBINATIONS Serviceability (SLS) & Fatigue (FLS) Limit State Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00ws + 0.60Wu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr Engineer: Company: File: Riser 3.1 2 of 7 Tue Feb 13 19:33:28 2018 summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 3.1.3 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: ultimate (Strength) Limit State (uLS) combinations (searched collectively to obtain envelope) 1: uLS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS Combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: uL5 Combo 5 : 1.20D + 0.50L + 1.00L1 + 1.60Lr 6: uLS combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: ULS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: ULS Combo 8 : 1.20D + 1.60Lr + 0.80ws + 0.50Wu 9: uLS Combo 9 : 1.20D + 1.60S + 0.80ws + 0.50wu 10: uLS Combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: uL5 Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60ws + 1.00Wu 12: uLS Combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60ws + 1.00wu 13: uLS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60ws + 1.00wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: uLS combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: uLS Combo 16 : 0.90D + 1.60ws + 1.00wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Station) SLS (stress) Load combination ULS Load Envelopes I Moment Moment Shear Moment x I sustained Total Load Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip combo.) kip.ft combo.) I min max min max min max min max min max 0.000 0.00 0.00 0.00 3.60 9.28 15 2 0.00 0.00 1 1 0.840 3.15 3.15 5.37 3.16 8.16 15 2 2.84 7.32 15 2 2.000 6.84 6.84 11.64 2.56 6.61 15 2 6.16 15.89 15 2 3.3601 10.17 10.17 17.32 1.85 4.79 15 2 9.15 23.64 15 2 4.760 12.47 12.47 21.27 1.12 2.92 15 2 11.22 29.04 15 2 6.160 13.64 13.64 23.30 0.39 1.05 15 2 12.27 31.82 15 2 7.000 13.79 13.79 23.59 -0.08 -0.05 1 15 12.41 32.23 15 2 7.560 13.67 13.67 23.41 -0.82 -0.34 2 15 12.30 31.98 15 2 8.120 13.37 13.37 22.92 -1.57 -0.64 2 15 12.03 31.32 15 2 9.520 11.81 11.81 20.34 -3.43 -1.37 2 15 10.63 27.82 15 2 10.920 9.11 9.11 15.84 -5.30 -2.10 2 15 8.20 21.70 15 2 12.000 6.35 6.35 11.15 -6.53 -2.50 2 15 5.72 15.30 15 2 13.1601 2.86 2.86 5.07 -7.83 -2.92 2 15 2.58 6.97 15 2 14.000 0.00 0.00 0.00 -8.77 -3.22 2 15 0.00 0.00 1 1 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) unfactored Load Group Effects 1 1 Initial Lifting I Truck Transport I Erection Lifting I In Service I Load I Left I Right I Left I Right I Left I Right I Left I Right 1 Group I Vertical I Vertical I Vertical I Vertical I Vertical I Vertical I Vertical[*]1 Torsion[*] I Vertical[*]1 Torsion[*] I 1 1 kip I kip.ft I kip I kip.ft I kip I kip.ft I kip 1 kip.ft 1 kip 1 kip.ft 'Beam weightl 2.45 I 2.29 I 2.43 I 2.31 I 2.45 I 2.29 I 2.43 1 0.00 1 2.31 1 0.00 1 'Add. Beam SI 1.64 I 0.89 I 1.54 I 0.99 I 1.64 I 0.89 I 1.54 1 0.00 1 0.99 1 0.00 I KIP weight 1 I I I I I I 0.03 1 0.00 1 0.27 1 0.00 I 'Live Load 1 I I I I I I 2.80 1 0.00 1 2.80 1 0.00 I Load Envelope Effects SLS DL 1 4.00 1 0.00 1 3.57 1 0.00 SLS Sustain' 4.00 1 0.00 1 3.57 1 0.00 SLS Minimum' 4.10 3.18 3.97 3.31 4.10 3.18 4.00 1 0.00 1 3.57 1 0.00 SLS Maximum' 4.10 3.18 3.97 3.31 4.10 3.18 6.80 1 0.00 1 6.37 1 0.00 ULS Minimum' 3.60 [15]' 0.00 [ 1]I 3.22 [15]I 0.00 [ 1]I ULS Maximum' 9.28 [ 2]1 0.00 [ 111 8.77 [ 211 0.00 [ 111 * Governing uL5 Load combination (below) CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) use(2)9.45, (+ve = compression, -ve = tension) capacity=(2)x 6k = 12 k I x 1 Stress I Limit * Location 1 ft I psi I psi STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam 1 7.000' 191 I 1800 Bottom of Beam 1 2.000' 33 I 2100 Longitudinal Tensile Rebar Needed (inA2) critical Tension Required Provided Additional Top of Beam 1 2.0001 -35 I -411 Bottom of Beam 1 7.0001 -182 I -411 STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam 1 7.000' 192 I 3000 Bottom of Beam 1 2.0001 34 I 3500 Longitudinal Tensile Rebar Needed (inA2) critical Tension Required Provided Additional Top of Beam 1 2.0001 -35 I -530 Bottom of Beam I 7.000' -184 I -530 STRESSES DURING CAST-IN-PLACE POUR Critical Compression Engineer: Company: File: Riser 3.1 3 of 7 Tue Feb 13 19:33:28 2018 Summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 3.1.4 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: Top of Beam I 7.0001 420 I 3000 Bottom of Beam I 0.0001 0 I 3000 critical Tension Top of Beam I 0.0001 0 I -530 Bottom of Beam I 7.0001 -404 I -530 STRESSES IN SERVICE Critical Compression Top of Beam I 7.0001 718 I 3000 Bottom of Beam I 0.0001 0 I 3000 Top of CIP Pour' 11.0001 153 I 3000 Critical Tension Top of Beam I 0.0001 0 I -530 Not cracked Bottom of Beam I 7.0001 -691 I -530 Check cracking below and cover requirements STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 7.0001 420 I 2250 Bottom of Beam I 0.0001 0 I 2250 * Tensile stress limit given is the modulus of rupture of the concrete. Beyond this limit crack control is required. Tensile stress limit given for the cast-in-place pour is the flexural cracking strength of the concrete. CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING 1 I Bottom I Top of I 1 I of Beam I Beam I 1 dc I 2.00 I 0.00 I in Concrete cover to center of steel closest to tension face 1 cc I 1.69 I 0.00 1 in Clear concrete cover to steel closest to tension face 1 fs I 22.8 1 0.0 I ksi Steel stress nearest to tension face (after decompression) for crack control 1 Max spacing I 21.08 I 0.00 I in Maximum centre-to-centre spacing of steel closest to tension face to control cracking CRACK WIDTH ESTIMATE Crack width estimates are only approximations based on idealized behaviour and average crack spacing. These estimates only represent a level of cracking and should only be used in comparison with appropriate limits such as those given below. It would not be appropriate to compare these estimates to measured crack widths. Bottom Top of of Beam Beam Cracked? Yes No Cracking at 7.000 0.000 ft Location of maximum crack width from left end of beam Ms 23.59 0.00 kip.ft External service moment (DL + LL) Pdc 0.00 0.00 kip Prestress force at cracked centroid Mint 23.59 0.00 kip.ft Internal moment about cracked centroid c 1.63 0.00 in Concrete depth in compression Steel type Rebar Rebar Type of steel in tension Method Gergely-Lutz Gergely-Lutz Crack width estimate equation used * k 1 75.842E-6 0.00 inA2/Kip Coefficient dependent on steel type kb 1.00 0.00 Adjustment coefficient for prestressing steel h2/h1 1.59 0.00 Ratio of depth in tension to depth of steel from NA Act 192.0 0.0 inA2 Area of concrete in tension centered on crack control steel A 21.3 0.0 inA2 Area of concrete in tension around each bar/strand fs 22.8 0.0 ksi Stress in steel nearest to tension face (after decompression) for crack width Est Crack Widthl 0.010 0.000 in Estimated maximum crack width fc -1624 0 psi Maximum concrete compressive stress - opposite face to cracking limit -3000 -3000 psi Allowable concrete compressive stress Recommended Crack Width (in) - Maximum Limits (from PCI Design Handbook, 5th edition) 1 I Critical I Prestressed I Reinforced I 1 I Appearance I Concrete 1 Concrete I (Exterior Exposure 1 0.0071 0.0101 0.0131 llnterior Exposure I 0.0101 0.0121 0.0161 * Gergely & Lutz equation: w = k 1 x fs x h2 / hl x CubicRoot(dc * A) DEFLECTION ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) 1 Net Deflection I Change in Deflection 1 LocationI Net @ I Net @ I Net DL I Net Total' DL growthI LL I Span/Deflection 1 x I Erection (completion' @ Final I @ Final I + LL I alone I DL growthI LL 1 ft I in I in I in I in I in I in I + LL I alone 1 Column I B I C 1 D I E I E - C I E - D I L / (E-C)I L / (E-D)1 0.0001 0.000 1 0.000 I 0.000 I 0.000 I 0.000 I 0.000 I 0 I 0 1 0.8401 -0.023 I -0.033 I -0.046 I -0.069 I -0.036 I -0.023 I 4719 I 7381 I Engineer: Company: File: Riser 3.1 4 of 7 Tue Feb 13 19:33:28 2018 Summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 3.1.5 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 2.000 -0.054 -0.078 -0.108 -0.161 -0.083 -0.053 2023 3160 3.3601 -0.086 -0.123 -0.170 -0.256 -0.133 -0.086 1259 1946 4.760 -0.109 -0.157 -0.217 -0.332 -0.176 -0.116 955 1454 6.160 -0.122 -0.176 -0.243 -0.376 -0.201 -0.133 836 1261 7.000 -0.125 -0.179 -0.248 -0.384 -0.205 -0.136 819 1235 7.560 -0.124 -0.178 -0.247 -0.381 -0.203 -0.134 827 1250 8.120 -0.121 -0.174 -0.242 -0.372 -0.197 -0.130 852 1292 9.520 -0.107 -0.154 -0.213 -0.322 -0.168 -0.109 1000 1548 10.920 -0.083 -0.119 -0.165 -0.243 -0.124 -0.078 1359 2165 12.000 -0.058 -0.083 -0.116 -0.167 -0.083 -0.051 2015 3282 13.1601 -0.025 -0.037 -0.051 -0.073 -0.036 -0.022 4685 7765 14.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 Col. B: Net deflection at erection includes all dead loads applied before the cast-in-place pour plus long-time deflection growth of the beam weight up to erection. Col. C: Net deflection at completion of construction includes all dead loads plus long-time deflection growth of the dead load up to completion. Col. D: Net DL deflection at final includes all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes all dead loads, and all live loads, plus long-time deflection growth. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 B. Unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation Change in Rotation SupportI Net @ 1 Net @ I Net DL 1 Net Total DL growth 1 LL Location' Erection 1 Completion I @ Final 1 @ Final + LL I alone I degrees 1 degrees I degrees 1 degrees degrees I degrees Column I B 1 C I D 1 E E - C I E - D Left 1 0.1315 1 0.1869 I 0.2586 1 0.3899 0.2030 I 0.1313 Right I -0.1493 1 -0.2182 I -0.3025 1 -0.4236 -0.2054 I -0.1210 C. Unrestrained Longitudinal Change of Length Due to Creep and Shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = 0.0000 in 1 I Total Change of Length I Difference in Change I 1 1 Erection 'CompletioFinal I I to Comp1.1 to Final I to Final I 1 1 in I in I in I I in I in I in I 1 1 B 1 C 1 D I I C - B I D - C I D - B I 1 Creep I 0.00001 0.00001 0.00001 I 0.00001 0.00001 0.00001 I Shrink.1 -0.03131 -0.05311 -0.07961 I -0.02181 -0.02651 -0.04831 1 Total I -0.03131 -0.05311 -0.07961 I -0.02181 -0.02651 -0.04831 FLEXURAL DESIGN CHECK Design Code Used: ACI 318-14 Concrete compressive stress-strain model used: PCA Parabola-Rectangle Curve Modulus of Rupture of Precast Concrete, fr = 530 psi (tension) I Factored Design Cracking Minimum Depth in Net TensileI Flexural 0 I warnings I Moment Strength Moment Required Compression' Strain Iclassication I & Notes x I Mu 0Mn Mcr Strength c I 1 ft 1 kip.ft kip.ft kip.ft kip.ft in I 1 0.000 0.00 0.06 17.32 0.00 1.63 0.0000ITension 0.90 3 0.840 7.32 43.72 17.96 9.76 1.74 0.0016ITension 0.90 3 2.000 15.89 57.40 18.12 21.18 1.04 0.0114ITension 0.90 3.360 23.64 57.40 18.12 21.74 1.04 0.0114ITension 0.90 4.760 29.04 57.40 18.12 21.74 1.04 0.0114ITension 0.90 6.160 31.82 57.40 18.12 21.74 1.04 0.0114ITension 0.90 7.000 32.23 57.40 18.12 21.74 1.04 0.0114ITension 0.90 7.560 31.98 57.40 18.12 21.74 1.04 0.0114ITension 0.90 8.120 31.32 57.40 18.12 21.74 1.04 0.0114ITension 0.90 9.520 27.82 57.40 18.12 21.74 1.04 0.0114ITension 0.90 10.920 21.70 57.40 18.12 21.74 1.04 0.0114ITension 0.90 12.000 15.30 69.97 18.68 20.40 1.05 0.0141ITension 0.90 13.1601 6.97 52.98 21.27 9.30 1.91 0.0016ITension 0.90 3 14.000 0.00 0.07 22.63 0.00 1.82 0.0000ITension 0.90 3 Points of Maximum and Minimum Factored Moment 1 7.0001 32.23 I 57.40 I 18.12 I 21.74 I 1.04 1 0.0114ITension 1 0.901 I 0.0001 0.00 I -0.02 I 17.32 I 0.00 I 0.92 I 0.0000ITension 1 0.901 31 Points of Maximum Ratio of Factored Moment to Design Strength 1 7.0001 32.23 I 57.40 I 18.12 I 21.74 I 1.04 I 0.0114ITension 1 0.901 I I 0.0001 0.00 I -0.02 I 17.32 I 0.00 I 0.92 I 0.0000ITension 1 0.901 31 Points of Maximum Ratio of Minimum Strength to Design Strength 1 2.2401 17.43 I 57.40 I 18.12 I 21.74 I 1.04 I 0.0114ITension 1 0.901 I 0.0001 0.00 I -0.02 I 17.32 I 0.00 I 0.92 I 0.0000ITension 1 0.901 31 Warnings & Notes Engineer: Company: File: Riser 3.1 5 of 7 Tue Feb 13 19:33:28 2018 summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 3.1.6 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code used: ACI 318-14 I Design Prestress Concrete Strength Provided Min. Strength Req'd warnings 1 Shear Component Strength Stirrups Total Stirrups Total & Notes x 1 Vu Vp OVc OV5 OVn OVs OVn ft 1 kip kip kip kip kip kip kip 0.000 8.50 0.00 24.19 0.00 24.19 0.00 24.19 3 0.840 8.16 0.00 26.11 0.00 26.11 0.00 26.11 2.000 6.61 0.00 25.09 0.00 25.09 0.00 25.09 3.3601 4.79 0.00 24.62 0.00 24.62 0.00 24.62 4.760 2.92 0.00 24.40 0.00 24.40 0.00 24.40 6.160 1.05 0.00 24.26 0.00 24.26 0.00 24.26 7.000 -0.08 0.00 -24.19 0.00 -24.19 0.00 -24.19 7.560 -0.82 0.00 -24.24 0.00 -24.24 0.00 -24.24 8.120 -1.57 0.00 -24.29 0.00 -24.29 0.00 -24.29 9.520 -3.43 0.00 -24.45 0.00 -24.45 0.00 -24.45 10.920 -5.30 0.00 -24.72 0.00 -24.72 0.00 -24.72 12.000 -6.53 0.00 -30.14 0.00 -30.14 0.00 -30.14 13.1601 -7.83 0.00 -31.35 0.00 -31.35 0.00 -31.35 14.000 -8.02 0.00 -29.02 0.00 -29.02 0.00 -29.02 3 Warnings & Notes 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. SHEAR TRANSVERSE REINFORCING DESIGN CHECK Design Code used: ACI 318-14 (Shear SteelIShear Steell Stirrup Stirrup Spacing warnings I Required Provided Provided Provided Max. Allow) & Notes x 1 Av/s Av/s Av s s ft 1 inA2/ft inA2/ft inA2 in in 0.000 0.00 0.00 0.62 0.00 2.50 4 0.840 0.00 0.00 0.62 0.00 2.50 2.000 0.00 0.00 0.62 0.00 2.50 3.3601 0.00 0.00 0.62 0.00 2.50 4.760 0.00 0.00 0.62 0.00 2.50 6.160 0.00 0.00 0.62 0.00 2.50 7.000 0.00 0.00 0.62 0.00 2.50 7.560 0.00 0.00 0.62 0.00 2.50 8.120 0.00 0.00 0.62 0.00 2.50 9.520 0.00 0.00 0.62 0.00 2.50 10.920 0.00 0.00 0.62 0.00 2.50 12.000 0.00 0.00 0.62 0.00 3.00 13.1601 0.00 0.00 0.62 0.00 3.00 14.000 0.00 0.00 0.62 0.00 3.00 4 Warnings & Notes 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). Note, additional long. steel in compression side of section has been reduced [ACI 318-14::9.5.4.5]. * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. HORIZONTAL SHEAR DESIGN CHECK BY SECTION Design Code used: ACI 318-14 Top of precast beam is considered intentionally roughened. (Horizontal Strength Maximum Required Tie Size spacing spacing Strength strength warnings I Shear with no Limit Ties Provided Required Provided Required Provided & Notes x 1 Vu ties OVnh Max Av/s Av s s OVnh 0vnh ft 1 kip kip kip inA2/ft inA2 in in kip kip 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0.840 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 2.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 3.3601 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 4.760 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 6.160 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 7.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 7.560 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 8.120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 9.520 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 10.920 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 12.000 -6.53 -17.28 -108.00 0.00 0.00 0.00 0.00 -6.53 -17.28 1 13.1601 -7.83 -17.28 -108.00 0.00 0.00 0.00 0.00 -7.83 -17.28 1 14.000 -8.02 -17.28 -108.00 0.00 0.00 0.00 0.00 -8.02 -17.28 1 Warnings & Notes 1 - Note, no ties required [ACI 318-14::16.4.4.2]. HORIZONTAL SHEAR DESIGN CHECK BY MOMENT REGION Design Code used: ACI 318-14 Top of precast beam is considered intentionally roughened. Engineer: Company: File: Riser 3.1 6 of 7 Tue Feb 13 19:33:28 2018 summary Report Concise Beam 4.61e, Copyright 2002-2018 Black Mint Software, Inc. 3.1.7 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: I Region of Beam I Shear I Peak I Horizontal I Strength I Maximum I Tie Area * I Tie Area I Maximum I Warnings I I I Length I Moment I Shear I with no I Limit I Required I Provided I Spacing I & Notes I I x I lv I M I Fh I ties I mvnh Max I Acs I Acs I s I I I ft I ft I kip.ft I kip I kip I kip I inA2 I inA2 I in I I I 0.000 to 7.0001 7.0001 3 2.2 3 I 0.00 I 0.00 I 0.00 I 0.00 I 0.00 I 0.00 I 1 1 7.000 to 14.0001 7.0001 3 2.2 3 I 0.00 I 0.00 I 0.00 1 0.00 I 0.00 1 0.00 I I * Required ties should be distributed in proportion to distribution of shear force (or stirrups). Engineer: Company: File: Riser 3.1 7 of 7 Tue Feb 13 19:33:28 2018 0) DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION „, SUBMITTAL A. O E FOR APPROVAL- NOT FOR CONSTRUCTION E C C W 0 _o 0 r) 0 06 C 0 0 0 / c MID-SPAN SECTION PROPERTIES LOAD SUMMARY O .— NON-COMPOSITE COMPOSITE LENGTH=9'-0" CD SELF WT=100 psf U A(in2) 528 660 2"TOPPING=25 psf I (inA4) 2816 5500 SUPERIMPOSED DL=15 psf U Yb(in) 4.0 5.0 LIVE LOAD=100 psf Sb(in3) 704 1833 CD E St (in3) 704 1833 O SHEAR CD WEB (in) 66 66 c Lu O) C 0 0_ L- a C N E CD LT] 0 0 5'-6" —� 1 Structural topping 9.45 \ I C 0 13I' (2)#1 REBAR / 0 0 0 0 0 0 0 0 L (8)co 2Q T J #5Rj'...—..../ ' #4 bar @ 12" o.c. / — ` l2'� 1' 0" 1' 0" 1' 0" 8" 6" 6" 6" 2'' 1 -\ DESIGN SUMMARY f'ci=3000 psi(RELEASE STRENGTH) CD f'c=5000 psi(28 DAY STRENGTH) 2 TOPPING f'c=5000 psi TOPPING THICK NESS=2" S 9 2< O N � w LO o REDSANDSTONE SLAB DESIGN SUMMARY 6209 a 5TRE55CON 3 _ 3.2 fik o 0 0 Architectural and Structural Precast Concrete 02/20/2018 w a An ENC0N Company SHEET 1 OF 1 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint software, Inc. 3.2.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT "FULL WIDTH" Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4 in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Cast-in-Place Pour Concrete Density Wt = 150 lb/ftA3 wt = 150 lb/ftA3 Compressive Strength f'c = 5000.0 psi f'c = 5000.0 psi Modulus of Elasticity Ec = 4.279E+6 psi Ec = 4.279E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset 1 INol From I To I Length I Folder I Section I Section I z I Y 1 I I ft I ft I ft I Name I Name I Type 1 in 1 in 1 111 0.0001 9.0001 9.0001 SolidFlatSlab I FS8x66 I solid slab I 0.001 0.001 CAST-IN-PLACE POUR LAYOUT I Segment/Length I Slab/Topping Parameters I Haunch Paramaters Iverticall INo1 From I To I Length I Thick. I width I Offset I Thick. 1 width 1 Offset I Offset I I I ft I ft I ft I in I in I in I in I in I in I in I I 11 0.0001 9.0001 9.0001 2.001 66.001 0.001 0.001 0.001 0.001 0.001 Beam is UNSHORED during the cast-in-place pour and superimposed dead load. * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 9.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 9.000 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 2.000 ft, Right @ 7.000 ft Loop Height = 0.00 ft Span Length in Service = 9.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 9.000 ft Total Beam Length = 9.000 ft, Bearing Length, Left = 4.00 in, Right = 4.00 in First flexural frequency of beam is approximately 1.07 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties I Section' Section' shear 'volume /1 section Moduli I I No•1 A 1 I I Yb I Height 1 width 1 width I Surfacel Sb 1 St I I I inA2 1 inA4 I in I in I in I in I in I inA3 I inA3 I I 11 528.0 I 2816 1 4.001 8.001 66.001 66.001 3.571 -704 I 704 I GROSS COMPOSITE SECTION PROPERTIES (based on Ec of the precast beam - transformed area of rebar and strand NOT included) 'Seg.' Section Properties I Section' Section Moduli I 1 No•1 Ac I IC I yb 1 Height I Sb I St I sbc I Stc I I 1 inA2 I inA4 I in 1 in I inA3 1 inA3 1 inA3 I inA3 I I 11 660.0 I 5500 1 5.001 10.001 -1100 1 1833 I 1833 I 1100 I Note: Sb & St = bottom and top of the precast beam, Sbc & Stc = bottom and top of the cast-in-place pour. UNCRACKED SECTION PROPERTIES SUMMARY I Net Precast section 1 Transformed Precast section I Transformed Precast section (Transformed Composite sectionI I at Transfer (based on Eci) 1 at Transfer (based on Eci) 1 in Service (based on Ec) I in Service (based on Ec) 1 I(include rebar,deduct strand)I (include rebar and strand) I (include rebar and strand) I (include rebar and strand) I x I A I I I Yb I A I I I Yb I A I I I Yb I Ac I lc I Ybc 1 ft I inA2 I inA4 I in I inA2 I inA4 I in I inA2 I inA4 I in I inA2 I inA4 I in 1 0.0001 528.0 I 2816 I 4.001 528.0 I 2816 I 4.001 528.0 I 2816 I 4.001 660.0 I 5 500 I 5.001 Engineer: Company: File: 3.2 __ 8in x 9ft slab carrying riser 1 of 7 Thu Mar 15 12:49:27 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 3.2.3 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 0.540 535.3 2845 3.97 535.3 2845 3.97 533.5 2838 3.98 665.5 5549 4.98 1.260 542.4 2872 3.95 542.4 2872 3.95 538.7 2858 3.96 670.7 5595 4.95 2.000 542.4 2872 3.95 542.4 2872 3.95 538.7 2858 3.96 670.7 5595 4.95 2.880 542.4 2872 3.95 542.4 2872 3.95 538.7 2858 3.96 670.7 5595 4.95 3.600 542.4 2872 3.95 542.4 2872 3.95 538.7 2858 3.96 670.7 5595 4.95 4.500 542.4 2872 3.95 542.4 2872 3.95 538.7 2858 3.96 670.7 5595 4.95 5.400 542.4 2872 3.95 542.4 2872 3.95 538.7 2858 3.96 670.7 5595 4.95 6.120 542.4 2872 3.95 542.4 2872 3.95 538.7 2858 3.96 670.7 5595 4.95 7.000 542.4 2872 3.95 542.4 2872 3.95 538.7 2858 3.96 670.7 5595 4.95 7.740 542.4 2872 3.95 542.4 2872 3.95 538.7 2858 3.96 670.7 5595 4.95 8.460 535.3 2845 3.97 535.3 2845 3.97 533.5 2838 3.98 665.5 5549 4.98 9.000 528.0 2816 4.00 528.0 2816 4.001 528.0 2816 4.00 660.0 5500 5.00 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. Transformed Composite Section in Service properties are used with external loads applied to the composite precast beam. LONGITUDINAL REINFORCING STEEL Reinforcing Steel Groups 11D1Qtyl Steel 1 Bar I Bar 'End Location & Type' Bar 1 I Cross 'Vertical' Offset ** I 1 I I Grade 1 Size I Area 1 From I I To 1 1 Spacing' I Spacing' Offset I Reference I 1 I I ksi 1C=coated 1 inA2 I ft 1 *1 ft I *1 in I I in 1 in 1 I 1 11 61 60.0 1 # 5 1 1.860 1 0.00015E1 9.000ISEI 6.001 I - I 2.001 Bottom of Precast Beam 1 * End Types: SE - Straight Embeddment, FD - Fully Developed, SH - Standard Hook, HB - Headed Bar ** Offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL 1 Shear Stirrups 1 From 1 To I Grade 1 Size 1 # of LegslTotal Areal Spacing 1 ft 1 ft I ksi I I I inA2 1 in 1 0.0001 9.0001 58.0 1 15M 1 21 0.62 1 0.001 Interface Shear Ties 1 From 1 To 1 Grade 1 Size 1 # of LegslTotal Areal Spacing 1 ft 1 ft 1 ksi I I 1 inA2 1 in 1 0.0001 9.0001 58.0 1 15M 1 01 0.00 1 0.001 APPLIED LOADS 4k/2 Load Group Stages Applied see 3.1.3 Load Details & Type & Distribution (left to right) Beam weight * Stripping to Final Service Segment #0- Verti al: 0.549 kip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam weig t, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam weigh , Cable Angle: 90 degrees DL before CIP Pour Erection to Final Service Riser 1- Vertical: kip at 1 ft D: DL, General No Load Distribution Riser 2- Vertical: 2 kip at 3.5 ft Riser 3- Vertical: 2 kip at 5.5 ft Riser 4- Vertical: 2 kip at 8 ft CIP weight * CIP Placement to Final Service Segment #0- Vertical: 0.137 kip/ft full length D: DL, Cast-in-Place Concrete No Load Distribution DL after CIP Pour Composite to Final Service 15 psf from riser- Vertical: 0.105 kip/ft full length' D: DL, General No Load Distribution 15 psf- Vertical: 0.08 kip/ft full length 5.5'x 100psf/1000 Live Load Final Service sta9e only 100 psf- Verti�. 0.55 kip/ft full length L: LL, General No Load Distribution Riser 1- Vertical: 1.4 kip at 1 ft Riser 2- Vertical: 1.4 kip at 3.5 ft Riser 3- Vertical: 1.4 kip at 5.5 ft Riser 4- Vertical: 1.4 kip at 8 ft 2.80k/2 i * indicates load groups generated automatically by Concise Beam. see 3.1.3 Engineer: Company: File: 3.2 __ Bin x 9ft slab carrying riser 2 of 7 Thu Mar 15 12:49:27 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 3.2.4 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: LOAD COMBINATIONS Serviceability (SLS) & Fatigue (FLS) Limit State Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00Ws + 0.60Wu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.0OL + 1.00L1 + 1.00Lr + 1.00R + 1.005 FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr ultimate (strength) Limit state (uLs) Combinations (searched collectively to obtain envelope) 1: uLS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS Combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: uLS combo 5 : 1.20D + 0.50L + 1.00L1 + 1.60Lr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: uLS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: uLS combo 8 : 1.20D + 1.60Lr + 0.80ws + 0.50wu 9: ULS Combo 9 : 1.20D + 1.60S + 0.80ws + 0.50Wu 10: ULS Combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: uLS combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60ws + 1.00wu 12: uLs Combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60Ws + 1.00Wu 13: uLS combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60ws + 1.00wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: uLS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: uLS Combo 16 : 0.90D + 1.60ws + 1.00Wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE station I sLs (stress) Load Combination uLs Load Envelopes I Moment Moment Shear Moment x I Sustained Total Load Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip combo.) kip.ft combo.) 1 min max min max min max min max min max 0.000 0.00 0.00 0.00 7.13 17.95 15 2 0.00 0.00 1 1 0.540 4.15 4.15 6.92 6.71 16.91 15 2 3.74 9.41 15 2 1.260 8.77 8.77 14.62 4.34 10.88 15 2 7.89 19.88 15 2 2.000 12.10 12.10 20.15 3.76 9.45 15 2 10.89 27.40 15 2 2.880 15.44 15.44 25.72 3.07 7.76 15 2 13.90 34.98 15 2 3.600 17.47 17.47 29.12 0.71 1.73 15 2 15.73 39.60 15 2 4.500 17.83 17.83 29.69 0.00 0.00 15 2 16.04 40.38 15 2 5.400 17.47 17.47 29.12 -1.73 -0.71 2 15 15.73 39.60 15 2 6.120 15.44 15.44 25.72 -7.76 -3.07 2 15 13.90 34.98 15 2 7.000 12.10 12.10 20.15 -9.45 -3.76 2 15 10.89 27.40 15 2 7.740 8.77 8.77 14.62 -10.88 -4.34 2 15 7.89 19.88 15 2 8.460 4.15 4.15 6.92 -16.91 -6.71 2 15 3.74 9.41 15 2 9.000 0.00 0.00 0.00 -17.95 -7.13 2 15 0.00 0.00 1 1 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) unfactored Load Group Effects 1 Initial Lifting Truck Transport Erection Lifting In Service Load I Left Right Left Right Left Right Left Right Group I vertical vertical Vertical Vertical Vertical Vertical Vertical[*] Torsion[*] Vertical[*]I Torsion[*] I kip kip.ft kip kip.ft kip kip.ft kip kip.ft kip kip.ft Beam weight) 2.47 2.47 2.47 2.47 2.47 2.47 2.47 0.00 2.47 0.00 DL before CI 4.00 0.00 4.00 0.00 CIP weight 1 0.62 0.00 0.62 0.00 DL after CII 0.83 0.00 0.83 0.00 Live Load I 5.28 0.00 5.28 0.00 Load Envelope Effects SLS DL 1 7.92 I 0.00 I 7.92 I 0.00 I SLS Sustain) 7.92 I 0.00 I 7.92 I 0.00 I SLS Minimum' 2.47 2.47 2.47 2.47 2.47 2.47 7.92 I 0.00 I 7.92 I 0.00 I SLS Maximum) 2.47 2.47 2.47 2.47 2.47 2.47 13.20 I 0.00 I 13.20 I 0.00 I ULS Minimum) 7.13 [1511 0.00 [ 111 7.13 [1511 0.00 [ 111 ULS Maximum) 17.95 [ 211 0.00 [ 111 17.95 [ 211 0.00 [ 111 * Governing uLS Load combination (below) CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) I x I Stress I Limit * Location 1 ft I psi I psi STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam I 4.5001 10 I 1800 Bottom of Beam I 7.0001 18 I 2100 Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 7.0001 -19 1 -411 Bottom of Beam I 4.5001 -10 1 -411 STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam I 4.5001 10 I 3000 Engineer: Company: File: 3.2 __ 8in x 9ft slab carrying riser 3 of 7 Thu Mar 15 12:49:28 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 3.2.5 Licensed to: 4457151211, Fadjar Kusumo-R - ox Project: Problem: Bottom of Beam I 7.0001 18 1 3500 Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 7.0001 -19 1 -530 Bottom of Beam I 4.5001 -10 1 -530 STRESSES DURING CAST-IN-PLACE POUR Critical Compression Top of Beam I 4.5001 271 1 3000 Bottom of Beam I 0.0001 0 1 3000 Critical Tension Top of Beam I 0.0001 0 1 -530 Bottom of Beam I 4.5001 -265 1 -530 STRESSES IN SERVICE Critical Compression Top of Beam I 4.5001 360 1 3000 Bottom of Beam I 0.0001 0 1 3000 Top of CIP Pour' 4.5001 149 1 3000 Critical Tension Top of Beam 1 0.0001 0 1 -530 Not cracked Bottom of Beam 1 4.5001 -411 1 -530 check cracking below and cover requirements Top of CIP Pour' 0.0001 0 1 -530 STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam 1 4.5001 283 I 2250 Bottom of Beam 1 0.0001 0 I 2250 * Tensile stress limit given is the modulus of rupture of the concrete. Beyond this limit crack control is required. Tensile stress limit given for the cast-in-place pour is the flexural cracking strength of the concrete. CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING 1 I Bottom 1 Top of 1 1 1 of Beam I Beam 1 1 dc 1 2.00 1 0.00 1 in concrete cover to center of steel closest to tension face 1 cc 1 1.69 1 0.00 1 in Clear concrete cover to steel closest to tension face 1 fs 1 25.6 1 0.0 1 ksi Steel stress nearest to tension face (after decompression) for crack control 1 Max spacing 1 18.74 1 0.00 1 in Maximum centre-to-centre spacing of steel closest to tension face to control cracking CRACK WIDTH ESTIMATE crack width estimates are only approximations based on idealized behaviour and average crack spacing. These estimates only represent a level of cracking and should only be used in comparison with appropriate limits such as those given below. It would not be appropriate to compare these estimates to measured crack widths. Bottom Top of of Beam Beam Cracked? Yes No cracking at 4.500 0.000 ft Location of maximum crack width from left end of beam Ms 29.69 0.00 kip.ft External service moment (DL + LL) Pdc 0.00 0.00 kip Prestress force at cracked centroid Mint 29.69 0.00 kip.ft Internal moment about cracked centroid c 1.57 0.00 in Concrete depth in compression Steel type Rebar Rebar Type of steel in tension Method Gergely-Lutz Gergely-Lutz crack width estimate equation used * kl 75.842E-6 0.00 inA2/Kip Coefficient dependent on steel type kb 1.00 0.00 Adjustment coefficient for prestressing steel h2/h1 1.31 0.00 Ratio of depth in tension to depth of steel from NA Act 264.0 0.0 inA2 Area of concrete in tension centered on crack control steel A 44.0 0.0 inA2 Area of concrete in tension around each bar/strand fs 25.6 0.0 ksi Stress in steel nearest to tension face (after decompression) for crack width Est Crack width! 0.011 0.000 in Estimated maximum crack width fc -921 0 psi Maximum concrete compressive stress - opposite face to cracking limit -3000 -3000 psi Allowable concrete compressive stress Recommended Crack width (in) - Maximum Limits (from PCI Design Handbook, 5th edition) 1 1 Critical 1 Prestressed I Reinforced 1 1 I Appearance 1 concrete I Concrete 1 'Exterior Exposure 1 0.0071 0.0101 0.0131 'Interior Exposure I 0.0101 0.0121 0.0161 * Gergely & Lutz equation: w = kl x fs x h2 / hl x CubicRoot(dc * A) DEFLECTION ESTIMATE AT ALL STAGES Design code used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) Engineer: Company: File: 3.2 __ 8in x 9ft slab carrying riser 4 of 7 Thu Mar 15 12:49:28 2018 Summary Report 3.2.6 Concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: I Net Deflection Change in Deflection 1 LocationI Net @ Net @ Net DL Net Total DL growth LL Span/Deflection 1 x I Erection Completion @ Final @ Final + LL alone DL growth LL 1 ft I in in in in in in + LL alone 1 Column I B C D E E - C E - D L / (E-C) L / (E-D)I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0.540 -0.004 -0.008 -0.012 -0.013 -0.005 -0.001 22088 78012 1.260 -0.009 -0.018 -0.026 -0.029 -0.011 -0.003 9768 34500 2.000 -0.014 -0.027 -0.039 -0.044 -0.017 -0.005 6508 22984 2.880 -0.018 -0.036 -0.051 -0.058 -0.022 -0.006 4976 17575 3.600 -0.020 -0.040 -0.058 -0.065 -0.024 -0.007 4427 15635 4.500 -0.021 -0.042 -0.061 -0.068 -0.026 -0.007 4216 14890 5.400 -0.020 -0.040 -0.058 -0.065 -0.024 -0.007 4427 15635 6.120 -0.018 -0.036 -0.051 -0.058 -0.022 -0.006 4976 17575 7.000 -0.014 -0.027 -0.039 -0.044 -0.017 -0.005 6508 22984 7.740 -0.009 -0.018 -0.026 -0.029 -0.011 -0.003 9768 34500 8.460 -0.004 -0.008 -0.012 -0.013 -0.005 -0.001 22088 78012 9.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 Col. B: Net deflection at erection includes all dead loads applied before the cast-in-place pour plus long-time deflection growth of the beam weight up to erection. Col. C: Net deflection at completion of construction includes all dead loads plus long-time deflection growth of the dead load up to completion. Col. D: Net DL deflection at final includes all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes all dead loads, and all live loads, plus long-time deflection growth. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code used: ACI 318-14 B. Unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation change in Rotation SupportI Net @ I Net @ I Net DL Net Total DL growth I LL Location' Erection I Completion I @ Final @ Final + LL alone I degrees 1 degrees I degrees I degrees degrees I degrees Column 1 B I C I D E E - C E - D Left I 0.0357 1 0.0719 I 0.1031 I 0.1154 0.0435 I 0.0123 Right I -0.0357 I -0.0719 I -0.1031 I -0.1154 -0.0435 I -0.0123 C. Unrestrained Longitudinal Change of Length Due to Creep and Shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = 0.0000 in I I Total Chane of Length I Difference in Change I I I Erection 'Completion] Final 1 I to comp1.1 to Final I to Final I I I in I in I in I I in I in I in I I I B I C I D I I C - B I D - C 1 D - B I I Creep 1 0.00001 0.00001 0.00001 I 0.00001 0.00001 0.00001 I Shrink.I -0.01611 -0.02901 -0.04731 I -0.01291 -0.01821 -0.03121 I Total I -0.01611 -0.02901 -0.04731 I -0.01291 -0.01821 -0.03121 FLEXURAL DESIGN CHECK Design Code used: ACI 318-14 Concrete compressive stress-strain model used: PCA Parabola-Rectangle curve Modulus of Rupture of Precast concrete, fr = 530 psi (tension) I Factored Design Cracking Minimum Depth in Net TensileI Flexural 0 I warnings I Moment Strength Moment Required Compression' Strain 1Classication I & Notes x I Mu 0Mn Mcr Strength c I 1 ft I kip.ft kip.ft kip.ft kip.ft in I 1 0.000 0.00 0.06 48.61 0.00 1.57 0.00001Tension 0.90 3 0.540 9.41 31.80 47.19 12.55 1.60 0.00111Tension 0.90 3 1.260 19.88 65.24 45.48 26.50 0.52 0.04331Tension 0.90 2.000 27.40 65.24 43.82 36.54 0.52 0.04331Tension 0.90 2.880 34.98 65.24 42.12 46.64 0.52 0.04331Tension 0.90 3.600 39.60 65.24 41.07 49.28 0.52 0.04331Tension 0.90 4.500 40.38 65.24 40.91 49.10 0.52 0.04331Tension 0.90 5.400 39.60 65.24 41.07 49.28 0.52 0.04331Tension 0.90 6.120 34.98 65.24 42.12 46.64 0.52 0.04331Tension 0.90 7.000 27.40 65.24 43.82 36.54 0.52 0.04331Tension 0.90 7.740 19.88 65.24 45.48 26.50 0.52 0.04331Tension 0.90 8.460 9.41 31.80 47.19 12.55 1.60 0.00111Tension 0.90 3 9.000 0.00 0.06 48.61 0.00 1.57 0.00001Tension 0.90 3 Points of Maximum and Minimum Factored Moment I 4.5001 40.38 I 65.24 1 40.91 I 49.10 1 0.52 I 0.04331Tension 1 0.901 I 0.0001 0.00 I -0.01 1 31.11 I 0.00 1 0.70 I 0.00001Tension 1 0.901 31 Points of Maximum Ratio of Factored Moment to Design Strength I 4.5001 40.38 I 65.24 1 40.91 I 49.10 I 0.52 I 0.04331Tension 1 0.901 I Engineer: Company: File: 3.2 __ 8in x 9ft slab carrying riser 5 of 7 Thu Mar 15 12:49:28 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 3.2.7 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: I 0.0001 0.00 I -0.01 I 31.11 I 0.00 I 0.70 I 0.0000ITension 10.901 31 Points of Maximum Ratio of Minimum Strength to Design Strength 1 3.2401 37.65 I 65.24 I 41.52 I 49.82 I 0.52 I 0.0433ITension I 0.901 I I 0.0001 0.00 I -0.01 I 31.11 1 0.00 I 0.70 1 0.0000ITension 10.901 31 Warnings & Notes 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code Used: ACI 318-14 1 Design Prestress Concrete Strength Provided Min. Strength Req'd warnings 1 Shear Component Strength Stirrups Total Stirrups Total & Notes x 1 Vu Vp OVc OVs 0Vn OVs 0Vn ft 1 kip kip kip kip kip kip kip 0.000 16.34 0.00 53.21 0.00 53.21 0.00 53.21 3 0.540 16.34 0.00 54.98 0.00 54.98 0.00 54.98 3 1.260 10.88 0.00 54.48 0.00 54.48 0.00 54.48 2.000 9.45 0.00 54.00 0.00 54.00 0.00 54.00 2.880 7.76 0.00 53.72 0.00 53.72 0.00 53.72 3.600 1.73 0.00 53.30 0.00 53.30 0.00 53.30 4.500 0.00 0.00 53.20 0.00 53.20 0.00 53.20 4.500 0.00 0.00 -53.20 0.00 -53.20 0.00 -53.20 5.400 -1.73 0.00 -53.30 0.00 -53.30 0.00 -53.30 6.120 -7.76 0.00 -53.72 0.00 -53.72 0.00 -53.72 7.000 -9.45 0.00 -54.00 0.00 -54.00 0.00 -54.00 7.740 -10.88 0.00 -54.48 0.00 -54.48 0.00 -54.48 8.460 -16.34 0.00 -54.98 0.00 -54.98 0.00 -54.98 3 9.000 -16.34 0.00 -53.21 0.00 -53.21 0.00 -53.21 3 Warnings & Notes 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. SHEAR TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 'Shear Steel Shear Steel Stirrup Stirrup Spacing Warnings 1 1 Required Provided Provided Provided Max. Allow' & Notes 1 x 1 Av/s Av/s Av s s 1 ft 1 inA2/ft inA2/ft inA2 in in 1 0.000 0.00 0.00 0.62 0.00 4.00 4 0.540 0.00 0.00 0.62 0.00 4.00 4 1.260 0.00 0.00 0.62 0.00 4.00 2.000 0.00 0.00 0.62 0.00 4.00 2.880 0.00 0.00 0.62 0.00 4.00 3.600 0.00 0.00 0.62 0.00 4.00 4.500 0.00 0.00 0.62 0.00 4.00 4.500 0.00 0.00 0.62 0.00 4.00 5.400 0.00 0.00 0.62 0.00 4.00 6.120 0.00 0.00 0.62 0.00 4.00 7.000 0.00 0.00 0.62 0.00 4.00 7.740 0.00 0.00 0.62 0.00 4.00 8.460 0.00 0.00 0.62 0.00 4.00 4 9.000 0.00 0.00 0.62 0.00 4.00 4 Warnings & Notes 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). Note, additional long. steel in compression side of section has been reduced [ACI 318-14::9.5.4.5]. * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. HORIZONTAL SHEAR DESIGN CHECK BY SECTION Design Code Used: ACI 318-14 Top of precast beam is considered intentionally roughened. 'Horizontal Strength Maximum Required Tie Size Spacing Spacing Strength Strength warnings 1 Shear with no Limit Ties Provided Required Provided Required Provided & Notes x 1 Vu ties OVnh Max Avis Av s s OVnh OVnh ft 1 kip kip kip inA2/ft inA2 in in kip kip 0.000 16.34 31.68 198.00 0.00 0.00 0.00 0.00 16.34 31.68 1 0.540 16.34 31.68 198.00 0.00 0.00 0.00 0.00 16.34 31.68 1 1.260 10.88 31.68 198.00 0.00 0.00 0.00 0.00 10.88 31.68 1 2.000 9.45 31.68 198.00 0.00 0.00 0.00 0.00 9.45 31.68 1 2.880 7.76 31.68 198.00 0.00 0.00 0.00 0.00 7.76 31.68 1 3.600 1.73 31.68 198.00 0.00 0.00 0.00 0.00 1.73 31.68 1 4.500 0.00 31.68 198.00 0.00 0.00 0.00 0.00 0.00 31.68 1 5.400 -1.73 -31.68 -198.00 0.00 0.00 0.00 0.00 -1.73 -31.68 1 6.120 -7.76 -31.68 -198.00 0.00 0.00 0.00 0.00 -7.76 -31.68 1 7.000 -9.45 -31.68 -198.00 0.00 0.00 0.00 0.00 -9.45 -31.68 1 7.740 -10.88 -31.68 -198.00 0.00 0.00 0.00 0.00 -10.88 -31.68 1 8.460 -16.34 -31.68 -198.00 0.00 0.00 0.00 0.00 -16.34 -31.68 1 9.000 -16.34 -31.68 -198.00 0.00 0.00 0.00 0.00 -16.34 -31.68 1 Warnings & Notes 1 - Note, no ties required [ACI 318-14::16.4.4.2]. Engineer: Company: File: 3.2 __ 8in x 9ft slab carrying riser 6 of 7 Thu Mar 15 12:49:28 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 3.2.8 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: HORIZONTAL SHEAR DESIGN CHECK BY MOMENT REGION Design Code used: ACI 318-14 Top of precast beam is considered intentionally roughened. Region of Beam 1 shear 1 Peak I Horizontal I strength I Maximum I Tie Area * I Tie Area I Maximum I warnings I I Length 1 Moment I Shear I with no I Limit I Required I Provided I Spacing I & Notes I x I 1v 1 M I Fh I ties I 0vnh Max I Acs I Acs I s I I ft 1 ft I kip.ft I kip kip I kip I inA2 I inA2 in I I 0.000 to 4.5001 4.5001 40.38 I 113.39 I 213.84 I 2352.24 I 0.00 I 0.00 I 8.00 I I 4.500 to 9.0001 4.5001 40.38 I 113.39 I 213.84 I 2352.24 I 0.00 I 0.00 I 8.00 I I * Required ties should be distributed in proportion to distribution of shear force (or stirrups). Engineer: Company: File: 3.2 __ 8in x 9ft slab carrying riser 7 of 7 Thu Mar 15 12:49:28 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 3.2.9 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Design Code Used: ACI 318-14 "24"WIDTH" NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4 in the development length of strands (CSA A23.3 only) ** OFF ** F8: use a rectangular stress block at concrete ultimate strain ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Cast-in-Place Pour Concrete Density Wt = 150 lb/ftA3 wt = 150 lb/ftA3 Compressive Strength f'c = 5000.0 psi f'c = 5000.0 psi Modulus of Elasticity Ec = 4.279E+6 psi Ec = 4.279E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset 1 INol From I To I Length I Folder I Section I section I z I Y 1 I I ft I ft I ft I Name I Name I Type I in 1 in 1 111 0.0001 9.0001 9.0001 SolidFlatSlab I FS8x24 I Solid Slab I 0.001 0.001 CAST-IN-PLACE POUR LAYOUT I segment/Length I slab/Topping Parameters I Haunch Paramaters Iverticall INo1 From I To I Length I Thick. I width I Offset I Thick. I width I Offset I Offset I I I ft I ft I ft I in I in I in I in I in I in I in I 1 11 0.0001 9.0001 9.0001 2.001 24.001 0.001 0.001 0.001 0.001 0.001 Beam is UNSHORED during the cast-in-place pour and superimposed dead load. * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 9.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 9.000 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 2.000 ft, Right @ 7.000 ft Loop Height = 0.00 ft Span Length in Service = 9.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 9.000 ft Total Beam Length = 9.000 ft, Bearing Length, Left = 4.00 in, Right = 4.00 in First flexural frequency of beam is approximately 0.76 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties I Section' Section' shear 'volume /1 section Moduli I I No.1 A I I I Yb I Height I width I width I Surfacel Sb 1 st 1 1 I inA2 I inA4 I in I in I in I in I in I inA3 I inA3 I I 11 192.0 I 1024 I 4.001 8.001 24.001 24.001 3.001 -256 I 256 I GROSS COMPOSITE SECTION PROPERTIES (based on Ec of the precast beam - transformed area of rebar and strand NOT included) 'Seg.' Section Properties 1 Section' Section Moduli I I No.1 Ac 1 Ic I yb I Height I sb 1 St I sbc I Stc I I I inA2 I inA4 I in I in I inA3 I inA3 I inA3 I inA3 I I 11 240.0 I 2000 I 5.001 10.001 -400 I 667 I 667 I 400 I Note: Sb & St = bottom and top of the precast beam, Sbc & Stc = bottom and top of the cast-in-place pour. UNCRACKED SECTION PROPERTIES SUMMARY I Net Precast Section I Transformed Precast Section I Transformed Precast Section (Transformed Composite Section' 1 at Transfer (based on Eci) I at Transfer (based on Eci) I in Service (based on Ec) I in Service (based on Ec) 1 '(include rebar,deduct strand)I (include rebar and strand) I (include rebar and strand) I (include rebar and strand) I KIAI I I Yb I A I I I Yb I A I I I Yb I Ac I Ic I Ybc 1 ft 1 inA2 I inA4 I in I inA2 I inA4 I in I inA2 I inA4 I in I inA2 I inA4 I in 1 0.0001 192.0 I 1024 I 4.001 192.0 I 1024 I 4.001 192.0 I 1024 I 4.001 240.0 I 2000 I 5.001 Engineer: Company: File: 3.2 __Bin x 24in x 9ft slab carrying riser 1 of 7 Thu Mar 15 12:59:24 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 3.2.10 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 0.540 196.9 1043 3.95 196.9 1043 3.95 195.6 1038 3.96 243.6 2032 4.96 1.260 201.6 1061 3.90 201.6 1061 3.90 199.2 1052 3.93 247.2 2063 4.91 2.000 201.6 1061 3.90 201.6 1061 3.90 199.2 1052 3.93 247.2 2063 4.91 2.880 201.6 1061 3.90 201.6 1061 3.90 199.2 1052 3.93 247.2 2063 4.91 3.600 201.6 1061 3.90 201.6 1061 3.90 199.2 1052 3.93 247.2 2063 4.91 4.500 201.6 1061 3.90 201.6 1061 3.90 199.2 1052 3.93 247.2 2063 4.91 5.400 201.6 1061 3.90 201.6 1061 3.90 199.2 1052 3.93 247.2 2063 4.91 6.120 201.6 1061 3.90 201.6 1061 3.90 199.2 1052 3.93 247.2 2063 4.91 7.000 201.6 1061 3.90 201.6 1061 3.90 199.2 1052 3.93 247.2 2063 4.91 7.740 201.6 1061 3.90 201.6 1061 3.90 199.2 1052 3.93 247.2 2063 4.91 8.460 196.9 1043 3.95 196.9 1043 3.95 195.6 1038 3.96 243.6 2032 4.96 9.000 192.0 1024 4.001 192.0 1024 4.001 192.0 1024 4.001 240.0 2000 5.00 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. Transformed Composite Section in Service properties are used with external loads applied to the composite precast beam. LONGITUDINAL REINFORCING STEEL Reinforcing Steel Groups 11D1Qtyl Steel 1 Bar 1 Bar 'End Location & Typel Bar I I Cross 'Vertical' Offset ** 1 I I 1 Grade I Size 1 Area I From I I To I I Spacing' I Spacing' Offset I Reference 1 11 1 ksi IC=coated I inA2 I ft I *1 ft 1 *1 in 1 1 in I in I 1 I 11 41 60.0 I # 5 1 1.240 I 0.000ISEI 9.000ISE I 6.001 1 - 1 2.001 Bottom of Precast Beam 1 * End Types: SE - Straight Embeddment, FD - Fully Developed, SH - Standard Hook, HB - Headed Bar ** Offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL 1 Shear Stirrups 1 From 1 To 1 Grade 1 Size 1 # of LegslTotal Areal Spacing 1 ft 1 ft 1 ksi I I I inA2 1 in 1 0.0001 9.0001 58.0 1 15M I 21 0.62 1 0.001 Interface Shear Ties I From 1 To I Grade 1 Size I # of LegslTotal Areal Spacing I ft 1 ft 1 ksi I I I inA2 1 in I 0.0001 9.0001 58.0 1 15M I 01 0.00 1 0.001 APPLIED LOADS Load Group Stages Applied Load Details & Type & Distribution (left to right) Beam Weight * Stripping to Final Service Segment #0- Vertical: 0.2 kip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Weight, Cable Angle: 90 degrees DL before CIP Pour Erection to Final Service Riser 1- Vertical: 2 kip at 1 ft D: DL, General No Load Distribution Riser 2- Vertical: 2 kip at 3.5 ft Riser 3- Vertical: 2 kip at 5.5 ft Riser 4- Vertical: 2 kip at 8 ft CIP Weight * CIP Placement to Final Service Segment #0- Vertical: 0.05 kip/ft full length D: DL, Cast-in-Place Concrete No Load Distribution DL after CIP Pour Composite to Final Service 15 psf from riser- Vertical: 0.105 kip/ft full length' D: DL, General No Load Distribution 15 psf- Vertical: 0.03 kip/ft full length Live Load Final Service sta9e only 100 psf- Vertical: 0.2 kip/ft full length L: LL, General No Load Distribution Riser 1- Vertical: 1.4 kip at 1 ft Riser 2- Vertical: 1.4 kip at 3.5 ft Riser 3- Vertical: 1.4 kip at 5.5 ft Riser 4- Vertical: 1.4 kip at 8 ft * indicates load groups generated automatically by Concise Beam. Engineer: Company: File: 3.2 __Bin x 24in x 9ft slab carrying riser 2 of 7 Thu Mar 15 12:59:25 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 3.2.11 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: LOAD COMBINATIONS Serviceability (SLS) & Fatigue (FLS) Limit State Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00Ws + 0.60Wu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.0OL + 1.00L1 + 1.00Lr + 1.00R + 1.005 FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr ultimate (strength) Limit state (uLs) Combinations (searched collectively to obtain envelope) 1: uLS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS Combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: uLS combo 5 : 1.20D + 0.50L + 1.00L1 + 1.60Lr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: uLS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: uLS combo 8 : 1.20D + 1.60Lr + 0.80ws + 0.50wu 9: ULS Combo 9 : 1.20D + 1.60S + 0.80ws + 0.50Wu 10: uLS Combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: uLS combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60ws + 1.00wu 12: uLs Combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60Ws + 1.00Wu 13: uLS combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60ws + 1.00Wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: uLS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: uLS Combo 16 : 0.90D + 1.60ws + 1.00Wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE station I sLs (stress) Load Combination uLs Load Envelopes I Moment Moment Shear Moment x I Sustained Total Load Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip combo.) kip.ft combo.) 1 min max min max min max min max min max 0.000 0.00 0.00 0.00 5.16 12.80 15 2 0.00 0.00 1 1 0.540 3.04 3.04 5.01 4.97 12.38 15 2 2.73 6.80 15 2 1.260 6.40 6.40 10.54 2.92 7.17 15 2 5.76 14.30 15 2 2.000 8.69 8.69 14.29 2.67 6.59 15 2 7.82 19.39 15 2 2.880 11.15 11.15 18.34 2.36 5.91 15 2 10.04 24.89 15 2 3.600 12.74 12.74 20.98 0.31 0.70 15 2 11.47 28.48 15 2 4.500 12.90 12.90 21.22 0.00 0.00 15 2 11.61 28.79 15 2 5.400 12.74 12.74 20.98 -0.70 -0.31 2 15 11.47 28.48 15 2 6.120 11.15 11.15 18.34 -5.91 -2.36 2 15 10.04 24.89 15 2 7.000 8.69 8.69 14.29 -6.59 -2.67 2 15 7.82 19.39 15 2 7.740 6.40 6.40 10.54 -7.17 -2.92 2 15 5.76 14.30 15 2 8.460 3.04 3.04 5.01 -12.38 -4.97 2 15 2.73 6.80 15 2 9.000 0.00 0.00 0.00 -12.80 -5.16 2 15 0.00 0.00 1 1 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) unfactored Load Group Effects 1 Initial Lifting Truck Transport Erection Lifting In Service Load 1 Left Right Left Right Left Right Left Right Group 1 vertical vertical Vertical Vertical Vertical Vertical Vertical[*] Torsion[*] Vertical[*]I Torsion[*] 1 kip kip.ft kip kip.ft kip kip.ft kip kip.ft kip kip.ft Beam weight) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.00 0.90 0.00 DL before CI 4.00 0.00 4.00 0.00 CIP weight 1 0.22 0.00 0.22 0.00 DL after CII 0.61 0.00 0.61 0.00 Live Load 1 3.70 0.00 3.70 0.00 Load Envelope Effects SLS DL 1 5.73 1 0.00 I 5.73 I 0.00 1 SLS Sustain) 5.73 1 0.00 1 5.73 1 0.00 1 SLS Minimum) 0.90 0.90 0.90 0.90 0.90 0.90 5.73 1 0.00 I 5.73 1 0.00 1 SLS Maximum) 0.90 0.90 0.90 0.90 0.90 0.90 9.43 1 0.00 I 9.43 1 0.00 1 ULS Minimum) 5.16 [1511 0.00 [ 111 5.16 [1511 0.00 [ 111 ULS Maximum' 12.80 [ 211 0.00 [ 1]1 12.80 [ 211 0.00 [ 1]1 * Governing uLS Load combination (below) CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) Use 13.67k (+ve = compression, -ve = tension) 1 x I Stress I Limit * Location 1 ft 1 psi 1 psi STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam 1 4.5001 10 1 1800 Bottom of Beam 1 2.0001 18 1 2100 Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam 1 2.0001 -19 I -411 Bottom of Beam 1 4.5001 -10 I -411 STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam 1 4.5001 10 1 3000 Engineer: Company: File: 3.2 __8in x 24in x 9ft slab carrying riser 3 of 7 Thu Mar 15 12:59:25 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 3.2.12 Licensed to: 4457151211, Fadjar Kusumo-R - ox Project: Problem: Bottom of Beam I 2.0001 18 1 3500 Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 2.0001 -19 1 -530 Bottom of Beam I 4.5001 -10 1 -530 STRESSES DURING CAST-IN-PLACE POUR Critical Compression Top of Beam I 4.5001 536 1 3000 Bottom of Beam I 0.0001 0 1 3000 Critical Tension Top of Beam I 0.0001 0 1 -530 Bottom of Beam I 4.5001 -517 1 -530 STRESSES IN SERVICE Critical Compression Top of Beam I 4.5001 710 I 3000 Bottom of Beam I 0.0001 0 I 3000 Top of CIP Pour' 4.5001 287 I 3000 Critical Tension Top of Beam 1 0.0001 0 I -530 Not cracked Bottom of Beam 1 4.5001 -794 I -530 check cracking below and cover requirements Top of CIP Pour' 0.0001 0 I -530 STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam 1 4.5001 560 I 2250 Bottom of Beam 1 0.0001 0 I 2250 * Tensile stress limit given is the modulus of rupture of the concrete. Beyond this limit crack control is required. Tensile stress limit given for the cast-in-place pour is the flexural cracking strength of the concrete. CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING I I Bottom 1 Top of 1 1 I of Beam I Beam 1 1 dc 1 2.00 1 0.00 1 in concrete cover to center of steel closest to tension face 1 cc 1 1.69 1 0.00 1 in Clear concrete cover to steel closest to tension face 1 fs 1 28.1 1 0.0 1 ksi Steel stress nearest to tension face (after decompression) for crack control 1 Max spacing 1 17.11 1 0.00 1 in Maximum centre-to-centre spacing of steel closest to tension face to control cracking CRACK WIDTH ESTIMATE crack width estimates are only approximations based on idealized behaviour and average crack spacing. These estimates only represent a level of cracking and should only be used in comparison with appropriate limits such as those given below. It would not be appropriate to compare these estimates to measured crack widths. Bottom Top of of Beam Beam Cracked? Yes No cracking at 4.500 0.000 ft Location of maximum crack width from left end of beam Ms 21.22 0.00 kip.ft External service moment (DL + LL) Pdc 0.00 0.00 kip Prestress force at cracked centroid Mint 21.22 0.00 kip.ft Internal moment about cracked centroid c 2.04 0.00 in Concrete depth in compression Steel type Rebar Rebar Type of steel in tension Method Gergely-Lutz Gergely-Lutz crack width estimate equation used * kl 75.842E-6 0.00 inA2/Kip Coefficient dependent on steel type kb 1.00 0.00 Adjustment coefficient for prestressing steel h2/h1 1.34 0.00 Ratio of depth in tension to depth of steel from NA Act 96.0 0.0 inA2 Area of concrete in tension centered on crack control steel A 24.0 0.0 inA2 Area of concrete in tension around each bar/strand fs 28.1 0.0 ksi Stress in steel nearest to tension face (after decompression) for crack width Est Crack width! 0.010 0.000 in Estimated maximum crack width fc -1419 0 psi Maximum concrete compressive stress - opposite face to cracking limit -3000 -3000 psi Allowable concrete compressive stress Recommended Crack width (in) - Maximum Limits (from PCI Design Handbook, 5th edition) 1 I Critical 1 Prestressed I Reinforced I 1 I Appearance 1 concrete I Concrete 1 'Exterior Exposure 1 0.0071 0.0101 0.0131 'Interior Exposure I 0.0101 0.0121 0.0161 * Gergely & Lutz equation: w = kl x fs x h2 / hl x CubicRoot(dc * A) DEFLECTION ESTIMATE AT ALL STAGES Design code used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) Engineer: Company: File: 3.2 __8in x 24in x 9ft slab carrying riser 4 of 7 Thu Mar 15 12:59:25 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 3.2.13 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: I Net Deflection change in Deflection 1 LocationI Net @ Net @ Net DL Net Total DL growth LL span/Deflection 1 x I Erection Completion @ Final @ Final + LL alone DL growth LL 1 ft I in in in in in in + LL alone 1 Column I B C D E E - C E - D L / (E-C) L / (E-D)I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0.540 -0.008 -0.017 -0.024 -0.034 -0.018 -0.010 6169 10729 1.260 -0.017 -0.038 -0.055 -0.078 -0.040 -0.023 2690 4636 2.000 -0.026 -0.057 -0.082 -0.119 -0.062 -0.036 1747 2962 2.880 -0.033 -0.075 -0.108 -0.159 -0.084 -0.051 1285 2133 3.600 -0.038 -0.084 -0.122 -0.181 -0.097 -0.059 1118 1838 4.500 -0.039 -0.089 -0.129 -0.191 -0.102 -0.062 1055 1729 5.400 -0.038 -0.084 -0.122 -0.181 -0.097 -0.059 1118 1838 6.120 -0.033 -0.075 -0.108 -0.159 -0.084 -0.051 1285 2133 7.000 -0.026 -0.057 -0.082 -0.119 -0.062 -0.036 1747 2962 7.740 -0.017 -0.038 -0.055 -0.078 -0.040 -0.023 2690 4636 8.460 -0.008 -0.017 -0.024 -0.034 -0.018 -0.010 6169 10729 9.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 col. B: Net deflection at erection includes all dead loads applied before the cast-in-place pour plus long-time deflection growth of the beam weight up to erection. Col. C: Net deflection at completion of construction includes all dead loads plus long-time deflection growth of the dead load up to completion. Col. D: Net DL deflection at final includes all dead loads, and sustained live loads,. plus long-time deflection growth. col. E: Net total deflection at final includes all dead loads, and all live loads, plus long-time deflection growth. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code used: ACI 318-14 B. unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation change in Rotation SupportI Net @ I Net @ I Net DL Net Total DL growth I LL Location' Erection I Completion I @ Final @ Final + LL alone I degrees 1 degrees I degrees I degrees degrees I degrees Column I B I C I D E E - C E - D Left 1 0.0671 1 0.1482 I 0.2144 I 0.3035 0.1554 I 0.0892 Right I -0.0671 I -0.1482 I -0.2144 I -0.3035 -0.1554 I -0.0892 C. Unrestrained Longitudinal Change of Length Due to Creep and Shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = 0.0000 in 1 I Total Change of Length I Difference in Change I I 1 Erection 'CompletionFinal 1 I to Comp1.1 to Final I to Final I 1 I in I in I in I I in I in I in I 1 I B I C I D I I C - B I D - C 1 D - B 1 I Creep I 0.00001 0.00001 0.00001 1 0.00001 0.00001 0.00001 I Shrink.I -0.01971 -0.03361 -0.05061 1 -0.01391 -0.01701 -0.03091 1 Total I -0.01971 -0.03361 -0.05061 1 -0.01391 -0.01701 -0.03091 FLEXURAL DESIGN CHECK Design Code used: ACI 318-14 concrete compressive stress-strain model used: PCA Parabola-Rectangle curve Modulus of Rupture of Precast Concrete, fr = 530 psi (tension) I Factored Design Cracking Minimum Depth in Net TensileI Flexural 0 I warnings I Moment Strength Moment Required Compression' Strain lclassication I & Notes x I Mu 0Mn Mcr strength c I 1 ft I kip.ft kip.ft kip.ft kip.ft in I 1 0.000 0.00 0.04 17.68 0.00 2.05 0.0000ITension 0.90 3 0.540 6.80 20.72 16.58 9.06 2.11 0.00111Tension 0.90 3 1.260 14.30 42.52 15.29 18.35 0.93 0.0229ITension 0.90 2.000 19.39 42.52 14.15 16.98 0.93 0.0229ITension 0.90 2.880 24.89 42.52 12.89 15.47 0.93 0.0229ITension 0.90 3.600 28.48 42.52 12.06 14.47 0.93 0.0229ITension 0.90 4.500 28.79 42.52 12.00 14.40 0.93 0.0229ITension 0.90 5.400 28.48 42.52 12.06 14.47 0.93 0.0229ITension 0.90 6.120 24.89 42.52 12.89 15.47 0.93 0.0229ITension 0.90 7.000 19.39 42.52 14.15 16.98 0.93 0.0229ITension 0.90 7.740 14.30 42.52 15.29 18.35 0.93 0.0229ITension 0.90 8.460 6.80 20.72 16.58 9.06 2.11 0.00111Tension 0.90 3 9.000 0.00 0.04 17.68 0.00 2.05 0.0000ITension 0.90 3 Points of Maximum and Minimum Factored Moment 1 4.5001 28.79 I 42.52 I 12.00 1 14.40 1 0.93 1 0.0229ITension 1 0.901 I 0.0001 0.00 I 0.00 I 11.31 1 0.00 1 0.88 1 0.0000ITension 1 0.901 31 Points of Maximum Ratio of Factored Moment to Design Strength 1 4.5001 28.79 I 42.52 I 12.00 1 14.40 I 0.93 1 0.0229ITension I 0.901 I Engineer: Company: File: 3.2 __8in x 24in x 9ft slab carrying riser 5 of 7 Thu Mar 15 12:59:25 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 3.2.14 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: I 0.0001 0.00 I 0.00 I 11.31 I 0.00 I 0.88 I 0.0000ITension 10.901 31 Points of Maximum Ratio of Minimum Strength to Design Strength 1 8.8671 1.70 I 5.13 I 17.41 I 2.27 I 2.06 1 0.0003 I Tensi on I 0.901 31 I 0.0001 0.00 I 0.00 I 11.31 I 0.00 I 0.88 1 0.0000ITension 10.901 31 Warnings & Notes 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code Used: ACI 318-14 I Design Prestress Concrete Strength Provided Min. Strength Req'd warnings I Shear Component Strength Stirrups Total Stirrups Total & Notes x I Vu Vp OVc OVs OVn OVs OVn ft I kip kip kip kip kip kip kip 0.000 12.15 0.00 19.35 0.00 19.35 0.00 19.35 3 0.540 12.15 0.00 20.53 0.00 20.53 0.00 20.53 3 1.260 7.17 0.00 20.12 0.00 20.12 0.00 20.12 2.000 6.59 0.00 19.87 0.00 19.87 0.00 19.87 2.880 5.91 0.00 19.71 0.00 19.71 0.00 19.71 3.600 0.70 0.00 19.38 0.00 19.38 0.00 19.38 4.500 0.00 0.00 19.35 0.00 19.35 0.00 19.35 4.500 0.00 0.00 -19.35 0.00 -19.35 0.00 -19.35 5.400 -0.70 0.00 -19.38 0.00 -19.38 0.00 -19.38 6.120 -5.91 0.00 -19.71 0.00 -19.71 0.00 -19.71 7.000 -6.59 0.00 -19.87 0.00 -19.87 0.00 -19.87 7.740 -7.17 0.00 -20.12 0.00 -20.12 0.00 -20.12 8.460 -12.15 0.00 -20.53 0.00 -20.53 0.00 -20.53 3 9.000 -12.15 0.00 -19.35 0.00 -19.35 0.00 -19.35 3 Warnings & Notes 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. SHEAR TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 (Shear Steel Shear Steel Stirrup Stirrup Spacing Warnings I I Required Provided Provided Provided Max. Allow) & Notes I x 1 Av/s Av/s Av s s I ft I inA2/ft inA2/ft inA2 in in I 0.000 0.00 0.00 0.62 0.00 4.00 4 0.540 0.00 0.00 0.62 0.00 4.00 4 1.260 0.00 0.00 0.62 0.00 4.00 2.000 0.00 0.00 0.62 0.00 4.00 2.880 0.00 0.00 0.62 0.00 4.00 3.600 0.00 0.00 0.62 0.00 4.00 4.500 0.00 0.00 0.62 0.00 4.00 4.500 0.00 0.00 0.62 0.00 4.00 5.400 0.00 0.00 0.62 0.00 4.00 6.120 0.00 0.00 0.62 0.00 4.00 7.000 0.00 0.00 0.62 0.00 4.00 7.740 0.00 0.00 0.62 0.00 4.00 8.460 0.00 0.00 0.62 0.00 4.00 4 9.000 0.00 0.00 0.62 0.00 4.00 4 Warnings & Notes 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). Note, additional long. steel in compression side of section has been reduced [ACI 318-14::9.5.4.5]. * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. HORIZONTAL SHEAR DESIGN CHECK BY SECTION Design Code Used: ACI 318-14 Top of precast beam is considered intentionally roughened. (Horizontal Strength Maximum Required Tie Size Spacing Spacing Strength Strength warnings I Shear with no Limit Ties Provided Required Provided Required Provided & Notes x 1 Vu ties OVnh Max Avis Av s s OVnh OVnh ft 1 kip kip kip inA2/ft inA2 in in kip kip 0.000 12.15 11.52 72.00 0.26 0.00 8.00 0.00 42.02 11.52 B 2 0.540 12.15 11.52 72.00 0.26 0.00 8.00 0.00 42.02 11.52 B 2 1.260 7.17 11.52 72.00 0.00 0.00 0.00 0.00 7.17 11.52 1 2.000 6.59 11.52 72.00 0.00 0.00 0.00 0.00 6.59 11.52 1 2.880 5.91 11.52 72.00 0.00 0.00 0.00 0.00 5.91 11.52 1 3.600 0.70 11.52 72.00 0.00 0.00 0.00 0.00 0.70 11.52 1 4.500 0.00 11.52 72.00 0.00 0.00 0.00 0.00 0.00 11.52 1 5.400 -0.70 -11.52 -72.00 0.00 0.00 0.00 0.00 -0.70 -11.52 1 6.120 -5.91 -11.52 -72.00 0.00 0.00 0.00 0.00 -5.91 -11.52 1 7.000 -6.59 -11.52 -72.00 0.00 0.00 0.00 0.00 -6.59 -11.52 1 7.740 -7.17 -11.52 -72.00 0.00 0.00 0.00 0.00 -7.17 -11.52 1 8.460 -12.15 -11.52 -72.00 0.26 0.00 8.00 0.00 -42.02 -11.52 B 2 9.000 -12.15 -11.52 -72.00 0.26 0.00 8.00 0.00 -42.02 -11.52 B 2 Warnings & Notes B - WARNING, the shear strength provided is less than required [ACI 318-14::16.4.3.1]. 1 - Note, no ties required [ACI 318-14::16.4.4.2]. 2 - Note, ties required represent minimum requirement [ACI 318-14::16.4.6.1]. Engineer: Company: File: 3.2 __8in x 24in x 9ft slab carrying riser 6 of 7 Thu Mar 15 12:59:25 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: HORIZONTAL SHEAR DESIGN CHECK BY MOMENT REGION Design Code used: ACI 318-14 Top of precast beam is considered intentionally roughened. I Region of Beam 1 Shear I Peak I Horizontal I Strength I Maximum I Tie Area * I Tie Area I Maximum I Warnings I I I Length I Moment I Shear I with no I Limit I Required I Provided I Spacing I & Notes I I x I lv I M I Fh I ties I 0vnh Max I Acs I Acs I s I I I ft I ft I kip.ft I kip I kip I kip I inA2 I inA2 I in I I I 0.000 to 4.5001 4.5001 28.79 I 73.78 I 77.76 I 855.36 I 0.00 I 0.00 I 8.00 I I I 4.500 to 9.0001 4.5001 28.79 I 73.78 I 77.76 I 855.36 I 0.00 I 0.00 I 8.00 I I * Required ties should be distributed in proportion to distribution of shear force (or stirrups). Engineer: Company: File: 3.2 __8in x 24in x 9ft slab carrying riser 7 of 7 Thu Mar 15 12:59:25 2018 0) DRAWING STATUS REVISION REVISION E Y REVISION DATE DESCRIPTION „, SUBMITTAL o FOR APPROVAL- NOT FOR CONSTRUCTION VIVI C .N 0 a 0 Ch C 0 U U) Cr) MID-SPAN SECTION PROPERTIES LOAD SUMMARY 0 NON-COMPOSITE COMPOSITE LENGTH=19'-7" SELF WT=100 psf A(in2) 424 530 2"TOPPING=25 psf I (inA4) 2261 4417 SUPERIMPOSED DL=15 psf U Yb(in) 4.0 5.0 LIVE LOAD=100 psf Sb(in3) 565 1472 St (in3) 565 1472 SHEAR c WEB(in) 53 53 C w O) C a 0- a } C a) U) w -4, 4-5 O } Structural topping —\ 9.50 —\\, N• l co o • Q • • • u • #4 bar @ 12" o.c. • 5" 1 1'-6" 1'-6" 1 6" 6" • (4)1/2"strand pulled at 31k 1'-0" 1'-6" l 1' 7" 1•2". (4)#6 REBAR • T T T DESIGN SUMMARY f'ci=3000 psi(RELEASE STRENGTH) N f'c=5000 psi(28 DAY STRENGTH) 0 TOPPING f'c=5000 psi TOPPING THICK NESS=2" o/W SLAB DESIGN SUMMARY RED SANDSTONE6209 o (Carrying slab + riser) 5TRE55CON fik 3.3 - Architectural and Structural Precast Concrete 02/20/2018 5 a An ENCoN Company SHEET 1 OF 1 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 3.3.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4 in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Cast-in-Place Pour Concrete Density Wt = 150 lb/ftA3 wt = 150 lb/ftA3 Compressive Strength f'c = 5000.0 psi f'c = 5000.0 psi Modulus of Elasticity Ec = 4.279E+6 psi Ec = 4.279E+6 psi Strength at Transfer f'c = 3000.0 psi Modulus of Elast. at Transfer Ec = 3.315E+6 psi Strength at Lifting f'c = 3000.0 psi Modulus of Elast. at Lifting Ec = 3.315E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset I INoI From I To I Length I Folder I Section I section I Z I Y I I I ft I ft I ft I Name I Name I Type I in I in I 111 0.0001 19.5801 19.5801 SolidFlatSlab I FS8x53 I Solid Slab I 0.001 0.001 CAST-IN-PLACE POUR LAYOUT I Segment/Length I Slab/Topping Parameters I Haunch Paramaters Iverticall INoI From I To I Length I Thick. 1 Width I Offset I Thick. I Width I Offset I Offset I I I ft I ft I ft I in I in I in I in I in 1 in I in I I 11 0.0001 19.5801 19.5801 2.001 53.001 0.001 0.001 0.001 0.001 0.001 Beam is UNSHORED during the cast-in-place pour and superimposed dead load. * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 19.580 ft, Centre of Supports, Left @ 0.000 ft, Right @ 19.580 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 2.000 ft, Right @ 17.580 ft Loop Height = 0.00 ft Span Length in Service = 19.580 ft, Centre of Supports, Left @ 0.000 ft, Right @ 19.580 ft Total Beam Length = 19.580 ft, Bearing Length, Left = 4.00 in, Right = 4.00 in First flexural frequency of beam is approximately 0.24 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.l Section Properties I Section' Section' Shear 'volume /1 Section Moduli I I NO.I A I I I yb I Height I Width 1 Width I Surfacel Sb I St I I I inA2 1 inA4 I in I in I in I in I in I inA3 I inA3 I I 11 424.0 I 2261 1 4.001 8.001 53.001 53.001 3.481 -565 I 565 I GROSS COMPOSITE SECTION PROPERTIES (based on Ec of the precast beam - transformed area of rebar and strand NOT included) 'Seg.' Section Properties I SectionI Section Moduli I I No.' Ac 1 Ic I yb I Height I Sb I St I Sbc I Stc I I I inA2 1 inA4 I in I in I inA3 I inA3 1 inA3 I inA3 I I 11 530.0 I 4417 I 5.001 10.001 -883 I 1472 I 1472 I 883 I Note: Sb & St = bottom and top of the precast beam, Sbc & Stc = bottom and top of the cast-in-place pour. UNCRACKED SECTION PROPERTIES SUMMARY I I Net Precast Section I Transformed Precast Section I Transformed Precast Section (Transformed Composite SectionI I I at Transfer (based on Eci) I at Transfer (based on Eci) I in Service (based on Ec) I in Service (based on Ec) I I I(include rebar,deduct strand)I (include rebar and strand) I (include rebar and strand) I (include rebar and strand) I Engineer: Company: File: 3.3 __ 8in slab 19ft7in long 1 of 7 Thu Mar 15 13:13:29 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 3.3.3 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: x I A I yb I A I yb I A I yb I Ac Ic ybc 1 ft 1 inA2 inA4 in 1 inA2 inA4 in 1 inA2 inA4 in 1 inA2 inA4 in 1 0.000 423.4 2259 4.00 424.0 2261 4.001 424.0 2261 4.00 530.0 4417 5.001 1.000 432.7 2295 3.96 435.4 2306 3.95 432.5 2295 3.96 538.5 4492 4.951 2.350 437.0 2312 3.94 442.4 2332 3.92 437.7 2314 3.94 543.7 4537 4.92 4.308 437.0 2312 3.94 442.4 2332 3.92 437.7 2314 3.94 543.7 4537 4.92 5.874 437.0 2312 3.94 442.4 2332 3.92 437.7 2314 3.94 543.7 4537 4.92 7.832 437.0 2312 3.94 442.4 2332 3.92 437.7 2314 3.94 543.7 4537 4.92 9.398 437.0 2312 3.94 442.4 2332 3.92 437.7 2314 3.94 543.7 4537 4.92 9.790 437.0 2312 3.94 442.4 2332 3.92 437.7 2314 3.94 543.7 4537 4.92 10.965 437.0 2312 3.94 442.4 2332 3.92 437.7 2314 3.94 543.7 4537 4.92 12.923 437.0 2312 3.94 442.4 2332 3.92 437.7 2314 3.94 543.7 4537 4.92 14.881 437.0 2312 3.94 442.4 2332 3.92 437.7 2314 3.94 543.7 4537 4.92 16.839 437.0 2312 3.94 442.4 2332 3.92 437.7 2314 3.94 543.7 4537 4.92 18.405 434.3 2302 3.95 437.4 2313 3.94 434.0 2300 3.95 540.0 4505 4.941 19.580 423.4 2259 4.001 424.0 2261 4.00 424.0 2261 4.001 530.0 4417 5.001 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. Transformed Composite Section in Service properties are used with external loads applied to the composite precast beam. PRESTRESSING STEEL TENDONS I I I I I 1 Offsets )End Offset & Typel Tendon I Jacking Force 1 IIDIQty1 Grade 'Type' Strand Size 1 x 1 y 'Left **'Right **I Area I Pj 1 %fpul I I 1 ksi I * I 1 ft 1 in I ft 1 ft 1 inA2 I kip I I I 11 41 270.01 LRS' 0.5" (1/2) I 0.0001 2.001 0.000 B1 0.000 BI 0.612 I 123.93 I 0.751 I I I I I I 19.5801 2.001 I I I I I note: * Type = LRS - Low-Relaxation Strand, SRS - Stress-Relieved Strand, PB - Plain Bar, DB - Deformed Bar, Sw - Single Wire ** End Types = B - Fully Bonded (B), D - Debonded (D), C - Cut (C), A - Anchored (A) (fully developed) Calculated Losses: Initial = 1.2%, Final = 6.6% Maximum Total Prestress Forces: Pj(jacking) = 123.93 kip, Pi(transfer) = 122.46 kip, Pe(effective) = 115.75 kip @ x = 7.832 ft, See the "Development Length" text report for details of the strand transfer and development lengths LONGITUDINAL REINFORCING STEEL Reinforcing Steel Groups IIDIQty1 steel I Bar I Bar 'End Location & Type' Bar 1 I Cross Iverticall Offset ** 1 1 1 1 Grade 1 Size 1 Area 1 From I I To 1 1 Spacing) I Spacing' Offset I Reference 1 1 1 1 ksi 'C=coated 1 inA2 1 ft I *I ft I *I in I I in I in I I 111 41 60.0 I # 6 I 1.760 1 0.0001SE119.5801SE' 6.001 1 - 1 2.001 Bottom of Precast Beam 1 * End Types: SE - Straight Embeddment, FD - Fully Developed, SH - Standard Hook, HB - Headed Bar ** Offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL 1 Shear Stirrups 1 From 1 To 1 Grade 1 Size 1 # of LegslTotal Areal Spacing 1 ft 1 ft 1 ksi I I I inA2 1 in 1 0.0001 19.5801 58.0 1 15M 1 21 0.62 1 0.001 Interface Shear Ties 1 From 1 To 1 Grade 1 Size 1 # of LegslTotal Areal Spacing 1 ft 1 ft 1 ksi I I I inA2 1 in 1 0.0001 19.5801 58.0 1 15M 1 01 0.00 I 0.001 5.73k,use 6k APPLIED LOADS see 3.2.11 Load Group stages Applied Load Details & Type & Distribution (left to right) Beam weight * Transfer to Final service segment #0- vert al: 0.441 kip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weigh Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Weight, Cable Angle: 90 degrees DL before CIP Pour Erection to Final Service From Riser- vertical: 6 kip at 4.5 ft D: DL, General No Load Distribution Engineer: Company: File: 3.3 __ 8in slab 19ft7in long 2 of 7 Thu Mar 15 13:13:30 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 7.92k-6k,use 2k 3.3.4 Licensed to: 4457151211, Fadjar Kusumo-R - OK see 3.2.4 -\1 Project: Problem: From Slab- vertical: 2 kip at 1 ft CIP weight * CIP Placement to Final Service Segment #0- vertical: 0.11 kip/ft full length D: DL, Cast-in-Place Concrete No Load Distribution Live Load Final Service stage only 100 psf- Vertical: 0.44 kip/ft full length L: LL, General No Load Distribution From riser- vertical: 4 kip at 4.5 ft From Slab- vertical: 1.5 kip at 1 ft * indicates load groups generated automatically by Concise Beam. 5.28k-4k,use 1.5k see 3.2.4 J 3.70k,use 4k LOAD COMBINATIONS see 3.2.11 Serviceability (SLS) & Fatigue (FLS) Limit State combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00ws + 0.6OWu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr ultimate (Strength) Limit State (uLS) Combinations (searched collectively to obtain envelope) 1: uLS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS Combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: ULS Combo 5 : 1.20D + 0.50L + 1.00L1 + 1.60Lr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: ULS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: ULS Combo 8 : 1.20D + 1.60Lr + 0.80ws + 0.50Wu 9: uLS Combo 9 : 1.20D + 1.60S + 0.80ws + 0.50wu 10: uLS combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: ULS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60ws + 1.00Wu 12: ULS Combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60ws + 1.00wu 13: ULS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60ws + 1.00wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: uLS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: uLS Combo 16 : 0.90D + 1.60ws + 1.00wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Station SLS (stress) Load combination ULS Load Envelopes I Moment Moment Shear Moment x I sustained Total Load Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip Combo.) kip.ft combo.' I min max min max min max min max min max 0.000 0.00 0.00 0.00 10.73 28.40 15 2 0.00 0.00 1 1 1.000 11.64 11.64 20.23 10.23 27.03 15 2 10.48 27.72 15 2 1.000 11.64 11.64 20.23 8.43 22.23 15 2 10.48 27.72 15 2 2.350 23.78 23.78 41.24 7.76 20.39 15 2 21.40 56.48 15 2 4.308 39.60 39.60 68.52 6.79 17.72 15 2 35.64 93.79 15 2 5.874 42.50 42.50 73.86 0.61 1.98 15 2 38.25 101.18 15 2 7.832 42.77 42.77 74.71 -0.70 -0.36 2 15 38.49 102.43 15 2 9.398 41.46 41.46 72.65 -2.84 -1.14 2 15 37.32 99.66 15 2 9.790 40.92 40.92 71.76 -3.37 -1.33 2 15 36.83 98.45 15 2 10.965 38.80 38.80 68.17 -4.98 -1.92 2 15 34.92 93.54 15 2 12.923 33.58 33.58 59.14 -7.65 -2.89 2 15 30.22 81.19 15 2 14.881 26.24 26.24 46.30 -10.32 -3.86 2 15 23.62 63.59 15 2 16.839 16.79 16.79 29.67 -13.00 -4.83 2 15 15.11 40.76 15 2 18.405 7.70 7.70 13.63 -15.14 -5.61 2 15 6.93 18.72 15 2 19.580 0.00 0.00 0.00 -16.74 -6.19 2 15 0.00 0.00 1 1 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) Unfactored Load Group Effects I I Initial Lifting I Truck Transport I Erection Lifting I In Service I Load I Left I Right I Left I Right I Left I Right I Left I Right I Group I Vertical I Vertical I Vertical I Vertical I Vertical I Vertical I Vertical[*]1 Torsion[*] I Vertical[*]I Torsion[*] I I I kip I kip.ft I kip I kip.ft I kip I kip.ft I kip I kip.ft I kip I kip.ft 'Beam weight) 4.32 I 4.32 I 4.32 I 4.32 I 4.32 I 4.32 I 4.32 I 0.00 I 4.32 I 0.00 I IDL before CI I I I 6.52 I 0.00 I 1.48 I 0.00 I ICIP weight I I I I I I I 1.08 I 0.00 I 1.08 I 0.00 I ILive Load I I I I I I I 8.81 I 0.00 I 5.30 I 0.00 I Load Envelope Effects SLS DL 1 11.92 I 0.00 6.88 1 0.00 SLS Sustain' 11.92 I 0.00 I 6.88 I 0.00 SLS Minimum' 4.32 4.32 4.32 4.32 4.32 4.32 11.92 I 0.00 I 6.88 I 0.00 sLs Maximum' 4.32 4.32 4.32 4.32 4.32 4.32 20.73 I 0.00 I 12.18 I 0.00 ULS Minimum' 10.73 [1511 0.00 [ 111 6.19 [1511 0.00 [ 111 uLS Maximum' 28.40 [ 211 0.00 [ 111 16.74 [ 211 0.00 [ 11' * Governing ULS Load combination (below) CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) Engineer: Company: File: 3.3 __ 8in slab 19ft7in long 3 of 7 Thu Mar 15 13:13:30 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 3.3.5 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: I x I Stress 1 Limit 1 overstress Location I ft I psi 1 psi 1 Notice STRESSES AT TRANSFER Critical Compression Top of Beam 1 9.7901 307 I 1800 I 0% Bottom of Beam 1 2.7411 477 I 2100 I 0% Longitudinal Tensile Rebar Needed (inA2) critical Tension Required Provided Additional Top of Beam 1 0.0001 0 I -329 I 0% Bottom of Beam 1 0.0001 0 I -329 I 0% STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam 1 9.7901 126 I 1800 I 0% Bottom of Beam 1 2.7411 651 I 2100 I 0% Longitudinal Tensile Rebar Needed (inA2) critical Tension Required Provided Additional Top of Beam 1 17.5801 -125 I -329 I 0% Bottom of Beam 1 0.0001 0 I -329 I 0% STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam 1 9.7901 128 1 3000 1 0% Bottom of Beam 1 2.7411 638 1 3500 I 0% Longitudinal Tensile Rebar Needed (inA2) critical Tension Required Provided Additional Top of Beam 1 17.5801 -123 1 -424 I 0% Bottom of Beam 1 0.0001 0 1 -424 I 0% STRESSES DURING CAST-IN-PLACE POUR Critical Compression Top of Beam 1 7.0491 769 1 3000 1 0% Bottom of Beam 1 16.8391 324 1 3000 1 0% critical Tension Top of Beam 1 0.0001 0 1 -530 1 0% Bottom of Beam 1 7.0491 -201 1 -530 1 0% STRESSES IN SERVICE Critical Compression Top of Beam 1 7.0491 1033 1 3000 1 0% Bottom of Beam 1 16.8391 293 1 3000 1 0% Top of CIP Pourl 7.4401 429 1 3000 1 0% critical Tension Top of Beam 1 0.0001 0 I -849 1* 0% Class u member - not cracked Bottom of Beam 1 7.0491 -639 1 -849 1* 0% Class T member - cracking controlled Top of CIP Pour' 0.0001 0 1 -530 1* 0% STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam 1 7.0491 773 1 2250 I 0% Bottom of Beam I 16.8391 293 1 2250 1 0% * Tensile stress limit given is for Class T (controlled cracking). Beyond this limit crack control is required. Tensile stress limit given for the cast-in-place pour is the flexural cracking strength of the concrete. At Transfer During Lifting In Service Modulus of Rupture, fr = -411 psi -411 psi -530 psi strength Required for Transfer, f'ci = 681.4 psi (f'c specified = 3000.0 psi) Strength Required for Initial Lifting, f'c = 930.1 psi (f'c assumed = 3000.0 psi) CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING I I Bottom I Top of I 1 I of Beam I Beam I 1 dc 2.00 I 0.00 1 in concrete cover to center of steel closest to tension face 1 cc I 1.63 I 0.00 1 in Clear concrete cover to steel closest to tension face 1 fs I 14.4 I 0.0 1 ksi Steel stress nearest to tension face (after decompression) for crack control 1 Max spacing Not Required' 0.00 1 in Maximum centre-to-centre spacing of steel closest to tension face to control cracking CRACK WIDTH ESTIMATE crack width estimates are only approximations based on idealized behaviour and average crack spacing. These estimates only represent a level of cracking and should only be used in comparison with appropriate limits such as those given below. It would not be appropriate to compare these estimates to measured crack widths. Bottom Top of of Beam Beam Cracked? Yes No cracking at 7.049 0.000 ft Location of maximum crack width from left end of beam Ms 74.83 0.00 kip.ft External service moment (DL + LL) Pdc -203.58 0.00 kip Prestress force at cracked centroid Mint 37.47 0.00 kip.ft Internal moment about cracked centroid c 4.07 0.00 in Concrete depth in compression Steel type Rebar/Strand Rebar Type of steel in tension Method Gergely-Lutz Gergely-Lutz crack width estimate equation used * kl 78.600E-6 0.00 iM2/Kip Coefficient dependent on steel type kb 0.83 0.00 Adjustment coefficient for prestressing steel h2/h1 1.51 0.00 Ratio of depth in tension to depth of steel from NA Act 212.0 0.0 inA2 Area of concrete in tension centered on crack control steel Engineer: Company: File: 3.3 __ 8in slab 19ft7in long 4 of 7 Thu Mar 15 13:13:30 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 3.3.6 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: A I - 0.0 inA2 Area of concrete in tension around each bar/strand fs I 14.4 0.0 ksi Stress in steel nearest to tension face (after decompression) for crack width I Est Crack WidthI 0.007 0.000 in Estimated maximum crack width I fc I -1152 0 psi Maximum concrete compressive stress - opposite face to cracking limit I -3000 -3000 psi Allowable concrete compressive stress Recommended Crack Width (in) - Maximum Limits (from PCI Design Handbook, 5th edition) I I Critical I Prestressed I Reinforced I I I Appearance I Concrete I Concrete I (Exterior Exposure I 0.0071 0.0101 0.0131 11nterior Exposure I 0.0101 0.0121 0.0161 * Gergely & Lutz equation: w = kl x fs x h2 / hl x CubicRoot(dc * A) DEFLECTION ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) I Net Deflection Change in Deflection LocationI Net @ Net @ Net @ Net DL Net Total DL growth LL Span/Deflection x I Transfer Erection Completion @ Final @ Final + LL alone DL growth LL ft 1 in in in in in in in + LL alone Column I A B C D E E - C E - D L / (E-C) L / (E-D)1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 1.000 0.007 -0.017 -0.026 -0.034 -0.066 -0.041 -0.032 5777 7351 2.350 0.015 -0.039 -0.058 -0.077 -0.149 -0.091 -0.072 2574 3267 4.308 0.020 -0.066 -0.098 -0.130 -0.252 -0.154 -0.122 1527 1925 5.874 0.021 -0.084 -0.125 -0.164 -0.318 -0.193 -0.154 1215 1522 7.832 0.021 -0.094 -0.141 -0.185 -0.359 -0.218 -0.174 1079 1350 9.398 0.020 -0.094 -0.143 -0.187 -0.360 -0.217 -0.173 1080 1355 9.790 0.020 -0.093 -0.142 -0.185 -0.357 -0.215 -0.171 1092 1372 10.965 0.020 -0.086 -0.134 -0.176 -0.337 -0.203 -0.161 1157 1459 12.923 0.021 -0.068 -0.110 -0.146 -0.282 -0.172 -0.136 1367 1732 14.881 0.021 -0.045 -0.077 -0.104 -0.206 -0.129 -0.101 1823 2315 16.839 0.017 -0.021 -0.041 -0.057 -0.118 -0.077 -0.061 3051 3876 18.405 0.008 -0.007 -0.016 -0.023 -0.048 -0.033 -0.026 7191 9131 19.580 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 Col. A: Net deflection at transfer includes prestressing and beam weight on temporary supports. Col. B: Net deflection at erection includes prestressing and all dead loads applied before the cast-in-place pour plus long-time deflection growth of the prestressing and beam weight up to erection Col. C: Net deflection at completion of construction includes prestressing and all dead loads plus long-time deflection growth of the prestressing and dead load up to completion Col. D: Net DL deflection at final includes prestressing, all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes prestressing, all dead loads, and all live loads, plus long-time deflection growth. Deflection growth is estimated by use of the PCI suggested multipliers - see the Deflection Multipliers report. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 B. Unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation Change in Rotation SupportI Net @ I Net @ I Net @ Net DL I Net Total DL growth I LL Location' Transfer I Erection I Completion I @ Final I @ Final + LL I alone I degrees I degrees I degrees I degrees I degrees degrees I degrees Column I A B I C D I E E - C 1 E - D Left I -0.0336 I 0.0984 I 0.1395 I 0.1850 I 0.3513 0.2117 I 0.1663 Right I 0.0340 I -0.0089 I -0.0419 I -0.0655 I -0.1537 -0.1119 1 -0.0882 C. Unrestrained Longitudinal Change of Length Due to Creep and Shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = -0.0172 in I I Total Change of Length (after elastic shortening) I Difference in Change I I I I Erection (Completion' Final I I to Comp1.1 to Final I to Final I I I I in I in I in I I in I in I in I I I B I c I D I I C - B I D - C I D - B 1 Creep I I -0.00811 -0.01351 -0.02601 I -0.00541 -0.01251 -0.01791 1 Shrink.I I -0.03661 -0.06531 -0.10481 I -0.02871 -0.03951 -0.06821 Total I I -0.04461 -0.07881 -0.13081 I -0.03411 -0.05201 -0.08611 Engineer: Company: File: 3.3 __ 8in slab 19ft7in long 5 of 7 Thu Mar 15 13:13:30 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 3.3.7 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: FLEXURAL DESIGN CHECK Design Code Used: ACI 318-14 Concrete compressive stress-strain model used: PCA Parabola-Rectangle Curve Modulus of Rupture of Precast Concrete, fr = 530 psi (tension) I Factored Design Cracking Minimum Depth in Net TensileI Flexural 0 I warnings I Moment Strength Moment Required Compression' Strain IClassication I & Notes x 1 Mu OMn Mcr Strength c I I ft I kip.ft kip.ft kip.ft kip.ft in I I 0.000 0.00 0.11 39.09 0.00 2.33 0.0000ITension 0.82 3 1.000 27.72 59.57 52.84 63.41 2.17 0.00141Tension 0.84 B 3 2.350 56.48 108.26 71.81 86.17 1.20 0.01701Tension 0.83 4.308 93.79 130.29 68.03 81.63 1.39 0.01421Tension 0.86 5.874 101.18 148.51 66.62 79.94 1.53 0.01271Tension 0.90 7.832 102.43 148.77 66.58 79.89 1.53 0.01271Tension 0.90 9.398 99.66 148.77 67.30 80.77 1.53 0.01271Tension 0.90 9.790 98.45 148.77 67.59 81.11 1.53 0.01271Tension 0.90 10.965 93.54 148.77 68.71 82.45 1.53 0.01271Tension 0.90 12.923 81.19 148.77 71.42 85.70 1.53 0.01271Tension 0.90 14.881 63.59 134.25 75.19 90.22 1.42 0.01391Tension 0.87 16.839 40.76 114.07 80.01 81.52 1.27 0.01591Tension 0.83 18.405 18.72 69.83 58.61 37.45 2.18 0.00171Tension 0.84 31 19.580 0.00 0.11 39.09 0.00 2.33 0.00001Tension 0.82 31 Points of Maximum and Minimum Factored Moment I 7.4401 102.60 I 148.77 I 66.50 I 79.80 1 1.53 I 0.0127ITension I 0.901 I I 0.0001 0.00 I -0.03 I 24.98 I 0.00 I 0.98 I 0.0000ITension 10.821 3' Points of Maximum Ratio of Factored Moment to Design Strength I 4.5001 97.17 I 132.40 1 67.28 I 80.73 I 1.42 I 0.01391 Tensi on I 0.861 I I 0.0001 0.00 I -0.03 I 24.98 I 0.00 I 0.98 I 0.0000ITension 10.821 3' Points of Maximum Ratio of Minimum Strength to Design Strength 0.7831 21.82 I 46.74 I 49.91 I 59.89 I 2.14 I 0.0011ITension I 0.841 B 3' I 0.0001 0.00 I -0.03 I 24.98 I 0.00 I 0.98 I 0.0000ITension 10.821 31 Warnings & Notes B - WARNING, OMn < 1.2Mcr and OMn < 2.OMu, minimum reinforcement requirement not met [ACI 318-14::7.6.2/9.6.2]. 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code used: ACI 318-14 I Design Prestress Concrete Strength Provided Min. Strength Req'd warnings I Shear Component Strength Stirrups Total Stirrups Total & Notes x 1 Vu Vp 0Vc 0Vs 0Vn 0Vs 0Vn ft I kip kip kip kip kip kip kip 0.000 27.60 0.00 78.72 0.00 78.72 0.00 78.72 3 1.000 27.03 0.00 46.35 0.00 46.35 0.00 46.35 1.000 22.23 0.00 40.50 0.00 40.50 0.00 40.50 2.350 20.39 0.00 38.23 0.00 38.23 0.00 38.23 4.308 17.72 0.00 38.23 0.00 38.23 0.00 38.23 5.874 1.98 0.00 38.23 0.00 38.23 0.00 38.23 7.832 -0.70 0.00 -38.23 0.00 -38.23 0.00 -38.23 9.398 -2.84 0.00 -38.23 0.00 -38.23 0.00 -38.23 9.790 -3.37 0.00 -38.23 0.00 -38.23 0.00 -38.23 10.965 -4.98 0.00 -38.23 0.00 -38.23 0.00 -38.23 12.923 -7.65 0.00 -38.23 0.00 -38.23 0.00 -38.23 14.881 -10.32 0.00 -38.23 0.00 -38.23 0.00 -38.23 16.839 -13.00 0.00 -38.23 0.00 -38.23 0.00 -38.23 18.405 -15.14 0.00 -44.16 0.00 -44.16 0.00 -44.16 19.580 -15.94 0.00 -78.72 0.00 -78.72 0.00 -78.72 3 Warnings & Notes 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. SHEAR TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 'Shear Steel Shear Steel Stirrup Stirrup Spacing Warnings I I Required Provided Provided Provided Max. Allow' & Notes I x 1 Av/s Av/s Av s s I ft I inA2/ft inA2/ft inA2 in in I 0.000 0.00 0.00 0.62 0.00 7.50 4 1.000 0.00 0.00 0.62 0.00 7.50 1.000 0.00 0.00 0.62 0.00 7.50 2.350 0.00 0.00 0.62 0.00 7.50 4.308 0.00 0.00 0.62 0.00 7.50 5.874 0.00 0.00 0.62 0.00 7.50 7.832 0.00 0.00 0.62 0.00 7.50 9.398 0.00 0.00 0.62 0.00 7.50 9.790 0.00 0.00 0.62 0.00 7.50 10.965 0.00 0.00 0.62 0.00 7.50 12.923 0.00 0.00 0.62 0.00 7.50 14.881 0.00 0.00 0.62 0.00 7.50 16.839 0.00 0.00 0.62 0.00 7.50 18.405 0.00 0.00 0.62 0.00 7.50 19.580 0.00 0.00 0.62 0.00 7.50 4 Warnings & Notes 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Engineer: Company: File: 3.3 __ 8in slab 19ft7in long 6 of 7 Thu Mar 15 13:13:30 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 3.3.8 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). Note, additional long. steel in compression side of section has been reduced [ACI 318-14::9.5.4.5]. * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. HORIZONTAL SHEAR DESIGN CHECK BY SECTION Design Code used: ACI 318-14 Top of precast beam is considered intentionally roughened. (Horizontal Strength Maximum Required Tie Size Spacing Spacing Strength Strength Warnings I Shear with no Limit Ties Provided Required Provided Required Provided & Notes x I vu ties 0vnh Max Av/s Av s s 0vnh 0vnh ft I kip kip kip inA2/ft inA2 in in kip kip 0.000 27.60 25.44 159.00 0.58 0.00 8.00 0.00 92.80 25.44 B 2 1.000 27.03 25.44 159.00 0.58 0.00 8.00 0.00 92.80 25.44 B 2 1.000 22.23 25.44 159.00 0.00 0.00 0.00 0.00 22.23 25.44 1 2.350 20.39 25.44 159.00 0.00 0.00 0.00 0.00 20.39 25.44 1 4.308 17.72 25.44 159.00 0.00 0.00 0.00 0.00 17.72 25.44 1 5.874 1.98 25.44 159.00 0.00 0.00 0.00 0.00 1.98 25.44 1 7.832 -0.70 -25.44 -159.00 0.00 0.00 0.00 0.00 -0.70 -25.44 1 9.398 -2.84 -25.44 -159.00 0.00 0.00 0.00 0.00 -2.84 -25.44 1 9.790 -3.37 -25.44 -159.00 0.00 0.00 0.00 0.00 -3.37 -25.44 1 10.965 -4.98 -25.44 -159.00 0.00 0.00 0.00 0.00 -4.98 -25.44 1 12.923 -7.65 -25.44 -159.00 0.00 0.00 0.00 0.00 -7.65 -25.44 1 14.881 -10.32 -25.44 -159.00 0.00 0.00 0.00 0.00 -10.32 -25.44 1 16.839 -13.00 -25.44 -159.00 0.00 0.00 0.00 0.00 -13.00 -25.44 1 18.405 -15.14 -25.44 -159.00 0.00 0.00 0.00 0.00 -15.14 -25.44 1 19.580 -15.94 -25.44 -159.00 0.00 0.00 0.00 0.00 -15.94 -25.44 1 Warnings & Notes B - WARNING, the shear strength provided is less than required [ACI 318-14::16.4.3.1]. 1 - Note, no ties required [ACI 318-14::16.4.4.2]. 2 - Note, ties required represent minimum requirement [ACI 318-14::16.4.6.1]. HORIZONTAL SHEAR DESIGN CHECK BY MOMENT REGION Design Code Used: ACI 318-14 Top of precast beam is considered intentionally roughened. I Region of Beam I Shear I Peak I Horizontal I Strength I Maximum I Tie Area * I Tie Area I Maximum I Warnings I I Length I Moment I Shear I with no I Limit I Required I Provided I Spacing I & Notes I x I lv I M I Fh I ties I 0vnh Max I Acs I Acs I s I I ft I ft I kip.ft I kip I kip I kip I inA2 I inA2 I in 1 I 0.000 to 7.4401 7.4401 102.60 I 267.97 I 283.93 I 3123.18 I 0.00 I 0.00 I 8.00 1 I 7.440 to 19.5801 12.1401 102.60 I 267.97 I 463.25 I 5095.72 I 0.00 I 0.00 I 8.00 1 * Required ties should be distributed in proportion to distribution of shear force (or stirrups). Engineer: Company: File: 3.3 __ 8in slab 19ft7in long 7 of 7 Thu Mar 15 13:13:30 2018 0) DRA WINGSTA TUS REVISION REVISION BY REVISION DATE DESCRIPTION (,..) .s= SUBMITTAL A. C) FOR APPROVAL- NOT FOR CONSTRUCTION E D CO p) C Y Q •in f,4 M co o N N w 0CC �f lo--•— ___ , nZ uZ o a0 a / • • } O O -0 N COin C • O ID U I 0 / X O m 2 C O_ 0 x W 0 a ` CC ' • ° OD , v I w E ii Ur - 0_0 ccoo X a W< w J 0) Z II Q oo II _o_0 co r , 2 II Q I • cc U p D fO — N y o_ J EO3 aawH gozzC c Wz 5.) L3 co C OJ WWCOq) X w Il „aa LLI • 0 : 4-00 0) co r7i� I • N 0 0 a X 1 c w U _ cc ��N O p`—ICV • N a I N cv w p CC C 0- co 0 o N N °' X O p O Le, v Q v ok • rryld Z c w w • - • r 4 _a c0 N a < _ >- Tn 0) Q p w X W iN 7.T 0 co I • X N co a X X ° �° i' U p •0 I pe • 0 • 0 oi'10 • N• 0 (N i < E SLABDESIGNSUMMARY ° 6209 o RED SANDSTONE (roof) o 5TRE55CON fik 9 3.4 LLArchitectural and Structural Precast Concrete02/20/2018 i _ An ENCoN Company SHEET 1 OF 1 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 3.4.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4 in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Concrete Density Wt = 150 lb/ftA3 Compressive Strength f'c = 5000.0 psi Modulus of Elasticity Ec = 4.279E+6 psi Strength at Transfer f'c = 3000.0 psi Modulus of Elast. at Transfer Ec = 3.315E+6 psi Strength at Lifting f'c = 3000.0 psi Modulus of Elast. at Lifting Ec = 3.315E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset 1 INoI From I To I Length 1 Folder I Section I section I Z I Y 1 I I ft I ft I ft 1 Name I Name I Type I in 1 in 1 111 0.0001 26.5001 26.5001 SolidFlatSlab I F58x119_5 I Solid Slab I 0.001 0.001 * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 26.500 ft, Centre of Supports, Left @ 0.000 ft, Right @ 26.500 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 2.000 ft, Right @ 24.500 ft Loop Height = 0.00 ft Span Length in Service = 21.000 ft, Centre of Supports, Left @ 2.750 ft, Right @ 23.750 ft Total Beam Length = 26.500 ft, Bearing Length, Left = 4.00 in, Right = 4.00 in First flexural frequency of beam is approximately 0.24 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.l Section Properties 1 Section' Section' Shear 'volume /1 Section Moduli 1 I No•I A I I I Yb I Height I Width I Width I Surfacel Sb I St I I I inA2 1 inA4 1 in 1 in 1 in 1 in 1 in 1 inA3 I inA3 1 I 1' 956.0 1 5099 1 4.001 8.001 119.501 119.501 3.751 -1275 I 1275 1 UNCRACKED SECTION PROPERTIES SUMMARY I Net Precast Section I Transformed Precast Section I Transformed Precast Section I at Transfer (based on Eci) I at Transfer (based on Eci) I in Service (based on Ec) I(include rebar,deduct strand)' (include rebar and strand) I (include rebar and strand) x I A I yb 1 A I yb 1 A I yb ft I inA2 inA4 in I inA2 inA4 in I inA2 inA4 in 0.0001 954.8 5094 4.00 956.0 5099 4.00 956.0 5099 4.00 1.8331 964.4 5132 3.98 973.3 5167 3.96 968.9 5150 3.97 2.7501 964.4 5132 3.98 975.1 5174 3.96 970.2 5155 3.97 2.9171 964.4 5132 3.98 975.1 5174 3.96 970.2 5155 3.97 4.8501 964.4 5132 3.98 975.1 5174 3.96 970.2 5155 3.97 6.9501 964.4 5132 3.98 975.1 5174 3.96 970.2 5155 3.97 9.0501 964.4 5132 3.98 975.1 5174 3.96 970.2 5155 3.97 11.1501 964.4 5132 3.98 975.1 5174 3.96 970.2 5155 3.97 13.2501 964.4 5132 3.98 975.1 5174 3.96 970.2 5155 3.97 15.3501 964.4 5132 3.98 975.1 5174 3.96 970.2 5155 3.97 17.4501 964.4 5132 3.98 975.1 5174 3.96 970.2 5155 3.97 19.5501 964.4 5132 3.98 975.1 5174 3.96 970.2 5155 3.97 21.6501 964.4 5132 3.98 975.1 5174 3.96 970.2 5155 3.97 23.5831 964.4 5132 3.98 975.1 5174 3.96 970.2 5155 3.97 23.7501 964.4 5132 3.98 975.1 5174 3.96 970.2 5155 3.97 24.6671 964.4 5132 3.98 973.3 5167 3.96 968.9 5150 3.97 26.5001 954.8 5094 4.00 956.0 5099 4.00 956.0 5099 4.001 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Engineer: Company: File: 3.4 __ 8in roof slab 1 of 6 Thu Mar 15 14:01:44 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 3.4.3 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. PRESTRESSING STEEL TENDONS I I I I I I offsets 'End offset & Typel Tendon I Jacking Force I IIDIQtyI Grade 'Type' Strand Size I x I y 'Left **'Right **' Area I Pi I %fpul I I I ksi 1 * ' I ft I in I ft 1 ft I inA2 I kip I I 1 11 81 270.01 LRS 1 0.5" (1/2) I 0.0001 2.001 0.000 B1 0.000 B1 1.224 1 247.86 I 0.751 I I I I I I 26.5001 2.001 I I I 1 1 note: * Type = LRS - Low-Relaxation Strand, SRS - Stress-Relieved Strand, PB - Plain Bar, DB - Deformed Bar, sw - single wire ** End Types = B - Fully Bonded (B), D - Debonded (D), C - Cut (C), A - Anchored (A) (fully developed) Calculated Losses: Initial = 0.2%, Final = 6.5% Maximum Total Prestress Forces: Pj(jacking) = 247.86 kip, Pi(transfer) = 247.42 kip, Pe(effective) = 231.70 kip @ x = 13.250 ft, See the "Development Length" text report for details of the strand transfer and development lengths LONGITUDINAL REINFORCING STEEL Reinforcing Steel Groups IIDIQtyI Steel 1 Bar I Bar 'End Location & Typel Bar I I Cross 'vertical' Offset ** 1 1 I I Grade 1 Size I Area 1 From 11 To 1 1 Spacing' 1 Spacing' Offset I Reference 1 1 I I ksi 1C=coated 1 inA2 I ft 1 *1 ft I *1 in 1 1 in 1 in 1 1 1 11 41 60.0 1 # 5 1 1.240 1 0.000ISE126.5001SEI 48.001 I - I 2.001 Bottom of Precast Beam 1 * End Types: SE - straight Embeddment, FD - Fully Developed, SH - Standard Hook, HB - Headed Bar ** offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL 1 shear stirrups 1 1 From 1 To 1 Grade 1 Size 1 # of LegslTotal Areal Spacing 1 ft 1 ft I ksi 1 1 1 inA2 1 in 1 0.0001 26.5001 58.0 1 15M 1 21 0.62 I 0.001 Interface shear Ties 1 From 1 To 1 Grade 1 Size 1 # of LegslTotal Areal Spacing 1 ft 1 ft I ksi 1 1 1 inA2 1 in 1 0.0001 26.5001 58.0 1 15M I 01 0.00 I 0.001 APPLIED LOADS 15 psf/1000 x 10' Load Group Stages Applied Load Details & Type & Distribution (left to right) Beam weight * Transfer to Final Service Segment #0- ver ical: 0.995 kip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Wei ht, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Wei t, Cable Angle: 90 degrees DL after CIP Pour Grouted to Final service 5 psf- vertical: 0. 5 kip/ft full length D: DL, General No Load Distribution Live Load Final service sta9e only 80 psf- Vertical: 0.8 kip/ft full length L: LL, General No Load Distribution * indicates load groups generated automatically by Concise Beam. 0.8 x100 psf/1000x10' LOAD COMBINATIONS snow on slopped surface serviceability (sLS) & Fatigue (FLs) Limit state Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00Ws + 0.6OWu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr ultimate (Strength) Limit State (uLS) combinations (searched collectively to obtain envelope) 1: ULS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: uLS Combo 5 : 1.20D + 0.50L + 1.00L1 + 1.6OLr 6: uLS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: uL5 Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R Engineer: Company: File: 3.4 __ 8in roof slab 2 of 6 Thu Mar 15 14:01:45 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 3.4.4 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: 8: ULS Combo 8 : 1.20D + 1.60Lr + 0.80ws + 0.50wu 9: uLS Combo 9 : 1.20D + 1.60S + 0.80ws + 0.50wu 10: ULS Combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: ULS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60Ws + 1.00wu 12: uLS Combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60ws + 1.00wu 13: ULS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60ws + 1.00wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: uLS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60ws + 1.00Wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE StationI SLS (stress) Load combination uLS Load Envelopes I I Moment Moment shear Moment I x 1 Sustained Total Load Total Load Govern. Total Load Govern.I ft 1 kip.ft kip.ft kip combo.I kip.ft combo.' I min max min max min max min max min maxi 0.0001 0.00 0.00 0.00 0.00 0.00 1 1 0.00 0.00 1 1' 1.8331 -1.76 -3.10 -1.76 -4.64 -1.72 2 15 -4.26 -1.58 2 151 2.7501 -3.95 -6.97 -3.95 -6.97 -2.59 2 15 -9.58 -3.55 2 151 2.7501 -3.95 -6.97 -3.95 9.87 26.60 15 2 -9.58 -3.55 2 151 2.9171 -2.14 -3.77 -2.14 9.71 26.18 15 2 -5.18 -1.92 2 151 4.8501 16.78 16.78 29.63 7.90 21.28 15 2 15.10 40.70 15 21 6.9501 32.90 32.90 58.10 5.92 15.96 15 2 29.61 79.80 15 21 9.0501 44.42 44.42 78.44 3.95 10.64 15 2 39.98 107.74 15 21 11.1501 51.33 51.33 90.64 1.97 5.32 15 2 46.20 124.50 15 21 13.2501 53.63 53.63 94.71 0.00 0.00 1 1 48.27 130.08 15 21 15.3501 51.33 51.33 90.64 -5.32 -1.97 2 15 46.20 124.50 15 21 17.4501 44.42 44.42 78.44 -10.64 -3.95 2 15 39.98 107.74 15 21 19.5501 32.90 32.90 58.10 -15.96 -5.92 2 15 29.61 79.80 15 21 21.6501 16.78 16.78 29.63 -21.28 -7.90 2 15 15.10 40.70 15 21 23.5831 -2.14 -3.77 -2.14 -26.18 -9.71 2 15 -5.18 -1.92 2 151 23.7501 -3.95 -6.97 -3.95 -26.60 -9.87 2 15 -9.58 -3.55 2 151 23.7501 -3.95 -6.97 -3.95 2.59 6.97 15 2 -9.58 -3.55 2 151 24.6671 -1.76 -3.10 -1.76 1.72 4.64 15 2 -4.26 -1.58 2 151 26.5001 0.00 0.00 0.00 0.00 0.00 1 1 0.00 0.00 1 11 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) unfactored Load Group Effects I I Initial Lifting I Truck Transport 1 Erection Lifting I In Service 1 Load I Left 1 Right I Left 1 Right 1 Left I Right I Left I Right 1 Group 1 Vertical 1 Vertical I Vertical 1 Vertical 1 Vertical I Vertical I Vertical[*]I Torsion[*] 1 Vertical[*]I Torsion[*] I 1 I kip 1 kip.ft I kip 1 kip.ft 1 kip I kip.ft I kip I kip.ft 1 kip I kip.ft 'Beam weightl 13.18 1 13.18 I 13.18 1 13.18 1 13.18 I 13.18 I 13.18 I 0.00 1 13.18 I 0.00 I IDL after CII I I I I I I 0.66 I 0.00 1 0.66 I 0.00 1 'Live Load I I I I I I I 10.60 I 0.00 1 10.60 I 0.00 1 Load Envelope Effects SLS DL 1 13.84 I 0.00 1 13.84 I 0.00 SLS sustain' 13.84 I 0.00 1 13.84 I 0.00 s Ls Minimum' 13.18 13.18 13.18 13.18 13.18 13.18 13.84 I 0.00 1 13.84 I 0.00 SLS maximum' 13.18 13.18 13.18 13.18 13.18 13.18 24.44 I 0.00 1 24.44 I 0.00 ULS Minimum' 12.46 [15] 0.00 [ 1]I 12.46 [15]1 0.00 [ 1]' ULS Maximum' 33.57 [ 211 0.00 [ 111 33.57 [ 211 0.00 [ 111 * Governing uLS Load combination (below) CONCRETE STRESS RESULTS (uNCRACKED ANALYSIS) (+ve = compression, -ve = tension) I x I Stress I Limit I Overstress Location I ft I psi I psi I Notice STRESSES AT TRANSFER Critical Compression Top of Beam 1 13.2501 691 I 1800 I 0% Bottom of Beam I 2.5831 348 I 2100 I 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 0.0001 0 I -329 I 0% Bottom of Beam 1 13.2501 -165 I -164 I 0% 0.5 2.5 0.0 STRESSES DURING INITIAL LIFTING Critical compression Top of Beam 1 13.2501 444 I 1800 I 0% Bottom of Beam I 2.5831 590 I 2100 I 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 2.0001 -118 I -329 I 0% Bottom of Beam 1 0.0001 0 I -329 I 0% STRESSES DURING ERECTION LIFTING Critical compression Top of Beam 1 13.2501 448 I 3000 1 0% Bottom of Beam I 2.5831 567 I 3500 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Engineer: Company: File: 3.4 __ 8in roof slab 3 of 6 Thu Mar 15 14:01:45 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 3.4.5 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: Top of Beam 1 2.0001 -114 1 -424 1 0% Bottom of Beam I 0.0001 0 1 -424 1 0% STRESSES IN SERVICE Critical Compression Top of Beam I 13.2501 768 1 3000 1 0% Bottom of Beam I 23.7501 644 1 3000 1 0% Critical Tension Top of Beam I 23.7501 -181 1 -849 1* 0% Class U member - not cracked Bottom of Beam I 13.2501 -276 I -849 1* 0% Class U member - not cracked STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 13.2501 383 I 2250 1 0% Bottom of Beam I 23.7501 616 1 2250 I 0% * Tensile stress limit given is for Class T (controlled cracking). Beyond this limit crack control is required. At Transfer During Lifting In Service Modulus of Rupture, fr = -411 psi -411 psi -530 psi Strength Required for Transfer, f'ci = 1150.9 psi (f'c specified = 3000.0 psi) Strength Required for Initial Lifting, f'c = 842.9 psi (f'c assumed = 3000.0 psi) CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING 1 1 Bottom I Top of I 1 I of Beam I Beam I 1 dc 1 0.00 1 0.00 I in Concrete cover to center of steel closest to tension face 1 cc I 0.00 1 0.00 I in Clear concrete cover to steel closest to tension face 1 fs I 0.0 I 0.0 I ksi Steel stress nearest to tension face (after decompression) for crack control 1 Max spacing 0.00 1 0.00 1 in Maximum centre-to-centre spacing of steel closest to tension face to control cracking Beam not cracked, cracking is controlled, or crack depth is less than concrete cover. DEFLECTION ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) I Net Deflection Change in Deflection LocationI Net @ Net @ Net @ Net DL Net Total DL growth LL Span/Deflection x I Transfer Erection Completion @ Final @ Final + LL alone DL growth LL ft I in in in in in in in + LL alone Column I A B C D E E - C E - D L / (E-C) L / (E-D)I 0.0001 0.000 -0.048 -0.052 -0.043 0.017 0.069 0.059 960 1115 1.8331 -0.052 -0.013 -0.014 -0.010 0.009 0.023 0.020 2844 3333 2.7501 -0.079 0.000 0.000 0.000 0.000 0.000 0.000 0 0 2.9171 -0.084 0.002 0.002 0.001 -0.002 -0.004 -0.004 58924 69680 4.8501 -0.141 0.012 0.012 0.003 -0.042 -0.054 -0.045 4663 5590 6.9501 -0.199 0.009 0.006 -0.012 -0.098 -0.104 -0.086 2425 2936 9.0501 -0.245 0.000 -0.007 -0.033 -0.151 -0.144 -0.118 1753 2135 11.1501 -0.274 -0.009 -0.018 -0.048 -0.187 -0.169 -0.138 1488 1819 13.2501 -0.284 -0.012 -0.022 -0.054 -0.200 -0.178 -0.146 1414 1731 15.3501 -0.274 -0.009 -0.018 -0.048 -0.187 -0.169 -0.138 1488 1819 17.4501 -0.245 0.000 -0.007 -0.033 -0.151 -0.144 -0.118 1753 2135 19.5501 -0.199 0.009 0.006 -0.012 -0.098 -0.104 -0.086 2425 2936 21.6501 -0.141 0.012 0.012 0.003 -0.042 -0.054 -0.045 4663 5590 23.5831 -0.084 0.002 0.002 0.001 -0.002 -0.004 -0.004 58924 69680 23.7501 -0.079 0.000 0.000 0.000 0.000 0.000 0.000 0 0 24.6671 -0.052 -0.013 -0.014 -0.010 0.009 0.023 0.020 2844 3333 26.5001 0.000 -0.048 -0.052 -0.043 0.017 0.069 0.059 960 1115 Col. A: Net deflection at transfer includes prestressing and beam weight on temporary supports. Col. B: Net deflection at erection includes prestressing and all dead loads applied before the cast-in-place pour plus long-time deflection growth of the prestressing and beam weight up to erection Col. C: Net deflection at completion of construction includes prestressing and all dead loads plus long-time deflection growth of the prestressing and dead load up to completion Col. D: Net DL deflection at final includes prestressing, all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes prestressing, all dead loads, and all live loads, plus long-time deflection growth. Deflection growth is estimated by use of the PCI suggested multipliers - see the Deflection Multipliers report. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 B. Unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) Engineer: Company: File: 3.4 __ 8in roof slab 4 of 6 Thu Mar 15 14:01:45 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 3.4.6 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: I Net Rotation Change in Rotation SupportI Net @ I Net S I Net @ I Net DL I Net Total DL growth I LL Location' Transfer I Erection I Completion I @ Final I @ Final + LL I alone I degrees 1 degrees 1 degrees I degrees 1 degrees degrees 1 degrees Column I A I B I C I D I E E - C I E - D Left I 0.1346 I -0.0544 I -0.0573 I -0.0385 1 0.0650 0.1222 I 0.1035 Right I -0.1346 I 0.0544 I 0.0573 I 0.0385 I -0.0650 -0.1222 1 -0.1035 C. unrestrained Longitudinal Change of Length Due to Creep and shrinkage (-ve = shortening, +ve = elongation) Elastic shortening = -0.0221 in 1 I Total Change of Length (after elastic shortening) I Difference in change I 1 1 1 Erection 'Completion' Final I I to Compl.1 to Final I to Final I 1 1 1 in I in I in I I in I in I in I 1 1 1 B I C 1 D 1 I C - B 1 D - C 1 D - B I 1 Creep 1 1 -0.00951 -0.01631 -0.03271 I -0.00681 -0.01641 -0.02321 I Shrink.) -0.04451 -0.08211 -0.13731 I -0.0376' -0.05531 -0.09291 1 Total 1 1 -0.05401 -0.09831 -0.17001 I -0.04441 -0.07161 -0.11601 FLEXURAL DESIGN CHECK Design Code used: ACI 318-14 concrete compressive stress-strain model used: PCA Parabola-Rectangle curve Modulus of Rupture of Precast Concrete, fr = 530 psi (tension) I Factored Design Cracking Minimum Depth in Net TensileI Flexural 0 1 warnings I Moment Strength Moment Required Compression' Strain IClassication I & Notes x 1 Mu 0Mn Mcr Strength c I I ft 1 kip.ft kip.ft kip.ft kip.ft in I 1 0.0001 0.00 0.11 56.40 0.00 1.61 0.0000ITension 0.79 31 1.8331 -4.26 -27.72 47.57 -8.52 0.60 0.00701Tension 0.80 2.7501 -9.58 -33.82 44.18 -19.16 0.77 0.00481Transition 0.79 2.9171 -5.18 -34.25 44.17 -10.36 0.79 0.00461Transition 0.79 4.8501 40.70 147.86 120.83 81.40 0.92 0.01651Tension 0.86 6.9501 79.80 168.27 121.45 145.74 1.02 0.0147'Tensi on 0.90 9.0501 107.74 168.28 121.89 146.27 1.02 0.01471Tension 0.90 11.1501 124.50 168.28 122.16 146.59 1.02 0.0147'Tension 0.90 13.2501 130.08 168.28 122.24 146.69 1.02 0.0147'Tension 0.90 15.3501 124.50 168.28 122.16 146.59 1.02 0.01471Tension 0.90 17.4501 107.74 168.28 121.89 146.27 1.02 0.0147'Tension 0.90 19.5501 79.80 168.27 121.45 145.74 1.02 0.01471Tension 0.90 21.6501 40.70 147.86 120.83 81.40 0.92 0.01651Tension 0.86 23.5831 -5.18 -34.25 44.17 -10.36 0.79 0.00461Transition 0.79 23.7501 -9.58 -33.82 44.18 -19.16 0.77 0.00481Transition 0.79 24.6671 -4.26 -27.72 47.57 -8.52 0.60 0.00701Tension 0.80 26.5001 0.00 0.11 56.40 0.00 1.61 0.0000ITension 0.79 3' Points of Maximum and Minimum Factored Moment 1 13.2501 130.08 I 168.28 I 122.24 1 146.69 1 1.02 I 0.0147'Tension 1 0.901 1 23.7501 -9.58 I -33.82 I 44.18 1 -19.16 I 0.77 I 0.00481Transition 1 0.791 Points of Maximum Ratio of Factored Moment to Design Strength 1 13.2501 130.08 I 168.28 I 122.24 1 146.69 I 1.02 I 0.0147'Tension 1 0.901 1 23.7501 -9.58 I -33.82 I 44.18 1 -19.16 I 0.77 I 0.00481Transition 1 0.791 Points of Maximum Ratio of Minimum Strength to Design Strength 1 13.2501 130.08 I 168.28 I 122.24 1 146.69 I 1.02 I 0.0147'Tension 1 0.901 1 23.7501 -9.58 I -33.82 I 44.18 1 -19.16 I 0.77 I 0.00481Transition 1 0.791 warnings & Notes 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. see the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design code used: ACI 318-14 1 Design Prestress Concrete Strength Provided Min. Strength Req'd warnings 1 Shear Component Strength stirrups Total stirrups Total & Notes x 1 Vu vp 0vc Ovs Ovn Ovs 0vn ft 1 kip kip kip kip kip kip kip 0.0001 0.00 0.00 142.00 0.00 142.00 0.00 142.00 1.8331 -4.64 0.00 -68.95 0.00 -68.95 0.00 -68.95 2.7501 -5.70 0.00 -68.95 0.00 -68.95 0.00 -68.95 3 2.7501 25.34 0.00 108.28 0.00 108.28 0.00 108.28 3 2.9171 25.34 0.00 163.96 0.00 163.96 0.00 163.96 3 4.8501 21.28 0.00 68.95 0.00 68.95 0.00 68.95 6.9501 15.96 0.00 68.95 0.00 68.95 0.00 68.95 9.0501 10.64 0.00 68.95 0.00 68.95 0.00 68.95 11.1501 5.32 0.00 68.95 0.00 68.95 0.00 68.95 13.2501 0.00 0.00 68.95 0.00 68.95 0.00 68.95 13.2501 0.00 0.00 -68.95 0.00 -68.95 0.00 -68.95 15.3501 -5.32 0.00 -68.95 0.00 -68.95 0.00 -68.95 17.4501 -10.64 0.00 -68.95 0.00 -68.95 0.00 -68.95 19.5501 -15.96 0.00 -68.95 0.00 -68.95 0.00 -68.95 21.6501 -21.28 0.00 -68.95 0.00 -68.95 0.00 -68.95 23.5831 -25.34 0.00 -163.96 0.00 -163.96 0.00 -163.96 3 23.7501 -25.34 0.00 -108.28 0.00 -108.28 0.00 -108.28 3 23.7501 5.70 0.00 68.95 0.00 68.95 0.00 68.95 3 24.6671 4.64 0.00 68.95 0.00 68.95 0.00 68.95 26.5001 0.00 0.00 142.00 0.00 142.00 0.00 142.00 Engineer: Company: File: 3.4 __ 8in roof slab 5 of 6 Thu Mar 15 14:01:45 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black mint Software, Inc. 3.4.7 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: warnings & Notes 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. SHEAR TRANSVERSE REINFORCING DESIGN CHECK Design code used: ACI 318-14 (Shear Steel Shear Steel Stirrup Stirrup Spacing warnings 1 1 Required Provided Provided Provided max. Allow) & Notes 1 x 1 Av/s Av/s Av s s 1 ft 1 inA2/ft inA2/ft inA2 in in 1 0.0001 0.00 0.00 0.62 0.00 6.00 1.8331 0.00 0.00 0.62 0.00 6.00 2.7501 0.00 0.00 0.62 0.00 6.00 4 2.7501 0.00 0.00 0.62 0.00 6.00 4 2.9171 0.00 0.00 0.62 0.00 6.00 4 4.8501 0.00 0.00 0.62 0.00 6.00 6.9501 0.00 0.00 0.62 0.00 6.00 9.0501 0.00 0.00 0.62 0.00 6.00 11.1501 0.00 0.00 0.62 0.00 6.00 13.2501 0.00 0.00 0.62 0.00 6.00 13.2501 0.00 0.00 0.62 0.00 6.00 15.3501 0.00 0.00 0.62 0.00 6.00 17.4501 0.00 0.00 0.62 0.00 6.00 19.5501 0.00 0.00 0.62 0.00 6.00 21.6501 0.00 0.00 0.62 0.00 6.00 23.5831 0.00 0.00 0.62 0.00 6.00 4 23.7501 0.00 0.00 0.62 0.00 6.00 4 23.7501 0.00 0.00 0.62 0.00 6.00 4 24.6671 0.00 0.00 0.62 0.00 6.00 26.5001 0.00 0.00 0.62 0.00 6.00 warnings & Notes 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option s8). Note, additional long. steel in compression side of section has been reduced [ACI 318-14::9.5.4.5]. * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: 3.4 __ 8in roof slab 6 of 6 Thu mar 15 14:01:45 2018 3.4.8 3/15/2018 Check overhang in transverse(/f t) INPUT DATA: VERSION:07292009 Beam properties Steel properties Beam length L (ft) = 7 Yield strength for rebar fy (ksi) = 60 Cross sectional area A (in2)= 96.0 Modulus of elasticity of steel Es (ksi)= 29000 Neutral axis from bottom Yb (in) = 4.0000 Ulti.Strength of prestressed steel fp„ (ksi)= 270 Moment of inertia I (Ina)= 512 Modulus of elas.of prestressed steel Eps (ksi)= 28500 Compression width bf(in) = 12 Composite Section Properties Stem width b,(in) = 12 Topping strength at 28 days fbt (ksi)= 4 Total height h (in)= 8 Concrete density w, (pcf) = 150 Total perimeter length S (in)= 92 Modulus of elasticity Eb (ksi)= 3834.3 Volumn to surface ratio V/S= 1.04 Topping weight WBT (k/ft) = 0.00 Section modulus at top st(in3)= 128 tt (in) = 0 b1 (in) = 144 Section modulus at bottom sb (in3)= 128 A, (in2)= 96.0 sb (in3)= 128.0 Concrete properties: I, (in4)= 512 st(in3)= 128.0 Concrete density we (pcf) = 150 Yb (in) = 4.00 stt(in3)= 128.0 Beam self weight wB (k/ft) = 0.100 Yt (in) = 4.00 he (in) = 8.00 Concrete strength at 28 days fb' (ksi)= 5 Ytt(in) = 4.00 Concrete strength at release I'd' (ksi)= 3 Loss Modulus of elasticity E, (ksi)= 4286.83 Average relative humidity R.H. = 70% Modu. of elas.at release Ec; (ksi)= 3320.56 Initial prestress loss = 0.00% Factor (3t = 0.80 Final prestress loss = 0.00% Effective stress after loss fSe (ksi) = 0.0 LOADINGS: REINFORCEMENTS: Prestressinj Point Load #of strands 0 0 0 0 0 0 Load# 1 2 3 4 5 6 Size 0 0 0 0 0 0 From left(ft) 0 0 0 0 0 0 Location from Bot. 0 0 0 0 0 0 D.L. (k) 0 0 0 0 0 0 Mask from left(ft) 0' 0' 0' 0' 0' 0' L.L. (k) 0 0 0 0 0 0 Mask from right(ft) 0' 0' 0' 0' 0' 0' %of Pull 0% 0% 0% 0% 0% 0% APS(int) 0 0 0 0 0 0 Linear Load Load# 1 2 3 4 5 6 Mild Reinforcement Start from left(ft) 0 0 0 0 0 0 #of bars 1 0 0 0 0 0 End from left(ft) 7 0 0 0 0 0 Size 3 0 0 0 0 0 Initial D.L.(k/ft) 0 0 0 0 0 0 Location from Bot. 2 0 0 0 0 0 End D.L.(k/ft; 0 0 0 0 0 0 From left(ft) 0 0 0 0 0 0 Initial L.L.(k/ft) 0.08 0 0 0 0 0 From right(ft) 0 0 0 0 0 0 End L.L.(k/ft) 0.08 0 0 0 0 0 As(in2) 0.11 0 0 0 0 0 80 psf/1000 3.4.9 3/15/2018 Beam Reaction: Left Right Ultimate Moment: Self Weight 0.35 0.35 Mu = 18.2 k-in @ 3.50 ft from left Topping 0.00 0.00 (13,Mn = 35.3 k-in (O.K.) S. I. Dead Load 0.00 0.00 S. I. Live Load 0.28 0.28 p= 0.0015 Total Sustained Load 0.35 0.35 p max= 0.0252 (O.K.) Total Unfactored Load 0.63 0.63 p min = 0.0035 Total Factored Load 0.87 0.87 Stress Analysis: Horizontal Shear Transfer: x f top fallow f bot fallow Fh (kips)= 0 (ft) (ksi) (ksi) (ksi) (ksi) Acs(in2)= Not Required At transfer 0 0.00 -0.33 0.00 2.10 Max. spacing = N/A 3.5 0.06 2.10 -0.06 -0.16 At service 3.5 0.10 3.00 -0.10 -0.85 ftopping= 0.05 2.40 Deflection (+ )=camber,(- )=deflection Maximum downward deflection under all final loads at x = 3.50 ft Load Case Initial 8 @ transfer @ Erection @ Final Prestressing 0.000 0.000 x 1.8 0.000 x 2.45 0.000 Beam weight -0.003 -0.003 x 1.2 -0.004 x 2 -0.006 Topping wt. 0.000 x 2 0.000 Dead load 0.000 x 2 0.000 Live load -0.002 x 1.0 -0.002 Total: -0.003 -0.004 -0.008 Flexural Analysis Shear Analysis x Mu (i)Mn Vu il)Vn Av/ft (ft) (k-in) (k-in) (k-in) (kips) (kips) (in/ft) 0.0 0.0 0.0 81.5 0.7 15.1 0.000 0.7 6.6 23.4 81.5 0.7 8.7 0.000 1.4 11.7 35.3 81.5 0.5 8.7 0.000 2.1 15.3 35.3 81.5 0.3 8.7 0.000 2.8 17.5 35.3 81.5 0.2 8.7 0.000 3.5 18.2 35.3 81.5 0.0 -8.7 0.000 4.2 17.5 35.3 81.5 -0.2 -8.7 0.000 4.9 15.3 35.3 81.5 -0.3 -8.7 0.000 5.6 11.7 35.3 81.5 -0.5 -8.7 0.000 6.3 6.6 23.4 81.5 -0.7 -8.7 0.000 7.0 0.0 0.0 81.5 -0.7 -15.1 0.000 5TRE55CON Architectural and Structural Precast Concrete An ENCOM Company 4.0 BEAM DESIGNS Design General Description 4.1 Stair beam with ledge 4.2 Stair beam without ledge CD DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION ,; PRELIMINARY A E O NOT FOR CONSTRUCTION E 3 to C 0.) DATA SHEET/R-BEAM 4) a E 8 X 28 o BEAM TYPE: RB BEAM SIZE O — — ea SPAN (CL TO Q BRG): BEAM LENGTH - I. BEARING 8'-0" FT. o v LOADING: D.L. 191 PLF C RISER + 15 PSF 1000 PLF O U TOPPING - PLF CC) SDL _ PLF c LL 700 PLF O PRECAST SECTION: UNIT WT: 150 PCF. 28 DAY CONC. f'c = 5000 PSI _U COMPOSITE TOPPING: UNIT WT: - PCF. 28 DAY CONC. f'c = - PSI o TOPPING: t1 = - IN. EFF. WIDTH bf = - IN. COMP. EXTENSION t2 = - IN. U C NUMBER OF 0.6"0 STRANDS - STRAND c _= P (INITIAL PULL) ( - STR X -- KIPS) = TOTAL KIP 4) C C *NOTE: REINFORCING SHOWN IS TYPICAL FOR MIDSPAN; FOR END REINFORCING SEE ATTACHED SHEET in CD C o INVERTED TEE BEAM a_ PRECAST SECTION PROPERTIES O c A = 184 IN2 4) E I = 9552 IN-4 +3"} • 5" _o #3 CLOSED HAIRPINS LU Yb = 11.83 IN @ 24"O.C. o Sb = 807 IN3 12" 4- (1)45 REBAR % St = 591 IN3 18" CO g bw = - IN N $ (2)-#5 REBARS 96 N rt Il #3 CLOSED STIRRUPS ra = t�,111 N4- (2)-#5 REBARS 2" 4" 2" P rn I PRECAST SECTION 8 U 2, CONCRETE: 150 112 f'ci: 2500 PSI PI PIf'c: 5000 PSI CAMBER © RELEASE: -" O CAMBER © ERECTION: 0 0 N o o Q - R-BEAM DESIGN SUMMARY Red Sandstone LT, 6209 o T, (with ledge) I- '5TRE55CON 4.1 3 O LL Architectural and Structural Precast Concrete w J An ENCoN Company SHEET 1 OF 1 D- CD DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION ,r; PRELIMINARY A E O NOT FOR CONSTRUCTION E C 0 #3 7" l 6" 6" NOMINAL SPACING E STIRRUPS T T T = 12" O.C. 0 0 m 0 v c O c -,= 0 NII 4=-11== „-44 IIII II II II II O i 'o + o +I I _= 1[] [1 [1 [1 [1 [1 [ I c 9,47 @ ENDS c LU 11I 1 CD C _= li L L - 0 0 L O } 0 ^E w 0 g librt g NoNo ia 1 9.47 II U 2, 12 a '0 qq 0 O N o Q - R-BEAM DESIGN SUMMARY o Red Sandstone 6209 co R N (with ledge) a L'il ENCON ° 4.1.1 L,' 3 COLORADO,LLC o SHEET 1 OF 1 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 4.1.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4> in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Concrete Density Wt = 150 lb/ftA3 Compressive Strength f'c = 5000.0 psi Modulus of Elasticity Ec = 4.279E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset 1 INo1 From I To I Length I Folder I Section I section I Z I Y 1 I I ft I ft I ft I Name I Name I Type I in I in 1 111 0.0001 8.0001 8.0001 Rectangular I 8RB28 I Solid Beam I 0.001 0.001 * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 8.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 8.000 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 8.000 ft Loop Height = 0.00 ft Span Length in Service = 8.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 8.000 ft Total Beam Length = 8.000 ft, Bearing Length, Left = 4.00 in, Right = 4.00 in First flexural frequency of beam is approximately 2.18 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties I Section) Section' Shear 'volume /1 Section Moduli I 1 No.1 A I I I Yb I Height I Width I Width I Surface' Sb I St I 1 1 inA2 I inA4 I in I in I in I in I in I inA3 I inA3 I 1 1' 184.0 I 9552 I 11.831 28.001 8.001 3.001 2.561 -807 1 591 I UNCRACKED SECTION PROPERTIES SUMMARY 1 Net Precast Section Transformed Precast Section Transformed Precast Section I at Transfer (based on Eci) at Transfer (based on Eci) in Service (based on Ec) I(include rebar,deduct strand) (include rebar and strand) (include rebar and strand) x I A I yb A I yb A I yb ft I inA2 inA4 in inA2 inA4 in inA2 inA4 in 0.000 184.0 9552 11.83 184.0 9552 11.83 184.0 9552 11.83 0.480 186.2 9744 11.72 186.2 9744 11.72 185.6 9695 11.75 1.280 188.8 9970 11.59 188.8 9970 11.59 187.6 9866 11.65 2.080 188.8 9970 11.59 188.8 9970 11.59 187.6 9866 11.65 2.880 188.8 9970 11.59 188.8 9970 11.59 187.6 9866 11.65 3.6801 188.8 9970 11.59 188.8 9970 11.59 187.6 9866 11.65 4.000 188.8 9970 11.59 188.8 9970 11.59 187.6 9866 11.65 4.320 188.8 9970 11.59 188.8 9970 11.59 187.6 9866 11.65 4.480 188.8 9970 11.59 188.8 9970 11.59 187.6 9866 11.65 5.120 188.8 9970 11.59 188.8 9970 11.59 187.6 9866 11.65 5.920 188.8 9970 11.59 188.8 9970 11.59 187.6 9866 11.65 6.720 188.8 9970 11.59 188.8 9970 11.59 187.6 9866 11.65 7.520 186.2 9744 11.72 186.2 9744 11.72 185.6 9695 11.75 8.000 184.0 9552 11.83 184.0 9552 11.83 184.0 9552 11.83 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. LONGITUDINAL REINFORCING STEEL Engineer: Company: File: 4.1 RB 1 of 6 Fri Mar 16 08:45:48 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 4.1.3 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: Reinforcing Steel Groups 'ID'Qtyl Steel I Bar 1 Bar 'End Location & Typel Bar 1 I Cross 'vertical' offset ** 1 I I 1 Grade I Size 1 Area I From 11 To I I Spacing' 1 Spacing' Offset I Reference 1 11 I ksi 'C=coated I inA2 1 ft I *I ft I *I in I I in I in I 111 21 60.0 I # 5 1 0.620 10.000ISEl 8.0001SEI 4.001 1 - I 2.381 Bottom of Precast Beam 1 * End Types: SE - Straight Embeddment, FD - Fully Developed, SH - Standard Hook, HB - Headed Bar ** Offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL I Shear Stirrups I I From I To 1 Grade I size I # of LegslTotal Areal Spacing I I ft I ft I ksi I I 1 inA2 I in I I 0.0001 8.0001 60.0 -1 # 3 I 21 0.22 I 4.001 I Interface shear Ties I I From I To 1 Grade I Size I # of LegslTotal Areal Spacing I I ft I ft I ksi I I 1 inA2 I in I I 0.0001 8.0001 58.0 I 15M 1 01 0.00 I 0.001 * useable steel strength limited by selected code. TORSION PARAMETERS Seg. Torsion Parameters 'NO.' Aoh 1 Ph I I I inA2 1 in I I 11 85.00 I 44.00 I Aoh is the area enclosed by the centerline of the outermost closed transverse torsional reinforcement. Ph is the perimeter of the area defined as Aoh. APPLIED LOADS 4k/4f t (see 3.1.3) Load Group Stages Applied Load Details & Type & Distribution (left to right) Beam weight * Stripping to Final Service Segment #0- ver 'cal: 0.191 kip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam weig , Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam weight cable Angle: 90 degrees DL after CIP Pour Grouted to Final Service Riser dead- vertical: 1 kip/ft full length (0.25 ft eccent.)1 D: DL, General No Load Distribution Live Load Final Service sta9e only 100 psf- vertical: 0.7 kip/ft full length (0.25 ft eccent.)I L: LL, General No Load Distribution * indicates load groups generated automatically by concise Beam. 2.8k/4ft LOAD COMBINATIONS (see 3.1.3) Serviceability (SLS) & Fatigue (FLS) Limit State Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00Ws + 0.60Wu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr ultimate (strength) Limit state (uLs) Combinations (searched collectively to obtain envelope) 1: uLS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS Combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: uLS combo 5 : 1.20D + 0.50L + 1.00L1 + 1.60Lr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: uLS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: uLS combo 8 : 1.20D + 1.60Lr + 0.80ws + 0.50wu 9: ULS Combo 9 : 1.20D + 1.60S + 0.80ws + 0.50Wu 10: uLS Combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: uLS combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60ws + 1.00wu 12: ULS Combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60Ws + 1.00Wu 13: uLS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60ws + 1.00Wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: ULS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: uLS combo 16 : 0.90D + 1.60Ws + 1.00Wu 17: uLS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Engineer: Company: File: 4.1 RB 2 of 6 Fri Mar 16 08:45:48 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 4.1.4 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: Station SLS (stress) Load Combination ULS Load Envelopes I Moment Moment Shear Moment Torsion x I Sustained Total Load Total Load Govern. Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip Combo.) kip.ft Combo.) kip.ft Combo.) I min max min max min max min max min max min max min max 0.000 0.00 0.00 0.00 4.29 10.20 15 2 0.00 0.00 1 1 0.90 2.32 15 2 0.480 2.15 2.15 3.41 3.77 8.98 15 2 1.94 4.60 15 2 0.79 2.04 15 2 1.280 5.12 5.12 8.13 2.92 6.94 15 2 4.61 10.97 15 2 0.61 1.58 15 2 2.080 7.34 7.34 11.65 2.06 4.90 15 2 6.60 15.70 15 2 0.43 1.11 15 2 2.880 8.78 8.78 13.95 1.20 2.86 15 2 7.91 18.80 15 2 0.25 0.65 15 2 3.6801 9.47 9.47 15.03 0.34 0.82 15 2 8.52 20.27 15 2 0.07 0.19 15 2 4.000 9.53 9.53 15.13 0.00 0.00 1 1 8.58 20.40 15 2 0.00 0.00 1 1 4.320 9.47 9.47 15.03 -0.82 -0.34 2 15 8.52 20.27 15 2 -0.19 -0.07 2 15 4.480 9.39 9.39 14.91 -1.22 -0.51 2 15 8.45 20.10 15 2 -0.28 -0.11 2 15 5.120 8.78 8.78 13.95 -2.86 -1.20 2 15 7.91 18.80 15 2 -0.65 -0.25 2 15 5.920 7.34 7.34 11.65 -4.90 -2.06 2 15 6.60 15.70 15 2 -1.11 -0.43 2 15 6.720 5.12 5.12 8.13 -6.94 -2.92 2 15 4.61 10.97 15 2 -1.58 -0.61 2 15 7.520 2.15 2.15 3.41 -8.98 -3.77 2 15 1.94 4.60 15 2 -2.04 -0.79 2 15 8.000 0.00 0.00 0.00 -10.20 -4.29 2 15 0.00 0.00 1 1 -2.32 -0.90 2 15 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) Unfactored Load Group Effects Initial Lifting 1 Truck Transport Erection Lifting 1 In Service I I Load I Left I Right 1 Left I Right I Left 1 Right 1 Left I Right 1 I Group I Vertical I Vertical 1 Vertical I Vertical I Vertical 1 Vertical 1 Vertical[*]1 Torsion[*] I Vertical[*]I Torsion[*] 1 I I kip I kip.ft 1 kip I kip.ft I kip 1 kip.ft 1 kip I kip.ft I kip I kip.ft 1 'Beam weight 1 0.77 I 0.77 1 0.77 I 0.77 I 0.77 1 0.77 1 0.77 I 0.00 I 0.77 I 0.00 1 IDL after CII I I I I I I 4.00 I 1.00 I 4.00 I 1.00 1 'Live Load I I I I I I I 2.80 I 0.70 I 2.80 I 0.70 1 Load Envelope Effects SLS DL 1 4.77 1 1.00 4.77 1 1.00 1 SLS SustainI 4.77 1 1.00 4.77 1 1.00 1 SLS Mini mum I 0.77 0.77 0.77 0.77 0.77 0.77 4.77 1 1.00 I 4.77 1 1.00 1 SLS Maximum) 0.77 0.77 0.77 0.77 0.77 0.77 7.57 I 1.70 7.57 I 1.70 1 ULS Minimum) 4.29 [1511 0.90 [1511 4.29 [1511 0.90 [1511 ULS Maximum' 10.20 [ 2]I 2.32 [ 2]l 10.20 [ 2]I 2.32 [ 2]I * Governing ULS Load Combination (below) CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) I x I Stress 1 Limit * Location I ft I psi 1 psi STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam I 4.0001 30 I 2100 Bottom of Beam I 0.0001 0 I 2100 Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 0.0001 0 I -411 Bottom of Beam I 4.0001 -21 1 -411 STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam I 4.0001 30 I 3500 Bottom of Beam I 0.0001 0 I 3500 Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 0.0001 0 1 -530 Bottom of Beam I 4.0001 -22 I -530 STRESSES IN SERVICE Critical Compression Top of Beam I 4.0001 301 1 3000 Bottom of Beam I 0.0001 0 I 3000 Critical Tension Top of Beam I 0.0001 0 1 -530 Not cracked Bottom of Beam I 4.0001 -214 1 -530 Check cracking below and cover requirements STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 4.0001 190 I 2250 Bottom of Beam I 0.0001 0 I 2250 * Tensile stress limit given is the modulus of rupture of the concrete. Beyond this limit crack control is required. CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING Engineer: Company: File: 4.1 RB 3 of 6 Fri Mar 16 08:45:48 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 4.1.5 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: Bottom I Top of I of Beam I Beam I dc I 2.38 I 0.00 I in Concrete cover to center of steel closest to tension face cc I 2.06 I 0.00 I in clear concrete cover to steel closest to tension face fs I 40.0 I 0.0 I ksi steel stress nearest to tension face (after decompression) for crack control Max spacing I 9.84 I 0.00 I in Maximum centre-to-centre spacing of steel closest to tension face to control cracking CRACK WIDTH ESTIMATE Crack width estimates are only approximations based on idealized behaviour and average crack spacing. These estimates only represent a level of cracking and should only be used in comparison with appropriate limits such as those given below. It would not be appropriate to compare these estimates to measured crack widths. Bottom Top of of Beam Beam Cracked? Yes No Cracking at 4.000 0.000 ft Location of maximum crack width from left end of beam Ms 15.13 0.00 kip.ft External service moment (DL + LL) Pdc 0.00 0.00 kip Prestress force at cracked centroid Mint 15.13 0.00 kip.ft Internal moment about cracked centroid c 7.19 0.00 in Concrete depth in compression steel type Rebar Rebar Type of steel in tension Method Gergely-Lutz Gergely-Lutz Crack width estimate equation used * kl 75.842E-6 0.00 inA2/Kip Coefficient dependent on steel type kb 1.00 0.00 Adjustment coefficient for prestressing steel h2/h1 1.13 0.00 Ratio of depth in tension to depth of steel from NA Act 38.0 0.0 inA2 Area of concrete in tension centered on crack control steel A 19.0 0.0 inA2 Area of concrete in tension around each bar/strand fs 12.6 0.0 ksi Stress in steel nearest to tension face (after decompression) for crack width Est Crack widthI 0.004 0.000 in Estimated maximum crack width fc -725 0 psi Maximum concrete compressive stress - opposite face to cracking limit -3000 -3000 psi Allowable concrete compressive stress Recommended Crack width (in) - Maximum Limits (from PCI Design Handbook, 5th edition) 1 I Critical I Prestressed I Reinforced I 1 I Appearance I Concrete I Concrete I (Exterior Exposure I 0.0071 0.0101 0.0131 11nterior Exposure 1 0.0101 0.0121 0.0161 * Gergely & Lutz equation: w = kl x fs x h2 / hl x CubicRoot(dc * A) DEFLECTION ESTIMATE AT ALL STAGES Design Code used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) 1 Net Deflection Change in Deflection I LocationI Net @ Net @ Net DL Net Total DL growth LL Span/Deflection I x 1 Erection Completion @ Final @ Final + LL alone DL growth LL I ft I in in in in in in + LL alone I Column 1 B C D E E - C E - D L / (E-C) L / (E-D)I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0.480 0.000 -0.001 -0.001 -0.002 0.000 0.000 123621 329478 1.280 0.000 -0.003 -0.004 -0.005 -0.002 0.000 48328 128807 2.080 0.000 -0.004 -0.006 -0.007 -0.003 -0.001 32121 85611 2.880 0.000 -0.005 -0.007 -0.008 -0.004 -0.001 25996 69286 3.6801 0.000 -0.005 -0.008 -0.009 -0.004 -0.002 23765 63339 4.000 0.000 -0.005 -0.008 -0.009 -0.004 -0.002 23583 62854 4.320 0.000 -0.005 -0.008 -0.009 -0.004 -0.002 23765 63339 4.480 0.000 -0.005 -0.008 -0.009 -0.004 -0.002 23996 63956 5.120 0.000 -0.005 -0.007 -0.008 -0.004 -0.001 25996 69286 5.920 0.000 -0.004 -0.006 -0.007 -0.003 -0.001 32121 85611 6.720 0.000 -0.003 -0.004 -0.005 -0.002 0.000 48328 128807 7.520 0.000 -0.001 -0.001 -0.002 0.000 0.000 123621 329478 8.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 col. B: Net deflection at erection includes all dead loads applied before the cast-in-place pour plus long-time deflection growth of the beam weight up to erection. Col. C: Net deflection at completion of construction includes all dead loads plus long-time deflection growth of the dead load up to completion. Col. D: Net DL deflection at final includes all dead loads, and sustained live loads,. plus long-time deflection growth. col. E: Net total deflection at final includes all dead loads, and all live loads, plus long-time deflection growth. span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code used: ACI 318-14 Engineer: Company: File: 4.1 RB 4 of 6 Fri Mar 16 08:45:49 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 4.1.6 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: B. Unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation change in Rotation SupportI Net @ 1 Net @ I Net DL 1 Net Total DL growth I LL Location' Erection I Completion I @ Final 1 @ Final + LL alone I degrees 1 degrees I degrees I degrees degrees I degrees Column I B 1 C I D I E E - C E - D Left I 0.0012 1 0.0100 I 0.0149 1 0.0178 0.0078 I 0.0029 Right I -0.0012 1 -0.0100 I -0.0149 1 -0.0178 -0.0078 I -0.0029 C. Unrestrained Longitudinal Change of Length Due to Creep and Shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = 0.0000 in I I Total Change of Length I Difference in Change I I I Erection 'CompletionFinal I I to Comp1.1 to Final 1 to Final I I I in I in I in I I in I in I in I I I B I C I D I I C - B I D - C 1 D - B I I Creep I 0.00001 0.00001 0.00001 I 0.00001 0.00001 0.00001 I Shrink.' -0.02041 -0.03321 -0.04711 I -0.01281 -0.01391 -0.02671 I Total I -0.02041 -0.03321 -0.04711 I -0.01281 -0.01391 -0.02671 FLEXURAL DESIGN CHECK Design Code Used: ACI 318-14 Concrete compressive stress-strain model used: PCA Parabola-Rectangle curve Modulus of Rupture of Precast Concrete, fr = 530 psi (tension) I Factored Design Cracking Minimum Depth in Net TensileI Flexural 0 1 warnings 1 I Moment Strength Moment Required Compression' Strain 1Classication 1 & Notes 1 x 1 Mu 0Mn Mcr Strength c I 1 I ft 1 kip.ft kip.ft kip.ft kip.ft in I 1 I 0.000 0.00 0.06 35.68 0.00 7.19 0.00001Tension 0.90 31 0.480 4.60 29.19 36.47 6.14 7.38 0.00091Tension 0.90 31 1.280 10.97 67.26 37.43 14.62 3.74 0.01751Tension 0.90 2.080 15.70 67.26 37.43 20.93 3.74 0.01751Tension 0.90 2.880 18.80 67.26 37.43 25.06 3.74 0.01751Tension 0.90 3.680 20.27 67.26 37.43 27.02 3.74 0.01751Tension 0.90 4.000 20.40 67.26 37.43 27.20 3.74 0.01751Tension 0.90 4.320 20.27 67.26 37.43 27.02 3.74 0.01751Tension 0.90 4.480 20.10 67.26 37.43 26.81 3.74 0.01751Tension 0.90 5.120 18.80 67.26 37.43 25.06 3.74 0.01751Tension 0.90 5.920 15.70 67.26 37.43 20.93 3.74 0.01751Tension 0.90 6.720 10.97 67.26 37.43 14.62 3.74 0.01751Tension 0.90 7.520 4.60 29.19 36.47 6.14 7.38 0.00091Tension 0.90 31 8.000 0.00 0.06 35.68 0.00 7.19 0.00001Tension 0.90 31 Points of Maximum and Minimum Factored Moment 1 4.0001 20.40 1 67.26 1 37.43 1 27.20 1 3.74 1 0.01751Tension 1 0.901 I 1 0.0001 0.00 1 0.00 1 26.11 1 0.00 1 1.14 1 0.00001Tension 1 0.901 31 Points of Maximum Ratio of Factored Moment to Design Strength 1 4.0001 20.40 1 67.26 1 37.43 I 27.20 1 3.74 1 0.01751Tension 1 0.901 I 1 0.0001 0.00 1 0.00 1 26.11 I 0.00 1 1.14 1 0.00001Tension 1 0.901 31 Points of Maximum Ratio of Minimum Strength to Design Strength 1 4.0001 20.40 1 67.26 1 37.43 I 27.20 1 3.74 1 0.01751Tension 1 0.901 I 1 0.0001 0.00 1 0.00 1 26.11 I 0.00 1 1.14 1 0.00001Tension 1 0.901 31 Warnings & Notes 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code Used: ACI 318-14 1 Design Prestress Concrete Strength Provided Min. Strength Req'd Warnings I Shear Component Strength Stirrups Total Stirrups Total & Notes x I Vu Vp 0Vc OVs OVn OVs OVn ft 1 kip kip kip kip kip kip kip 0.000 4.33 0.00 7.75 32.62 40.36 3.06 10.80 1 2 3 0.480 4.33 0.00 8.27 32.62 40.89 3.06 11.33 1 2 3 1.280 4.33 0.00 8.91 32.62 41.52 0.00 8.91 2 3 2.080 4.33 0.00 8.52 32.62 41.14 3.06 11.58 1 2 3 2.880 2.86 0.00 8.12 32.62 40.74 0.00 8.12 2 3.6801 0.82 0.00 7.85 32.62 40.46 0.00 7.85 2 4.000 0.00 0.00 7.75 32.62 40.36 0.00 7.75 2 4.000 0.00 0.00 -7.75 -32.62 -40.36 0.00 -7.75 2 4.320 -0.82 0.00 -7.85 -32.62 -40.46 0.00 -7.85 2 4.480 -1.22 0.00 -7.90 -32.62 -40.51 0.00 -7.90 2 5.120 -2.86 0.00 -8.12 -32.62 -40.74 0.00 -8.12 2 5.920 -4.33 0.00 -8.52 -32.62 -41.14 -3.06 -11.58 1 2 3 6.720 -4.33 0.00 -8.91 -32.62 -41.52 0.00 -8.91 2 3 7.520 -4.33 0.00 -8.27 -32.62 -40.89 -3.06 -11.33 1 2 3 8.000 -4.33 0.00 -7.75 -32.62 -40.36 -3.06 -10.80 1 2 3 Warnings & Notes 1 - Note, transverse shear or torsion steel is required. See the Shear/Torsion Transvese Reinforcing Design Check report. 2 - Note, shear strength provided by shear steel, OVs, is limited to maximum limit [ACI 318-14::22.5.1.2]. 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Engineer: Company: File: 4.1 RB 5 of 6 Fri Mar 16 08:45:49 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 4.1.7 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: TORSION DESIGN CHECK Design Code Used: ACI 318-14 I Design Threshold Combined Shear Torsion Strength warnings I Torsion Torsion and Torsion Provided Required & Notes x I Tu OTcr/4 Stress Limit 0Tn 0Tn ft 1 kip.ft kip.ft psi psi kip.ft kip.ft 0.000 0.98 2.08 0 0 0.00 0.00 1 0.480 0.98 2.08 0 0 0.00 0.00 1 1.280 0.98 2.08 0 0 0.00 0.00 1 2.080 0.98 2.08 0 0 0.00 0.00 1 2.880 0.65 2.08 0 0 0.00 0.00 3.6801 0.19 2.08 0 0 0.00 0.00 4.000 0.00 2.08 0 0 0.00 0.00 4.320 -0.19 -2.08 0 0 0.00 0.00 4.480 -0.28 -2.08 0 0 0.00 0.00 5.120 -0.65 -2.08 0 0 0.00 0.00 5.920 -0.98 -2.08 0 0 0.00 0.00 1 6.720 -0.98 -2.08 0 0 0.00 0.00 1 7.520 -0.98 -2.08 0 0 0.00 0.00 1 8.000 -0.98 -2.08 0 0 0.00 0.00 1 Warnings & Notes 1 - Note, design torsion force at critical section near support used as a minimum [ACI 318-14::9.4.4.2/3]. SHEAR/TORSION TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 1 Shear Steel Required Shear Steel Stirrup Stirrup Spacing Additional Long. Steel Warnings I Total Torsion* Provided Provided Provided Max. Allow) for Torsion, Al & Notes x I (Av+2At)/s At/s Av/s Av+2At s s Total Reduction** ft 1 inA2/ft inA2/ft inA2/ft inA2 in in inA2 inA2 0.000 0.03 0.00 0.66 0.22 4.00 12.81 0.00 0.00 1 4 5 0.480 0.03 0.00 0.66 0.22 4.00 12.81 0.00 0.00 1 4 5 1.280 0.00 0.00 0.66 0.22 4.00 12.81 0.00 0.00 4 2.080 0.03 0.00 0.66 0.22 4.00 12.81 0.00 0.00 1 4 5 2.880 0.00 0.00 0.66 0.22 4.00 12.81 0.00 0.00 3.6801 0.00 0.00 0.66 0.22 4.00 12.81 0.00 0.00 4.000 0.00 0.00 0.66 0.22 4.00 12.81 0.00 0.00 4.000 0.00 0.00 0.66 0.22 4.00 12.81 0.00 0.00 4.320 0.00 0.00 0.66 0.22 4.00 12.81 0.00 0.00 4.480 0.00 0.00 0.66 0.22 4.00 12.81 0.00 0.00 5.120 0.00 0.00 0.66 0.22 4.00 12.81 0.00 0.00 5.920 0.03 0.00 0.66 0.22 4.00 12.81 0.00 0.00 1 4 5 6.720 0.00 0.00 0.66 0.22 4.00 12.81 0.00 0.00 4 7.520 0.03 0.00 0.66 0.22 4.00 12.81 0.00 0.00 1 4 5 8.000 0.03 0.00 0.66 0.22 4.00 12.81 0.00 0.00 1 4 5 Warnings & Notes 1 - Note, amount of shear steel required represents minimum code requirements [ACI 318-14::9.6.3.3]. 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). Note, additional long. steel in compression side of section has been reduced [ACI 318-14::9.5.4.5]. * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: 4.1 RB 6 of 6 Fri Mar 16 08:45:49 2018 CD DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION ,; PRELIMINARY A E 0 NOT FOR CONSTRUCTION E 3 C .� DATA SHEET/R-BEAM a E BEAM TYPE: RB BEAM SIZE 8 X 28 0 j SPAN (CL TO CL BRG): BEAM LENGTH - Q BEARING 8'-0" FT. o LOADING: D.L. 233 ✓ PLF o Roof slab + 5 PSF 1380 PLF U TOPPING - PLF in SDL _ PLF c SNOW 1060 PLF 0 PRECAST SECTION: UNIT WT: 150 PCF. 28 DAY CONC. f'c = 5000 PSI o U COMPOSITE TOPPING: UNIT WT: - PCF. 28 DAY CONC. f'c = - PSI _ 0 TOPPING: 11 = - IN. EFF. WIDTH bf = - IN. COMP. EXTENSION t2 = - IN. U CD NUMBER OF 0.6"0 STRANDS - STRAND c O P (INITIAL PULL) ( - STR X -- KIPS) = TOTAL KIP 0 C .5 Lu C *NOTE: REINFORCING SHOWN IS TYPICAL FOR MIDSPAN; FOR END REINFORCING SEE ATTACHED SHEET CD C o INVERTED TEE BEAM a_ PRECAST SECTION PROPERTIES 0 c A = 224 IN' 0 E I = 14635 IN-4 _0 u' Yb = 14.0 IN 0 Sb = 1045 IN3 e 4 (2)-#5 REBARS St = 1045 IN3 g bw IN lV H II H 11 #3 CLOSED STIRRUPS H H e NOIcof (2)-#5 REBARS 2" 4" 2" b7 I PRECAST SECTION 8 U 2, CONCRETE: 150 12 f'ci: 2500 PSI tf'c: 5000 PSI CAMBER © RELEASE: - '0 CAMBER IP ERECTION: 0 0 N o Q - R-BEAM DESIGN SUMMARY o o N Red Sandstone (without ledge) 0 6209 a ENCON 4.2 L,) 3 COLORADO,LLC o SHEET 1 OF 1 CD DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION PRELIMINARY 0 e NOT FOR CONSTRUCTION 3 c 0) 0 #3 7" l 6" 1 6" l NOMINAL SPACING STIRRUPS T T T = 12" O.C. 0 N m O C 0 = = = = = = = i 7 U) 0 0 o o m o .47 @9ENDS h[ = h — = h = = = h = LU 0 O } W _W w W 95 rt NoNo (41 9.47 111 U 412 '0 q�q 0 O N Q R-BEAM DESIGN SUMMARY Red Sandstone (without ledge) 0 6209 LU ENCON Q 4.2.1 3 COLORADO,LLC SHEET 1 OF 1 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 4.2.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4 in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Concrete Density Wt = 150 lb/ftA3 Compressive Strength f'c = 5000.0 psi Modulus of Elasticity Ec = 4.279E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset 1 INo1 From I To I Length I Folder I Section I section I Z I Y 1 I I ft I ft I ft I Name I Name I Type 1 in 1 in 1 111 0.0001 8.0001 8.0001 Rectangular I 8RB28 I Solid Beam I 0.001 0.001 * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 8.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 8.000 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 8.000 ft Loop Height = 0.00 ft Span Length in Service = 8.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 8.000 ft Total Beam Length = 8.000 ft, Bearing Length, Left = 4.00 in, Right = 4.00 in First flexural frequency of beam is approximately 2.32 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.I Section Properties I Section) Section' Shear 'volume /1 Section Moduli I I Nod A I I I Yb I Height I Width I Width I Surfacel Sb I St I 1 I inA2 I inA4 I in I in I in I in I in I inA3 I inA3 I I 11 224.0 I 14635 I 14.001 28.001 8.001 8.001 3.111 -1045 I 1045 I UNCRACKED SECTION PROPERTIES SUMMARY I Net Precast Section I Transformed Precast Section I Transformed Precast Section 1 I at Transfer (based on Eci) I at Transfer (based on Eci) I in Service (based on Ec) I '(include rebar,deduct strand)' (include rebar and strand) I (include rebar and strand) 1 x I A I yb I A I yb 1 A I yb ft I inA2 inA4 in I inA2 inA4 in I inA2 inA4 in 1 0.000 224.0 14635 14.001 224.0 14635 14.001 224.0 14635 14.00 0.480 226.2 14926 13.891 226.2 14926 13.891 225.6 14852 13.92 1.280 228.8 15270 13.761 228.8 15270 13.761 227.6 15111 13.82 2.080 228.8 15270 13.761 228.8 15270 13.761 227.6 15111 13.82 2.880 228.8 15270 13.761 228.8 15270 13.761 227.6 15111 13.82 3.6801 228.8 15270 13.761 228.8 15270 13.761 227.6 15111 13.82 4.000 228.8 15270 13.761 228.8 15270 13.761 227.6 15111 13.82 4.320 228.8 15270 13.761 228.8 15270 13.761 227.6 15111 13.82 4.480 228.8 15270 13.761 228.8 15270 13.761 227.6 15111 13.82 5.120 228.8 15270 13.761 228.8 15270 13.761 227.6 15111 13.82 5.920 228.8 15270 13.761 228.8 15270 13.761 227.6 15111 13.82 6.720 228.8 15270 13.761 228.8 15270 13.761 227.6 15111 13.82 7.520 226.2 14926 13.891 226.2 14926 13.891 225.6 14852 13.92 8.000 224.0 14635 14.001 224.0 14635 14.001 224.0 14635 14.00 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. LONGITUDINAL REINFORCING STEEL Engineer: Company: File: 4.2 RB 1 of 6 Fri Mar 16 11:50:00 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 4.2.3 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: Reinforcing Steel Groups 'ID'Qtyl Steel I Bar 1 Bar 'End Location & Typel Bar 1 I Cross 'vertical' offset ** 1 I I 1 Grade I Size I Area I From 11 To I I Spacing' 1 Spacing' Offset I Reference 1 11 I ksi IC=coated I inA2 1 ft I *I ft I *I in I I in I in I 1 111 21 60.0 I # 5 1 0.620 10.00015E1 8.000ISEI 4.001 1 - I 2.381 Bottom of Precast Beam 1 * End Types: SE - Straight Embeddment, FD - Fully Developed, SH - Standard Hook, HB - Headed Bar ** Offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL I Shear Stirrups I I From I To 1 Grade I size I # of LegslTotal Areal Spacing I I ft I ft I ksi I I 1 inA2 1 in I I 0.0001 8.0001 60.0 -1 # 3 I 21 0.22 I 0.001 I Interface shear Ties I I From I To 1 Grade I Size I # of LegslTotal Areal Spacing I I ft I ft I ksi I I 1 inA2 1 in I I 0.0001 8.0001 58.0 I 15M 1 01 0.00 I 0.001 * useable steel strength limited by selected code. APPLIED LOADS 13.84k/loft (see 3.4.4) Load Group Stages Applied Load Details & Type & Distribution (left to right) Beam weight * stripping to Final Service Segment #0- ver ical: 0.233 kip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weig , Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam weigh cable Angle: 90 degrees DL after CIP Pour Grouted to Final Service Roof slab- vertical: 1.38 kip/ft full length D: DL, General No Load Distribution Snow & Ice Final Service sta9e only 100 psf- Vertical: 1.06 kip/ft full length 5: Snow & Ice Accretion No Load Distribution * indicates load groups generated automatically by concise Beam. 10.6k/loft LOAD COMBINATIONS (see 3.4.4) Serviceability (SLS) & Fatigue (FLS) Limit State Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00Ws + 0.60Wu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr ultimate (strength) Limit state (uLs) Combinations (searched collectively to obtain envelope) 1: ULS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS Combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: ULS combo 5 : 1.20D + 0.50L + 1.00L1 + 1.60Lr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: ULS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: ULS combo 8 : 1.20D + 1.60Lr + 0.80ws + 0.50wu 9: ULS Combo 9 : 1.20D + 1.60S + 0.80ws + 0.50Wu 10: ULS Combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: ULS combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60ws + 1.00Wu 12: ULS Combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60Ws + 1.00Wu 13: ULS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60ws + 1.00wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: ULS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60Ws + 1.00Wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Station) SLS (stress) Load Combination ULS Load Envelopes I Moment Moment Shear Moment x I Sustained Total Load Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip combo.I kip.ft combo.I 1 min max min max min max min max min max 0.000 0.00 0.00 0.00 5.81 14.53 15 6 0.00 0.00 1 1 0.480 2.91 2.91 4.82 5.11 12.78 15 6 2.62 6.55 15 6 1.280 6.94 6.94 11.50 3.95 9.88 15 6 6.24 15.62 15 6 2.080 9.93 9.93 16.46 2.79 6.97 15 6 8.94 22.36 15 6 2.880 11.89 11.89 19.71 1.63 4.07 15 6 10.70 26.78 15 6 3.680 12.82 12.82 21.25 0.46 1.16 15 6 11.54 28.87 15 6 4.000 12.90 12.90 21.38 0.00 0.00 1 1 11.61 29.05 15 6 Engineer: Company: File: 4.2 RB 2 of 6 Fri Mar 16 11:50:01 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 4.2.4 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 4.320 12.82 12.82 21.25 -1.16 -0.46 6 15 11.54 28.87 15 6 4.480 12.72 12.72 21.08 -1.74 -0.70 6 15 11.45 28.63 15 6 5.120 11.89 11.89 19.71 -4.07 -1.63 6 15 10.70 26.78 15 6 5.920 9.93 9.93 16.46 -6.97 -2.79 6 15 8.94 22.36 15 6 6.720 6.94 6.94 11.50 -9.88 -3.95 6 15 6.24 15.62 15 6 7.520 2.91 2.91 4.82 -12.78 -5.11 6 15 2.62 6.55 15 6 8.000 0.00 0.00 0.00 -14.53 -5.81 6 15 0.00 0.00 1 1 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) Unfactored Load Group Effects I I Initial Lifting I Truck Transport I Erection Lifting I In Service I Load I Left I Right I Left I Right I Left I Right I Left I Right I Group I Vertical I Vertical I Vertical I Vertical I Vertical I Vertical I Vertical[*]1 Torsion[*] I Vertical[*]I Torsion[*] I I I kip I kip.ft I kip I kip.ft I kip I kip.ft I kip I kip.ft I kip I kip.ft 'Beam weight I 0.93 I 0.93 I 0.93 I 0.93 I 0.93 I 0.93 I 0.93 I 0.00 I 0.93 I 0.00 I IDL after cI I I I I I I I 5.52 I 0.00 I 5.52 I 0.00 I (Snow & Ice I I I I I I I 4.24 I 0.00 I 4.24 I 0.00 I Load Envelope Effects SLS DL I 6.45 I 0.00 I 6.45 I 0.00 I SLS Sustain) 6.45 I 0.00 I 6.45 I 0.00 I SLS Minimum' 0.93 0.93 0.93 0.93 0.93 0.93 6.45 I 0.00 I 6.45 I 0.00 I SLS Maximum) 0.93 0.93 0.93 0.93 0.93 0.93 10.69 I 0.00 I 10.69 I 0.00 I ULS Minimum) 5.81 [1511 0.00 [ 1]1 5.81 [1511 0.00 [ 1]I ULS Maximum' 14.53 [ 6]1 0.00 [ 1]1 14.53 [ 6]1 0.00 [ 1]1 * Governing ULS Load Combination (below) CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) I x I Stress I Limit * Location I ft I psi I psi STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam I 4.0001 21 I 2100 Bottom of Beam I 0.0001 0 1 2100 Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 0.0001 0 1 -411 Bottom of Beam I 4.0001 -20 1 -411 STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam I 4.0001 21 1 3500 Bottom of Beam I 0.0001 0 1 3500 Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 0.0001 0 1 -530 Bottom of Beam I 4.0001 -20 1 -530 STRESSES IN SERVICE Critical Compression Top of Beam I 4.0001 241 I 3000 Bottom of Beam I 0.0001 0 1 3000 Critical Tension Top of Beam I 0.0001 0 I -530 Not cracked Bottom of Beam I 4.0001 -235 I -530 Check cracking below and cover requirements STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 4.0001 145 I 2250 Bottom of Beam I 0.0001 0 I 2250 * Tensile stress limit given is the modulus of rupture of the concrete. Beyond this limit crack control is required. CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING I I Bottom I Top of I I I of Beam I Beam I I dc I 2.38 I 0.00 I in Concrete cover to center of steel closest to tension face I cc 2.06 I 0.00 I in Clear concrete cover to steel closest to tension face I fs I 17.2 I 0.0 I ksi Steel stress nearest to tension face (after decompression) for crack control I Max spacing I 27.91 I 0.00 I in Maximum centre-to-centre spacing of steel closest to tension face to control cracking CRACK WIDTH ESTIMATE Crack width estimates are only approximations based on idealized behaviour and average crack spacing. These estimates only represent a level of cracking and should only be used in comparison with appropriate limits such as those given below. It would not be appropriate to compare these estimates Engineer: Company: File: 4.2 RB 3 of 6 Fri Mar 16 11:50:01 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 4.2.5 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: to measured crack widths. Bottom Top of of Beam Beam Cracked? Yes No Cracking at 4.000 0.000 ft Location of maximum crack width from left end of beam Ms 21.38 0.00 kip.ft External service moment (DL + LL) Pdc 0.00 0.00 kip Prestress force at cracked centroid Mint 21.38 0.00 kip.ft Internal moment about cracked centroid c 4.69 0.00 in concrete depth in compression steel type Rebar Rebar Type of steel in tension Method Gergely-Lutz Gergely-Lutz Crack width estimate equation used * kl 75.842E-6 0.00 inA2/Kip Coefficient dependent on steel type kb 1.00 0.00 Adjustment coefficient for prestressing steel h2/h1 1.11 0.00 Ratio of depth in tension to depth of steel from NA Act 38.0 0.0 inA2 Area of concrete in tension centered on crack control steel A 19.0 0.0 inA2 Area of concrete in tension around each bar/strand fs 17.2 0.0 ksi Stress in steel nearest to tension face (after decompression) for crack width Est Crack width I 0.005 0.000 in Estimated maximum crack width fc -569 0 psi Maximum concrete compressive stress - opposite face to cracking limit -3000 -3000 psi Allowable concrete compressive stress Recommended Crack width (in) - Maximum Limits (from PCI Design Handbook, 5th edition) 1 I Critical I Prestressed I Reinforced I 1 I Appearance I Concrete I Concrete I lExterior Exposure 1 0.0071 0.0101 0.0131 11nterior Exposure 1 0.0101 0.0121 0.0161 * Gergely & Lutz equation: w = kl x fs x h2 / hl x CubicRoot(dc * A) DEFLECTION ESTIMATE AT ALL STAGES Design code used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) 1 Net Deflection Change in Deflection LocationI Net @ Net @ Net DL Net Total DL growth LL Span/Deflection x 1 Erection Completion @ Final @ Final + LL alone DL growth LL ft 1 in in in in in in + LL alone Column 1 B C D E E - C E - D L / (E-C) L / (E-D)I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 0.480 0.000 0.000 -0.002 -0.002 0.000 0.000 133669 0 1.280 0.000 -0.002 -0.004 -0.004 -0.002 0.000 52257 0 2.080 0.000 -0.003 -0.006 -0.006 -0.003 0.000 34732 0 2.880 0.000 -0.004 -0.008 -0.008 -0.003 0.000 28109 0 3.6801 0.000 -0.005 -0.008 -0.008 -0.004 0.000 25696 0 4.000 0.000 -0.005 -0.008 -0.008 -0.004 0.000 25499 0 4.320 0.000 -0.005 -0.008 -0.008 -0.004 0.000 25696 0 4.480 0.000 -0.005 -0.008 -0.008 -0.004 0.000 25947 0 5.120 0.000 -0.004 -0.008 -0.008 -0.003 0.000 28109 0 5.920 0.000 -0.003 -0.006 -0.006 -0.003 0.000 34732 0 6.720 0.000 -0.002 -0.004 -0.004 -0.002 0.000 52257 0 7.520 0.000 0.000 -0.002 -0.002 0.000 0.000 133669 0 8.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 col. B: Net deflection at erection includes all dead loads applied before the cast-in-place pour plus long-time deflection growth of the beam weight up to erection. Col. C: Net deflection at completion of construction includes all dead loads plus long-time deflection growth of the dead load up to completion. Col. D: Net DL deflection at final includes all dead loads, and sustained live loads,. plus long-time deflection growth. col. E: Net total deflection at final includes all dead loads, and all live loads, plus long-time deflection growth. span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code used: ACI 318-14 B. unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) 1 Net Rotation change in Rotation SupportI Net @ I Net @ 1 Net DL Net Total DL growth 1 LL Location' Erection I Completion I @ Final 1 @ Final + LL 1 alone 1 degrees I degrees I degrees 1 degrees degrees 1 degrees Column 1 B I C I D E E - C E - D Left 1 975.087E-6 1 0.0089 I 0.0160 1 0.0160 0.0072 1 0.0000 Right 1-975.087E-6 1 -0.0089 I -0.0160 1 -0.0160 -0.0072 1 0.0000 Engineer: company: File: 4.2 RB 4 of 6 Fri Mar 16 11:50:01 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 4.2.6 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: C. Unrestrained Longitudinal Change of Length Due to Creep and Shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = 0.0000 in I I Total Change of Length I Difference in Change I I I Erection 'CompletionFinal 1 I to Comp1.1 to Final 1 to Final I I I in I in I in I I in I in I in I I I B I c I D I I c - B I D - C 1 D - B I I Creep I 0.00001 0.00001 0.00001 I 0.00001 0.00001 0.00001 I shrink.' -0.01681 -0.02901 -0.04421 I -0.01211 -0.01521 -0.02741 I Total I -0.01681 -0.02901 -0.04421 I -0.01211 -0.01521 -0.02741 FLEXURAL DESIGN CHECK Design Code Used: ACI 318-14 Concrete compressive stress-strain model used: PCA Parabola-Rectangle Curve Modulus of Rupture of Precast Concrete, fr = 530 psi (tension) I Factored Design Cracking Minimum Depth in Net Tensile' Flexural 0 1 warnings I Moment Strength Moment Required Compression' Strain 1Classication 1 & Notes x I Mu OMn Mcr Strength c I 1 ft I kip.ft kip.ft kip.ft kip.ft in I 1 0.000 0.00 0.07 46.20 0.00 4.69 0.00001Tension 0.90 31 0.480 6.55 30.33 47.17 8.74 4.77 0.00091Tension 0.90 31 1.280 15.62 69.91 48.33 20.83 1.42 0.05121Tension 0.90 2.080 22.36 69.91 48.33 29.81 1.42 0.05121Tension 0.90 2.880 26.78 69.91 48.33 35.70 1.42 0.05121Tension 0.90 3.680 28.87 69.91 48.33 38.49 1.42 0.05121Tension 0.90 4.000 29.05 69.91 48.33 38.74 1.42 0.05121Tension 0.90 4.320 28.87 69.91 48.33 38.49 1.42 0.05121Tension 0.90 4.480 28.63 69.91 48.33 38.18 1.42 0.05121Tension 0.90 5.120 26.78 69.91 48.33 35.70 1.42 0.05121Tension 0.90 5.920 22.36 69.91 48.33 29.81 1.42 0.05121Tension 0.90 6.720 15.62 69.91 48.33 20.83 1.42 0.05121Tension 0.90 7.520 6.55 30.33 47.17 8.74 4.77 0.00091Tension 0.90 3 8.000 0.00 0.07 46.20 0.00 4.69 0.00001Tension 0.90 3 Points of Maximum and Minimum Factored Moment I 4.0001 29.05 1 69.91 1 48.33 I 38.74 1 1.42 I 0.05121Tension 1 0.901 I 0.0001 0.00 1 0.00 1 46.20 I 0.00 1 1.14 I 0.00001Tension 1 0.901 31 Points of Maximum Ratio of Factored Moment to Design strength I 4.0001 29.05 1 69.91 1 48.33 I 38.74 1 1.42 I 0.05121Tension 1 0.901 I I 0.0001 0.00 1 0.00 1 46.20 I 0.00 1 1.14 I 0.00001Tension 1 0.901 31 Points of Maximum Ratio of Minimum Strength to Design strength I 4.0001 29.05 1 69.91 1 48.33 I 38.74 1 1.42 I 0.05121Tension 1 0.901 I I 0.0001 0.00 1 0.00 1 46.20 I 0.00 1 1.14 I 0.00001Tension 1 0.901 31 Warnings & Notes 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code Used: ACI 318-14 I Design Prestress Concrete Strength Provided Min. Strength Req'd Warnings I Shear Component Strength Stirrups Total Stirrups Total & Notes x I Vu Vp OVc OVs OVn OVs OVn ft I kip kip kip kip kip kip kip 0.000 6.17 0.00 20.66 0.00 20.66 0.00 20.66 3 0.480 6.17 0.00 21.18 0.00 21.18 0.00 21.18 3 1.280 6.17 0.00 21.82 0.00 21.82 0.00 21.82 3 2.080 6.17 0.00 21.43 0.00 21.43 0.00 21.43 3 2.880 4.07 0.00 21.03 0.00 21.03 0.00 21.03 3.6801 1.16 0.00 20.76 0.00 20.76 0.00 20.76 4.000 0.00 0.00 20.66 0.00 20.66 0.00 20.66 4.000 0.00 0.00 -20.66 0.00 -20.66 0.00 -20.66 4.320 -1.16 0.00 -20.76 0.00 -20.76 0.00 -20.76 4.480 -1.74 0.00 -20.81 0.00 -20.81 0.00 -20.81 5.120 -4.07 0.00 -21.03 0.00 -21.03 0.00 -21.03 5.920 -6.17 0.00 -21.43 0.00 -21.43 0.00 -21.43 3 6.720 -6.17 0.00 -21.82 0.00 -21.82 0.00 -21.82 3 7.520 -6.17 0.00 -21.18 0.00 -21.18 0.00 -21.18 3 8.000 -6.17 0.00 -20.66 0.00 -20.66 0.00 -20.66 3 Warnings & Notes 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. SHEAR TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 'Shear SteelIShear Steel Stirrup I Stirrup Spacing 1 Warnings I I Required I Provided I Provided I Provided I Max. Allow' & Notes I x I Av/s I Av/s I Av I s I s I I ft I inA2/ft I inA2/ft I inA2 I in I in I I 0.0001 0.00 I 0.00 I 0.22 I 0.00 I 12.81 1 4 0.4801 0.00 I 0.00 I 0.22 I 0.00 I 12.81 1 4 I 1.2801 0.00 I 0.00 I 0.22 I 0.00 I 12.81 1 4 I I 2.0801 0.00 I 0.00 I 0.22 I 0.00 I 12.81 1 4 I Engineer: Company: File: 4.2 RB 5 of 6 Fri Mar 16 11:50:01 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black mint Software, Inc. 4.2.7 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: 2.880 0.00 0.00 0.22 0.00 12.81 3.6801 0.00 0.00 0.22 0.00 12.81 4.000 0.00 0.00 0.22 0.00 12.81 4.000 0.00 0.00 0.22 0.00 12.81 4.320 0.00 0.00 0.22 0.00 12.81 4.4801 0.00 0.00 0.22 0.00 12.81 5.120 0.00 0.00 0.22 0.00 12.81 5.920 0.00 0.00 0.22 0.00 12.81 4 6.720 0.00 0.00 0.22 0.00 12.81 4 7.520 0.00 0.00 0.22 0.00 12.81 4 8.000 0.00 0.00 0.22 0.00 12.81 4 warnings & Notes 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option s8). Note, additional long. steel in compression side of section has been reduced [ACI 318-14::9.5.4.5]. * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: 4.2 RB 6 of 6 Fri mar 16 11:50:01 2018 5TRE55CON Architectural and Structural Precast Concrete An ENCOM Company 5.0 SPANDRELDESIGNS Design General Description 5.1 Floor spandrel 5.2 Roof Spandrel 5.3 Roof Spandrel w/opening 5.4 Floor Spandrel w/opening 5.5 Shallow Roof Spandrel 5.6 Non-load bearing Spandrel 5.7 L edge design 5.8 Stability check CD DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION I SUBMITTAL A a E FOR APPROVAL- NOT FOR CONSTRUCTION E D C t 9" solid spandrel °' 05 f'ci = 3500 psi °' I d f'c = 6000 psi 0 • 1� �* Hard Rock concrete �\ o a I to V 0 to o o1 Q m V) w IfY 0 x " C 0 _ ] "� s UT/fp , U _ U ` U II Mz D 0 0 �- 0) w IIIa C It 0 I > . rn C I/ w iY / CD m LuIY III D C ,L X a I oN I cn J4 N II U O m N CD E O N D C p w al I Si v of Z.7., it r[) Li" ___ _ CO G ] Q t0 Ea II 6_ S a I o U li / % .--- —0 N A p 011, 1 °° T` a a f IR - 9"x 6'-6"floor spandrel CN z RED SANDSTONE o 6209 ch Q L, CI = 5TRE55CON fik o , _ w 5.1 LL Architectural and Structural Precast ConcreteC gE An ENCoN Compain ny SHEET 1 OF 1 w Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.1.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4> in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S5: Use the Zia/Hsu Method for torsion design as recommended in the PCI Standard Practice guidelines (ACI Codes Only) ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Concrete Density Wt = 150 lb/ftA3 Compressive Strength f'c = 6000.0 psi Modulus of Elasticity Ec = 4.688E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset 1 INol From I To I Length 1 Folder I Section I Section I Z I Y 1 I I ft I ft I ft 1 Name I Name I Type I in 1 in 1 111 0.0001 25.0001 25.0001 L-shaped I 9LB78 I Ledger Beam I 0.001 0.001 * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 25.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 25.000 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 25.000 ft Loop Height = 0.00 ft Span Length in Service = 25.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 25.000 ft Total Beam Length = 25.000 ft, Bearing Length, Left = 6.00 in, Right = 6.00 in First flexural frequency of beam is approximately 0.85 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.I Section Properties 1 Section' Section' Shear 'volume /1 Section Moduli 1 I No.1 A I I I Yb I Height I Width I Width I Surface' Sb I St I I I inA2 1 inA4 1 in 1 in 1 in 1 in 1 in 1 inA3 I inA3 1 I 1' 814.0 1 456651 1 34.601 78.001 17.001 9.001 4.281 -13198 I 10522 1 UNCRACKED SECTION PROPERTIES SUMMARY I Net Precast Section I Transformed Precast Section I Transformed Precast Section I I at Transfer (based on Eci) I at Transfer (based on Eci) I in Service (based on Ec) I I(include rebar,deduct strand)' (include rebar and strand) I (include rebar and strand) I x 1 A I yb 1 A I yb I A I yb ft I inA2 inA4 in I inA2 inA4 in I inA2 inA4 in I 0.000 814.0 456667 34.601 814.0 456667 34.60 814.0 456663 34.60 1.500 827.2 468085 34.13 827.2 468085 34.13 823.7 465039 34.25 4.000 831.2 472037 33.98 831.2 472037 33.98 826.6 467952 34.14 6.500 831.2 472037 33.98 831.2 472037 33.98 826.6 467952 34.14 9.000' 831.2 472037 33.98 831.2 472037 33.98 826.6 467952 34.14 11.500 831.2 472037 33.98 831.2 472037 33.98 826.6 467952 34.14 12.500 831.2 472037 33.98 831.2 472037 33.98 826.6 467952 34.14 13.5001 831.2 472037 33.98 831.2 472037 33.98 826.6 467952 34.14 14.000 831.2 472037 33.98 831.2 472037 33.98 826.6 467952 34.14 16.000 831.2 472037 33.98 831.2 472037 33.98 826.6 467952 34.14 18.500 831.2 472037 33.98 831.2 472037 33.98 826.6 467952 34.14 21.000 831.2 472037 33.98 831.2 472037 33.98 826.6 467952 34.14 23.500 827.2 468085 34.13 827.2 468085 34.13 823.7 465039 34.25 25.000 814.0 456667 34.601 814.0 456667 34.601 814.0 456663 34.60 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. LONGITUDINAL REINFORCING STEEL Engineer: Company: File: Floor spandrel 5.1 1 of 6 Tue Mar 20 11:06:49 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 5.1.3 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: Reinforcing Steel Groups IIDlQtyl Steel I Bar 1 Bar 'End Location & Typel Bar I I Cross 'vertical' Offset ** 1 I I 1 Grade I Size I Area I From 11 To I I Spacing' 1 Spacing' Offset I Reference 1 11 I ksi IC=coated I inA2 I ft I *I ft I *1 in I I in I in I 1 1 11 21 60.0 1 # 7 I 1.200 1 0.0001SE125.0001SE' 4.001 I - 1 2.001 Bottom of Precast Beam 1 121 11 60.0 I # 7 I 0.600 10.00015E125.0001SE' 4.001 I - I 4.001 Bottom of Precast Beam I 131 21 60.0 I # 5 I 0.620 10.0001SE125.0001SE' 12.001 I - I 10.001 Bottom of Precast Beam I * End Types: SE - Straight Embeddment, FD - Fully Developed, SH - standard Hook, HB - Headed Bar ** Offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL I Shear Stirrups I I From I To I Grade I Size I # of LegslTotal Areal Spacing I 1 ft 1 ft I ksi I I 1 inA2 1 in 1 I 0.0001 25.0001 60.0 *1 # 4 I 21 0.40 I 0.001 I Interface Shear Ties I I From I To I Grade I Size I # of LegslTotal Areal Spacing I 1 ft 1 ft I ksi I I I inA2 1 in 1 I 0.0001 25.0001 This region of the beam is not reinforced for shear.' * useable steel strength limited by selected code. TORSION PARAMETERS Seg. Torsion Parameters 'No.' sum(xA2 * y) I x1 xl 1 yl I I I inA3 I in I in I in I I 11 6318.00 I 9.00 I 6.00 1 75.00 I sum(xA2 * y) is the sum of xA2 * y for all of the rectangles. x is the minimum section width. xl is the minimum width of the closed stirrups. yl is the maximum width of the closed stirrups. 3"/12 x 0.150 x 62'/2 APPLIED LOADS I64psf x 62'/2/10001 Load Group stages Applied Load De ails & Type & Distribution (left to right) Beam weight * Stripping to Final Service Segment #0- vert al: 0.847 ip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam weigh Cable gle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam weight, able A gle: 90 degrees DL after CIP Pour Grouted to Final service DT, 64 psf- vertical: 1.98 kip ft full length (0.85 ft eccent.)1 D: DL, General No Load Distribution 1 3" topp, 37.5 psf- vertical: 1.163 kip/ft full length (0.85 ft ec 10 psf- vertical: .31 kip/ft full length (0.85 ft eccent.)I 1 Live Load Final Service sta9e only 40 psf- rtical: 1.24 kip/ft full length (0.85 ft eccent.)I L1: LL, Garage, Parking No Load Distribution 10 x 62'/2/1000 * indicates load groups generated automatically by concise Beam. I40psfx62'/2/1000 LOAD COMBINATIONS Serviceability (SLS) & Fatigue (FLS) Limit State Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00Ws + 0.60Wu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.0OL + 1.0OL1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr ultimate (strength) Limit State (uLs) Combinations (searched collectively to obtain envelope) 1: uLS Combo 1 : 1.40D + 1.40F 2: ULS combo 2 : 1.20D + 1.20F + 1.20T + 1.6OL + 1.60L1 + O.5OLr 3: ULS Combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: uLS combo 5 : 1.20D + 0.50L + 1.00L1 + 1.60Lr 6: uLS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: ULS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: uLS combo 8 : 1.20D + 1.60Lr + 0.80ws + 0.50Wu 9: ULS Combo 9 : 1.20D + 1.60S + 0.8OWs + 0.5OWu 10: uLS combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: uLS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.5OLr + 1.60ws + 1.00wu 12: uLs Combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60Ws + 1.00Wu Engineer: Company: File: Floor spandrel 5.1 2 of 6 Tue Mar 20 11:06:50 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.1.4 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 13: ULS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60Ws + 1.00Wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: ULS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60Ws + 1.00wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE StationI SLS (stress) Load Combination ULS Load Envelopes I Moment Moment Shear Moment Torsion x I Sustained Total Load Total Load Govern. Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip Combo.I kip.ft Combo.I kip.ft Combo.I 1 min max min max min max min max min max min max min max 0.000 0.00 0.00 0.00 48.37 89.30 15 2 0.00 0.00 1 1 33.02 65.11 15 2 1.500 75.79 75.79 97.64 42.57 78.58 15 2 68.21 125.91 15 2 29.06 57.29 15 2 4.000 180.60 180.60 232.68 32.89 60.72 15 2 162.54 300.04 15 2 22.45 44.27 15 2 6.500 258.53 258.53 333.09 23.22 42.86 15 2 232.68 429.52 15 2 15.85 31.25 15 2 9.000 309.59 309.59 398.87 13.54 25.00 15 2 278.63 514.36 15 2 9.25 18.23 15 2 11.500 333.78 333.78 430.03 3.87 7.14 15 2 300.40 554.54 15 2 2.64 5.21 15 2 12.500 335.93 335.93 432.80 0.00 0.00 1 1 302.34 558.11 15 2 0.00 0.00 1 1 13.5001 333.78 333.78 430.03 -7.14 -3.87 2 15 300.40 554.54 15 2 -5.21 -2.64 2 15 14.000 331.09 331.09 426.57 -10.72 -5.80 2 15 297.98 550.08 15 2 -7.81 -3.96 2 15 16.000 309.59 309.59 398.87 -25.00 -13.54 2 15 278.63 514.36 15 2 -18.23 -9.25 2 15 18.500 258.53 258.53 333.09 -42.86 -23.22 2 15 232.68 429.52 15 2 -31.25 -15.85 2 15 21.000 180.60 180.60 232.68 -60.72 -32.89 2 15 162.54 300.04 15 2 -44.27 -22.45 2 15 23.500 75.79 75.79 97.64 -78.58 -42.57 2 15 68.21 125.91 15 2 -57.29 -29.06 2 15 25.000 0.00 0.00 0.00 -89.30 -48.37 2 15 0.00 0.00 1 1 -65.11 -33.02 2 15 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) Unfactored Load Group Effects I I Initial Lifting I Truck Transport Erection Lifting I In Service 1 1 Load I Left 1 Right 1 Left 1 Right 1 Left 1 Right 1 Left I Right 1 1 Group I Vertical 1 Vertical 1 Vertical 1 Vertical 1 Vertical 1 Vertical 1 Vertical[*]I Torsion[*] I Vertical[*]I Torsion[*] I 1 I kip 1 kip.ft 1 kip 1 kip.ft 1 kip 1 kip.ft 1 kip I kip.ft I kip I kip.ft 1 'Beam Weight' 10.59 1 10.59 1 10.59 1 10.59 1 10.59 1 10.59 1 10.59 I 0.00 I 10.59 I 0.00 I IDL after CII I I I I I I 43.16 I 36.69 I 43.16 I 36.69 I 'Live Load I I I I I I I 15.50 I 13.18 I 15.50 I 13.18 I Load Envelope Effects SLS DL 1 53.75 I 36.69 I 53.75 I 36.69 I SLS Sustain' 53.75 I 36.69 I 53.75 I 36.69 I SLS Minimum' 10.59 10.59 10.59 10.59 10.59 10.59 53.75 I 36.69 I 53.75 I 36.69 I SLS Maximum' 10.59 10.59 10.59 10.59 10.59 10.59 69.25 I 49.86 I 69.25 I 49.86 I ULS Minimum' 48.37 [1511 33.02 [1511 48.37 [15]1 33.02 [1511 ULS Maximum' 89.30 [ 2]I 65.11 [ 2]I 89.30 [ 2]I 65.11 [ 2]1 * Governing ULS Load combination (below) CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) I x I Stress 1 Limit * Location I ft I psi 1 psi STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam I 12.5001 74 1 2100 Bottom of Beam I 0.0001 0 1 2450 Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 0.0001 0 1 -444 Bottom of Beam I 12.5001 -57 I -444 STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam I 12.5001 74 1 3600 Bottom of Beam I 0.0001 0 1 4200 Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 0.0001 0 1 -581 Bottom of Beam I 12.5001 -58 1 -581 STRESSES IN SERVICE Critical Compression Top of Beam I 12.5001 487 1 3600 Bottom of Beam I 0.0001 0 1 3600 Critical Tension Top of Beam I 0.0001 0 1 -581 Not cracked Bottom of Beam I 12.5001 -379 1 -581 Check cracking below and cover requirements STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 12.5001 378 I 2700 Bottom of Beam I 0.0001 0 I 2700 * Tensile stress limit given is the modulus of rupture of the concrete. Beyond this limit crack control is required. Engineer: Company: File: Floor spandrel 5.1 3 of 6 Tue Mar 20 11:06:50 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.1.5 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING 1 I Bottom I Top of 1 1 I of Beam 1 Beam 1 1 dc 1 2.00 1 0.00 1 in Concrete cover to center of steel closest to tension face 1 cc 1.56 1 0.00 1 in Clear concrete cover to steel closest to tension face 1 fs 1 32.5 1 0.0 1 ksi Steel stress nearest to tension face (after decompression) for crack control 1 Max spacing 1 14.58 1 0.00 1 in Maximum centre-to-centre spacing of steel closest to tension face to control cracking CRACK WIDTH ESTIMATE Crack width estimates are only approximations based on idealized behaviour and average crack spacing. These estimates only represent a level of cracking and should only be used in comparison with appropriate limits such as those given below. It would not be appropriate to compare these estimates to measured crack widths. Bottom Top of of Beam Beam Cracked? Yes No Cracking at 12.500 0.000 ft Location of maximum crack width from left end of beam Ms 432.80 0.00 kip.ft External service moment (DL + LL) Pdc 0.00 0.00 kip Prestress force at cracked centroid Mint 432.80 0.00 kip.ft Internal moment about cracked centroid c 14.06 0.00 in Concrete depth in compression Steel type Rebar Rebar Type of steel in tension Method Gergely-Lutz Gergely-Lutz Crack width estimate equation used * kl 75.842E-6 0.00 inA2/Kip Coefficient dependent on steel type kb 1.00 0.00 Adjustment coefficient for prestressing steel h2/h1 1.03 0.00 Ratio of depth in tension to depth of steel from NA Act 154.5 0.0 inA2 Area of concrete in tension centered on crack control steel A 38.3 0.0 inA2 Area of concrete in tension around each bar/strand fs 32.5 0.0 ksi Stress in steel nearest to tension face (after decompression) for crack width Est Crack Widthl 0.011 0.000 in Estimated maximum crack width fc -1191 0 psi Maximum concrete compressive stress - opposite face to cracking limit -3600 -3600 psi Allowable concrete compressive stress Recommended Crack Width (in) - Maximum Limits (from PCI Design Handbook, 5th edition) 1 1 Critical 1 Prestressed 1 Reinforced 1 1 1 Appearance 1 Concrete 1 Concrete 1 lExterior Exposure 1 0.0071 0.0101 0.0131 11nterior Exposure 1 0.0101 0.0121 0.0161 * Gergely & Lutz equation: w = kl x fs x h2 / hl x CubicRoot(dc * A) DEFLECTION ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) I Net Deflection Change in Deflection LocationI Net @ Net @ Net DL Net Total DL growth LL Span/Deflection x I Erection Completion @ Final @ Final + LL alone DL growth LL ft I in in in in in in + LL alone Column I B C D E E - C E - D L / (E-C) L / (E-D)1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 1.500 0.000 -0.007 -0.010 -0.011 -0.004 0.000 72493 316832 4.000 -0.003 -0.017 -0.025 -0.028 -0.011 -0.002 28335 123838 6.500 -0.004 -0.026 -0.038 -0.042 -0.016 -0.004 18830 82300 9.000 -0.005 -0.032 -0.047 -0.051 -0.020 -0.005 15239 66604 11.500 -0.005 -0.035 -0.051 -0.056 -0.022 -0.005 13931 60887 12.500 -0.005 -0.035 -0.052 -0.057 -0.022 -0.005 13824 60419 13.5001 -0.005 -0.035 -0.051 -0.056 -0.022 -0.005 13931 60887 14.000 -0.005 -0.034 -0.051 -0.056 -0.021 -0.005 14066 61479 16.000 -0.005 -0.032 -0.047 -0.051 -0.020 -0.005 15239 66604 18.500 -0.004 -0.026 -0.038 -0.042 -0.016 -0.004 18830 82300 21.000 -0.003 -0.017 -0.025 -0.028 -0.011 -0.002 28335 123838 23.500 0.000 -0.007 -0.010 -0.011 -0.004 0.000 72493 316832 25.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 Col. B: Net deflection at erection includes all dead loads applied before the cast-in-place pour plus long-time deflection growth of the beam weight up to erection. Col. C: Net deflection at completion of construction includes all dead loads plus long-time deflection growth of the dead load up to completion. Col. D: Net DL deflection at final includes all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes all dead loads, and all live loads, plus long-time deflection growth. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments Engineer: Company: File: Floor spandrel 5.1 4 of 6 Tue Mar 20 11:06:50 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 5.1.6 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 B. unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation change in Rotation SupportI Net @ I Net @ I Net DL I Net Total DL growth I LL Location' Erection I Completion I @ Final I @ Final + LL I alone I degrees I degrees I degrees I degrees degrees I degrees Column I B I C I D I E E - C I E - D Left I 0.0032 I 0.0213 I 0.0316 I 0.0346 0.0133 I 0.0030 Right I -0.0032 I -0.0213 I -0.0316 I -0.0346 -0.0133 I -0.0030 C. unrestrained Longitudinal Change of Length Due to Creep and Shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = 0.0000 in I Total Chane of Length I Difference in Change I I Erection 'Completion] Final I I to Compl.1 to Final I to Final I I in I in I in I I in I in I in I I B I c I D I I C - B I D - C I D - B I Creep I 0.00001 0.00001 0.00001 1 0.00001 0.00001 0.00001 shrink.' -0.03381 -0.06591 -0.11961 I -0.03211 -0.05371 -0.08581 1 Total I -0.03381 -0.06591 -0.11961 I -0.03211 -0.05371 -0.08581 FLEXURAL DESIGN CHECK Design Code used: ACI 318-14 concrete compressive stress-strain model used: PCA Parabola-Rectangle curve Modulus of Rupture of Precast concrete, fr = 581 psi (tension) 1 Factored Design Cracking Minimum Depth in Net TensileI Flexural 0 I warnings I Moment Strength Moment Required Compression' Strain IClassication I & Notes x I Mu 0Mn Mcr strength c I I ft I kip.ft kip.ft kip.ft kip.ft in I I 0.000 0.00 0.74 638.97 0.00 14.08 0.0000ITension 0.90 3' 1.500 125.91 454.14 657.24 167.88 14.36 0.0013ITension 0.90 3' 4.000 300.04 781.90 663.51 400.06 4.21 0.0512ITension 0.90 6.500 429.52 781.90 663.51 572.70 4.21 0.0512ITension 0.90 9.000 514.36 781.90 663.51 685.81 4.21 0.0512ITension 0.90 11.500 554.54 781.90 663.51 739.39 4.21 0.0512ITension 0.90 12.500 558.11 781.90 663.51 744.15 4.21 0.0512ITension 0.90 13.5001 554.54 781.90 663.51 739.39 4.21 0.0512ITension 0.90 14.000 550.08 781.90 663.51 733.44 4.21 0.0512ITension 0.90 16.000 514.36 781.90 663.51 685.81 4.21 0.0512ITension 0.90 18.500 429.52 781.90 663.51 572.70 4.21 0.0512ITension 0.90 21.000 300.04 781.90 663.51 400.06 4.21 0.0512ITension 0.90 23.500 125.91 454.14 657.24 167.88 14.36 0.0013ITension 0.90 31 25.000 0.00 0.74 638.97 0.00 14.08 0.0000ITension 0.90 31 Points of Maximum and Minimum Factored Moment I 12.5001 558.11 I 781.90 I 663.51 I 744.15 I 4.21 I 0.0512ITension I 0.901 I I 0.0001 0.00 I -0.03 I 509.40 I 0.00 I 2.08 I 0.0000ITension 10.901 31 Points of Maximum Ratio of Factored Moment to Design strength I 12.5001 558.11 I 781.90 I 663.51 I 744.15 I 4.21 I 0.0512ITension I 0.901 I I 0.0001 0.00 I -0.03 I 509.40 I 0.00 I 2.08 I 0.0000ITension 10.901 31 Points of Maximum Ratio of Minimum strength to Design strength I 12.5001 558.11 I 781.90 I 663.51 I 744.15 I 4.21 I 0.0512ITension I 0.901 I I 0.0001 0.00 I -0.03 I 509.40 I 0.00 I 2.08 I 0.0000ITension 10.901 31 warnings & Notes 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code used: ACI 318-14 I Design Prestress Concrete Strength Provided Min. strength Req'd warnings I Shear Component Strength Stirrups Total Stirrups Total & Notes x I Vu vp 0vc Ovs Ovn Ovs Ovn ft I kip kip kip kip kip kip kip 0.0001 43.67 0.00 30.51 0.00 30.51 13.17 43.67 B 1 3 1.5001 43.67 0.00 30.74 0.00 30.74 12.93 43.67 B 1 3 4.0001 43.67 0.00 30.80 0.00 30.80 12.88 43.67 B 1 3 6.5001 42.86 0.00 30.68 0.00 30.68 12.18 42.86 B 1 9.0001 25.00 0.00 30.59 0.00 30.59 24.79 55.38 1 11.5001 7.14 0.00 73.33 0.00 73.33 0.00 73.33 12.5001 0.00 0.00 72.97 0.00 72.97 0.00 72.97 12.5001 0.00 0.00 -72.97 0.00 -72.97 0.00 -72.97 13.5001 -7.14 0.00 -73.33 0.00 -73.33 0.00 -73.33 14.0001 -10.72 0.00 -73.51 0.00 -73.51 0.00 -73.51 16.0001 -25.00 0.00 -30.59 0.00 -30.59 -24.79 -55.38 1 Engineer: Company: File: Floor spandrel 5.1 5 of 6 Tue Mar 20 11:06:50 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.1.7 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: I 18.5001 -42.86 I 0.00 I -30.68 I 0.00 I -30.68 I -12.18 I -42.86 I B 1 I I 21.0001 -43.67 I 0.00 1 -30.80 1 0.00 I -30.80 1 -12.88 1 -43.67 I B 1 3 1 I 23.5001 -43.67 I 0.00 1 -30.74 1 0.00 I -30.74 1 -12.93 1 -43.67 I B 1 3 1 I 25.0001 -43.67 I 0.00 1 -30.51 1 0.00 I -30.51 1 -13.17 1 -43.67 I B 1 3 1 Warnings & Notes B - WARNING, the factored design shear, vu, is greater than the shear strength, OVn, provided [ACI 318-14::7.5.1.1/9.5.1.1]. 1 - Note, transverse shear or torsion steel is required. See the Shear/Torsion Transvese Reinforcing Design Check report. 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, the PCI recommended Zia/Hsu method was used to calculate the above shear design check results. TORSION DESIGN CHECK Design Code used: ACI 318-14 (with the Zia-Hsu torsion method) I Design Threshold Maximum Shear/Torsion Limits Concrete Torsion Strength Warnings 1 Torsion Torsion Max. ShearlShear Load Max. Tors.ITors. Load Strength Provided Required & Notes x I Tu Tu(min) OVn(max) Vu corr Tu OTn(max) Tu corr Vu OTc OTn OTn ft 1 kip.ft kip.ft kip kip kip.ft kip.ft kip.ft kip.ft kip.ft 0.000 31.84 15.29 153.83 43.67 112.16 31.84 22.24 22.24 31.84 1 1.500 31.84 15.29 153.83 43.67 112.16 31.84 22.41 22.41 31.84 1 4.000 31.84 15.29 153.77 43.67 112.11 31.84 22.45 22.45 31.84 1 6.500 31.25 15.29 153.77 42.86 112.11 31.25 22.37 22.37 31.25 9.0001 18.23 15.29 153.77 25.00 112.11 18.23 22.30 22.30 22.30 11.500 5.21 15.29 0.00 7.14 0.00 5.21 0.00 0.00 0.00 12.500 0.00 15.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.5001 -5.21 -15.29 0.00 -7.14 0.00 -5.21 0.00 0.00 0.00 14.000 -7.81 -15.29 0.00 -10.72 0.00 -7.81 0.00 0.00 0.00 16.000 -18.23 -15.29 -153.77 -25.00 -112.11 -18.23 -22.30 -22.30 -22.30 18.500 -31.25 -15.29 -153.77 -42.86 -112.11 -31.25 -22.37 -22.37 -31.25 21.000 -31.84 -15.29 -153.77 -43.67 -112.11 -31.84 -22.45 -22.45 -31.84 1 23.500 -31.84 -15.29 -153.83 -43.67 -112.16 -31.84 -22.41 -22.41 -31.84 1 25.000 -31.84 -15.29 -153.83 -43.67 -112.16 -31.84 -22.24 -22.24 -31.84 1 Warnings & Notes 1 - Note, design torsion force at critical section near support used as a minimum [ACI 318-14::9.4.4.2/3]. Note, the PCI recommended Zia/Hsu method was used to calculate the above torsion design check results SHEAR/TORSION TRANSVERSE REINFORCING DESIGN CHECK (12)#5,As= 12 x 0.31 in2 Design Code Used: ACI 318-14 =3.72in2 (with the zia-Hsu torsion method) 1 Shear Steel Required Shear Steel Stirrup Stirrup Spacing Additions Long. Steel Warnings I Total Torsion* Provided Provided Provided Max. Allow) for T Sion, Al & Notes x I (Av+2At)/s At/s Av/s Av+2At s s Total Reduction** ft 1 inA2/ft inA2/ft inA2/ft inA2 in in inA2 inA2 0.000 0.14 0.05 0.00 0.40 0.00 12.00 2.95 0.00 4 5 1.500 0.14 0.04 0.00 0.40 0.00 12.00 2.96 0.00 4 5 4.000 0.14 0.04 0.00 0.40 0.00 12.00 2.96 0.00 4 5 6.500 0.13 0.04 0.00 0.40 0.00 12.00 2.96 0.00 5 9.000 0.09 0.00 0.00 0.40 0.00 12.00 2.96 0.00 1 5 11.500 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 12.500 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 12.500 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 13.5001 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 14.000 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 16.000 0.09 0.00 0.00 0.40 0.00 12.00 2.96 0.00 1 5 18.500 0.13 0.04 0.00 0.40 0.00 12.00 2.96 0.00 5 21.000 0.14 0.04 0.00 0.40 0.00 12.00 2.96 0.00 4 5 23.500 0.14 0.04 0.00 0.40 0.00 12.00 2.96 0.00 4 5 25.000 0.14 0.05 0.00 0.40 0.00 12.00 2.95 0.00 4 5 Warnings & Notes 1 - Note, amount of shear steel required represents minimum code requirements [ACI 318-14::9.6.3.3]. 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: Floor spandrel 5.1 6 of 6 Tue Mar 20 11:06:50 2018 CD DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION .; SUBMITTAL A oE FOR APPROVAL- NOT FOR CONSTRUCTION E D 2 9" solid spandrel �' vr _ _ f'ci = 3500 psi 6 .:: f'c = 6000 psi o TD T.cir <.. Hard Rock concrete o -- D 0 Ill 0L-t. li, 0. II5 O U El U I - _ M 0 I > I C II0 Cs .12 II o N. ( 2'N'''' tm e r%� J U h cm it o N ; st LO it g 8 i — El I I I JDBp „I, JD8 .�0 l : II e I li I I ..."---...„...1 l's i\ a = II - II I a a 88 = I _c 11 III e o II o U .... 6 . . r II Lo I*, . g El g I =I a v7 'I K 1CD I 113 CV I . . ,...-e.s i ;! HI . b elY8321S# 13 „Z „ib „ o eq -�� -- - it ` `" N y c� •i - 9'x 7'-1" roof spandrel 0 CV z RED SANDSTONE w o 6209 co o o = 5TRE55CON Z flk o , � Q w 5.2 o LL Architectural and Structural Precast Concrete o An ENCoN Company u SHEET 1 OF 1 D- Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.2.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Design Code Used: ACI 318-14 Wheel load @ midspan NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4 in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S5: Use the Zia/Hsu Method for torsion design as recommended in the PCI Standard Practice guidelines (ACI Codes Only) ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Concrete Density Wt = 150 lb/ftA3 Compressive Strength f'c = 6000.0 psi Modulus of Elasticity Ec = 4.688E+6 psi Strength at Transfer f'c = 3000.0 psi Modulus of Elast. at Transfer Ec = 3.315E+6 psi Strength at Lifting f'c = 3000.0 psi Modulus of Elast. at Lifting Ec = 3.315E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset I INo1 From I To I Length I Folder I Section I Section I Z I Y I I ft I ft I ft I Name I Name I Type I in I in I 111 0.0001 24.8801 24.8801 L-Shaped I 8_5LB85 I Ledger Beam I 0.001 0.001 * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 24.880 ft, Centre of Supports, Left @ 0.000 ft, Right @ 24.880 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 24.880 ft Loop Height = 0.00 ft Span Length in Service = 24.880 ft, Centre of Supports, Left @ 0.000 ft, Right @ 24.880 ft Total Beam Length = 24.880 ft, Bearing Length, Left = 6.00 in, Right = 6.00 in First flexural frequency of beam is approximately 0.79 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties I SectionI SectionI Shear (volume /1 Section Moduli I I No.1 A I I I yb I Height I Width I Width I Surface) Sb I St I I I inA2 I inA4 I in I in I in I in I in I inA3 I inA3 I I 11 834.5 1 559039 I 37.741 85.001 16.501 8.501 4.111 -14813 I 11829 1 UNCRACKED SECTION PROPERTIES SUMMARY I Net Precast Section I Transformed Precast Section I Transformed Precast Section I I at Transfer (based on Eci) I at Transfer (based on Eci) I in Service (based on Ec) I I(include rebar,deduct strand)( (include rebar and strand) I (include rebar and strand) I x I A I yb I A I yb I A I yb ft I inA2 inA4 in I inA2 inA4 in I inA2 inA4 in I 0.0001 834.2 558757 37.75 834.5 559068 37.74 834.5 559058 37.74 1.493 848.6 575174 37.17 850.8 577240 37.09 845.4 571298 37.311 3.981 857.4 585024 36.83 860.1 587571 36.73 851.6 578325 37.06 6.469 857.4 585024 36.83 860.1 587571 36.73 851.6 578325 37.06 8.459 857.4 585024 36.83 860.1 587571 36.73 851.6 578325 37.06 10.947 857.4 585024 36.83 860.1 587571 36.73 851.6 578325 37.06 12.440 857.4 585024 36.83 860.1 587571 36.73 851.6 578325 37.06 13.4351 857.4 585024 36.83 860.1 587571 36.73 851.6 578325 37.06 13.9331 857.4 585024 36.83 860.1 587571 36.73 851.6 578325 37.06 16.4211 857.4 585024 36.83 860.1 587571 36.73 851.6 578325 37.06 18.4111 857.4 585024 36.83 860.1 587571 36.73 851.6 578325 37.06 20.8991 857.4 585024 36.83 860.1 587571 36.73 851.6 578325 37.06 23.3871 848.6 575174 37.17 850.8 577240 37.09 845.4 571298 37.311 24.8801 834.2 558757 37.75 834.5 559068 37.74 834.5 559058 37.74 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. Engineer: Company: File: Roof spandrel 5.2 1 of 6 Fri Mar 23 04:43:27 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.2.3 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: PRESTRESSING STEEL TENDONS I I I I I I Offsets 'End Offset & Typel Tendon I Jacking Force I 'IDlQtyl Grade 'Type' Strand Size 1 x 1 y 'Left **'Right **' Area 1 Pj I %fpul I I I ksi I * I 1 ft 1 in 1 ft 1 ft 1 inA2 1 kip I I 1 11 11 270.01 LRS' 0.5" (1/2) 1 0.0001 4.001 0.000 B1 0.000 Bl 0.153 1 26.85 1 0.651 I I I I I I 24.8801 4.001 I I I I I I 21 1' 270.01 LRS' 0.5" (1/2) 1 0.0001 8.001 0.000 B' 0.000 B1 0.153 1 26.85 I 0.651 I I I I I I 24.8801 8.001 I I I I I note: * Type = LRS - Low-Relaxation Strand, SRS - Stress-Relieved Strand, PB - Plain Bar, DB - Deformed Bar, SW - Single Wire ** End Types = B - Fully Bonded (B), D - Debonded (D), C - Cut (C), A - Anchored (A) (fully developed) Calculated Losses: Initial = 0.5%, Final = 3.9% Maximum Total Prestress Forces: Pj(jacking) = 53.70 kip, Pi(transfer) = 53.42 kip, Pe(effective) = 51.60 kip @ x = 12.440 ft, See the "Development Length" text report for details of the strand transfer and development lengths LONGITUDINAL REINFORCING STEEL Reinforcing Steel Groups IIDIQty' Steel 1 Bar I Bar 'End Location & Typel Bar I I Cross 'vertical' Offset ** I 1 I I Grade 1 Size I Area 1 From I I To 1 1 Spacing' I Spacing' Offset I Reference 1 1 I I ksi 1C=coated 1 inA2 1 ft 1 *1 ft I *1 in I I in 1 in 1 1 1 11 21 60.0 I # 9 1 2.000 1 0.00015E124.88015E1 6.001 1 - I 3.001 Bottom of Precast Beam I 1 21 11 60.0 1 # 9 I 1.000 10.00015E124.8801SE' 6.001 1 - I 5.001 Bottom of Precast Beam I * End Types: SE - Straight Embeddment, FD - Fully Developed, SH - Standard Hook, HB - Headed Bar ** Offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL 1 Shear Stirrups 1 From 1 To 1 Grade 1 Size 1 # of LegslTotal Areal Spacing I ft 1 ft I ksi 1 I I inA2 I in I 0.0001 24.8801 60.0 *I # 5 1 21 0.62 1 0.001 Interface Shear Ties 1 From 1 To 1 Grade 1 Size 1 # of LegslTotal Areal spacing 1 ft 1 ft 1 ksi 1 1 1 inA2 1 in I 0.0001 24.8801 58.0 1 15m I 01 0.00 1 0.001 * Useable steel strength limited by selected code. TORSION PARAMETERS Seg. Torsion Parameters 'No.' sum(xA2 * Y) 1 x 1 xl I yl 1 1 1 inA3 1 in 1 in I in 1 1 11 5707.00 1 8.50 1 5.50 I 76.00 1 sum(xA2 * y) is the sum of xA2 * y for all of the rectangles. x is the minimum section width. xl is the minimum width of the closed stirrups. yl is the maximum width of the closed stirrups. APPLIED LOADS 0.5/12 x 7.083'x 0.150 Load Group Stages Applied Load Details & Type & Distribution (left to right Beam Weight * Transfer to Final Service Segment #0- Vertical: 0.868 kip/f full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Weight, Cable Angle: 0 degrees Add. Beam Self-Weight Transfer to Final Service 1/2" vertical reveals- Vertical: 0.044 kip/ft full length (-0.38 D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Engineer: Company: File: Roof spandrel 5.2 2 of 6 Fri Mar 23 04:43:27 2018 summary Report 62.5x62'/2/1000 5.2.4 concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. - Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: 96.5 x 62'/2/1000 Problem: DL after CIP Pour Grouted to Final Service 96.5 psf DT- vertical: 3 kip/ft ull length (0.85 ft eccent.)I D: DL, General No Load Distribution I 5" topping, 62.5 psf- Vertical: 1.94 kip/ft full length (0.85 ft I lOpsf S.I.- vertical: 0.31 kip/ft full length (0.85 ft eccent.)I I 25 plf solar panel- vertical: 0.025 kip/ft full length (-1.88 ft I I Live Load Final Service stage only 20k left- vertical: 18 kip at 7.5 ft (0.85 ft eccent.)I L1: LL, Garage, Parking No Load Distribution I 20k right- vertical: 18 kip at 17 5 ft (0.85 ft eccent.)I I I snow Final service stage only 100 psf- vertical: 3 1 kip/ft full 1 gth (0.85 ft eccent.)I S: Snow & Ice Accretion No Load Distribution I I * indicates load groups generated automatically by Concise Beam. 1100x62'/2/1000 118k @ 10'apart LOAD COMBINATIONS Serviceability (SLS) & Fatigue (FLs) Limit state Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.0OL + 1.0OL1 + 1.00Lr + 1.00R + 1.00S + 1.00ws + 0.6OWu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr ultimate (Strength) Limit State (uLS) combinations (searched collectively to obtain envelope) 1: ULS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS combo 3 : 1.20D + 1.20F + 1.20T + 1.6OL + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: ULS Combo 5 : 1.20D + 0.50L + 1.00L1 + 1.6OLr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: ULS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: ULS Combo 8 : 1.20D + 1.6OLr + 0.80ws + 0.50wu 9: ULS Combo 9 : 1.20D + 1.60S + 0.80ws + 0.50wu 10: ULS Combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: ULS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60ws + 1.00wu 12: uLS combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60ws + 1.00wu 13: ULS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60ws + 1.00wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: uLS combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60ws + 1.00wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Station SLS (stress) Load combination uLS Load Envelopes I Moment Moment shear Moment Torsion x I Sustained Total Load Total Load Govern. Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip combo.) kip.ft combo.) kip.ft combo.I I min max min max min max min max min max min max min max 0.0001 0.00 0.00 0.00 69.27 171.98 15 6 0.00 0.00 1 1 49.25 133.34 15 6 1.493 108.01 108.01 188.86 60.96 153.49 15 6 97.20 242.93 15 6 43.34 119.16 15 6 3.981 257.37 257.37 457.64 47.10 122.68 15 6 231.64 586.48 15 6 33.49 95.54 15 6 6.469 368.44 368.44 668.92 33.25 91.86 15 6 331.60 853.37 15 6 23.64 71.92 15 6 8.459 429.72 429.72 779.29 22.03 49.30 15 6 386.75 994.42 15 6 15.64 37.80 15 6 10.947 471.85 471.85 842.32 8.17 18.49 15 6 424.67 1078.54 15 6 5.79 14.17 15 6 12.440 478.75 478.75 852.53 -0.14 0.00 2 1 430.87 1092.20 15 6 -0.12 0.00 2 1 13.4351 475.68 475.68 847.85 -12.41 -5.54 6 15 428.11 1085.99 15 6 -9.52 -3.94 6 15 13.9331 471.85 471.85 842.06 -18.57 -8.31 6 15 424.67 1078.28 15 6 -14.25 -5.91 6 15 16.4211 429.72 429.72 778.60 -49.39 -22.17 6 15 386.75 993.73 15 6 -37.87 -15.76 6 15 18.4111 368.44 368.44 670.05 -92.04 -33.25 6 15 331.60 854.50 15 6 -72.07 -23.64 6 15 20.8991 257.37 257.37 458.33 -122.85 -47.10 6 15 231.64 587.17 15 6 -95.69 -33.49 6 15 23.3871 108.01 108.01 189.12 -153.66 -60.96 6 15 97.20 243.19 15 6 -119.31 -43.34 6 15 24.8801 0.00 0.00 0.00 -172.15 -69.27 6 15 0.00 0.00 1 1 -133.49 -49.25 6 15 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) Unfactored Load Group Effects I Initial Lifting Truck Transport Erection Lifting In Service Load I Left Right Left Right Left Right Left Right Group I vertical Vertical Vertical Vertical Vertical Vertical Vertical[*] Torsion[*] Vertical[*]I Torsion[*] I kip kip.ft kip kip.ft kip kip.ft kip kip.ft kip kip.ft Beam weight) 10.80 10.80 10.80 10.80 10.80 10.80 10.80 0.00 10.80 0.00 Add. Beam SI 0.55 0.55 0.55 0.55 0.55 0.55 0.55 -0.21 0.55 -0.21 DL after CII 65.62 54.93 65.62 54.93 Live Load I 17.91 15.23 18.09 15.37 Snow I 38.56 32.78 38.56 32.78 Load Envelope Effects SLS DL 1 76.97 I 54.72 I 76.97 I 54.72 I SLS Sustain) 76.97 I 54.72 I 76.97 I 54.72 I sLs minimum' 11.35 11.35 11.35 11.35 11.35 11.35 76.97 I 54.72 I 76.97 I 54.72 I SLS Maximum) 11.35 11.35 11.35 11.35 11.35 11.35 133.45 I 102.73 I 133.62 I 102.87 I ULS Minimum' 69.27 [1511 49.25 [1511 69.27 [1511 49.25 [1511 uLs maximum' 171.98 [ 6]I 133.34 [ 6]I 172.15 [ 6]I 133.49 [ 6]I * Governing uLS Load combination (below) Engineer: Company: File: Roof spandrel 5.2 3 of 6 Fri Mar 23 04:43:27 2018 summary Report 5.2.5 concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) I x I Stress 1 Limit 1 Overstress Location I ft I psi 1 psi 1 Notice STRESSES AT TRANSFER Critical Compression Top of Beam I 0.0001 0 1 2100 1 0% Bottom of Beam I 4.9761 132 1 1800 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam 1 4.9761 -29 1 -164 1 0% Bottom of Beam I 0.0001 0 1 -329 1 0% STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam I 0.0001 0 1 2100 1 0% Bottom of Beam I 4.9761 132 1 1800 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam 1 4.9761 -29 1 -164 1 0% Bottom of Beam I 0.0001 0 1 -329 1 0% STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam I 0.0001 0 1 4200 1 0% Bottom of Beam I 4.9761 132 1 3600 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam 1 4.9761 -29 1 -232 1 0% Bottom of Beam I 0.0001 0 1 -465 1 0% STRESSES IN SERVICE Critical compression Top of Beam I 12.4401 777 1 3600 1 0% Bottom of Beam I 22.8901 29 1 3600 1 0% critical Tension Top of Beam I 0.0001 0 1 -930 1* 0% Class u member - not cracked Bottom of Beam I 12.4401 -494 1 -930 1* 0% Class u member - not cracked STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 12.4401 405 1 2700 I 0% Bottom of Beam I 22.8901 29 1 2700 I 0% * Tensile stress limit given is for Class T (controlled cracking). Beyond this limit crack control is required. At Transfer During Lifting In Service Modulus of Rupture, fr = -411 psi -411 psi -581 psi Strength Required for Transfer, f'ci = 219.9 psi (f'c specified = 3000.0 psi) Strength Required for Initial Lifting, f'c = 219.9 psi (f'c assumed = 3000.0 psi) CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING 1 I Bottom I Top of 1 1 I of Beam I Beam I 1 dc 1 0.00 I 0.00 I in Concrete cover to center of steel closest to tension face I cc I 0.00 I 0.00 I in Clear concrete cover to steel closest to tension face I fs I 0.0 I 0.0 I ksi Steel stress nearest to tension face (after decompression) for crack control I Max spacing I 0.00 I 0.00 I in Maximum centre-to-centre spacing of steel closest to tension face to control cracking Beam not cracked, cracking is controlled, or crack depth is less than concrete cover. DEFLECTION ESTIMATE AT ALL STAGES Design Code used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) I Net Deflection Change in Deflection LocationI Net @ Net @ Net @ Net DL Net Total DL growth LL Span/Deflection x I Transfer Erection Completion @ Final @ Final + LL alone DL growth LL ft I in in in in in in in + LL alone Column I A B C D E E - C E - D L / (E-C) L / (E-D)I 0.0001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 1.493 0.001 0.001 -0.002 -0.004 -0.005 -0.004 -0.001 83739 270609 3.981 0.003 0.003 -0.005 -0.011 -0.014 -0.009 -0.003 32658 105156 6.469 0.004 0.005 -0.008 -0.017 -0.021 -0.014 -0.004 21661 69534 8.459 0.005 0.005 -0.009 -0.021 -0.026 -0.017 -0.005 18087 58105 10.947 0.005 0.006 -0.011 -0.023 -0.029 -0.018 -0.006 16199 52191 12.440 0.005 0.006 -0.011 -0.024 -0.030 -0.019 -0.006 15924 51335 13.4351 0.005 0.006 -0.011 -0.024 -0.029 -0.019 -0.006 16045 51709 13.9331 0.005 0.006 -0.011 -0.023 -0.029 -0.018 -0.006 16199 52186 16.4211 0.005 0.005 -0.009 -0.021 -0.026 -0.017 -0.005 18084 58075 18.4111 0.004 0.005 -0.008 -0.017 -0.021 -0.014 -0.004 21654 69456 20.8991 0.003 0.003 -0.005 -0.011 -0.014 -0.009 -0.003 32639 104958 Engineer: Company: File: Roof spandrel 5.2 4 of 6 Fri Mar 23 04:43:27 2018 summary Report 5.2.6 concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: I 23.3871 0.001 I 0.001 I -0.002 I -0.004 I -0.005 I -0.004 I -0.001 I 83664 I 269825 I I 24.8801 0.000 I 0.000 I 0.000 I 0.000 I 0.000 I 0.000 I 0.000 I 0 I 0 I col. A: Net deflection at transfer includes prestressing and beam weight on temporary supports. Col. B: Net deflection at erection includes prestressing and all dead loads applied before the cast-in-place pour plus long-time deflection growth of the prestressing and beam weight up to erection col. c: Net deflection at completion of construction includes prestressing and all dead loads plus long-time deflection growth of the prestressing and dead load up to completion Col. D: Net DL deflection at final includes prestressing, all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes prestressing, all dead loads, and all live loads, plus long-time deflection growth. Deflection growth is estimated by use of the PCI suggested multipliers - see the Deflection Multipliers report. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design code used: ACI 318-14 B. unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation change in Rotation SupportI Net @ I Net @ I Net @ I Net DL I Net Total DL growth I LL Location' Transfer I Erection I Completion I @ Final I @ Final + LL I alone I degrees I degrees I degrees I degrees I degrees degrees I degrees Column I A I B I C I D I E E - C I E - D Left I -0.0041 I -0.0044 I 0.0057 I 0.0136 I 0.0172 0.0115 I 0.0035 Right I 0.0041 I 0.0044 I -0.0057 I -0.0136 I -0.0172 -0.0115 I -0.0036 C. unrestrained Longitudinal Change of Length Due to Creep and shrinkage (-ve = shortening, +ve = elongation) Elastic shortening = -0.0051 in I I Total Change of Length (after elastic shortening) I Difference in change I I I I Erection 'Completion' Final I I to Comp1.1 to Final I to Final I I I I in I in I in I I in I in I in I I I I B I C 1 D I I C - B I D - C I D - B I I Creep I I -0.00191 -0.00341 -0.00731 1 -0.00151 -0.00391 -0.00541 I Shrink.) I -0.03581 -0.06891 -0.12211 I -0.03321 -0.05321 -0.08641 I Total I I -0.03771 -0.07241 -0.12951 I -0.03471 -0.05711 -0.09181 FLEXURAL DESIGN CHECK Design Code used: ACI 318-14 concrete compressive stress-strain model used: PCA Parabola-Rectangle Curve Modulus of Rupture of Precast Concrete, fr = 581 psi (tension) I Factored Design Cracking Minimum Depth in Net TensileI Flexural 0 I warnings I I Moment Strength Moment Required Compression' Strain IClassication I & Notes I x I Mu 0Mn Mcr Strength c I I 1 ft I kip.ft kip.ft kip.ft kip.ft in I I 1 0.0001 0.00 1.27 717.38 0.00 18.63 0.0000ITension 0.87 31 1.493 242.93 738.06 875.93 1051.11 19.42 0.0012ITension 0.86 B 31 3.981 586.48 1381.32 962.58 1155.10 7.45 0.0300ITension 0.88 6.469 853.37 1520.35 964.16 1156.99 7.96 0.0279ITension 0.90 8.459 994.42 1522.17 965.03 1158.04 7.96 0.0279ITension 0.90 10.947 1078.54 1522.17 965.63 1158.75 7.96 0.0279ITension 0.90 12.440 1092.20 1522.17 965.73 1158.87 7.96 0.0279ITension 0.90 13.4351 1085.99 1522.17 965.68 1158.82 7.96 0.0279ITension 0.90 13.9331 1078.28 1522.17 965.63 1158.75 7.96 0.0279ITension 0.90 16.4211 993.73 1522.17 965.03 1158.04 7.96 0.0279ITension 0.90 18.4111 854.50 1520.35 964.16 1156.99 7.96 0.0279ITension 0.90 20.8991 587.17 1381.32 962.58 1155.10 7.45 0.0300ITension 0.88 23.3871 243.19 738.06 875.93 1051.11 19.42 0.0012ITension 0.86 B 31 24.8801 0.00 1.27 717.38 0.00 18.63 0.0000ITension 0.87 31 Points of Maximum and Minimum Factored Moment I 12.4401 1092.20 I 1522.17 1 965.73 I 1158.87 1 7.96 I 0.0279ITension 1 0.901 I I 0.0001 0.00 I -0.04 I 572.61 I 0.00 I 2.25 I 0.0000ITension 10.851 31 Points of Maximum Ratio of Factored Moment to Design Strength I 12.4401 1092.20 I 1522.17 1 965.73 I 1158.87 I 7.96 I 0.0279ITension 1 0.901 I I 0.0001 0.00 I -0.04 I 572.61 I 0.00 I 2.25 I 0.0000ITension 10.851 31 Points of Maximum Ratio of Minimum Strength to Design Strength I 24.3821 84.13 I 246.89 I 770.66 I 924.80 I 19.08 I 0.0004ITension 1 0.861 B 31 I 0.0001 0.00 I -0.04 I 572.61 I 0.00 I 2.25 I 0.0000ITension 10.851 31 warnings & Notes B - WARNING, 0Mn < 1.2Mcr and 0Mn < 2.OMu, minimum reinforcement requirement not met [ACI 318-14::7.6.2/9.6.2]. 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code used: ACI 318-14 Engineer: Company: File: Roof spandrel 5.2 5 of 6 Fri Mar 23 04:43:27 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.2.7 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 1 Design Prestress Concrete Strength Provided Min. Strength Req'd Warnings I Shear Component Strength Stirrups Total Stirrups Total & Notes x I Vu Vp 0Vc 0Vs 0Vn 0Vs 0Vn ft 1 kip kip kip kip kip kip kip 0.0001 125.02 0.00 27.80 0.00 27.80 97.22 125.02 B 1 3 1.493 125.02 0.00 29.95 0.00 29.95 95.07 125.02 B 1 3 3.981 122.68 0.00 31.05 0.00 31.05 91.63 122.68 B 1 6.469 91.86 0.00 29.81 0.00 29.81 62.06 91.86 B 1 8.459 49.30 0.00 29.16 0.00 29.16 20.14 49.30 B 1 10.947 18.49 0.00 67.66 0.00 67.66 0.00 67.66 12.440 -0.14 0.00 -67.66 0.00 -67.66 0.00 -67.66 13.4351 -12.41 0.00 -67.66 0.00 -67.66 0.00 -67.66 13.9331 -18.57 0.00 -67.66 0.00 -67.66 0.00 -67.66 16.4211 -49.39 0.00 -29.16 0.00 -29.16 -20.23 -49.39 B 1 18.4111 -92.04 0.00 -29.81 0.00 -29.81 -62.23 -92.04 B 1 20.8991 -122.85 0.00 -31.04 0.00 -31.04 -91.81 -122.85 B 1 23.3871 -125.19 0.00 -29.95 0.00 -29.95 -95.25 -125.19 B 1 3 24.8801 -125.19 0.00 -27.79 0.00 -27.79 -97.40 -125.19 B 1 3 Warnings & Notes B - WARNING, the factored design shear, Vu, is greater than the shear strength, OVn, provided [ACI 318-14::7.5.1.1/9.5.1.1]. 1 - Note, transverse shear or torsion steel is required. See the Shear/Torsion Transvese Reinforcing Design Check report. 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, the PCI recommended Zia/Hsu method was used to calculate the above shear design check results. TORSION DESIGN CHECK Design Code Used: ACI 318-14 (with the Zia-Hsu torsion method) I Design Threshold Maximum Shear/Torsion Limits Concrete Torsion Strength Warnings 1 Torsion Torsion Max. SheariShear Load Max. Tors.ITors. Load Strength Provided Required & Notes x I Tu Tu(min) 0Vn(max) Vu corr Tu 0Tn(max) Tu corr Vu OTC 0Tn 0Tn ft 1 kip.ft kip.ft kip kip kip.ft kip.ft kip.ft kip.ft kip.ft 0.0001 97.34 13.82 133.75 125.02 104.13 97.34 21.64 21.64 97.34 1 1.493 97.34 14.25 136.82 125.02 106.53 97.34 23.32 23.32 97.34 1 3.981 95.54 14.48 138.32 122.68 107.73 95.54 24.18 24.18 95.54 6.469 71.92 14.48 137.69 91.86 107.79 71.92 23.34 23.34 71.92 8.459 37.80 14.48 140.26 49.30 107.53 37.80 22.36 22.36 37.80 10.947 14.17 14.48 0.00 18.49 0.00 14.17 0.00 0.00 0.00 12.440 -0.12 -14.48 0.00 -0.14 0.00 -0.12 0.00 0.00 0.00 13.4351 -9.52 -14.48 0.00 -12.41 0.00 -9.52 0.00 0.00 0.00 13.9331 -14.25 -14.48 0.00 -18.57 0.00 -14.25 0.00 0.00 0.00 16.4211 -37.87 -14.48 -140.24 -49.39 -107.53 -37.87 -22.36 -22.36 -37.87 18.4111 -72.07 -14.48 -137.67 -92.04 -107.80 -72.07 -23.34 -23.34 -72.07 20.8991 -95.69 -14.48 -138.31 -122.85 -107.73 -95.69 -24.18 -24.18 -95.69 23.3871 -97.49 -14.25 -136.80 -125.19 -106.53 -97.49 -23.32 -23.32 -97.49 1 24.8801 -97.49 -13.82 -133.73 -125.19 -104.13 -97.49 -21.64 -21.64 -97.49 1 Warnings & Notes 1 - Note, design torsion force at critical section near support used as a minimum [ACI 318-14::9.4.4.2/3]. Note, the PCI recommended Zia/Hsu method was used to calculate the above torsion design check results SHEAR/TORSION TRANSVERSE REINFORCING DESIGN CHECK (18)#5,As= 18 x 0.31 in2 Design Code Used: ACI 318-14 =5.58in2 (with the Zia-Hsu torsion method) 1 Shear Steel Required Shear Steel Stirrup Stirrup Spacing Additions Long. Steel Warnings I Total Torsion* Provided Provided Provided Max. Allow' for T sion, Al & Notes x I (Av+2At)/s At/s Av/s Av+2At s s Total Reduction** ft 1 inA2/ft inA2/ft inA2/ft inA2 in in inA2 inA2 0.0001 1.09 0.39 0.00 0.62 0.00 6.80 5. 5 0.00 4 1.493 1.07 0.38 0.00 0.62 0.00 6.96 5.13 0.00 4 3.981 1.03 0.36 0.00 0.62 0.00 7.22 4.95 0.00 5 6.469 0.70 0.25 0.00 0.62 0.00 10.61 3.37 0.00 5 8.459 0.22 0.08 0.00 0.62 0.00 12.00 2.48 0.00 5 10.947 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 12.440 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 13.4351 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 13.9331 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 16.4211 0.23 0.08 0.00 0.62 0.00 12.00 2.47 0.00 5 18.4111 0.70 0.25 0.00 0.62 0.00 10.58 3.38 0.00 5 20.8991 1.03 0.36 0.00 0.62 0.00 7.20 4.96 0.00 5 23.3871 1.07 0.38 0.00 0.62 0.00 6.94 5.14 0.00 4 24.8801 1.10 0.39 0.00 0.62 0.00 6.79 5.26 0.00 4 Warnings & Notes 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option s8). * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: Roof spandrel 5.2 6 of 6 Fri Mar 23 04:43:27 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.2.8 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Wheel load @ end Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4 in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S5: Use the Zia/Hsu Method for torsion design as recommended in the PCI Standard Practice guidelines (ACI Codes Only) ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Concrete Density Wt = 150 lb/ftA3 Compressive Strength f'c = 5000.0 psi Modulus of Elasticity Ec = 4.279E+6 psi Strength at Transfer f'c = 3000.0 psi Modulus of Elast. at Transfer Ec = 3.315E+6 psi Strength at Lifting f'c = 3000.0 psi Modulus of Elast. at Lifting Ec = 3.315E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset I INo1 From 1 To 1 Length I Folder I Section I Section I Z I Y I I ft I ft I ft I Name I Name I Type I in I in I 111 0.0001 24.8801 24.8801 L-Shaped I 8_5LB85 I Ledger Beam I 0.001 0.001 * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 24.880 ft, Centre of Supports, Left @ 0.000 ft, Right @ 24.880 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 24.880 ft Loop Height = 0.00 ft Span Length in Service = 24.880 ft, Centre of Supports, Left @ 0.000 ft, Right @ 24.880 ft Total Beam Length = 24.880 ft, Bearing Length, Left = 6.00 in, Right = 6.00 in First flexural frequency of beam is approximately 0.76 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties I SectionI SectionI Shear (volume /1 Section Moduli I I No.1 A I I I yb I Height I Width I Width I Surface) Sb I St I I I inA2 I inA4 I in I in I in I in I in I inA3 1 inA3 I I 11 834.5 1 559039 1 37.741 85.001 16.501 8.501 4.111 -14813 I 11829 1 UNCRACKED SECTION PROPERTIES SUMMARY I Net Precast Section I Transformed Precast Section I Transformed Precast Section I I at Transfer (based on Eci) I at Transfer (based on Eci) I in Service (based on Ec) I I(include rebar,deduct strand)( (include rebar and strand) I (include rebar and strand) I x I A I yb I A I yb I A I yb ft 1 inA2 inA4 in I inA2 inA4 in I inA2 inA4 in I 0.0001 834.2 558757 37.75 834.5 559068 37.74 834.5 559061 37.74 1.4931 847.4 573763 37.22 849.5 575836 37.14 845.7 571618 37.29 3.9811 857.4 585024 36.83 860.1 587571 36.73 853.6 580472 36.98 6.2501 857.4 585024 36.83 860.1 587571 36.73 853.6 580472 36.98 8.4591 857.4 585024 36.83 860.1 587571 36.73 853.6 580472 36.98 10.9471 857.4 585024 36.83 860.1 587571 36.73 853.6 580472 36.98 11.9421 857.4 585024 36.83 860.1 587571 36.73 853.6 580472 36.98 13.4351 857.4 585024 36.83 860.1 587571 36.73 853.6 580472 36.98 13.4351 857.4 585024 36.83 860.1 587571 36.73 853.6 580472 36.98 15.9231 857.4 585024 36.83 860.1 587571 36.73 853.6 580472 36.98 18.4111 857.4 585024 36.83 860.1 587571 36.73 853.6 580472 36.98 20.8991 857.4 585024 36.83 860.1 587571 36.73 853.6 580472 36.98 23.3871 847.4 573763 37.22 849.5 575836 37.14 845.7 571618 37.29 24.8801 834.2 558757 37.75 834.5 559068 37.74 834.5 559061 37.74 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. Engineer: Company: File: Roof spandrel 5.2 wheel at end 1 of 6 Fri Mar 23 04:39:15 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.2.9 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: PRESTRESSING STEEL TENDONS I I I I I I Offsets 'End Offset & Typel Tendon I Jacking Force I 'IDlQtyl Grade 'Type' Strand Size 1 x 1 y 'Left **'Right **I Area 1 Pj I %fpul I I I ksi I * I I ft 1 in 1 ft 1 ft 1 inA2 1 kip I I 111 11 270.01 LRSI 0.5" (1/2) 1 0.0001 4.001 0.000 B1 0.000 Bl 0.153 1 26.85 1 0.651 11 1 I I 1 24.8801 4.001 I I I I I I 21 1' 270.01 LRSI 0.5" (1/2) 1 0.0001 8.001 0.000 B' 0.000 B1 0.153 1 26.85 I 0.651 I I 1 I I 1 24.8801 8.001 I I I I I note: * Type = LRS - Low-Relaxation Strand, SRS - Stress-Relieved Strand, PB - Plain Bar, DB - Deformed Bar, SW - Single Wire ** End Types = B - Fully Bonded (B), D - Debonded (D), C - Cut (C), A - Anchored (A) (fully developed) Calculated Losses: Initial = 0.5%, Final = 3.8% Maximum Total Prestress Forces: Pj(jacking) = 53.70 kip, Pi(transfer) = 53.42 kip, Pe(effective) = 51.65 kip @ x = 12.440 ft, See the "Development Length" text report for details of the strand transfer and development lengths LONGITUDINAL REINFORCING STEEL Reinforcing Steel Groups IIDIQty' Steel I Bar I Bar 'End Location & Typel Bar I I Cross 'vertical' Offset ** I 1 I I Grade I Size I Area I From I I To 1 1 Spacing' I Spacing' Offset I Reference 1 1 I I ksi IC=coated I inA2 1 ft 1 *1 ft I *1 in I I in 1 in 1 1 1 11 21 60.0 I # 9 I 2.000 10.00015E124.88015E1 6.001 1 - I 3.001 Bottom of Precast Beam I 1 21 11 60.0 1 # 9 I 1.000 10.00015E124.8801SEI 6.001 1 - I 5.001 Bottom of Precast Beam I * End Types: SE - Straight Embeddment, FD - Fully Developed, SH - Standard Hook, HB - Headed Bar ** Offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL 1 Shear Stirrups 1 From 1 To 1 Grade 1 Size 1 # of LegslTotal Areal Spacing I ft 1 ft 1 ksi 1 I I inA2 1 in I 0.0001 24.8801 60.0 *1 # 5 1 21 0.62 1 0.001 Interface Shear Ties 1 From 1 To 1 Grade I Size I # of LegslTotal Areal spacing 1 ft 1 ft 1 ksi 1 1 1 inA2 1 in I 0.0001 24.8801 58.0 I 15m 1 01 0.00 1 0.001 * Useable steel strength limited by selected code. TORSION PARAMETERS Seg. Torsion Parameters 'No.' sum(xA2 * Y) 1 x 1 xl I yl 1 1 1 inA3 1 in 1 in I in 1 I 11 5707.00 1 8.50 1 5.50 I 76.00 1 sum(xA2 * y) is the sum of xA2 * y for all of the rectangles. x is the minimum section width. xl is the minimum width of the closed stirrups. yl is the maximum width of the closed stirrups. APPLIED LOADS Load Group Stages Applied Load Details & Type & Distribution (left to right) Beam Weight * Transfer to Final Service Segment #0- Vertical: 0.868 kip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Add. Beam Self-Weight Transfer to Final Service 1/2" vertical reveals- Vertical: 0.044 kip/ft full length (-0.38 D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Engineer: Company: File: Roof spandrel 5.2 wheel at end 2 of 6 Fri Mar 23 04:39:16 2018 summary Report 5.2.10 concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: DL after GIP Pour Grouted to Final Service 96.5 psf DT- vertical: 3 kip/ft full length (0.85 ft eccent.)I D: DL, General No Load Distribution I 5" topping, 62.5 psf- Vertical: 1.94 kip/ft full length (0.85 ft I 10 psf S.I.- vertical: 0.31 kip/ft full length (0.85 ft eccent.)I I 25 plf solar panel- vertical: 0.025 kip/ft full length (-1.88 ft I I Live Load Final Service sta9e only wheel left- Vertical: 18 kip at 0 ft (0.85 ft eccent.)I L1: LL, Garage, Parking No Load Distribution I wheel right- vertical: 18 kip at 6.25 ft (0.85 ft eccent.)I I I snow Final service sta9e only 100 psf- vertical: 3.1 kip/ft full length (0.85 ft eccent.)I S: Snow & Ice Accretion No Load Distribution I I * indicates load groups generated automatically by Concise Beam. LOAD COMBINATIONS serviceability (sLs) & Fatigue (FLs) Limit state Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00ws + 0.60wu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr ultimate (Strength) Limit State (uLS) combinations (searched collectively to obtain envelope) 1: ULS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: ULS Combo 5 : 1.20D + 0.50L + 1.00L1 + 1.6OLr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.605 7: uLS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: ULS Combo 8 : 1.20D + 1.6OLr + 0.80ws + 0.50wu 9: ULS Combo 9 : 1.20D + 1.605 + 0.80ws + 0.50wu 10: ULS Combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: ULS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60ws + 1.00wu 12: ULS combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60ws + 1.00wu 13: ULS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60ws + 1.00wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: ULS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60ws + 1.00wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Station SLS (stress) Load combination ULS Load Envelopes I Moment Moment shear Moment Torsion x I Sustained Total Load Total Load Govern. Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip combo.) kip.ft combo.) kip.ft combo.I 1 min max min max min max min max min max min max min max 0.0001 0.00 0.00 0.00 69.27 167.54 15 6 0.00 0.00 1 1 49.25 129.57 15 6 1.493 108.01 108.01 182.24 60.96 149.06 15 6 97.20 236.31 15 6 43.34 115.40 15 6 3.9811 257.37 257.37 439.98 47.10 118.24 15 6 231.64 568.83 15 6 33.49 91.77 15 6 6.250 360.21 360.21 624.93 34.47 90.14 15 6 324.19 805.26 15 6 24.51 70.23 15 6 6.250 360.21 360.21 624.93 27.23 76.66 15 6 324.19 805.26 15 6 18.36 58.77 15 6 8.459 429.72 429.72 719.28 14.93 49.30 15 6 386.75 934.41 15 6 9.61 37.80 15 6 10.947 471.85 471.85 771.27 1.08 18.49 15 6 424.67 1007.49 15 6 -0.24 14.17 15 6 11.942 477.98 477.98 775.96 -4.46 6.16 15 6 430.18 1015.25 15 6 -4.18 4.72 15 6 13.4351 475.68 475.68 765.77 -16.85 -5.54 6 15 428.11 1003.90 15 6 -13.29 -3.94 6 15 13.4351 475.68 475.68 765.77 -16.85 -5.54 6 15 428.11 1003.90 15 6 -13.29 -3.94 6 15 15.9231 441.21 441.21 702.78 -47.66 -19.40 6 15 397.09 923.66 15 6 -36.91 -13.79 6 15 18.4111 368.44 368.44 582.30 -78.47 -33.25 6 15 331.60 766.75 15 6 -60.54 -23.64 6 15 20.8991 257.37 257.37 404.33 -109.29 -47.10 6 15 231.64 533.17 15 6 -84.16 -33.49 6 15 23.3871 108.01 108.01 168.87 -140.10 -60.96 6 15 97.20 222.94 15 6 -107.78 -43.34 6 15 24.8801 0.00 0.00 0.00 -158.59 -69.27 6 15 0.00 0.00 1 1 -121.96 -49.25 6 15 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) unfactored Load Group Effects I Initial Lifting Truck Transport Erection Lifting In service Load I Left Right Left Right Left Right Left Right Group I vertical Vertical Vertical Vertical Vertical Vertical Vertical[*] Torsion[*] Vertical[*]I Torsion[*] I kip kip.ft kip kip.ft kip kip.ft kip kip.ft kip kip.ft Beam weight) 10.80 10.80 10.80 10.80 10.80 10.80 10.80 0.00 10.80 0.00 Add. Beam SI 0.55 0.55 0.55 0.55 0.55 0.55 0.55 -0.21 0.55 -0.21 DL after CII 65.62 54.93 65.62 54.93 Live Load I 31.48 26.76 4.52 3.84 Snow I 38.56 32.78 38.56 32.78 Load Envelope Effects SLS DL I 76.97 I 54.72 I 76.97 I 54.72 I SLS Sustain) 76.97 I 54.72 I 76.97 I 54.72 I SLS Minimum' 11.35 11.35 11.35 11.35 11.35 11.35 76.97 I 54.72 I 76.97 I 54.72 I SLS Maximum) 11.35 11.35 11.35 11.35 11.35 11.35 147.01 I 114.26 I 120.05 I 91.34 I ULS Minimum) 69.27 [1511 49.25 [1511 69.27 [1511 49.25 [1511 ULS Maximum I 185.54 [ 6]I 144.87 [ 6]I 158.59 [ 6]I 121.96 [ 6]I * Governing uLs Load Combination (below) Engineer: use 9.13 company: File: Roof spandrel 5.2 wheel at end 3 of 6 Fri Mar 23 04:39:16 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.2.11 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) I x I Stress I Limit I Overstress Location I ft I psi I psi I Notice STRESSES AT TRANSFER Critical Compression Top of Beam I 0.0001 0 I 2100 I 0% Bottom of Beam I 4.9761 132 I 1800 I 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 4.9761 -29 I -164 I 0% Bottom of Beam 1 0.0001 0 1 -329 I 0% STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam I 0.0001 0 1 2100 I 0% Bottom of Beam I 4.9761 132 I 1800 I 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 4.9761 -29 I -164 I 0% Bottom of Beam 1 0.0001 0 I -329 I 0% STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam I 0.0001 0 I 3500 I 0% Bottom of Beam I 4.9761 131 I 3000 I 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 4.9761 -28 I -212 I 0% Bottom of Beam 1 0.0001 0 I -424 I 0% STRESSES IN SERVICE Critical Compression Top of Beam 1 11.9421 699 I 3000 1 0% Bottom of Beam 1 22.8901 30 I 3000 I 0% Critical Tension Top of Beam I 0.0001 0 I -849 1* 0% Class U member - not cracked Bottom of Beam 1 11.9421 -432 I -849 I* 0% Class U member - not cracked STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam 1 11.9421 403 I 2250 I 0% Bottom of Beam 1 22.8901 30 1 2250 I 0% * Tensile stress limit given is for Class T (controlled cracking). Beyond this limit crack control is required. At Transfer During Lifting In Service Modulus of Rupture, fr = -411 psi -411 psi -530 psi Strength Required for Transfer, f'ci = 219.9 psi (f'c specified = 3000.0 psi) Strength Required for Initial Lifting, f'c = 219.9 psi (f'c assumed = 3000.0 psi) CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING 1 I Bottom 1 Top of I 1 I of Beam 1 Beam I 1 dc I 0.00 I 0.00 1 in Concrete cover to center of steel closest to tension face 1 cc 0.00 1 0.00 I in Clear concrete cover to steel closest to tension face 1 fs I 0.0 I 0.0 1 ksi Steel stress nearest to tension face (after decompression) for crack control 1 Max spacing I 0.00 I 0.00 1 in Maximum centre-to-centre spacing of steel closest to tension face to control cracking Beam not cracked, cracking is controlled, or crack depth is less than concrete cover. DEFLECTION ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) I Net Deflection change in Deflection LocationI Net @ Net @ Net @ Net DL Net Total DL growth LL Span/Deflection x 1 Transfer Erection Completion @ Final @ Final + LL alone DL growth LL ft 1 in in in in in in in + LL alone Column I A B C D E E - C E - D L / (E-C) L / (E-D)I 0.0001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 1.4931 0.001 0.001 -0.002 -0.005 -0.005 -0.003 0.000 88744 441678 3.9811 0.003 0.003 -0.006 -0.012 -0.014 -0.009 -0.002 35097 183651 6.2501 0.004 0.004 -0.009 -0.019 -0.021 -0.012 -0.002 24083 129463 8.4591 0.005 0.005 -0.011 -0.023 -0.026 -0.015 -0.003 19751 110320 10.9471 0.005 0.006 -0.012 -0.026 -0.029 -0.017 -0.003 17863 105142 11.9421 0.005 0.006 -0.012 -0.026 -0.029 -0.017 -0.003 17661 106089 13.4351 0.005 0.006 -0.012 -0.026 -0.029 -0.017 -0.003 17866 110513 13.4351 0.005 0.006 -0.012 -0.026 -0.029 -0.017 -0.003 17866 110513 15.9231 0.005 0.005 -0.011 -0.024 -0.026 -0.015 -0.002 19712 127548 18.4111 0.004 0.005 -0.009 -0.019 -0.021 -0.012 -0.002 24543 165358 Engineer: Company: File: Roof spandrel 5.2 wheel at end 4 of 6 Fri Mar 23 04:39:16 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 5.2.12 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: I 20.8991 0.003 I 0.003 I -0.006 I -0.012 I -0.014 I -0.008 I -0.001 I 37202 I 260897 I I 23.3871 0.001 I 0.001 I -0.002 I -0.005 I -0.005 I -0.003 I 0.000 I 96497 I 736003 I I 24.8801 0.000 I 0.000 I 0.000 I 0.000 I 0.000 I 0.000 I 0.000 I 0 I 0 I Col. A: Net deflection at transfer includes prestressing and beam weight on temporary supports. Col. B: Net deflection at erection includes prestressing and all dead loads applied before the cast-in-place pour plus long-time deflection growth of the prestressing and beam weight up to erection Col. C: Net deflection at completion of construction includes prestressing and all dead loads plus long-time deflection growth of the prestressing and dead load up to completion col. D: Net DL deflection at final includes prestressing, all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes prestressing, all dead loads, and all live loads, plus long-time deflection growth. Deflection growth is estimated by use of the PCI suggested multipliers - see the Deflection Multipliers report. span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code used: ACI 318-14 B. unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation change in Rotation SupportI Net @ I Net @ I Net @ Net DL I Net Total DL growth I LL Location' Transfer I Erection I Completion I @ Final I @ Final + LL I alone I degrees I degrees I degrees I degrees I degrees degrees I degrees Column I A I B I C D 1 E E - C 1 E - D Left I -0.0041 I -0.0044 I 0.0067 I 0.0153 I 0.0176 0.0109 I 0.0023 Right I 0.0041 I 0.0044 I -0.0067 I -0.0153 1 -0.0165 -0.0099 I -0.0012 C. unrestrained Longitudinal change of Length Due to creep and Shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = -0.0051 in I I Total Change of Length (after elastic shortening) 1 Difference in Change I I I I Erection (completion' Final I I to comp1.1 to Final I to Final I I I I in I in I in I I in I in I in I I I I B I c I D I I c - B 1 D - c I D - B I 1 Creep I -0.00191 -0.00341 -0.00731 I -0.00151 -0.00391 -0.00541 I Shrink.I I -0.03581 -0.06891 -0.12211 I -0.03321 -0.05321 -0.08641 I Total I -0.03771 -0.07241 -0.12951 I -0.03471 -0.05711 -0.09181 FLEXURAL DESIGN CHECK Design Code used: ACI 318-14 concrete compressive stress-strain model used: PCA Parabola-Rectangle curve Modulus of Rupture of Precast Concrete, fr = 530 psi (tension) I Factored Design Cracking Minimum Depth in Net TensileI Flexural 0 I warnings I Moment Strength Moment Required compression' Strain Iclassication I & Notes x I Mu 0Mn Mcr strength c ft I kip.ft kip.ft kip.ft kip.ft in I I 0.0001 0.00 1.26 654.89 0.00 19.46 0.0000ITension 0.87 3 1.4931 236.31 683.08 812.49 974.99 20.40 0.0011ITension 0.86 B 3 3.9811 568.83 1371.17 901.72 1082.07 8.59 0.0256ITension 0.88 6.2501 805.26 1504.56 903.19 1083.83 9.38 0.0232ITension 0.90 8.4591 934.41 1510.22 904.18 1085.02 9.38 0.0232ITension 0.90 10.9471 1007.49 1510.22 904.79 1085.74 9.38 0.0232ITension 0.90 11.9421 1015.25 1510.22 904.87 1085.85 9.38 0.0232ITension 0.90 13.4351 1003.90 1510.22 904.84 1085.81 9.38 0.0232ITension 0.90 13.4351 1003.90 1510.22 904.84 1085.81 9.38 0.0232ITension 0.90 15.9231 923.66 1510.22 904.35 1085.22 9.38 0.0232ITension 0.90 18.4111 766.75 1508.62 903.31 1083.97 9.38 0.0232ITension 0.90 20.8991 533.17 1371.17 901.72 1082.07 8.59 0.0256ITension 0.88 23.3871 222.94 683.08 812.49 974.99 20.40 0.0011ITension 0.86 B 31 24.8801 0.00 1.26 654.89 0.00 19.46 0.0000ITension 0.87 3' Points of Maximum and Minimum Factored Moment I 11.9421 1015.25 1 1510.22 I 904.87 I 1085.85 1 9.38 I 0.0232ITension I 0.901 I I 0.0001 0.00 I -0.04 I 522.71 I 0.00 I 2.29 I 0.0000ITension 10.851 31 Points of Maximum Ratio of Factored Moment to Design strength I 11.9421 1015.25 I 1510.22 I 904.87 I 1085.85 I 9.38 I 0.0232ITension 1 0.901 I I 0.0001 0.00 I -0.04 I 522.71 I 0.00 I 2.29 I 0.0000ITension 10.851 31 Points of Maximum Ratio of Minimum strength to Design strength I 24.3821 77.38 I 228.74 I 707.75 I 849.30 I 20.07 I 0.0004ITension 1 0.861 B 31 I 0.0001 0.00 I -0.04 I 522.71 I 0.00 I 2.29 I 0.0000ITension 10.851 31 warnings & Notes B - WARNING, 0Mn < 1.2Mcr and 0Mn < 2.OMu, minimum reinforcement requirement not met [ACI 318-14::7.6.2/9.6.2]. 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Engineer: Company: File: Roof spandrel 5.2 wheel at end 5 of 6 Fri Mar 23 04:39:16 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.2.13 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: Design Code Used: ACI 318-14 1 Design Prestress Concrete Strength Provided Min. Strength Req'd warnings I Shear Component Strength Stirrups Total Stirrups Total & Notes x 1 Vu Vp 0Vc 0Vs 0Vn 0Vs 0Vn ft 1 kip kip kip kip kip kip kip 0.0001 120.58 0.00 25.46 0.00 25.46 95.13 120.58 1 3 1.493 120.58 0.00 27.82 0.00 27.82 92.76 120.58 1 3 3.9811 118.24 0.00 29.02 0.00 29.02 89.22 118.24 1 6.250 90.14 0.00 28.00 0.00 28.00 62.14 90.14 1 6.250 76.66 0.00 27.83 0.00 27.83 48.83 76.66 1 8.459 49.30 0.00 27.08 0.00 27.08 22.22 49.30 1 10.947 18.49 0.00 27.09 0.00 27.09 28.76 55.85 1 11.942 6.16 0.00 61.77 0.00 61.77 0.00 61.77 13.4351 -16.85 0.00 -61.77 0.00 -61.77 0.00 -61.77 13.4351 -16.85 0.00 -61.77 0.00 -61.77 0.00 -61.77 15.9231 -47.66 0.00 -26.86 0.00 -26.86 -20.80 -47.66 B 1 18.4111 -78.47 0.00 -28.04 0.00 -28.04 -50.44 -78.47 B 1 20.8991 -109.29 0.00 -29.24 0.00 -29.24 -80.05 -109.29 B 1 23.3871 -111.63 0.00 -28.03 0.00 -28.03 -83.60 -111.63 B 1 3 24.8801 -111.63 0.00 -25.65 0.00 -25.65 -85.98 -111.63 B 1 3 Warnings & Notes B - WARNING, the factored design shear, Vu, is greater than the shear strength, OVn, provided [ACI 318-14::7.5.1.1/9.5.1.1]. 1 - Note, transverse shear or torsion steel is required. See the Shear/Torsion Transvese Reinforcing Design check report. 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, the PCI recommended Zia/Hsu method was used to calculate the above shear design check results. TORSION DESIGN CHECK Design Code Used: ACI 318-14 (with the Zia-Hsu torsion method) I Design Threshold Maximum Shear/Torsion Limits Concrete Torsion Strength Warnings 1 Torsion Torsion Max. Shear)Shear Load Max. Tors.ITors. Load Strength Provided Required & Notes x I Tu Tu(min) OVn(max) Vu corr Tu OTn(max) Tu corr Vu OTC OTn OTn ft 1 kip.ft kip.ft kip kip kip.ft kip.ft kip.ft kip.ft kip.ft 0.0001 93.57 12.61 122.46 120.58 95.02 93.57 19.75 19.75 93.57 1 1.493 93.57 13.09 125.82 120.58 97.63 93.57 21.59 21.59 93.57 1 3.9811 91.77 13.34 127.47 118.24 98.94 91.77 22.52 22.52 91.77 6.250 70.23 13.34 127.05 90.14 98.99 70.23 21.82 21.82 70.23 6.250 58.77 13.34 128.86 76.66 98.79 58.77 21.34 21.34 58.77 8.459 37.80 13.34 128.88 49.30 98.80 37.80 20.76 20.76 37.80 10.947 14.17 13.34 128.89 18.49 98.81 14.17 20.77 20.77 20.77 11.942 4.72 13.34 0.00 6.16 0.00 4.72 0.00 0.00 0.00 13.4351 -13.29 -13.34 0.00 -16.85 0.00 -13.29 0.00 0.00 0.00 13.4351 -13.29 -13.34 0.00 -16.85 0.00 -13.29 0.00 0.00 0.00 15.9231 -36.91 -13.34 -127.73 -47.66 -98.93 -36.91 -20.80 -20.80 -36.91 18.4111 -60.54 -13.34 -128.16 -78.47 -98.87 -60.54 -21.63 -21.63 -60.54 20.8991 -84.16 -13.34 -128.35 -109.29 -98.84 -84.16 -22.52 -22.52 -84.16 23.3871 -85.96 -13.09 -126.68 -111.63 -97.54 -85.96 -21.58 -21.58 -85.96 1 24.8801 -85.96 -12.61 -123.30 -111.63 -94.94 -85.96 -19.75 -19.75 -85.96 1 Warnings & Notes 1 - Note, design torsion force at critical section near support used as a minimum [ACI 318-14::9.4.4.2/3]. Note, the PCI recommended Zia/Hsu method was used to calculate the above torsion design check results SHEAR/TORSION TRANSVERSE REINFORCING DESIGN CHECK (18)#5,As=18 x 0.31 in2 Design Code Used: ACI 318-14 =5.58412 (with the Zia-Hsu torsion method) 1 Shear Steel Required Shear Steel Stirrup Stirrup Spacing Additions Long. Steel Warnings 1 Total Torsion* Provided Provided Provided Max. Allow) for T sion, Al & Notes x 1 (Av+2At)/s At/s Av/s Av+2At s s Total Reduction** ft 1 inA2/ft inA2/ft inA2/ft inA2 in in inA2 inA2 0.0001 1.07 0.38 0.00 0.62 0.00 6.97 5.12 0.00 4 1.493 1.04 0.37 0.00 0.62 0.00 7.15 4.99 0.00 4 5 3.9811 1.00 0.35 0.00 0.62 0.00 7.43 4.80 0.00 5 6.250 0.70 0.25 0.00 0.62 0.00 10.63 3.36 0.00 5 6.250 0.54 0.19 0.00 0.62 0.00 12.00 2.60 0.00 5 8.459 0.25 0.09 0.00 0.62 0.00 12.00 2.37 0.00 5 10.947 0.10 0.00 0.00 0.62 0.00 12.00 2.89 0.00 1 5 11.942 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 13.4351 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 13.4351 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 15.9231 0.23 0.08 0.00 0.62 0.00 12.00 2.44 0.00 5 18.4111 0.56 0.20 0.00 0.62 0.00 12.00 2.70 0.00 5 20.8991 0.89 0.31 0.00 0.62 0.00 8.33 4.27 0.00 5 23.3871 0.93 0.33 0.00 0.62 0.00 7.97 4.46 0.00 4 5 24.8801 0.96 0.34 0.00 0.62 0.00 7.75 4.59 0.00 4 5 Warnings & Notes 1 - Note, amount of shear steel required represents minimum code requirements [ACI 318-14::9.6.3.3]. 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: Roof spandrel 5.2 wheel at end 6 of 6 Fri Mar 23 04:39:16 2018 shear/Torsion Reinforcing Design check Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.2.14 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: SHEAR/TORSION TRANSVERSE REINFORCING DESIGN CHECK (18)#5,As= 18 x 0.31 in2 Design Code used: ACI 318-14 =5.58 in2 (with the zia-Hsu torsion method) I Shear Steel Required Shear Steell Stirrup Stirrup Spacing Additions Long. Steell warnings I Total Torsion* Provided Provided Provided Max. Allow! for T rsion, Al & Notes x 1 (Av+2At)/s At/s Av/s Av+2At s s Total Reduction** ft I inA2/ft inA2/ft inA2/ft inA2 in in inA2 inA2 0.0001 1.06 0.38 0.00 0.62 0.00 M 7.00 5.15 0.00 4 5 0.500 1.06 0.38 0.00 0.62 0.00 9 7.03 5.11 0.00 4 5 1.4171 1.05 0.37 0.00 0.62 0.00 T. 7.11 5.03 0.00 4 5 2.000 1.04 0.37 0.00 0.62 0.00 7.16 4.98 0.00 4 5 3.000 1.03 0.37 0.00 0.62 0.00 7.20 4.96 0.00 4 5 4.000 1.01 0.36 0.00 0.62 0.00 to 7.40 4.82 0.00 5 5.000 0.87 0.31 0.00 0.62 0.00 R 8.54 4.18 0.00 5 5.000 0.87 0.31 0.00 0.62 0.00 0 8.54 4.18 0.00 5 6.000 0.74 0.26 0.00 0.62 0.00 " 10.06 3.55 0.00 5 6.500 0.52 0.18 0.00 0.62 0.00 12.00 2.48 0.00 5 7.500 0.39 0.14 0.00 0.62 0.00 12.00 1.85 0.00 5 8.500 0.25 0.09 0.00 0.62 0.00 12.00 2.36 0.00 5 9.500 0.11 0.04 0.00 0.62 0.00 12.00 2.89 0.00 5 10.5001 0.10 0.00 0.00 0.62 0.00 m 12.00 2.89 0.00 1 5 11.500 0.00 0.00 0.00 0.62 0.00 ej 24.00 0.00 0.00 12.000 0.00 0.00 0.00 0.62 0.00 8 24.00 0.00 0.00 12.500 0.00 0.00 0.00 0.62 0.00 5 24.00 0.00 0.00 13.000 0.00 0.00 0.00 0.62 0.00 m 24.00 0.00 0.00 14.000 0.10 0.00 0.00 0.62 0.00 - 12.00 2.91 0.00 1 5 15.000 0.10 0.03 0.00 0.62 0.00 12.00 2.90 0.00 5 16.000 0.23 0.08 0.00 0.62 0.00 12.00 2.43 0.00 5 17.000 0.37 0.13 0.00 0.62 0.00 12.00 1.78 0.00 5 18.000 0.50 0.18 0.00 0.62 0.00 12.00 2.40 0.00 5 19.000 0.63 0.22 0.00 0.62 0.00 11.78 3.02 0.00 5 20.0001 0.76 0.27 0.00 0.62 0.00 o 9.74 3.65 0.00 5 20.0001 0.76 0.27 0.00 0.62 0.00 9.74 3.65 0.00 5 21.0001 0.90 0.32 0.00 0.62 0.00 0 8.29 4.29 0.00 5 22.0001 0.93 0.33 0.00 0.62 0.00 8.04 4.43 0.00 4 5 23.0001 0.93 0.33 0.00 0.62 0.00 7.99 4.45 0.00 4 5 23.5831 0.94 0.33 0.00 0.62 0.00 _ 7.93 4.50 0.00 4 5 24.5001 0.95 0.34 0.00 0.62 0.00 @ 7.83 4.58 0.00 4 5 25.0001 0.96 0.34 0.00 0.62 0.00 - 7.78 4.62 0.00 4 5 warnings & Notes 1 - Note, amount of shear steel required represents minimum code requirements [ACI 318-14::9.6.3.3]. 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: Roof spandrel 5.2 wheel at end 1 of 1 Tue Mar 20 12:23:48 2018 0) DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION 13 CS SUBMITTAL A OE FOR APPROVAL- NOT FOR CONSTRUCTION E D C 9" solid spandrel °' f'ci = 3500 psi o f'c = 6000 psi a) I - - � II 4 --L� Y Hard Rock concrete O it a I I o I a Q LU _cm w CI Lo I ce O 4 aD 1(_ ___, 1 — 1l II M N r „t 1 ..fr 1 O O - — D . O .O� o U — — — C. I ._€ \ ` ' D C 1 CC � I I ooN 0 C N -.. • • ( f II II 1 1 aII Y C . a M III II a© W W iY ro I I U 0) T II ' C — — —I u_ R E rLo 7 Ll.l I \I -1-7,_ LS , ?jC rt» `I Q Q Y III r g i 8 SII 1 _ II Cf Q __ — # U U p 16-- N Lh i IIII I / I, — I O II '' i___,- § S • 3 a 0 1= y 0 i L 1 .8 .6 .....i.,...<) 65 y , O .i - 9"x 7'-1"roof spandrel o MRED SANDSTONE wH with opening o 6209 o 5TRE55CON 3 o fik _ w 5.3 0 LL Architectural and Structural Precast Concrete o _ a An ENCoN Company SHEET 1 OF 1 0_ DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION SUBMITTAL A o E FOR APPROVAL- NOT FOR CONSTRUCTION E J V) C 0) N in W )D C aa D O .Z .Z A at W ` '41-` ` --' x 17 se ° . ° IIS O sl- .\c.\7\1_„._ D ! Mg 6 Y U O C N v O N / ♦ -A r C O C N M O C s I-I a) .„ a cn OU II II "' N C C i:5 In O Ud 3 LU --N°-0 v 2 II • J17' !? O U } O � N O_ Li_ 8 O ° J ` X . O U X C Ln I N 4.,111 i :To- v, E x a) LU O1 .5-,l In GC a 0) 0 0,.., L'} a . i O O� O, U �7 : 2 Lo N m a J C Ei. IP II I 1 1 O N ' .9 .6 v iii 0 9"x 7'-1"roof spandrel co 0 CN 7 RED SANDSTONE with opening o 6209 o = 5TRE55CON fiko ° z J Q w 5.3.1 o LL Architectural and Structural Precast Concrete _ An ENCON Company - 0 SHEET 1 OF 1 Li_ Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.3.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Wheel load @ midspan Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4 in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S5: Use the Zia/Hsu Method for torsion design as recommended in the PCI Standard Practice guidelines (ACI Codes Only) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Concrete Density Wt = 150 lb/ftA3 Compressive Strength f'c = 6000.0 psi Modulus of Elasticity Ec = 4.688E+6 psi Strength at Transfer f'c = 3000.0 psi Modulus of Elast. at Transfer Ec = 3.315E+6 psi Strength at Lifting f'c = 3000.0 psi Modulus of Elast. at Lifting Ec = 3.315E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset I INol From I To I Length I Folder I Section I Section I z I Y I I I ft I ft I ft I Name I Name I Type I in I in I 111 0.0001 19.2501 19.2501 L-Shaped I 9LB85 I Ledger Beam I 0.001 0.001 121 19.2501 22.1701 2.9201 L-Shaped I 9LB85 deep ledge Ledger Beam I 0.001 0.001 131 22.1701 25.1701 3.0001 L-Shaped I 9LB43 I Ledger Beam I 0.001 0.001 * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 25.170 ft, Centre of Supports, Left @ 0.000 ft, Right @ 25.170 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 25.170 ft Loop Height = 0.00 ft Span Length in Service = 25.170 ft, Centre of Supports, Left @ 0.000 ft, Right @ 25.170 ft Total Beam Length = 25.170 ft, Bearing Length, Left = 6.00 in, Right = 6.00 in First flexural frequency of beam is approximately 0.76 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties I SectionI SectionI Shear (volume /1 Section Moduli I I NO.I A I I I yb I Height I Width I Width I Surfacel Sb I St I I I inA2 I inA4 I in I in I in I in I in I inA3 1 inA3 I I 11 877.0 I 585545 I 37.971 85.001 17.001 9.001 4.301 -15421 I 12450 I I 21 1109.0 1 618245 I 35.991 85.001 17.001 9.001 5.441 -17178 I 12615 I I 31 731.0 1 112635 1 21.501 43.001 17.001 17.001 6.091 -5239 I 5239 I UNCRACKED SECTION PROPERTIES SUMMARY I Net Precast Section I Transformed Precast Section I Transformed Precast Section I 1 at Transfer (based on Eci) I at Transfer (based on Eci) I in Service (based on Ec) I I(include rebar,deduct strand)I (include rebar and strand) I (include rebar and strand) I x I A I yb I A I yb I A I yb ft 1 inA2 inA4 in I inA2 inA4 in I inA2 inA4 in I 0.0001 876.4 584941 37.99 877.0 585572 37.97 877.0 585563 37.97 1.510 890.7 601848 37.44 895.0 606082 37.28 889.0 599383 37.51 4.027 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 6.041 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 8.054 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 10.571 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 13.088 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 13.592 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 15.605 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 16.109 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 18.122 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 19.6331 1126.8 636981 35.47 1132.1 641632 35.331 1124.5 634004 35.55 22.150 1136.4 646143 35.21 1141.7 650712 35.08 1130.9 640183 35.37 23.660 758.4 121036 20.861 762.6 121994 20.77 752.2 118985 21.011 25.170 740.0 115260 21.291 740.6 115404 21.28 737.4 114496 21.35 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Engineer: Company: File: Roof spandrel 5.3 with opening 1 of 7 Wed Mar 21 09:08:39 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 5.3.3 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast section in service properties are used with external loads applied to the non-composite precast beam. PRESTRESSING STEEL TENDONS 11 I I I I Offsets 'End Offset & Typel Tendon I Jacking Force 1 IIDIQtyI Grade 'Type' Strand Size I x I y 'Left **'Right **' Area I Pj 1 %fpul 11 1 ksi I * I I ft 1 in 1 ft 1 ft 1 inA2 I kip 1 1 I 11 21 270.01 LRSI 0.5" (1/2) I 0.0001 4.001 0.000 B1 0.000 BI 0.306 I 53.70 I 0.651 11 1 I I I 25.1701 4.001 I I I 1 1 I 21 21 270.01 LRSI 0.5" (1/2) I 0.0001 8.001 0.000 BI 0.000 BI 0.306 I 53.70 1 0.651 11 1 I I I 25.1701 8.001 I I I 1 1 Some strand groups are inactive. note: * Type = LRS - Low-Relaxation strand, SRS - stress-Relieved strand, PB - Plain Bar, DB - Deformed Bar, Sw - Single wire ** End Types = B - Fully Bonded (B), D - Debonded (D), c - cut (c), A - Anchored (A) (fully developed) Calculated Losses: Initial = 1.2%, Final = 5.3% Maximum Total Prestress Forces: Pj(jacking) = 107.41 kip, Pi(transfer) = 106.10 kip, Pe(effective) = 101.77 kip @ x = 12.585 ft, see the "Development Length" text report for details of the strand transfer and development lengths LONGITUDINAL REINFORCING STEEL Reinforcing steel Groups IIDIQtyI Steel 1 Bar 1 Bar 'End Location & Typel Bar I I cross Iverticall Offset ** 1 11 1 Grade I size 1 Area I From 11 To I I spacing' I spacing' offset I Reference 1 11 1 ksi IC=coated I inA2 1 ft I *1 ft 1 *I in 1 1 in I in I 1 111 21 60.0 I # 8 1 1.580 10.0001SE125.170ISHI 6.001 I - 1 3.001 Bottom of Precast Beam 1 121 11 60.0 I # 8 1 0.790 10.00015E125.170ISHI 6.001 - 1 4.001 Bottom of Precast Beam 1 131 21 60.0 I # 5 1 0.620 120.0001SE125.1701FDI 6.001 - 1 3.001 Bottom of Precast Beam 1 141 21 60.0 I # 5 1 0.620 120.0001SE125.1701FDI 6.001 I - 1 6.001 Bottom of Precast Beam 1 * End Types: SE - straight Embeddment, FD - Fully Developed, SH - standard Hook, HB - Headed Bar ** offsets are measured up from the bottom or down from the top see the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL I Shear Stirrups I From 1 To I Grade 1 size I # of LegslTotal Areal Spacing I ft I ft 1 ksi I I 1 inA2 1 in I 0.0001 25.1701 60.0 *1 # 5 I 21 0.62 1 0.001 Interface Shear Ties I From 1 To 1 Grade 1 Size I # of LegslTotal Areal Spacing I ft I ft 1 ksi I I I inA2 1 in I 0.0001 25.1701 58.0 I 15M I 01 0.00 I 0.001 * Useable steel strength limited by selected code. TORSION PARAMETERS seg. Torsion Parameters Imo.' sum(xA2 * Y) I x I xl 1 yl I I I inA3 I in I in I in I I 1' 6885.00 I 9.00 I 6.00 I 82.00 I I 21 15829.00 I 9.00 I 6.00 1 82.00 I I 31 12427.00 I 9.00 I 14.00 1 40.00 I sum(xA2 * y) is the sum of xA2 * y for all of the rectangles. x is the minimum section width. xl is the minimum width of the closed stirrups. yl is the maximum width of the closed stirrups. APPLIED LOADS I Load Group I Stages Applied I Load Details 1 I & Type I & Distribution I (left to right) 1 'Beam weight * 'Transfer to Final Service 'Segment #0- Vertical: 0.912 kip/ft from 0 to 19.25 ftl I D: DL, Factory Produced 'No Load Distribution 1 1 Engineer: Company: File: Roof spandrel 5.3 with opening 2 of 7 wed Mar 21 09:08:40 2018 Summary Report 162.5x62'/2/1000 5.3.4 Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. Licensed to: 4457151211, Fadjar Kusumo-R - OK 96.5 x 62'/2/1000 Project: Problem: Segment #1- Vertica : 1.154 k /ft from 19.25 to 22.17 ft1 I Segment #2- Vertical 0.761 ki /ft from 22.17 to 25.17 ft1 I Initial Lift Dynamic Impact Initial Lift +/-0% of Beam weight, cable Ang e: 90 degrees I Erection Lift Dynamic Impact Erection Lift +/-0% of Beam weight, ble Ang e: 90 degrees I I DL after CIP Pour Grouted to Final Service 96.5 psf DT- Vertical: 3 kip/ft rom 0 to 19 ft (0.85 ft eccent.) D: DL, General No Load Distribution I 96.5 psf DT (2)- Vertical: 3 kip t from 19 to 25.17 ft (1.21 ft I 5" topping, 62.5 psf- Vertical: 1.94 kip/ft from 0 to 19 ft (0.85 I 5" topping, 62.5 psf (2)- Vertical: 1.94 kip/ft from 19 to 25.17 I 10 psf- Vertical: 0.31 kip/ft from 0 to 19 ft (0.85 ft eccent.)I I 10 psf (2)- Vertical: 0.31 kip/ft from 19 to 25.17 ft (1.21 ft ec I 25 plf Solar panel- Vertical: 0.025 kip/ft full length (-1.88 ft I 9" panel above- Vertical: 0.6 to 1.3 kip/ft from 5.25 to 22.25 ft I I Live Load Final Service sta9e only wheel left- Vertical: 20 kip at 7.625 ft (0.85 ft eccent.)I L1: LL, Garage, Parking No Load Distribution I wheel right- Vertical: 20 kip at 17.625 ft (0.85 ft eccent.)I I I Snow Final Service sta9e only 100 psf- vertical: 3.1 kip/ft f m 0 to 19 ft (0.85 ft eccent.)I S: Snow & Ice Accretion No Load Distribution I 100 psf (2)- Vertical: 3.1 kip/ft om 19 to 25.17 ft (1.21 ft ec I I * indicates load groups generated automatically by concise Beam. 100 x 62'/2/1000 120k @ 10'apart LOAD COMBINATIONS Serviceability (SLS) & Fatigue (FLS) Limit State Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00ws + 0.60wu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr Ultimate (Strength) Limit State (ULS) Combinations (searched collectively to obtain envelope) 1: ULS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS Combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: ULS Combo 5 : 1.20D + 0.50L + 1.00L1 + 1.60Lr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: ULS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: ULS Combo 8 : 1.20D + 1.60Lr + 0.80ws + 0.50Wu 9: ULS Combo 9 : 1.20D + 1.60S + 0.80Ws + 0.50Wu 10: ULS Combo 10 : 1.20D + 1.60R + 0.80Ws + 0.50Wu 11: ULS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60ws + 1.00Wu 12: ULS Combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60Ws + 1.00wu 13: ULS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60ws + 1.00Wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: ULS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60ws + 1.00Wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Station SLS (stress) Load Combination ULS Load Envelopes I Moment Moment Shear Moment Torsion x I Sustained Total Load Total Load Govern. Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip Combo.) kip.ft combo.) kip.ft Combo.) I min max min max min max min max min max min max min max 0.0001 0.00 0.00 0.00 76.16 183.91 15 6 0.00 0.00 1 1 51.30 139.75 15 6 1.510 120.74 120.74 206.23 67.75 165.20 15 6 108.67 263.61 15 6 45.30 125.38 15 6 4.027 290.62 290.62 502.89 53.74 134.03 15 6 261.56 640.20 15 6 35.29 101.44 15 6 6.041 398.11 398.11 697.66 42.08 108.51 15 6 358.30 884.75 15 6 27.29 82.28 15 6 8.054 478.38 478.38 844.05 29.55 62.00 15 6 430.55 1067.93 15 6 19.20 46.17 15 6 10.571 539.33 539.33 930.36 13.79 28.51 15 6 485.39 1181.75 15 6 9.20 22.22 15 6 13.088 555.88 555.88 952.65 -5.35 -2.09 6 15 500.29 1210.88 15 6 -1.78 -0.71 6 15 13.592 553.81 553.81 949.36 -12.15 -5.32 6 15 498.43 1206.48 15 6 -6.57 -2.71 6 15 15.605 527.39 527.39 910.25 -39.47 -18.32 6 15 474.65 1154.54 15 6 -25.73 -10.72 6 15 16.109 516.23 516.23 893.95 -46.33 -21.59 6 15 464.60 1132.94 15 6 -30.52 -12.72 6 15 18.122 453.19 453.19 792.56 -93.90 -34.78 6 15 407.87 1001.98 15 6 -66.67 -20.72 6 15 19.6331 386.45 386.45 666.06 -114.82 -44.85 6 15 347.81 844.45 15 6 -83.61 -27.80 6 15 22.150 236.77 236.77 401.07 -150.48 -62.23 6 15 213.09 510.64 15 6 -117.76 -42.08 6 15 23.660 125.26 125.26 210.95 -169.07 -70.56 6 15 112.74 269.23 15 6 -138.25 -50.65 6 15 25.170 0.00 0.00 0.00 -187.50 -78.76 6 15 0.00 0.00 1 1 -158.74 -59.22 6 15 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) Unfactored Load Group Effects Initial Lifting I Truck Transport I Erection Lifting I In Service I I Load I Left I Right I Left I Right I Left 1 Right I Left I Right I I Group I Vertical I Vertical I Vertical I Vertical I Vertical I Vertical I Vertical[*]I Torsion[*] I Vertical[*]I Torsion[*] I I I kip I kip.ft 1 kip I kip.ft I kip I kip.ft I kip I kip.ft I kip I kip.ft I Engineer: Company: File: Roof spandrel 5.3 with opening 3 of 7 Wed Mar 21 09:08:40 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.3.5 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 'Beam weight l 11.58 I 11.63 1 11.58 I 11.63 I 11.58 1 11.63 I 11.58 1 0.00 I 11.63 I 0.00 I IDL after CII I I I I I I 73.04 1 57.00 I 75.88 I 65.80 I I Li ve Load I I I I I I I 19.94 1 16.95 I 20.06 I 17.05 I ISnow I I I I I 39.01 1 34.01 I 39.01 I 39.20 I Load Envelope Effects SLS DL I 84.62 I 57.00 I 87.51 I 65.80 I SLS Sustain' 84.62 I 57.00 I 87.51 I 65.80 I SLS Minimum' 11.58 11.63 11.58 11.63 11.58 11.63 84.62 1 57.00 I 87.51 I 65.80 I SLS Maximum' 11.58 11.63 11.58 11.63 11.58 11.63 143.57 I 107.95 I 146.59 I 122.06 I ULS Minimum) 76.16 [1511 51.30 [1511 78.76 [15]1 59.22 [1511 ULS Maximum' 183.91 [ 6]I 139.75 [ 6]I 187.50 [ 6]I 158.74 [ 6]I * Governing ULS Load Combination (below) CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) I x I Stress 1 Limit I Overstress Location I ft I psi 1 psi 1 Notice STRESSES AT TRANSFER Critical Compression Top of Beam I 0.0001 0 1 2100 I 0% Bottom of Beam I 22.6531 356 1 2100 I 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 2.5171 -118 1 -329 I 0% Bottom of Beam I 0.0001 0 I -329 I 0% STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam I 0.0001 0 1 2100 1 0% Bottom of Beam I 22.6531 356 I 2100 I 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 2.5171 -118 I -329 I 0% Bottom of Beam I 0.0001 0 I -329 I 0% STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam I 0.0001 0 I 4200 I 0% Bottom of Beam I 22.6531 359 I 4200 I 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 22.1701 -116 1 -465 I 0% Bottom of Beam I 0.0001 0 1 -465 I 0% STRESSES IN SERVICE Critical Compression Top of Beam I 12.5851 766 1 3600 1 0% Bottom of Beam I 2.5171 160 I 3600 I 0% Critical Tension Top of Beam I 25.1701 0 1 -930 I* 0% Class U member - not cracked Bottom of Beam I 22.1701 -446 I -930 I* 0% Class u member - not cracked STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 12.5851 390 I 2700 I 0% Bottom of Beam I 2.5171 160 I 2700 I 0% * Tensile stress limit given is for Class T (controlled cracking). Beyond this limit crack control is required. At Transfer During Lifting In Service Modulus of Rupture, fr = -411 psi -411 psi -581 psi Strength Required for Transfer, f'ci = 508.2 psi (f'c specified = 3000.0 psi) Strength Required for Initial Lifting, f'c = 508.2 psi (f'c assumed = 3000.0 psi) CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING I I Bottom 1 Top of I I I of Beam I Beam I I dc 0.00 I 0.00 I in Concrete cover to center of steel closest to tension face I cc I 0.00 I 0.00 I in Clear concrete cover to steel closest to tension face I fs I 0.0 I 0.0 I ksi Steel stress nearest to tension face (after decompression) for crack control I Max spacing I 0.00 I 0.00 I in Maximum centre-to-centre spacing of steel closest to tension face to control cracking Beam not cracked, cracking is controlled, or crack depth is less than concrete cover. DEFLECTION ESTIMATE AT ALL STAGES Design Code used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) I I Net Deflection I Change in Deflection I Engineer: Company: File: Roof spandrel 5.3 with opening 4 of 7 Wed Mar 21 09:08:40 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.3.6 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: LocationI Net @ Net @ Net @ Net DL Net Total DL growth LL Span/Deflection x I Transfer Erection Completion @ Final @ Final + LL alone DL growth LL ft I in in in in in in in + LL alone Column I A B C D E E - C E - D L / (E-C) L / (E-D)' 0.0001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 1.510 0.003 0.004 0.000 -0.003 -0.004 -0.004 -0.001 68595 252372 4.027 0.008 0.009 0.000 -0.008 -0.011 -0.012 -0.003 25549 94362 6.041 0.011 0.013 0.000 -0.012 -0.017 -0.017 -0.005 17988 66345 8.054 0.013 0.015 0.000 -0.016 -0.021 -0.021 -0.006 14593 53877 10.571 0.014 0.017 -0.001 -0.019 -0.025 -0.024 -0.006 12614 46823 13.088 0.015 0.017 -0.002 -0.020 -0.027 -0.025 -0.007 12092 45031 13.592 0.015 0.017 -0.002 -0.020 -0.027 -0.025 -0.007 12124 45160 15.605 0.014 0.016 -0.002 -0.019 -0.025 -0.024 -0.006 12717 47364 16.109 0.014 0.016 -0.002 -0.019 -0.025 -0.023 -0.006 12997 48400 18.122 0.012 0.014 -0.001 -0.016 -0.021 -0.020 -0.005 14953 55694 19.6331 0.011 0.012 0.000 -0.013 -0.018 -0.017 -0.005 17855 66617 22.150 0.007 0.008 0.000 -0.008 -0.011 -0.011 -0.003 27909 105466 23.660 0.004 0.004 0.000 -0.004 -0.006 -0.006 -0.002 51566 196246 25.170 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 Col. A: Net deflection at transfer includes prestressing and beam weight on temporary supports. Col. B: Net deflection at erection includes prestressing and all dead loads applied before the cast-in-place pour plus long-time deflection growth of the prestressing and beam weight up to erection Col. C: Net deflection at completion of construction includes prestressing and all dead loads plus long-time deflection growth of the prestressing and dead load up to completion Col. D: Net DL deflection at final includes prestressing, all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes prestressing, all dead loads, and all live loads, plus long-time deflection growth. Deflection growth is estimated by use of the PCI suggested multipliers - see the Deflection Multipliers report. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 B. Unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) 1 Net Rotation Change in Rotation Support' Net @ 1 Net @ 1 Net @ I Net DL I Net Total DL growth 1 LL Location' Transfer 1 Erection 1 Completion I @ Final I @ Final + LL I alone I degrees 1 degrees 1 degrees I degrees I degrees degrees I degrees Column I A 1 B I C I D I E E - C I E - D Left I -0.0101 1 -0.0117 1 -0.0017 I 0.0081 1 0.0117 0.0135 1 0.0037 Right 1 0.0125 1 0.0145 1-418.551E-6 I -0.0148 I -0.0199 -0.0195 I -0.0051 C. Unrestrained Longitudinal Change of Length Due to Creep and Shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = -0.0097 in 1 I Total Change of Length (after elastic shortening) I Difference in Change 1 1 I I Erection 'Completion' Final I 1 to Comp1.1 to Final I to Final 1 1 I I in 1 in 1 in I 1 in 1 in I in 1 1 I I B 1 C I D I 1 C - B I D - C I D - B 1 1 Creep I I -0.00331 -0.00601 -0.01381 1 -0.00281 -0.00781 -0.01051 I Shrink.I -0.03041 -0.06051 -0.11481 1 -0.03011 -0.05431 -0.08431 I Total I I -0.03371 -0.06651 -0.12851 1 -0.03281 -0.06201 -0.09481 FLEXURAL DESIGN CHECK Design Code used: ACI 318-14 Concrete compressive stress-strain model used: PCA Parabola-Rectangle Curve Modulus of Rupture of Precast Concrete, fr = 581 psi (tension) I Factored Design Cracking Minimum Depth in Net Tensile' Flexural 0 1 warnings I Moment Strength Moment Required Compression' Strain IClassication 1 & Notes x 1 Mu 0Mn Mcr Strength c 1 ft I kip.ft kip.ft kip.ft kip.ft in 1 I 0.0001 0.00 1.28 747.04 0.00 18.75 0.0000ITension 0.84 3 1.510 263.61 935.58 1048.65 1258.39 18.81 0.00161Tension 0.84 B 3 4.027 640.20 1481.41 1192.78 1431.34 7.61 0.0293ITension 0.86 6.041 884.75 1694.91 1195.29 1434.35 8.55 0.0258ITension 0.89 8.054 1067.93 1763.06 1197.16 1436.60 8.81 0.0249ITension 0.90 10.571 1181.75 1763.07 1198.58 1438.30 8.81 0.0249ITension 0.90 13.088 1210.88 1763.07 1198.96 1438.75 8.81 0.0249ITension 0.90 13.592 1206.48 1763.07 1198.91 1438.70 8.81 0.0249ITension 0.90 15.605 1154.54 1763.07 1198.29 1437.95 8.81 0.0249ITension 0.90 16.109 1132.94 1763.06 1198.03 1437.64 8.81 0.0249ITension 0.90 18.122 1001.98 1763.06 1196.56 1435.88 8.81 0.0249ITension 0.90 19.633' 844.45 1646.62 1246.37 1495.64 8.44 0.0262ITension 0.88 22.150 510.64 1801.69 1253.56 1504.28 9.44 0.0231ITension 0.86 23.660 269.23 755.53 396.81 476.17 4.31 0.0248ITension 0.86 25.170 0.00 212.09 259.80 0.00 1.31 0.06161Tension 0.90 3 Points of Maximum and Minimum Factored Moment Engineer: Company: File: Roof spandrel 5.3 with opening 5 of 7 wed Mar 21 09:08:40 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.3.7 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: I 12.5851 1211.87 1 1763.07 1 1198.97 1 1438.76 1 8.81 I 0.02491 Tensi on 1 0.901 I I 0.0001 0.00 1 -0.05 1 602.61 I 0.00 1 2.12 I 0.00001 Tensi on 1 0.821 31 Points of Maximum Ratio of Factored Moment to Design Strength I 12.5851 1211.87 1 1763.07 1 1198.97 1 1438.76 1 8.81 I 0.02491 Tensi on 1 0.901 I I 0.0001 0.00 1 -0.05 1 602.61 I 0.00 1 2.12 I 0.00001 Tensi on 1 0.821 31 Points of Maximum Ratio of Minimum Strength to Design strength I 0.5031 91.01 1 314.32 1 849.14 I 1018.97 1 18.44 I 0.00051Tension 1 0.841 B 31 1 0.0001 0.00 1 -0.05 1 602.61 I 0.00 1 2.12 I 0.00001 Tensi on 1 0.821 31 Warnings & Notes B - WARNING, OMn < 1.2Mcr and OMn < 2.OMu, minimum reinforcement requirement not met [ACI 318-14::7.6.2/9.6.2]. 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code Used: ACI 318-14 1 Design Prestress Concrete Strength Provided Min. Strength Req'd Warnings I Shear Component Strength Stirrups Total Stirrups Total & Notes x I Vu Vp 0Vc 0Vs 0Vn 0Vs 0Vn ft 1 kip kip kip kip kip kip kip 0.0001 136.95 0.00 34.23 0.00 34.23 102.72 136.95 B 1 3 1.510 136.95 0.00 39.27 0.00 39.27 97.68 136.95 B 1 3 4.027 134.03 0.00 41.65 0.00 41.65 92.38 134.03 B 1 6.041 108.51 0.00 40.53 0.00 40.53 67.98 108.51 B 1 8.054 62.00 0.00 37.36 0.00 37.36 24.64 62.00 B 1 10.571 28.51 0.00 36.14 0.00 36.14 32.19 68.33 1 13.088 -5.35 0.00 -71.32 0.00 -71.32 0.00 -71.32 13.592 -12.15 0.00 -71.32 0.00 -71.32 0.00 -71.32 15.605 -39.47 0.00 -41.01 0.00 -41.01 -32.18 -73.20 1 16.109 -46.33 0.00 -40.72 0.00 -40.72 -22.54 -63.26 1 18.122 -93.90 0.00 -41.63 0.00 -41.63 -52.27 -93.90 1 19.6331 -114.82 0.00 -79.92 0.00 -79.92 -34.90 -114.82 1 22.150 -150.48 0.00 -79.74 0.00 -79.74 -70.73 -150.48 1 23.660 -162.59 0.00 -62.72 0.00 -62.72 -99.86 -162.59 1 3 25.170 -162.59 0.00 -54.50 0.00 -54.50 -108.09 -162.59 1 3 Warnings & Notes B - WARNING, the factored design shear, Vu, is greater than the shear strength, OVn, provided [ACI 318-14::7.5.1.1/9.5.1.1]. 1 - Note, transverse shear or torsion steel is required. see the Shear/Torsion Transvese Reinforcing Design Check report. 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, the PCI recommended Zia/Hsu method was used to calculate the above shear design check results. TORSION DESIGN CHECK Design Code Used: ACI 318-14 (with the Zia-Hsu torsion method) I Design Threshold Maximum Shear/Torsion Limits Concrete Torsion Strength Warnings 1 Torsion Torsion Max. shearlshear Load Max. Tors.ITors. Load Strength Provided Required & Notes x I Tu Tu(min) OVn(max) Vu corr Tu OTn(max) Tu corr Vu OTc OTn OTn ft 1 kip.ft kip.ft kip kip kip.ft kip.ft kip.ft kip.ft kip.ft 0.0001 103.68 16.67 162.49 136.95 123.02 103.68 25.91 25.91 103.68 1 1.510 103.68 17.68 169.31 136.95 128.17 103.68 29.73 29.73 103.68 1 4.027 101.44 18.15 172.31 134.03 130.40 101.44 31.52 31.52 101.44 6.041 82.28 18.16 172.03 108.51 130.44 82.28 30.73 30.73 82.28 8.054 46.17 18.16 174.65 62.00 130.06 46.17 27.82 27.82 46.17 10.571 22.22 18.17 168.17 28.51 131.07 22.22 28.17 28.17 28.17 13.088 -1.78 -18.17 0.00 -5.35 0.00 -1.78 0.00 0.00 0.00 13.592 -6.57 -18.17 0.00 -12.15 0.00 -6.57 0.00 0.00 0.00 15.605 -25.73 -18.17 -194.48 -39.47 -126.76 -25.73 -26.73 -26.73 -26.73 16.109 -30.52 -18.17 -192.88 -46.33 -127.04 -30.52 -26.82 -26.82 -30.52 18.122 -66.67 -18.16 -181.59 -93.90 -128.94 -66.67 -29.56 -29.56 -66.67 19.6331 -83.61 -41.08 -305.63 -114.82 -222.55 -83.61 -58.19 -58.19 -83.61 22.150 -117.76 -41.03 -295.26 -150.48 -231.07 -117.76 -62.41 -62.41 -117.76 23.660 -131.04 -32.18 -243.43 -162.59 -196.19 -131.04 -50.55 -50.55 -131.04 1 25.170 -131.04 -30.08 -234.85 -162.59 -189.28 -131.04 -43.92 -43.92 -131.04 1 Warnings & Notes 1 - Note, design torsion force at critical section near support used as a minimum [ACI 318-14::9.4.4.2/3]. Note, the PCI recommended Zia/Hsu method was used to calculate the above torsion design check results SHEAR/TORSION TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 (with the Zia-Hsu torsion method) 1 Shear Steel Required Shear Steel Stirrup Stirrup Spacing Additional Long. Steel Warnings I Total Torsion* Provided Provided Provided Max. Allow) for Torsion, Al & Notes x I (Av+2At)/s At/s Av/s Av+2At s s Total Reduction** ft 1 inA2/ft inA2/ft inA2/ft inA2 in in inA2 inA2 0.0001 1.01 0.34 0.00 0.62 0.00 7.33 4.95 0.00 4 1.510 0.96 0.32 0.00 0.62 0.00 7.72 4.70 0.00 4 4.027 0.91 0.30 0.00 0.62 0.00 8.15 4.45 0.00 5 6.041 0.67 0.22 0.00 0.62 0.00 11.06 3.28 0.00 5 8.054 0.24 0.08 0.00 0.62 0.00 12.00 2.73 0.00 5 10.571 0.11 0.00 0.00 0.62 0.00 12.00 3.13 0.00 1 5 13.088 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 13.592 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 15.605 0.11 0.00 0.00 0.62 0.00 12.00 2.95 0.00 1 5 16.109 0.11 0.02 0.00 0.62 0.00 12.00 2.96 0.00 1 5 18.122 0.50 0.16 0.00 0.62 0.00 12.00 2.36 0.00 5 19.633 0.34 0.11 0.00 0.62 0.00 12.00 1.62 0.00 5 22.150 0.71 0.24 0.00 0.62 0.00 10.41 3.52 0.00 5 Engineer: Company: File: Roof spandrel 5.3 with opening 6 of 7 Wed Mar 21 09:08:40 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black mint Software, Inc. 5.3.8 Licensed to: 4457151211, Fadjar Kusumo-R - ox Project: Problem: I 23.6601 1.30 I 0.31 I 0.00 I 0.62 I 0.00 I 5.72 I 2.76 I 0.00 I 4 I I 25.1701 1.41 I 0.33 I 0.00 I 0.62 I 0.00 1 5.27 1 2.99 1 0.00 1 4 I warnings & Notes 1 - Note, amount of shear steel required represents minimum code requirements [ACI 318-14::9.6.3.3]. 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: Roof spandrel 5.3 with opening 7 of 7 wed mar 21 09:08:40 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5'3'9 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Wheel load @ end Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4 in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S5: Use the Zia/Hsu Method for torsion design as recommended in the PCI Standard Practice guidelines (ACI Codes Only) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Concrete Density Wt = 150 lb/ftA3 Compressive Strength f'c = 6000.0 psi Modulus of Elasticity Ec = 4.688E+6 psi Strength at Transfer f'c = 3000.0 psi Modulus of Elast. at Transfer Ec = 3.315E+6 psi Strength at Lifting f'c = 3000.0 psi Modulus of Elast. at Lifting Ec = 3.315E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset I No' From I To I Length I Folder I Section I Section I z I Y I I I ft I ft I ft I Name I Name I Type I in I in I 111 0.0001 19.2501 19.2501 L-Shaped I 9LB85 I Ledger Beam I 0.001 0.001 121 19.2501 22.1701 2.9201 L-Shaped I 9LB85 deep ledge Ledger Beam I 0.001 0.001 131 22.1701 25.1701 3.0001 L-Shaped I 9LB43 I Ledger Beam I 0.001 0.001 * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 25.170 ft, Centre of Supports, Left @ 0.000 ft, Right @ 25.170 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 25.170 ft Loop Height = 0.00 ft Span Length in Service = 25.170 ft, Centre of Supports, Left @ 0.000 ft, Right @ 25.170 ft Total Beam Length = 25.170 ft, Bearing Length, Left = 6.00 in, Right = 6.00 in First flexural frequency of beam is approximately 0.76 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties I SectionI SectionI Shear (volume /1 Section Moduli I I NO.I A I I I yb I Height I Width I Width I Surface) Sb I St I I I inA2 I inA4 I in I in I in I in I in I inA3 1 inA3 I I 11 877.0 I 585545 I 37.971 85.001 17.001 9.001 4.301 -15421 I 12450 I I 21 1109.0 1 618245 I 35.991 85.001 17.001 9.001 5.441 -17178 I 12615 I I 31 731.0 1 112635 I 21.501 43.001 17.001 17.001 6.091 -5239 I 5239 I UNCRACKED SECTION PROPERTIES SUMMARY I Net Precast Section I Transformed Precast Section I Transformed Precast Section I 1 at Transfer (based on Eci) I at Transfer (based on Eci) I in Service (based on Ec) I I(include rebar,deduct strand)I (include rebar and strand) I (include rebar and strand) I x I A I yb I A I yb I A I yb ft 1 inA2 inA4 in I inA2 inA4 in I inA2 inA4 in I 0.0001 876.4 584941 37.99 877.0 585572 37.97 877.0 585563 37.97 1.510 890.7 601848 37.44 895.0 606082 37.28 889.0 599383 37.51 4.0271 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 6.041 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 8.5581 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 11.075 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 13.5921 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 14.095 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 15.6051 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 16.109 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 18.6261 894.8 606528 37.28 900.1 611757 37.09 892.5 603239 37.38 20.136 1128.1 638236 35.44 1133.4 642876 35.30 1125.3 634849 35.52 22.1701 1136.4 646143 35.21 1141.7 650712 35.08 1130.9 640183 35.37 22.170 758.4 121035 20.861 763.7 122230 20.75 752.9 119149 20.99 24.1631 758.4 121036 20.861 761.4 121721 20.80 751.4 118797 21.021 25.170 740.0 115260 21.291 740.6 115404 21.28 737.4 114496 21.35 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Engineer: Company: File: Roof spandrel 5.3 with opening wheel at end 1 of 7 Wed Mar 21 09:14:52 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.3.10 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. PRESTRESSING STEEL TENDONS 11 I I I I offsets 'End Offset & Typel Tendon I Jacking Force 1 IIDIQty1 Grade 'Type' Strand Size I x I y 'Left **'Right **' Area I Pj 1 %fpul I I I ksi I * I I ft 1 in 1 ft 1 ft I inA2 I kip 1 1 I 11 21 270.01 LRSI 0.5" (1/2) I 0.0001 4.001 0.000 B1 0.000 81 0.306 I 53.70 1 0.651 1 1 I 1 1 I 25.1701 4.001 I I I 1 1 I 21 21 270.01 LRSI 0.5" (1/2) I 0.0001 8.001 0.000 BI 0.000 El 0.306 1 53.70 1 0.651 1 I I 1 1 I 25.1701 8.001 I I I I I note: * Type = LRS - Low-Relaxation Strand, SRS - Stress-Relieved Strand, PB - Plain Bar, DB - Deformed Bar, SW - Single Wire ** End Types = B - Fully Bonded (B), D - Debonded (D), C - Cut (C), A - Anchored (A) (fully developed) Calculated Losses: Initial = 1.2%, Final = 5.3% Maximum Total Prestress Forces: Pj(jacking) = 107.41 kip, Pi(transfer) = 106.10 kip, Pe(effective) = 101.77 kip @ x = 12.585 ft, See the "Development Length" text report for details of the strand transfer and development lengths LONGITUDINAL REINFORCING STEEL Reinforcing Steel Groups IIDIQty' Steel 1 Bar 1 Bar 'End Location & Typel Bar I I Cross 'vertical' Offset ** I I 1 I Grade 1 Size 1 Area I From 1 I To 1 1 Spacing' 1 Spacing' Offset I Reference 1 11 I ksi IC=coated 1 inA2 I ft I *1 ft 1 *1 in I 1 in I in I 1 111 21 60.0 I # 8 1 1.580 10.00015E125.1701SH' 6.001 1 - I 3.001 Bottom of Precast Beam I 121 11 60.0 1 # 8 1 0.790 10.00015E125.1701SM' 6.001 - I 4.001 Bottom of Precast Beam I 131 21 60.0 1 # 5 1 0.620 120.000ISEI25.1701FDI 6.001 - I 3.001 Bottom of Precast Beam I 141 21 60.0 I # 5 I 0.620 120.000ISE125.1701FDI 6.001 I - I 6.001 Bottom of Precast Beam 1 * End Types: SE - Straight Embeddment, FD - Fully Developed, SH - Standard Hook, HB - Headed Bar ** Offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL I Shear Stirrups I From 1 To 1 Grade 1 Size 1 # of LegslTotal Areal Spacing I ft I ft 1 ksi I I I inA2 1 in I 0.0001 25.1701 60.0 *1 # 5 I 21 0.62 I 0.001 Interface Shear Ties I From 1 To 1 Grade 1 Size 1 # of LegslTotal Areal Spacing I ft I ft 1 ksi I I I inA2 1 in I 0.0001 25.1701 58.0 I 15M I 01 0.00 I 0.001 * Useable steel strength limited by selected code. TORSION PARAMETERS Seg. Torsion Parameters 'No.' sum(xA2 * Y) 1 x I xl I yl 1 1 1 inA3 1 in I in I in 1 I 1' 6885.00 1 9.00 I 6.00 I 82.00 1 I 21 15829.00 1 9.00 I 6.00 I 82.00 1 I 31 12427.00 1 9.00 I 14.00 I 40.00 1 sum(xA2 * y) is the sum of xA2 * y for all of the rectangles. x is the minimum section width. xl is the minimum width of the closed stirrups. yl is the maximum width of the closed stirrups. APPLIED LOADS 1 Load Group 1 Stages Applied I Load Details I I & Type 1 & Distribution I (left to right) I 'Beam Weight * 'Transfer to Final Service 'Segment #0- Vertical: 0.912 kip/ft from 0 to 19.25 ftl I D: DL, Factory Produced 'No Load Distribution 1 I Engineer: Company: File: Roof spandrel 5.3 with opening wheel at end 2 of 7 Wed Mar 21 09:14:52 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.3.11 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: Segment #1- Vertical: 1.154 kip/ft from 19.25 to 22.17 ftl 1 Segment #2- Vertical: 0.761 kip/ft from 22.17 to 25.17 ftl 1 Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weight, cable Angle: 90 degrees I Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Weight, Cable Angle: 90 degrees 1 1 DL after CIP Pour Grouted to Final Service 96.5 psf DT- Vertical: 3 kip/ft from 0 to 19 ft (0.85 ft eccent.) D: DL, General No Load Distribution I 96.5 psf DT (2)- Vertical: 3 kip/ft from 19 to 25.17 ft (1.21 ft 1 5" topping, 62.5 psf- Vertical: 1.94 kip/ft from 0 to 19 ft (0.85 1 5" topping, 62.5 psf (2)- Vertical: 1.94 kip/ft from 19 to 25.17 1 10 psf- Vertical: 0.31 kip/ft from 0 to 19 ft (0.85 ft eccent.)I 1 10 psf (2)- Vertical: 0.31 kip/ft from 19 to 25.17 ft (1.21 ft ec 1 25 plf Solar panel- Vertical: 0.025 kip/ft full length (-1.88 ft 1 9" panel above- Vertical: 0.6 to 1.3 kip/ft from 5.25 to 22.25 ft 1 1 Live Load Final Service sta9e only wheel left- vertical: 20 kip at 14.5 ft (0.85 ft eccent.)I L1: LL, Garage, Parking No Load Distribution I wheel right- vertical: 20 kip at 24.5 ft (0.85 ft eccent.)I 1 1 Snow Final Service sta9e only 100 psf- vertical: 3.1 kip/ft from 0 to 19 ft (0.85 ft eccent.)I S: Snow & Ice Accretion No Load Distribution I 100 psf (2)- Vertical: 3.1 kip/ft from 19 to 25.17 ft (1.21 ft ec 1 1 * indicates load groups generated automatically by Concise Beam. LOAD COMBINATIONS Serviceability (SLS) & Fatigue (FLS) Limit State Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00Ws + 0.6OWu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr Ultimate (Strength) Limit State (ULS) Combinations (searched collectively to obtain envelope) 1: ULS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS Combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: ULS Combo 5 : 1.20D + 0.50L + 1.00L1 + 1.6OLr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.605 7: ULS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: ULS Combo 8 : 1.20D + 1.6OLr + 0.80ws + 0.50wu 9: ULS Combo 9 : 1.20D + 1.60S + O.80Ws + 0.50wu 10: ULS Combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: ULS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60Ws + 1.00Wu 12: ULS Combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60ws + 1.00wu 13: ULS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60ws + 1.00wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: ULS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60ws + 1.00Wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Station SLS (stress) Load Combination ULS Load Envelopes I Moment Moment Shear Moment Torsion x I sustained Total Load Total Load Govern. Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip Combo.) kip.ft combo.) kip.ft Combo.) I min max min max min max min max min max min max min max 0.0001 0.00 0.00 0.00 76.16 172.98 15 6 0.00 0.00 1 1 51.30 130.47 15 6 1.510 120.74 120.74 189.73 67.75 154.28 15 6 108.67 247.11 15 6 45.30 116.10 15 6 4.0271 290.62 290.62 458.89 53.74 123.10 15 6 261.56 596.20 15 6 35.29 92.15 15 6 6.041 398.11 398.11 631.66 42.08 97.58 15 6 358.30 818.75 15 6 27.29 72.99 15 6 8.5581 494.09 494.09 791.56 26.52 64.34 15 6 444.68 1022.59 15 6 17.29 49.04 15 6 11.075 546.21 546.21 887.96 10.72 31.05 15 3 491.59 1142.37 15 6 7.29 25.09 15 6 13.5921 553.81 553.81 920.20 -12.09 9.10 6 15 498.43 1177.31 15 6 -6.51 9.54 6 15 14.095 549.92 549.92 918.89 -18.90 5.86 6 15 494.93 1174.05 15 6 -11.30 7.54 6 15 15.6051 527.39 527.39 877.25 -50.40 -18.32 6 15 474.65 1121.54 15 6 -35.01 -10.72 6 15 16.109 516.23 516.23 855.45 -57.26 -21.59 6 15 464.60 1094.44 15 6 -39.80 -12.72 6 15 18.6261 432.81 432.81 707.06 -91.75 -38.10 6 15 389.53 906.98 15 6 -63.75 -22.72 6 15 20.136 360.40 360.40 586.23 -112.85 -48.31 6 15 324.36 752.58 15 6 -82.73 -30.65 6 15 22.1701 235.36 235.36 384.82 -141.69 -62.37 6 15 211.82 493.74 15 6 -110.32 -42.20 6 15 24.163 85.03 85.03 147.21 -166.14 -73.29 6 15 76.53 186.84 15 6 -137.37 -53.51 6 15 25.1701 0.00 0.00 0.00 -198.43 -78.76 6 15 0.00 0.00 1 1 -168.03 -59.22 6 15 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) Unfactored Load Group Effects 1 I Initial Lifting I Truck Transport 1 Erection Lifting I In Service I I Load I Left 1 Right I Left 1 Right 1 Left I Right I Left 1 Right I 1 Group 1 Vertical 1 Vertical I Vertical 1 Vertical 1 Vertical I Vertical I Vertical[*]1 Torsion[*] 1 Vertical[*]I Torsion[*] I 1 1 kip 1 kip.ft I kip 1 kip.ft 1 kip I kip.ft I kip I kip.ft 1 kip I kip.ft I Engineer: Company: File: Roof spandrel 5.3 with opening wheel at end 3 of 7 Wed Mar 21 09:14:52 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.3.12 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 'Beam weight l 11.58 I 11.63 1 11.58 I 11.63 I 11.58 1 11.63 I 11.58 1 0.00 I 11.63 I 0.00 I IDL after CII I I I I I I 73.04 1 57.00 I 75.88 I 65.80 I I Li ve Load I I I I I I I 9.01 1 7.66 I 30.99 1 26.34 I ISnow I I I I I 39.01 1 34.01 I 39.01 I 39.20 I Load Envelope Effects SLS DL I 84.62 I 57.00 I 87.51 I 65.80 I SLS Sustain' 84.62 I 57.00 I 87.51 I 65.80 I SLS Minimum' 11.58 11.63 11.58 11.63 11.58 11.63 84.62 1 57.00 I 87.51 I 65.80 I SLS Maximum' 11.58 11.63 11.58 11.63 11.58 11.63 132.65 I 98.66 I 157.52 I 131.35 I ULS Minimum) 76.16 [15]I 51.30 [15]I 78.76 [15]I 59.22 [15]I ULS Maximum' 172.98 [ 6]I 130.47 [ 6]I 198.43 [ 6]I 168.03 [ 6]I * Governing ULS Load Combination (below) CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) Use 9.16 (+ve = compression, -ve = tension) I x I Stress 1 Limit I Overstress Location I ft I psi 1 psi 1 Notice STRESSES AT TRANSFER Critical Compression Top of Beam I 0.0001 0 1 2100 I 0% Bottom of Beam I 22.6531 356 1 2100 I 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 2.5171 -118 1 -329 I 0% Bottom of Beam 1 0.0001 0 I -329 I 0% STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam I 0.0001 0 1 2100 1 0% Bottom of Beam I 22.6531 356 1 2100 I 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 2.5171 -118 I -329 I 0% Bottom of Beam 1 0.0001 0 I -329 I 0% STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam I 0.0001 0 I 4200 I 0% Bottom of Beam I 22.6531 359 1 4200 I 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 22.1701 -116 1 -465 I 0% Bottom of Beam 1 0.0001 0 1 -465 I 0% STRESSES IN SERVICE Critical Compression Top of Beam I 13.5921 734 1 3600 1 0% Bottom of Beam I 2.5171 160 1 3600 I 0% Critical Tension Top of Beam I 25.1701 0 1 -930 I* 0% Class U member - not cracked Bottom of Beam I 22.1701 -417 1 -930 1* 0% Class u member - not cracked STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 13.5921 387 1 2700 I 0% Bottom of Beam I 2.5171 160 I 2700 I 0% * Tensile stress limit given is for Class T (controlled cracking). Beyond this limit crack control is required. At Transfer During Lifting In Service Modulus of Rupture, fr = -411 psi -411 psi -581 psi Strength Required for Transfer, f'ci = 508.2 psi (f'c specified = 3000.0 psi) Strength Required for Initial Lifting, f'c = 508.2 psi (f'c assumed = 3000.0 psi) CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING I I Bottom I Top of I I I of Beam I Beam I I dc 0.00 I 0.00 I in Concrete cover to center of steel closest to tension face I cc I 0.00 I 0.00 I in Clear concrete cover to steel closest to tension face I fs I 0.0 I 0.0 I ksi Steel stress nearest to tension face (after decompression) for crack control I Max spacing I 0.00 I 0.00 I in Maximum centre-to-centre spacing of steel closest to tension face to control cracking Beam not cracked, cracking is controlled, or crack depth is less than concrete cover. DEFLECTION ESTIMATE AT ALL STAGES Design Code used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) I I Net Deflection I Change in Deflection I Engineer: Company: File: Roof spandrel 5.3 with opening wheel at end 4 of 7 wed Mar 21 09:14:52 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.3.13 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: LocationI Net @ Net @ Net @ Net DL Net Total DL growth LL Span/Deflection x I Transfer Erection Completion @ Final @ Final + LL alone DL growth LL ft I in in in in in in in + LL alone Column I A B C D E E - C E - D L / (E-C) L / (E-D)' 0.0001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 1.510 0.003 0.004 0.000 -0.003 -0.003 -0.004 0.000 77765 445780 4.0271 0.008 0.009 0.000 -0.008 -0.010 -0.011 -0.002 28628 156567 6.041 0.011 0.013 0.000 -0.012 -0.015 -0.015 -0.003 20109 108597 8.5581 0.013 0.015 0.000 -0.017 -0.020 -0.020 -0.004 15463 81263 11.075 0.015 0.017 -0.002 -0.019 -0.024 -0.022 -0.004 13570 69373 13.5921 0.015 0.017 -0.002 -0.020 -0.025 -0.023 -0.005 13161 65596 14.095 0.015 0.017 -0.002 -0.020 -0.025 -0.023 -0.005 13229 65653 15.6051 0.014 0.016 -0.002 -0.019 -0.023 -0.022 -0.004 13860 68354 16.109 0.014 0.016 -0.002 -0.019 -0.023 -0.021 -0.004 14156 69630 18.6261 0.012 0.014 -0.001 -0.015 -0.019 -0.018 -0.004 16856 81906 20.136 0.010 0.012 0.000 -0.012 -0.015 -0.015 -0.003 20517 99743 22.1701 0.007 0.008 0.000 -0.008 -0.010 -0.010 -0.002 30160 144510 24.163 0.003 0.003 0.000 -0.003 -0.004 -0.004 0.000 75554 346094 25.1701 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 Col. A: Net deflection at transfer includes prestressing and beam weight on temporary supports. Col. B: Net deflection at erection includes prestressing and all dead loads applied before the cast-in-place pour plus long-time deflection growth of the prestressing and beam weight up to erection Col. C: Net deflection at completion of construction includes prestressing and all dead loads plus long-time deflection growth of the prestressing and dead load up to completion Col. D: Net DL deflection at final includes prestressing, all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes prestressing, all dead loads, and all live loads, plus long-time deflection growth. Deflection growth is estimated by use of the PCI suggested multipliers - see the Deflection Multipliers report. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 B. Unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation Change in Rotation SupportI Net @ I Net @ I Net @ 1 Net DL I Net Total DL growth I LL Location' Transfer I Erection I Completion I @ Final I @ Final + LL I alone I degrees 1 degrees 1 degrees I degrees 1 degrees degrees I degrees Column 1 A 1 B I C I D I E E - C I E - D Left I -0.0101 1 -0.0117 I -0.0017 I 0.0081 1 0.0100 0.0118 I 0.0020 Right I 0.0125 1 0.0145 I-418.843E-6 I -0.0148 1 -0.0188 -0.0184 I -0.0040 C. Unrestrained Longitudinal Change of Length Due to Creep and shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = -0.0097 in 1 1 Total Change of Length (after elastic shortening) 1 Difference in Change I 1 1 1 Erection 'Completion' Final I 1 to Comp1.1 to Final I to Final I 1 1 1 in 1 in I in I 1 in I in I in I 1 1 1 B 1 C I D 1 1 C - B I D - C 1 D - B 1 1 Creep 1 1 -0.00331 -0.00601 -0.01381 1 -0.00281 -0.00781 -0.01051 I Shrink.) -0.03041 -0.06051 -0.11481 1 -0.03011 -0.05431 -0.08431 1 Total 1 1 -0.03371 -0.06651 -0.12851 1 -0.03281 -0.06201 -0.09481 FLEXURAL DESIGN CHECK Design Code used: ACI 318-14 Concrete compressive stress-strain model used: PCA Parabola-Rectangle Curve Modulus of Rupture of Precast Concrete, fr = 581 psi (tension) I Factored Design Cracking Minimum Depth in Net TensileI Flexural 0 1 warnings I Moment Strength Moment Required Compression' Strain IClassication 1 & Notes x 1 Mu 0Mn Mcr Strength c 1 ft 1 kip.ft kip.ft kip.ft kip.ft in 1 1 0.000 0.00 1.28 747.04 0.00 18.75 0.00001Tension 0.84 3 1.510 247.11 935.58 1048.65 1258.39 18.81 0.00161Tension 0.84 B 3 4.0271 596.20 1481.41 1192.78 1431.34 7.61 0.02931 Tensi on 0.86 6.041 818.75 1694.91 1195.29 1434.35 8.55 0.02581Tension 0.89 8.5581 1022.59 1763.06 1197.53 1437.04 8.81 0.0249ITension 0.90 11.075 1142.37 1763.07 1198.74 1438.49 8.81 0.02491Tension 0.90 13.592' 1177.31 1763.07 1198.91 1438.70 8.81 0.02491Tension 0.90 14.095 1174.05 1763.07 1198.82 1438.59 8.81 0.0249ITension 0.90 15.6051 1121.54 1763.07 1198.29 1437.95 8.81 0.02491Tension 0.90 16.109 1094.44 1763.06 1198.03 1437.64 8.81 0.02491Tension 0.90 18.6261 906.98 1762.15 1196.09 1435.31 8.81 0.0249ITension 0.90 20.136 752.58 1591.72 1247.24 1496.69 8.16 0.02711Tension 0.87 1 22.1701 493.74 1799.85 1253.54 1504.24 9.44 0.02311Tension 0.86 22.170 493.74 855.93 462.57 555.08 4.93 0.02131Tension 0.86 24.1631 186.84 710.01 355.57 426.69 3.97 0.02721Tension 0.87 25.170 0.00 212.09 259.80 0.00 1.31 0.06161Tension 0.90 3 Engineer: Company: File: Roof spandrel 5.3 with opening wheel at end 5 of 7 Wed Mar 21 09:14:52 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.3.14 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: Points of Maximum and Minimum Factored Moment I 13.592 1 1177.31 I 1763.07 I 1198.91 I 1438.70 I 8.81 I 0.02491 Tensi on I 0.901 I I 0.0001 0.00 I -0.05 I 602.61 I 0.00 I 2.12 I 0.0000ITension I 0.821 31 Points of Maximum Ratio of Factored Moment to Design Strength 1 13.5921 1177.31 I 1763.07 I 1198.91 I 1438.70 I 8.81 I 0.02491 Tension I 0.901 I 1 0.0001 0.00 I -0.05 I 602.61 I 0.00 I 2.12 I 0.0000ITension I 0.821 31 Points of Maximum Ratio of Minimum Strength to Design Strength 1 0.5031 85.51 I 314.32 I 849.14 1 1018.97 I 18.44 1 0.0005ITension I 0.841 B 31 1 0.0001 0.00 I -0.05 I 602.61 I 0.00 I 2.12 I 0.0000ITension I 0.821 31 Warnings & Notes B - WARNING, OMn < 1.2Mcr and OMn < 2.OMu, minimum reinforcement requirement not met [ACI 318-14::7.6.2/9.6.2]. 1 - Note, some rebar have been disregarded due to potential slippage within their development length. See the Flexural Design Detail Report and the Help file's Technical Background for more information. 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code Used: ACI 318-14 1 Design Prestress Concrete Strength Provided Min. Strength Req'd Warnings I Shear Component Strength Stirrups Total Stirrups Total & Notes x I Vu Vp OVc OVs OVn OVs OVn ft 1 kip kip kip kip kip kip kip 0.0001 126.02 0.00 34.58 0.00 34.58 91.44 126.02 B 1 3 1.510 126.02 0.00 39.66 0.00 39.66 86.36 126.02 B 1 3 4.0271 123.10 0.00 42.08 0.00 42.08 81.03 123.10 B 1 6.041 97.58 0.00 40.91 0.00 40.91 56.67 97.58 B 1 8.5581 64.34 0.00 37.08 0.00 37.08 27.26 64.34 B 1 11.075 31.05 0.00 35.94 0.00 35.94 32.19 68.13 1 13.5921 -12.09 0.00 -71.32 0.00 -71.32 0.00 -71.32 14.095 -18.90 0.00 -71.32 0.00 -71.32 0.00 -71.32 15.6051 -50.40 0.00 -39.26 0.00 -39.26 -12.00 -51.26 B 1 16.109 -57.26 0.00 -39.24 0.00 -39.24 -18.01 -57.26 B 1 18.6261 -91.75 0.00 -42.80 0.00 -42.80 -48.95 -91.75 B 1 20.136 -112.85 0.00 -81.71 0.00 -81.71 -31.14 -112.85 B 1 22.1701 -141.69 0.00 -80.05 0.00 -80.05 -61.65 -141.69 B 1 22.170 -141.69 0.00 -63.58 0.00 -63.58 -78.11 -141.69 B 1 24.1631 -153.51 0.00 -55.01 0.00 -55.01 -98.50 -153.51 B 1 3 25.170 -153.51 0.00 -42.54 0.00 -42.54 -110.98 -153.51 B 1 3 Warnings & Notes B - WARNING, the factored design shear, Vu, is greater than the shear strength, OVn, provided [ACI 318-14::7.5.1.1/9.5.1.1]. 1 - Note, transverse shear or torsion steel is required. See the Shear/Torsion Transvese Reinforcing Design check report. 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, the PCI recommended Zia/Hsu method was used to calculate the above shear design check results. TORSION DESIGN CHECK Design Code Used: ACI 318-14 (with the Zia-Hsu torsion method) I Design Threshold Maximum Shear/Torsion Limits Concrete Torsion Strength Warnings 1 Torsion Torsion Max. ShearlShear Load Max. Tors.ITors. Load Strength Provided Required & Notes x I Tu Tu(min) OVn(max) Vu corr Tu OTn(max) Tu corr Vu OTC OTn OTn ft 1 kip.ft kip.ft kip kip kip.ft kip.ft kip.ft kip.ft kip.ft 0.0001 94.39 16.67 163.98 126.02 122.82 94.39 25.90 25.90 94.39 1 1.510 94.39 17.68 170.83 126.02 127.95 94.39 29.71 29.71 94.39 1 4.0271 92.15 18.15 173.89 123.10 130.16 92.15 31.50 31.50 92.15 6.041 72.99 18.16 173.99 97.58 130.14 72.99 30.60 30.60 72.99 8.5581 49.04 18.17 171.32 64.34 130.58 49.04 28.26 28.26 49.04 11.075 25.09 18.17 167.09 31.05 131.98 24.38 28.49 28.49 28.49 13.5921 9.54 18.17 0.00 -12.09 0.00 6.51 0.00 0.00 0.00 14.095 -11.30 -18.17 0.00 -18.90 0.00 -11.30 0.00 0.00 0.00 15.6051 -35.01 -18.17 -184.85 -50.40 -128.43 -35.01 -27.28 -27.28 -35.01 16.109 -39.80 -18.17 -184.76 -57.26 -128.44 -39.80 -27.28 -27.28 -39.80 18.6261 -63.75 -18.16 -184.79 -91.75 -128.40 -63.75 -29.74 -29.74 -63.75 20.136 -82.73 -41.08 -304.71 -112.85 -223.37 -82.73 -59.90 -59.90 -82.73 22.1701 -110.32 -41.03 -296.03 -141.69 -230.49 -110.32 -62.32 -62.32 -110.32 22.170 -110.32 -33.24 -251.43 -141.69 -195.77 -110.32 -49.51 -49.51 -110.32 24.1631 -137.37 -31.50 -225.90 -153.51 -202.14 -137.37 -49.22 -49.22 -137.37 25.170 -164.64 -30.08 -193.26 -153.51 -207.26 -164.64 -45.62 -45.62 -164.64 1 Warnings & Notes 1 - Note, design torsion force at critical section near support used as a minimum [ACI 318-14::9.4.4.2/3]. Note, the PCI recommended Zia/Hsu method was used to calculate the above torsion design check results SHEAR/TORSION TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 (with the Zia-Hsu torsion method) 1 Shear Steel Required Shear Steel Stirrup Stirrup Spacing Additional Long. Steel Warnings I Total Torsion* Provided Provided Provided Max. Allow) for Torsion, Al & Notes x I (Av+2At)/s At/s Av/s Av+2At s s Total Reduction** ft 1 inA2/ft inA2/ft inA2/ft inA2 in in inA2 inA2 0.0001 0.90 0.30 0.00 0.62 0.00 8.30 4.36 0.00 4 5 1.510 0.85 0.28 0.00 0.62 0.00 8.79 4.11 0.00 4 5 4.027 0.79 0.26 0.00 0.62 0.00 9.36 3.86 0.00 5 6.041 0.56 0.18 0.00 0.62 0.00 12.00 2.70 0.00 5 8.558 0.27 0.09 0.00 0.62 0.00 12.00 2.60 0.00 5 11.075 0.11 0.00 0.00 0.62 0.00 12.00 3.18 0.00 1 5 13.592 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 14.095 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 Engineer: Company: File: Roof spandrel 5.3 with opening wheel at end 6 of 7 Wed Mar 21 09:14:52 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black mint Software, Inc. 5.3.15 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: 15.605 0.11 0.03 0.00 0.62 0.00 12.00 3.01 0.00 1 5 16.109 0.17 0.05 0.00 0.62 0.00 12.00 3.01 0.00 5 18.626 0.46 0.15 0.00 0.62 0.00 12.00 2.16 0.00 5 20.136 0.30 0.10 0.00 0.62 0.00 12.00 1.45 0.00 5 22.170 0.62 0.21 0.00 0.62 0.00 11.99 3.05 0.00 5 22.170 1.00 0.23 0.00 0.62 0.00 7.41 2.09 0.00 24.163 1.35 0.34 0.00 0.62 0.00 5.52 3.02 0.00 4 25.170 1.68 0.45 0.00 0.62 0.00 4.44 4.08 0.00 4 warnings & Notes 1 - Note, amount of shear steel required represents minimum code requirements [ACT 318-14::9.6.3.3]. 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: Roof spandrel 5.3 with opening wheel at end 7 of 7 wed mar 21 09:14:52 2018 CD DRAWING STATUS REVISION REVISION BY I REVISION DATE DESCRIPTION 63 SUBMITTAL A o i= FOR APPROVAL- NOT FOR CONSTRUCTION E D a 9" solid spandrel T) 05 7 II o, f'ci = 3500 •si o 6, f'c 7000 psi a..) 11y prod. note ! ,at. 9 •I '' T Hard Rock concrete a v) i to 0 o w U m N w Nrz IN. C O - c) O -1 Ilip NU o I I ? o or j �. w • • U1 11 Lu 'Co E - w / I m C 1 x 42. N I I N 11 c 11 (1) °o o w r% D NI ID Q Lo _c ill 73 4 N CTI 1 o 7 p 1---___________._ ,1 4# E _$ L nap .1. Jpap .1, gI- L' rj it o 21 all) _ •,..-.. La I _.—_ • 1 it Q cx O RED SANDSTONE 6'-6"floor spandrel o M o with opening a 6209 o J 5TRE55CON fik z 5.4 LLArchitectural and Structural Precast Concrete o a An ENCoN Company SHEET 1 OF 1 C Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.4.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 41. in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S5: Use the Zia/Hsu Method for torsion design as recommended in the PCI Standard Practice guidelines (ACI Codes Only) ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Concrete Density Wt = 150 lb/ftA3 Compressive Strength f'c = 7000.0 psi Modulus of Elasticity Ec = 5.063E+6 psi Strength at Transfer f'c = 3500.0 psi Modulus of Elast. at Transfer Ec = 3.580E+6 psi Strength at Lifting f'c = 3500.0 psi Modulus of Elast. at Lifting Ec = 3.580E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset 1 INol From I To I Length I Folder I Section I Section I Z I Y 1 I I ft I ft I ft I Name I Name I Type I in I in I 111 0.0001 21.0001 21.0001 L-Shaped I 9LB78 I Ledger Beam I 0.001 0.001 121 21.0001 25.0001 4.0001 L-Shaped I 9LB31 I Ledger Beam I 0.001 0.001 * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 25.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 25.000 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 25.000 ft Loop Height = 0.00 ft Span Length in Service = 25.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 25.000 ft Total Beam Length = 25.000 ft, Bearing Length, Left = 6.00 in, Right = 6.00 in First flexural frequency of beam is approximately 0.88 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties I Section) Section' Shear 'volume /1 Section Moduli I I No.1 A 1 I I Yb I Height 1 Width 1 Width 1 Surfacel Sb I St I I I inA2 1 inA4 I in I in I in I in I in I inA3 I inA3 I I 11 814.0 I 456651 I 34.601 78.001 17.001 9.001 4.281 -13198 1 10522 I I 21 391.0 I 29947 1 13.071 31.001 17.001 9.001 4.071 -2291 I 1670 I UNCRACKED SECTION PROPERTIES SUMMARY 1 Net Precast Section 1 Transformed Precast Section I Transformed Precast Section I I at Transfer (based on Eci) I at Transfer (based on Eci) 1 in Service (based on Ec) 1 I(include rebar,deduct strand)I (include rebar and strand) 1 (include rebar and strand) 1 x I A I yb 1 A I yb I A I yb ft I inA2 inA4 in 1 inA2 inA4 in 1 inA2 inA4 in 1 0.000 813.9 456527 34.60 814.0 456671 34.60 814.0 456665 34.60 1.500 833.1 473205 33.92 834.1 474090 33.88 827.4 468356 34.12 4.000 835.3 475184 33.84 836.5 476286 33.80 829.0 469843 34.06 6.500 835.3 475184 33.84 836.5 476286 33.80 829.0 469843 34.06 9.0001 835.3 475184 33.84 836.5 476286 33.80 829.0 469843 34.06 11.500 835.3 475184 33.84 836.5 476286 33.80 829.0 469843 34.06 12.500 835.3 475184 33.84 836.5 476286 33.80 829.0 469843 34.06 13.5001 835.3 475184 33.84 836.5 476286 33.80 829.0 469843 34.06 14.000 835.3 475184 33.84 836.5 476286 33.80 829.0 469843 34.06 16.000 835.3 475184 33.84 836.5 476286 33.80 829.0 469843 34.06 18.500 835.3 475184 33.84 836.5 476286 33.80 829.0 469843 34.06 21.000 835.3 475184 33.84 836.5 476286 33.80 829.0 469843 34.06 21.000 412.3 31474 12.65 413.5 31567 12.621 406.0 31043 12.76 23.500 410.1 31293 12.69 411.1 31367 12.67 404.4 30907 12.80 25.000 390.9 29936 13.071 391.0 29948 13.07 391.0 29948 13.07' These section properties can used to calculate uncracked concrete stresses using the following guidelines. Engineer: Company: File: Floor spandrel 5.1 with opening 1 of 7 Tue Mar 27 17:40:01 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 5.4.3 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast section in service properties are used with external loads applied to the non-composite precast beam. PRESTRESSING STEEL TENDONS 11 1 I I I Offsets 'End Offset & Typel Tendon I Jacking Force 1 IIDIQtyI Grade 'Type' Strand Size 1 x 1 y 'Left "'Right **' Area I Pj I %fpul 11 I ksi I * I I ft I in I ft I ft I inA2 I kip I 1 1 11 11 270.01 LRSI 0.5" (1/2) I 0.0001 4.001 0.000 BI 0.000 Bl 0.153 I 26.85 I 0.651 I I I I I I 25.0001 4.001 I I I I I note: * Type = LRS - Low-Relaxation strand, SRS - stress-Relieved strand, PB - Plain ear, DB - Deformed ear, Sw - Single wire ** End Types = B - Fully Bonded (B), D - Debonded (D), c - cut (C), A - Anchored (A) (fully developed) calculated Losses: Initial = 0.1%, Final = 1.6% Maximum Total Prestress Forces: Pj(jacking) = 26.85 kip, Pi(transfer) = 26.83 kip, Pe(effective) = 26.42 kip @ x = 21.000 ft, see the "Development Length" text report for details of the strand transfer and development lengths LONGITUDINAL REINFORCING STEEL Reinforcing steel Groups IIDIQtyI Steel 1 Bar I Bar 'End Location & Typel Bar 1 I Cross 'Vertical' Offset ** 1 I I I Grade I size I Area I From I I To I I spacing) I spacing' Offset I Reference 1 11 I ksi IC=coated I inA2 I ft I *1 ft 1 *1 in 1 1 in I in I 1 111 31 60.0 I # 7 1 1.800 10.000ISEI25.0001SEI 4.001 I - I 3.001 Bottom of Precast Beam I 121 11 60.0 I # 7 I 0.600 10.000ISEI25.0001SEI 4.001 1 - I 5.001 Bottom of Precast Beam 1 131 21 60.0 I # 5 1 0.620 1 0.000ISEI25.0001SEI 12.001 I - I 10.001 Bottom of Precast Beam 1 * End Types: SE - Straight Embeddment, FD - Fully Developed, SH - Standard Hook, HB - Headed Bar ** offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL I Shear Stirrups I From I To 1 Grade 1 Size I # of LegslTotal Areal Spacing I ft 1 ft 1 ksi I I I inA2 1 in 1 0.0001 25.0001 60.0 *I # 4 1 21 0.40 1 0.001 Interface shear Ties I From 1 To 1 Grade 1 Size I # of LegslTotal Areal Spacing I ft 1 ft I ksi I I I inA2 I in 1 0.0001 25.0001 This region of the beam is not reinforced for shear.' * useable steel strength limited by selected code. TORSION PARAMETERS Seg. Torsion Parameters 'NO.' sum(xA2 * Y) I x I xl 1 yl I I I inA3 I in I in 1 in I I 11 6318.00 I 9.00 I 6.00 I 75.00 I I 21 3279.00 1 9.00 1 6.00 I 28.00 1 sum(xA2 * y) is the sum of xA2 * y for all of the rectangles. x is the minimum section width. xl is the minimum width of the closed stirrups. yl is the maximum width of the closed stirrups. APPLIED LOADS Load Group stages Applied Load Details I & Type & Distribution (left to right) 1 Beam weight * Transfer to Final service segment #0- Vertical: 0.847 kip/ft from 0 to 21 ftl D: DL, Factory Produced No Load Distribution 1 Segment #1- vertical: 0.407 kip/ft from 21 to 25 ftl 1 Initial Lift Dynamic Impact Initial Lift +/-0% of Beam weight, Cable Angle: 90 degrees 1 Erection Lift Dynamic Impact Erection Lift +/-0% of Beam weight, cable Angle: 90 degrees 1 1 Engineer: Company: File: Floor spandrel 5.1 with opening 2 of 7 Tue Mar 27 17:40:02 2018 summary Report 5.4.4 concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: DL after CIP Pour Grouted to Final Service DT, 64 psf- vertical: 1.98 kip/ft full length (0.85 ft eccent.)I D: DL, General No Load Distribution I 3" topp, 37.5 psf- Vertical: 1.163 kip/ft full length (0.85 ft ec 10 psf- vertical: 0.31 kip/ft full length (0.85 ft eccent.)1 1 1 Live Load Final Service sta9e only 40 psf- vertical: 1.24 kip/ft full length (0.85 ft eccent.)I L1: LL, Garage, Parking No Load Distribution I 1 * indicates load groups generated automatically by Concise Beam. LOAD COMBINATIONS Serviceability (SLS) & Fatigue (FLS) Limit State combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00s + 1.00ws + 0.6OWu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr Ultimate (Strength) Limit State (ULS) Combinations (searched collectively to obtain envelope) 1: ULS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS Combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: ULS Combo 5 : 1.20D + 0.50L + 1.00L1 + 1.6OLr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: ULS combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: ULS Combo 8 : 1.20D + 1.6OLr + 0.80ws + 0.50wu 9: ULS Combo 9 : 1.20D + 1.60S + 0.80ws + 0.50wu 10: uLS combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: ULS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.5OLr + 1.60Ws + 1.00wu 12: ULS Combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60Ws + 1.00wu 13: ULS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60ws + 1.00wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: ULS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60Ws + 1.00Wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Station SLS (stress) Load Combination uLS Load Envelopes I Moment Moment Shear Moment Torsion x I sustained Total Load Total Load Govern. Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip Combo.) kip.ft combo.' kip.ft Combo.) I min max min max min max min max min max min max min max 0.000 0.00 0.00 0.00 48.25 89.13 15 2 0.00 0.00 1 1 33.02 65.11 15 2 1.500 75.57 75.57 97.43 42.44 78.41 15 2 68.02 125.66 15 2 29.06 57.29 15 2 4.000 180.03 180.03 232.11 32.77 60.55 15 2 162.03 299.37 15 2 22.45 44.27 15 2 6.500 257.62 257.62 332.17 23.09 42.69 15 2 231.85 428.43 15 2 15.85 31.25 15 2 9.0001 308.32 308.32 397.60 13.42 24.83 15 2 277.49 512.84 15 2 9.25 18.23 15 2 11.500 332.16 332.16 428.41 3.74 6.97 15 2 298.94 552.60 15 2 2.64 5.21 15 2 12.500 334.17 334.17 431.04 -0.20 -0.13 1 15 300.75 556.00 15 2 0.00 0.00 1 1 13.5001 331.88 331.88 428.13 -7.31 -4.00 2 15 298.69 552.26 15 2 -5.21 -2.64 2 15 14.000 329.12 329.12 424.60 -10.88 -5.93 2 15 296.21 547.71 15 2 -7.81 -3.96 2 15 16.000 307.34 307.34 396.62 -25.17 -13.67 2 15 276.60 511.65 15 2 -18.23 -9.25 2 15 18.500 255.93 255.93 330.48 -43.03 -23.35 2 15 230.33 426.40 15 2 -31.25 -15.85 2 15 21.000 177.64 177.64 229.72 -60.89 -33.02 2 15 159.87 296.49 15 2 -44.27 -22.45 2 15 23.500 73.85 73.85 95.71 -77.43 -41.71 2 15 66.47 123.59 15 2 -57.29 -29.06 2 15 25.000 0.00 0.00 0.00 -87.35 -46.92 2 15 0.00 0.00 1 1 -65.11 -33.02 2 15 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) unfactored Load Group Effects Initial Lifting 1 Truck Transport Erection Lifting 1 In Service 1 I Load I Left I Right I Left I Right I Left 1 Right 1 Left I Right I I Group I Vertical I Vertical 1 Vertical I Vertical I Vertical 1 Vertical 1 Vertical[*] Torsion[*] I Vertical[*]] Torsion[*] 1 I I kip I kip.ft I kip I kip.ft I kip 1 kip.ft 1 kip 1 kip.ft I kip 1 kip.ft 1 'Beam weight' 10.45 I 8.97 I 10.45 I 8.97 I 10.45 1 8.97 I 10.45 1 0.00 I 8.97 1 0.00 1 IDL after CII I I I 43.16 1 36.69 I 43.16 1 36.69 1 I Li ve Load I I I I I I I 15.50 I 13.18 I 15.50 1 13.18 I Load Envelope Effects SLS DL I 53.61 1 36.69 52.13 1 36.69 1 SLS Sustain' 53.61 I 36.69 52.13 1 36.69 I SLS Minimum' 10.45 8.97 10.45 8.97 10.45 8.97 53.61 1 36.69 52.13 1 36.69 I SLS Maximum' 10.45 8.97 10.45 8.97 10.45 8.97 69.11 1 49.86 I 67.63 1 49.86 1 ULS Minimum' 48.25 [1511 33.02 [1511 46.92 [1511 33.02 [1511 uLs Maximum' 89.13 [ 2]' 65.11 [ 2]I 87.35 [ 2]l 65.11 [ 2]1 * Governing uLS Load combination (below) CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) I I x I Stress 1 Limit 1 overstress' I Location I ft I psi 1 psi 1 Notice 1 Engineer: Company: File: Floor spandrel 5.1 with opening 3 of 7 Tue Mar 27 17:40:02 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 5.4.5 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: STRESSES AT TRANSFER Critical Compression Top of Beam I 21.0001 158 1 2450 1 0% Bottom of Beam I 2.5001 69 1 2450 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam 1 2.5001 -16 1 -355 I 0% Bottom of Beam I 0.0001 0 1 -355 I 0% STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam I 21.0001 158 1 2450 1 0% Bottom of Beam I 2.5001 69 1 2450 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam 1 2.5001 -16 1 -355 I 0% Bottom of Beam I 0.0001 0 1 -355 I 0% STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam I 21.0001 158 I 4900 1 0% Bottom of Beam I 2.5001 68 1 4900 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 2.5001 -16 1 -502 I 0% Bottom of Beam I 0.0001 0 1 -502 1 0% STRESSES IN SERVICE Critical Compression Top of Beam I 21.0001 1548 I 4200 I 0% Bottom of Beam I 25.0001 0 1 4200 I 0% critical Tension Top of Beam I 25.0001 0 1 -1004 I* 0% Class u member - not cracked Bottom of Beam I 21.0001 -973 1 -1004 I* 0% Class T member - cracking controlled STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 21.0001 1181 I 3150 I 0% Bottom of Beam I 25.0001 0 I 3150 I 0% * Tensile stress limit given is for Class T (controlled cracking). Beyond this limit crack control is required. At Transfer During Lifting In Service Modulus of Rupture, fr = -444 psi -444 psi -627 psi Strength Required for Transfer, f'ci = 225.3 psi (f'c specified = 3500.0 psi) Strength Required for Initial Lifting, f'c = 225.3 psi (f'c assumed = 3500.0 psi) CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING 1 I Bottom I Top of I 1 1 of Beam I Beam I 1 dc 1 3.00 1 0.00 I in Concrete cover to center of steel closest to tension face 1 cc I 2.56 1 0.00 I in Clear concrete cover to steel closest to tension face 1 fs I 31.9 1 0.0 I ksi Steel stress nearest to tension face (after decompression) for crack control 1 Max spacing I 10.36 1 0.00 I in Maximum centre-to-centre spacing of steel closest to tension face to control cracking CRACK WIDTH ESTIMATE Crack width estimates are only approximations based on idealized behaviour and average crack spacing. These estimates only represent a level of cracking and should only be used in comparison with appropriate limits such as those given below. It would not be appropriate to compare these estimates to measured crack widths. Bottom Top of of Beam Beam cracked? Yes No Cracking at 21.000 0.000 ft Location of maximum crack width from left end of beam Ms 229.72 0.00 kip.ft External service moment (DL + LL) Pdc -24.66 0.00 kip Prestress force at cracked centroid Mint 190.25 0.00 kip.ft Internal moment about cracked centroid c 9.31 0.00 in Concrete depth in compression Steel type Rebar/Strand Rebar Type of steel in tension Method Gergely-Lutz Gergely-Lutz Crack width estimate equation used * kl 78.600E-6 0.00 iM2/Kip Coefficient dependent on steel type kb 0.83 0.00 Adjustment coefficient for prestressing steel h2/h1 1.16 0.00 Ratio of depth in tension to depth of steel from NA Act 163.3 0.0 inA2 Area of concrete in tension centered on crack control steel A - 0.0 inA2 Area of concrete in tension around each bar/strand fs 31.9 0.0 ksi stress in steel nearest to tension face (after decompression) for crack width Est crack width' 0.013 0.000 in Estimated maximum crack width fc -2770 0 psi Maximum concrete compressive stress - opposite face to cracking limit -4200 -4200 psi Allowable concrete compressive stress Recommended crack width (in) - Maximum Limits (from PCI Design Handbook, 5th edition) 1 I Critical I Prestressed I Reinforced I 1 I Appearance I Concrete I Concrete I (Exterior Exposure I 0.0071 0.0101 0.0131 (interior Exposure I 0.0101 0.0121 0.0161 Engineer: Company: File: Floor spandrel 5.1 with opening 4 of 7 Tue Mar 27 17:40:02 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.4.6 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: * Gergely & Lutz equation: w = kl x fs x h2 / hl x CubicRoot(dc * A) DEFLECTION ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) I Net Deflection Change in Deflection LocationI Net @ Net @ Net @ Net DL Net Total DL growth LL Span/Deflection x I Transfer Erection Completion @ Final @ Final + LL alone DL growth LL ft I in in in in in in in + LL alone Column I A B C D E E - C E - D L / (E-C) L / (E-D)I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 1.500 0.000 0.000 -0.002 -0.002 -0.002 0.000 0.000 388404 514214 4.000 0.000 0.000 -0.006 -0.007 -0.009 -0.003 -0.003 89030 110426 6.500 0.000 0.000 -0.010 -0.011 -0.016 -0.006 -0.005 52902 64980 9.0001 0.000 0.000 -0.013 -0.014 -0.021 -0.008 -0.006 39763 48531 11.500 0.000 0.000 -0.015 -0.017 -0.024 -0.009 -0.007 33687 40848 12.500 0.000 0.000 -0.016 -0.017 -0.025 -0.009 -0.008 32274 39019 13.5001 0.000 0.000 -0.016 -0.017 -0.025 -0.010 -0.008 31265 37677 14.000 0.000 0.000 -0.016 -0.018 -0.026 -0.010 -0.008 30890 37160 16.000 0.000 0.000 -0.016 -0.017 -0.026 -0.010 -0.008 30121 35949 18.500 0.000 0.000 -0.015 -0.016 -0.024 -0.010 -0.008 30577 36034 21.000 0.000 0.000 -0.013 -0.014 -0.022 -0.009 -0.008 32483 37638 23.500 0.000 0.000 -0.007 -0.008 -0.012 -0.005 -0.004 60699 70458 25.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 Col. A: Net deflection at transfer includes prestressing and beam weight on temporary supports. Col. B: Net deflection at erection includes prestressing and all dead loads applied before the cast-in-place pour plus long-time deflection growth of the prestressing and beam weight up to erection Col. C: Net deflection at completion of construction includes prestressing and all dead loads plus long-time deflection growth of the prestressing and dead load up to completion Col. D: Net DL deflection at final includes prestressing, all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes prestressing, all dead loads, and all live loads, plus long-time deflection growth. Deflection growth is estimated by use of the PCI suggested multipliers - see the Deflection Multipliers report. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 B. Unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation Change in Rotation SupportI Net @ I Net @ I Net @ I Net DL I Net Total DL growth I LL Location' Transfer I Erection I Completion I @ Final I @ Final + LL I alone I degrees I degrees I degrees I degrees I degrees degrees I degrees Column I A I B I C 1 D I E E - C I E - D Left I -0.0013 I -0.0014 I 0.0031 I 0.0036 I 0.0043 0.0011 I 677.761E-6 Right I-372.916E-6 I-405.501E-6 I -0.0248 I -0.0272 I -0.0423 -0.0175 I -0.0151 C. Unrestrained Longitudinal change of Length Due to creep and Shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = -0.0027 in I I Total Change of Length (after elastic shortening) I Difference in Change I I I I Erection 'Completion' Final I I to Comp1.1 to Final I to Final I I I I in I in I in I I in I in I in I I I I B I C I D I I C - B I D - C I D - B I I Creep I I -0.00101 -0.00181 -0.00391 I -0.00081 -0.00211 -0.00291 I Shrink.) I -0.03421 -0.06641 -0.12011 I -0.03231 -0.05371 -0.08601 I Total I I -0.03511 -0.06821 -0.12401 I -0.03311 -0.05581 -0.08881 FLEXURAL DESIGN CHECK Design Code Used: ACI 318-14 Concrete compressive stress-strain model used: PCA Parabola-Rectangle Curve Modulus of Rupture of Precast Concrete, fr = 627 psi (tension) I I Factored I Design I Cracking I Minimum I Depth in I Net TensileI Flexural 10 I warnings I I I Moment I Strength I Moment I Required I Compression' Strain IClassicationl I & Notes I x I Mu I 0Mn I Mcr I Strength I c I I I I I ft I kip.ft I kip.ft I kip.ft I kip.ft I in I I I I I 0.0001 0.00 I 1.04 I 690.27 I 0.00 I 15.87 I 0.0000ITension 10.881 31 1.5001 125.66 I 878.89 I 781.35 I 937.62 I 16.15 I 0.0019ITension 10.891 B 31 I 4.0001 299.37 I 1118.81 I 820.15 I 984.17 I 5.85 I 0.02961 Tensi on I 0.891 31 Engineer: Company: File: Floor spandrel 5.1 with opening 5 of 7 Tue Mar 27 17:40:02 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.4.7 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 6.500 428.43 1184.09 820.90 985.08 5.99 0.0296ITension 0.90 3 9.0001 512.84 1184.50 821.40 985.68 5.99 0.0296ITension 0.90 3 11.500 552.60 1184.50 821.63 985.95 5.99 0.0296ITension 0.90 3 12.500 556.00 1184.50 821.64 985.97 5.99 0.0296ITension 0.90 3 13.5001 552.26 1184.50 821.62 985.94 5.99 0.0296ITension 0.90 3 14.000 547.71 1184.50 821.59 985.91 5.99 0.0296ITension 0.90 3 16.000 511.65 1184.50 821.37 985.64 5.99 0.0296ITension 0.90 3 18.500 426.40 1184.51 820.85 985.02 5.99 0.0296ITension 0.90 3 21.000 296.49 1120.21 820.08 984.09 5.85 0.0296ITension 0.89 3 21.000 296.49 380.86 159.67 191.60 5.39 0.0126ITension 0.89 23.500 123.59 276.42 146.28 175.53 9.14 0.0018ITension 0.88 3 25.000 0.00 0.33 119.85 0.00 8.80 0.0000ITension 0.88 3 Points of Maximum and Minimum Factored Moment I 12.5001 556.00 I 1184.50 I 821.64 I 985.97 I 5.99 I 0.0296ITension I 0.901 31 I 0.0001 0.00 I -0.03 I 550.18 I 0.00 I 2.60 I 0.0000ITension 10.851 31 Points of Maximum Ratio of Factored Moment to Design Strength I 21.0001 296.49 I 380.86 1 159.67 I 191.60 I 5.39 I 0.0126ITension 10.891 I I 0.0001 0.00 I -0.03 I 550.18 I 0.00 I 2.60 I 0.0000ITension 10.851 31 Points of Maximum Ratio of Minimum Strength to Design Strength I 24.7501 21.63 I 46.56 I 124.30 I 149.15 I 8.73 I 0.0003ITension I 0.881 B 31 I 0.0001 0.00 I -0.03 I 550.18 I 0.00 I 2.60 I 0.0000ITension 10.851 31 Warnings & Notes B - WARNING, 0Mn < 1.2Mcr and 0Mn < 2.OMu, minimum reinforcement requirement not met [ACI 318-14::7.6.2/9.6.2]. 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code Used: ACI 318-14 1 Design Prestress Concrete Strength Provided Min. Strength Req'd Warnings I Shear Component Strength Stirrups Total Stirrups Total & Notes x I Vu Vp 0Vc 0Vs 0Vn 0Vs 0Vn ft 1 kip kip kip kip kip kip kip 0.000 64.13 0.00 35.10 0.00 35.10 29.02 64.13 B 1 3 1.500 64.13 0.00 36.29 0.00 36.29 27.83 64.13 B 1 3 4.000 60.55 0.00 36.50 0.00 36.50 24.05 60.55 B 1 6.500 42.69 0.00 34.00 0.00 34.00 9.23 43.23 B 1 9.0001 24.83 0.00 33.41 0.00 33.41 25.83 59.24 1 11.500 6.97 0.00 70.39 0.00 70.39 0.00 70.39 12.500 -0.20 0.00 -70.39 0.00 -70.39 0.00 -70.39 13.5001 -7.31 0.00 -70.39 0.00 -70.39 0.00 -70.39 14.000 -10.88 0.00 -70.39 0.00 -70.39 0.00 -70.39 16.000 -25.17 0.00 -33.76 0.00 -33.76 -25.83 -59.59 1 18.500 -43.03 0.00 -34.25 0.00 -34.25 -9.20 -43.46 B 1 21.000 -60.89 0.00 -36.71 0.00 -36.71 -24.18 -60.89 B 1 21.000 -60.89 0.00 -17.20 0.00 -17.20 -43.69 -60.89 B 1 23.500 -77.16 0.00 -18.68 0.00 -18.68 -58.48 -77.16 B 1 3 25.000 -77.16 0.00 -17.52 0.00 -17.52 -59.64 -77.16 B 1 3 Warnings & Notes B - WARNING, the factored design shear, Vu, is greater than the shear strength, evn, provided [ACI 318-14::7.5.1.1/9.5.1.1]. 1 - Note, transverse shear or torsion steel is required. See the Shear/Torsion Transvese Reinforcing Design Check report. 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, the PCI recommended Zia/Hsu method was used to calculate the above shear design check results. TORSION DESIGN CHECK Design Code Used: ACI 318-14 (with the Zia-Hsu torsion method) I Design Threshold Maximum Shear/Torsion Limits Concrete Torsion Strength Warnings 1 Torsion Torsion Max. ShearlShear Load Max. Tors.ITors. Load Strength Provided Required & Notes x I Tu Tu(min) 0Vn(max) Vu corr Tu 0Tn(max) Tu corr Vu 0Tc 0Tn 0Tn ft 1 kip.ft kip.ft kip kip kip.ft kip.ft kip.ft kip.ft kip.ft 0.000 46.88 16.52 165.70 64.13 121.13 46.88 25.66 25.66 46.88 1 1.500 46.88 16.75 167.30 64.13 122.30 46.88 26.53 26.53 46.88 1 4.000 44.27 16.87 168.11 60.55 122.91 44.27 26.69 26.69 44.27 6.500 31.25 16.88 167.97 42.69 122.95 31.25 24.89 24.89 31.25 9.0001 18.23 16.88 167.58 24.83 123.01 18.23 24.52 24.52 24.52 11.500 5.21 16.88 0.00 6.97 0.00 5.21 0.00 0.00 0.00 12.500 0.00 16.88 0.00 -0.20 0.00 0.00 0.00 0.00 0.00 13.5001 -5.21 -16.88 0.00 -7.31 0.00 -5.21 0.00 0.00 0.00 14.000 -7.81 -16.88 0.00 -10.88 0.00 -7.81 0.00 0.00 0.00 16.000 -18.23 -16.88 -169.48 -25.17 -122.73 -18.23 -24.45 -24.45 -24.45 18.500 -31.25 -16.88 -169.08 -43.03 -122.79 -31.25 -24.88 -24.88 -31.25 21.000 -44.27 -16.87 -168.89 -60.89 -122.79 -44.27 -26.69 -26.69 -44.27 21.000 -44.27 -8.95 -81.65 -60.89 -59.36 -44.27 -12.50 -12.50 -44.27 23.500 -57.08 -8.81 -80.24 -77.16 -59.36 -57.08 -13.82 -13.82 -57.08 1 25.000 -57.08 -8.57 -78.94 -77.16 -58.40 -57.08 -12.96 -12.96 -57.08 1 Warnings & Notes 1 - Note, design torsion force at critical section near support used as a minimum [ACI 318-14::9.4.4.2/3]. Note, the PCI recommended Zia/Hsu method was used to calculate the above torsion design check results SHEAR/TORSION TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 (with the Zia-Hsu torsion method) I I Shear Steel Required 'Shear Steell Stirrup 1 Stirrup Spacing I Additional Long. Steell Warnings 1 I I Total I Torsion* I Provided I Provided I Provided I Max. Allow' for Torsion, Al I & Notes I I x I (Av+2At)/sI At/s I Av/s I Av+2At I s I s I Total IReduction**I I I ft 1 inA2/ft 1 inA2/ft 1 inA2/ft I inA2 I in I in I inA2 I inA2 I I Engineer: Company: File: Floor spandrel 5.1 with opening 6 of 7 Tue Mar 27 17:40:02 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 5.4.8 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: 0.000 0.31 0.10 0.00 0.40 0.00 12.00 2.21 0.00 4 5 1.500 0.29 0.10 0.00 0.40 0.00 12.00 2.26 0.00 4 5 4.000 0.25 0.08 0.00 0.40 0.00 12.00 2.44 0.00 5 6.500 0.09 0.03 0.00 0.40 0.00 12.00 2.93 0.00 1 5 9.0001 0.09 0.00 0.00 0.40 0.00 12.00 2.93 0.00 1 5 11.500 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 12.500 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 13.5001 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 14.000 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 16.000 0.09 0.00 0.00 0.40 0.00 12.00 2.92 0.00 1 5 18.500 0.09 0.03 0.00 0.40 0.00 12.00 2.92 0.00 1 5 21.000 0.25 0.08 0.00 0.40 0.00 12.00 2.43 0.00 5 21.000 1.25 0.40 0.00 0.40 0.00 3.84 2.29 0.00 23.500 1.68 0.55 0.00 0.40 0.00 2.85 3.11 0.00 4 25.000 1.72 0.56 0.00 0.40 0.00 2.80 3.17 0.00 4 warnings & Notes 1 - Note, amount of shear steel required represents minimum code requirements [ACI 318-14::9.6.3.3]. 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: Floor spandrel 5.1 with opening 7 of 7 Tue Mar 27 17:40:02 2018 Shear/Torsion Reinforcing Design Check Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5'4'8 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SHEAR/TORSION TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 (with the Zia-Hsu torsion method) 1 Shear Steel Required Shear Steell Stirrup Stirrup Spacing Additional Long. Steell warnings 1 Total Torsion* Provided Provided Provided Max. Allow) for Torsion, Al & Notes x 1 (Av+2At)/s At/s Av/s Av+2At s s Total Reduction** ft 1 inA2/ft inA2/ft inA2/ft inA2 in in inA2 inA2 0.0001 0.31 0.10 0.00 0.40 0.00 12.00 2.21 0.00 4 5 0.500 0.30 0.10 0.00 0.40 0.00 12.00 2.23 0.00 4 5 1.3001 0.30 0.10 0.00 0.40 0.00 12.00 2.25 0.00 4 5 2.000 0.29 0.10 0.00 0.40 0.00 12.00 2.28 0.00 4 5 3.000 0.29 0.09 0.00 0.40 0.00 12.00 2.29 0.00 4 5 4.000 0.25 0.08 0.00 0.40 0.00 12.00 2.44 0.00 5 5.000 0.19 0.06 0.00 0.40 0.00 12.00 2.73 0.00 5 6.000 0.12 0.04 0.00 0.40 0.00 12.00 2.93 0.00 5 7.000 0.09 0.02 0.00 0.40 0.00 12.00 2.93 0.00 1 5 8.000 0.09 0.00 0.00 0.40 0.00 12.00 2.93 0.00 1 5 9.000 0.09 0.00 0.00 0.40 0.00 12.00 2.93 0.00 1 5 10.0001 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 11.000 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 12.000 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 12.5001 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 13.000 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 13.000 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 14.000 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 15.000 0.00 0.00 0.00 0.40 0.00 24.00 0.00 0.00 16.000 0.09 0.00 0.00 0.40 0.00 12.00 To 2.92 0.00 1 5 17.000 0.09 0.00 0.00 0.40 0.00 12.00 2.92 0.00 1 5 18.000 0.09 0.02 0.00 0.40 0.00 12.00 2.92 0.00 1 5 19.000 0.12 0.04 0.00 0.40 0.00 12.00 2.92 0.00 5 20.000 0.19 0.06 0.00 0.40 0.00 12.00 2.73 0.00 5 21.000 0.25 0.08 0.00 0.40 0.00 12.00 2.43 0.00 5 21.000 1.25 0.40 0.00 0.40 0.00 3.84 2.29 0.00 22.000 1.42 0.46 0.00 0.40 0.00 3.39 i, 2.60 0.00 23.000 1.59 0.52 0.00 0.40 0.00 3.01 J 2.93 0.00 24.000 1.69 0.55 0.00 0.40 0.00 2.83 3.13 0.00 4 24.5001 1.71 0.56 0.00 0.40 0.00 2.81 3.15 0.00 4 25.000 1.72 0.56 0.00 0.40 0.00 2.80 3.17 0.00 4 Warnings & Notes 1 - Note, amount of shear steel required represents minimum code requirements [ACI 318-14::9.6.3.3]. 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). *°* The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: Floor spandrel 5.1 with opening 1 of 1 Tue Mar 27 17:44:19 2018 DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION iv SUBMITTAL A o E FOR APPROVAL- NOT FOR CONSTRUCTION E D c ? 9" solid spandrel °' �f — — f'ci = 3500 psi o ,, ..a. c'•, f'c = 6000 psi _r.- .ii'' Hard Rock concrete o Q _ c.,-) Ii_ o I I ce E IIco 0 w ce „Z^ „6 ] - : '8. c / L { w5 o ----7"L _ U II1 t Ia) b • • I ( a)("I Li II II Ce s a)c II m o© IH II �k D c � _ Q X N 1111 U x VE II a) 1 I I JOalo .I J0313 „ l LUI 10o 2 II J II a 1 t0 I to 1 c a 1 I s a I. Feit III a o ..„,,„ 71, . _,L, O U . a .... . i it . .g . ,r) a ` Is Q N 8 > Cl II I • I IEsi I ?JV8321 S# 13 uZ wf b if o aD II S\_ N w RED SANDSTONE 9"x 6' 10" roof spandrel 6209 M o N 5TRE55CON 3 fik o z 1— H a _ w 5. 5 LL Architectural and Structural Precast Concrete o Q An ENCoN Company U SHEET 1 OF 1 o_ Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.5.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Design Code Used: ACI 318-14 Wheel load @ midspan NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4> in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S5: Use the Zia/Hsu Method for torsion design as recommended in the PCI Standard Practice guidelines (ACI Codes Only) ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Concrete Density Wt = 150 lb/ftA3 Compressive Strength f'c = 6000.0 psi Modulus of Elasticity Ec = 4.688E+6 psi Strength at Transfer f'c = 3000.0 psi Modulus of Elast. at Transfer Ec = 3.315E+6 psi Strength at Lifting f'c = 3000.0 psi Modulus of Elast. at Lifting Ec = 3.315E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT I Segment/Length I Section Identification I Offset I INo1 From 1 To 1 Length I Folder I Section I Section I Z I Y I I ft I ft I ft I Name I Name I Type I in I in I 111 0.0001 24.8801 24.8801 L-Shaped I 8_5LB82 I Ledger Beam I 0.001 0.001 * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 24.880 ft, Centre of Supports, Left @ 0.000 ft, Right @ 24.880 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 24.880 ft Loop Height = 0.00 ft Span Length in Service = 24.880 ft, Centre of Supports, Left @ 0.000 ft, Right @ 24.880 ft Total Beam Length = 24.880 ft, Bearing Length, Left = 6.00 in, Right = 6.00 in First flexural frequency of beam is approximately 0.76 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties I SectionI SectionI Shear (volume /1 Section Moduli I I No.1 A I I I yb I Height I Width I Width I Surface) Sb I St I I I inA2 I inA4 I in I in I in I in I in I inA3 1 inA3 I I 11 809.0 I 503929 1 36.291 82.001 16.501 8.501 4.111 -13886 I 11024 1 UNCRACKED SECTION PROPERTIES SUMMARY I Net Precast Section I Transformed Precast Section I Transformed Precast Section I 1 at Transfer (based on Eci) I at Transfer (based on Eci) I in Service (based on Ec) I I(include rebar,deduct strand)( (include rebar and strand) I (include rebar and strand) I x I A I yb I A I yb 1 A I yb ft 1 inA2 inA4 in I inA2 inA4 in I inA2 inA4 in I 0.0001 808.7 503673 36.30 809.0 503956 36.291 809.0 503947 36.29 1.493 823.1 518713 35.73 825.3 520593 35.651 819.9 515155 35.86 3.981 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 6.469 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 8.459 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 10.947 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 12.440 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 13.4351 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 13.9331 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 16.4211 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 18.4111 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 20.8991 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 23.3871 823.1 518713 35.73 825.3 520593 35.651 819.9 515155 35.86 24.8801 808.7 503673 36.30 809.0 503956 36.291 809.0 503947 36.29 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. Engineer: Company: File: Shallow roof spandrel 5.5 1 of 6 Tue Mar 27 18:41:38 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.5.3 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: PRESTRESSING STEEL TENDONS I I I I I I Offsets 'End Offset & Typel Tendon I Jacking Force I IIDIQtyl Grade 'Type' Strand Size 1 x 1 y 'Left **'Right **' Area 1 Pj I %fpul I I I ksi I * I 1 ft 1 in 1 ft 1 ft 1 inA2 1 kip I I 1 11 11 270.01 LRS' 0.5" (1/2) 1 0.0001 4.001 0.000 B1 0.000 Bl 0.153 1 26.85 1 0.651 11 1 I I 1 24.8801 4.001 I I I I I I 21 1' 270.01 LRS' 0.5" (1/2) 1 0.0001 8.001 0.000 B' 0.000 B1 0.153 1 26.85 I 0.651 I I 1 I I 1 24.8801 8.001 I I I I I note: * Type = LRS - Low-Relaxation Strand, SRS - Stress-Relieved Strand, PB - Plain Bar, DB - Deformed Bar, SW - Single Wire ** End Types = B - Fully Bonded (B), D - Debonded (D), C - Cut (C), A - Anchored (A) (fully developed) Calculated Losses: Initial = 0.5%, Final = 3.8% Maximum Total Prestress Forces: Pj(jacking) = 53.70 kip, Pi(transfer) = 53.42 kip, Pe(effective) = 51.65 kip @ x = 12.440 ft, See the "Development Length" text report for details of the strand transfer and development lengths LONGITUDINAL REINFORCING STEEL Reinforcing Steel Groups IIDIQty' Steel 1 Bar I Bar 'End Location & Typel Bar I I Cross 'vertical' Offset ** I 1 I I Grade 1 Size I Area 1 From I I To 1 1 Spacing' I Spacing' Offset I Reference 1 1 I I ksi 1C=coated 1 inA2 1 ft 1 *1 ft I *1 in I I in 1 in 1 1 1 11 21 60.0 1 # 9 1 2.000 1 0.00015E124.88015E1 6.001 1 - I 3.001 Bottom of Precast Beam I 1 21 11 60.0 1 # 9 I 1.000 10.00015E124.8801SE' 6.001 1 - I 5.001 Bottom of Precast Beam I * End Types: SE - Straight Embeddment, FD - Fully Developed, SH - Standard Hook, HB - Headed Bar ** Offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL 1 Shear Stirrups 1 From 1 To 1 Grade 1 Size 1 # of LegslTotal Areal Spacing 1 ft 1 ft 1 ksi 1 I I inA2 1 in 1 0.0001 24.8801 60.0 *I # 5 1 21 0.62 1 0.001 Interface Shear Ties 1 From 1 To 1 Grade 1 Size 1 # of LegslTotal Areal spacing 1 ft 1 ft 1 ksi 1 1 1 inA2 1 in 1 0.0001 24.8801 58.0 1 15M 1 01 0.00 1 0.001 * Useable steel strength limited by selected code. TORSION PARAMETERS Seg. Torsion Parameters 'No.' sum(xA2 * y) 1 x 1 x1 I yl 1 1 1 inA3 1 in 1 in I in 1 1 11 5924.50 1 8.50 1 5.50 I 79.00 1 sum(xA2 * y) is the sum of xA2 * y for all of the rectangles. x is the minimum section width. xl is the minimum width of the closed stirrups. yl is the maximum width of the closed stirrups. APPLIED LOADS Load Group Stages Applied Load Details & Type & Distribution (left to right) Beam Weight * Transfer to Final Service Segment #0- Vertical: 0.842 kip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Add. Beam Self-Weight Transfer to Final Service 1/2" vertical reveals- Vertical: 0.044 kip/ft full length (-0.38 D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Engineer: Company: File: Shallow roof spandrel 5.5 2 of 6 Tue Mar 27 18:41:38 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 5.5.4 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: DL after CIP Pour Grouted to Final Service 96.5 psf DT- vertical: 3 kip/ft full length (0.85 ft eccent.)I D: DL, General No Load Distribution I 5" topping, 62.5 psf- Vertical: 1.94 kip/ft full length (0.85 ft I lOpsf S.I.- vertical: 0.31 kip/ft full length (0.85 ft eccent.)I I 25 plf solar panel- vertical: 0.025 kip/ft full length (-1.88 ft I I Live Load Final Service stage only 20k left- vertical: 18 kip at 7.5 ft (0.85 ft eccent.)I L1: LL, Garage, Parking No Load Distribution I 20k right- vertical: 18 kip at 17.5 ft (0.85 ft eccent.)I I I snow Final service stage only 100 psf- vertical: 3.1 kip/ft full length (0.85 ft eccent.)I S: Snow & Ice Accretion No Load Distribution I I * indicates load groups generated automatically by Concise Beam. LOAD COMBINATIONS Serviceability (SLS) & Fatigue (FLS) Limit state Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.0OL + 1.0OL1 + 1.00Lr + 1.00R + 1.00S + 1.00ws + 0.6OWu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr ultimate (Strength) Limit State (uLS) combinations (searched collectively to obtain envelope) 1: ULS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS combo 3 : 1.20D + 1.20F + 1.20T + 1.6OL + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: ULS Combo 5 : 1.20D + 0.50L + 1.00L1 + 1.6OLr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: ULS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: ULS Combo 8 : 1.20D + 1.6OLr + 0.80ws + 0.50wu 9: ULS Combo 9 : 1.20D + 1.60S + 0.80ws + 0.50wu 10: ULS Combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: ULS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60ws + 1.00wu 12: uLS combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60ws + 1.00wu 13: ULS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60ws + 1.00wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: uLS combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60ws + 1.00Wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Station SLS (stress) Load combination uLS Load Envelopes I Moment Moment shear Moment Torsion x I Sustained Total Load Total Load Govern. Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip combo.I kip.ft combo.I kip.ft combo.I 1 min max min max min max min max min max min max min max 0.0001 0.00 0.00 0.00 68.97 171.58 15 6 0.00 0.00 1 1 49.25 133.34 15 6 1.493 107.54 107.54 188.40 60.70 153.14 15 6 96.79 242.37 15 6 43.34 119.16 15 6 3.981 256.27 256.27 456.53 46.90 122.41 15 6 230.64 585.16 15 6 33.49 95.54 15 6 6.469 366.86 366.86 667.34 33.11 91.67 15 6 330.18 851.48 15 6 23.64 71.92 15 6 8.459 427.88 427.88 777.45 21.93 49.17 15 6 385.09 992.21 15 6 15.64 37.80 15 6 10.947 469.83 469.83 840.29 8.14 18.44 15 6 422.85 1076.11 15 6 5.79 14.17 15 6 12.440 476.69 476.69 850.48 -0.14 0.00 2 1 429.02 1089.74 15 6 -0.12 0.00 2 1 13.4351 473.64 473.64 845.81 -12.38 -5.52 6 15 426.28 1083.54 15 6 -9.52 -3.94 6 15 13.9331 469.83 469.83 840.03 -18.53 -8.28 6 15 422.85 1075.85 15 6 -14.25 -5.91 6 15 16.4211 427.88 427.88 776.76 -49.26 -22.07 6 15 385.09 991.52 15 6 -37.87 -15.76 6 15 18.4111 366.86 366.86 668.47 -91.85 -33.11 6 15 330.18 852.60 15 6 -72.07 -23.64 6 15 20.8991 256.27 256.27 457.22 -122.58 -46.90 6 15 230.64 585.85 15 6 -95.69 -33.49 6 15 23.3871 107.54 107.54 188.66 -153.32 -60.70 6 15 96.79 242.63 15 6 -119.31 -43.34 6 15 24.8801 0.00 0.00 0.00 -171.76 -68.97 6 15 0.00 0.00 1 1 -133.49 -49.25 6 15 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) Unfactored Load Group Effects I Initial Lifting Truck Transport Erection Lifting In Service Load I Left Right Left Right Left Right Left Right Group I Vertical Vertical Vertical Vertical Vertical Vertical Vertical[*] Torsion[*] Vertical[*]I Torsion[*] I kip kip.ft kip kip.ft kip kip.ft kip kip.ft kip kip.ft Beam weight) 10.47 10.47 10.47 10.47 10.47 10.47 10.47 0.00 10.47 0.00 Add. Beam SI 0.55 0.55 0.55 0.55 0.55 0.55 0.55 -0.21 0.55 -0.21 DL after CII 65.62 54.93 65.62 54.93 Live Load I 17.91 15.23 18.09 15.37 Snow I 38.56 32.78 38.56 32.78 Load Envelope Effects SLS DL I 76.64 I 54.72 I 76.64 I 54.72 I SLS Sustain) 76.64 I 54.72 I 76.64 I 54.72 I SLS Minimum' 11.02 11.02 11.02 11.02 11.02 11.02 76.64 I 54.72 I 76.64 I 54.72 I SLS maximum' 11.02 11.02 11.02 11.02 11.02 11.02 133.12 I 102.73 I 133.29 I 102.87 I ULS Minimum) 68.97 [1511 49.25 [1511 68.97 [1511 49.25 [1511 uLs maximum' 171.58 [ 6]I 133.34 [ 6]I 171.76 [ 6]I 133.49 [ 6]I * Governing uLS Load combination (below) Engineer: Company: File: shallow roof spandrel 5.5 3 of 6 Tue Mar 27 18:41:38 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.5.5 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) I x I Stress I Limit I Overstress Location I ft I psi 1 psi 1 Notice STRESSES AT TRANSFER Critical Compression Top of Beam 1 0.0001 0 1 2100 1 0% Bottom of Beam I 4.9761 134 1 1800 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam 1 4.9761 -28 1 -164 1 0% Bottom of Beam 1 0.0001 0 1 -329 1 0% STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam 1 0.0001 0 1 2100 1 0% Bottom of Beam I 4.9761 134 1 1800 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam 1 4.9761 -28 1 -164 1 0% Bottom of Beam 1 0.0001 0 1 -329 1 0% STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam 1 0.0001 0 1 4200 1 0% Bottom of Beam I 4.9761 134 1 3600 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam 1 4.9761 -28 1 -232 1 0% Bottom of Beam 1 0.0001 0 1 -465 1 0% STRESSES IN SERVICE Critical Compression Top of Beam I 12.4401 835 1 3600 1 0% Bottom of Beam I 22.8901 25 1 3600 1 0% Critical Tension Top of Beam 1 0.0001 0 1 -930 1* 0% Class U member - not cracked Bottom of Beam I 12.4401 -532 1 -930 1* 0% Class U member - not cracked STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 12.4401 436 I 2700 I 0% Bottom of Beam I 22.8901 25 I 2700 I 0% * Tensile stress limit given is for Class T (controlled cracking). Beyond this limit crack control is required. At Transfer During Lifting In Service Modulus of Rupture, fr = -411 psi -411 psi -581 psi Strength Required for Transfer, f'ci = 223.8 psi (f'c specified = 3000.0 psi) Strength Required for Initial Lifting, f'c = 223.8 psi (f'c assumed = 3000.0 psi) CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING I I Bottom I Top of I I I of Beam I Beam I I dc I 0.00 I 0.00 I in Concrete cover to center of steel closest to tension face I cc I 0.00 I 0.00 I in Clear concrete cover to steel closest to tension face I fs I 0.0 I 0.0 I ksi Steel stress nearest to tension face (after decompression) for crack control I Max spacing I 0.00 I 0.00 I in Maximum centre-to-centre spacing of steel closest to tension face to control cracking Beam not cracked, cracking is controlled, or crack depth is less than concrete cover. DEFLECTION ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) I Net Deflection Change in Deflection LocationI Net @ Net @ Net @ Net DL Net Total DL growth LL Span/Deflection x I Transfer Erection Completion @ Final @ Final + LL alone DL growth LL ft I in in in in in in in + LL alone Column I A B C D E E - C E - D L / (E-C) L / (E-D)I 0.0001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 1.493 0.001 0.001 -0.002 -0.005 -0.006 -0.004 -0.001 75502 244056 3.981 0.003 0.003 -0.006 -0.013 -0.016 -0.010 -0.003 29447 94839 6.469 0.004 0.005 -0.009 -0.019 -0.024 -0.015 -0.005 19532 62712 8.459 0.005 0.005 -0.011 -0.023 -0.029 -0.018 -0.006 16309 52405 10.947 0.005 0.006 -0.012 -0.026 -0.033 -0.020 -0.006 14607 47071 12.440 0.006 0.006 -0.012 -0.027 -0.033 -0.021 -0.006 14358 46299 13.4351 0.006 0.006 -0.012 -0.027 -0.033 -0.021 -0.006 14468 46636 13.9331 0.005 0.006 -0.012 -0.026 -0.033 -0.020 -0.006 14606 47066 16.4211 0.005 0.005 -0.011 -0.023 -0.029 -0.018 -0.006 16307 52378 18.4111 0.004 0.005 -0.009 -0.019 -0.024 -0.015 -0.005 19525 62642 20.8991 0.003 0.003 -0.006 -0.013 -0.016 -0.010 -0.003 29430 94660 Engineer: Company: File: Shallow roof spandrel 5.5 4 of 6 Tue Mar 27 18:41:38 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.5.6 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: I 23.3871 0.001 I 0.001 I -0.002 I -0.005 I -0.006 I -0.004 I -0.001 I 75434 I 243348 I 1 24.8801 0.000 1 0.000 I 0.000 I 0.000 1 0.000 I 0.000 I 0.000 1 0 I 0 1 Col. A: Net deflection at transfer includes prestressing and beam weight on temporary supports. Col. B: Net deflection at erection includes prestressing and all dead loads applied before the cast-in-place pour plus long-time deflection growth of the prestressing and beam weight up to erection Col. C: Net deflection at completion of construction includes prestressing and all dead loads plus long-time deflection growth of the prestressing and dead load up to completion Col. D: Net DL deflection at final includes prestressing, all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes prestressing, all dead loads, and all live loads, plus long-time deflection growth. Deflection growth is estimated by use of the PCI suggested multipliers - see the Deflection Multipliers report. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 B. Unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) 1 Net Rotation Change in Rotation SupportI Net @ I Net @ 1 Net @ 1 Net DL 1 Net Total DL growth I LL Location' Transfer I Erection 1 Completion 1 @ Final 1 @ Final + LL 1 alone 1 degrees I degrees 1 degrees 1 degrees 1 degrees degrees 1 degrees Column 1 A I B 1 C 1 D 1 E E - C 1 E - D Left 1 -0.0043 I -0.0046 I 0.0066 I 0.0154 I 0.0194 0.0127 I 0.0039 Right 1 0.0043 I 0.0046 1 -0.0066 1 -0.0154 1 -0.0194 -0.0127 I -0.0039 C. Unrestrained Longitudinal Change of Length Due to Creep and Shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = -0.0052 in I I Total Change of Length (after elastic shortening) I Difference in Change I I I I Erection 'Completion' Final 1 I to Comp1.1 to Final 1 to Final I I I I in I in I in 1 I in I in 1 in I I I I B I C I D I I C - B I D - C I D - B I I Creep I I -0.00201 -0.00361 -0.00761 I -0.00151 -0.00401 -0.00551 1 Shrink.I 1 -0.03581 -0.06891 -0.12211 I -0.03321 -0.05321 -0.08641 1 Total I I -0.03781 -0.07251 -0.12971 I -0.03471 -0.05721 -0.09191 FLEXURAL DESIGN CHECK Design Code Used: ACI 318-14 Concrete compressive stress-strain model used: PCA Parabola-Rectangle Curve Modulus of Rupture of Precast Concrete, fr = 581 psi (tension) 1 Factored Design Cracking Minimum Depth in Net TensileI Flexural 0 I Warnings I 1 Moment Strength Moment Required Compression' Strain IClassication I & Notes I x I Mu 0Mn Mcr Strength c I I I ft I kip.ft kip.ft kip.ft kip.ft in I I I 0.0001 0.00 1.22 672.50 0.00 18.28 0.00001Tension 0.87 31 1.493 242.37 709.13 824.41 989.29 19.01 0.00121Tension 0.86 B 31 3.981 585.16 1327.60 907.50 1089.00 7.31 0.02941Tension 0.88 6.469 851.48 1461.32 909.08 1090.89 7.94 0.02681Tension 0.90 8.459 992.21 1463.01 909.95 1091.94 7.94 0.02681Tension 0.90 10.947 1076.11 1463.01 910.55 1092.66 7.94 0.02681Tension 0.90 12.440 1089.74 1463.01 910.65 1092.78 7.94 0.02681Tension 0.90 13.4351 1083.54 1463.01 910.60 1092.72 7.94 0.02681Tension 0.90 13.9331 1075.85 1463.01 910.55 1092.66 7.94 0.02681Tension 0.90 16.4211 991.52 1463.01 909.95 1091.94 7.94 0.02681Tension 0.90 18.4111 852.60 1461.32 909.08 1090.89 7.94 0.02681Tension 0.90 20.8991 585.85 1327.60 907.50 1089.00 7.31 0.02941Tension 0.88 23.3871 242.63 709.13 824.41 989.29 19.01 0.00121Tension 0.86 B 31 24.8801 0.00 1.22 672.50 0.00 18.28 0.00001Tension 0.87 31 Points of Maximum and Minimum Factored Moment 1 12.4401 1089.74 1 1463.01 I 910.65 I 1092.78 I 7.94 I 0.02681Tension I 0.901 I I 0.0001 0.00 I -0.04 I 533.66 I 0.00 I 2.23 I 0.0000ITension 10.851 31 Points of Maximum Ratio of Factored Moment to Design Strength 1 12.4401 1089.74 1 1463.01 I 910.65 1 1092.78 I 7.94 I 0.02681Tension I 0.901 I I 0.0001 0.00 I -0.04 I 533.66 I 0.00 I 2.23 I 0.0000ITension 10.851 31 Points of Maximum Ratio of Minimum Strength to Design Strength 1 24.3821 83.94 1 237.31 I 723.56 I 868.28 I 18.69 I 0.0004ITension I 0.861 B 31 I 0.0001 0.00 I -0.04 I 533.66 I 0.00 I 2.23 I 0.0000ITension 10.851 31 Warnings & Notes B - WARNING, 0Mn < 1.2Mcr and 0Mn < 2.OMu, minimum reinforcement requirement not met [ACI 318-14::7.6.2/9.6.2]. 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code Used: ACI 318-14 Engineer: Company: File: Shallow roof spandrel 5.5 5 of 6 Tue Mar 27 18:41:38 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.5.7 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 1 Design Prestress Concrete Strength Provided Min. Strength Req'd Warnings I Shear Component Strength Stirrups Total Stirrups Total & Notes x I Vu Vp 0Vc 0Vs 0Vn 0Vs 0Vn ft 1 kip kip kip kip kip kip kip 0.0001 126.29 0.00 28.70 0.00 28.70 97.58 126.29 B 1 3 1.493 126.29 0.00 30.99 0.00 30.99 95.30 126.29 B 1 3 3.981 122.41 0.00 32.15 0.00 32.15 90.26 122.41 B 1 6.469 91.67 0.00 30.64 0.00 30.64 61.04 91.67 B 1 8.459 49.17 0.00 29.84 0.00 29.84 19.33 49.17 B 1 10.947 18.44 0.00 65.14 0.00 65.14 0.00 65.14 12.440 -0.14 0.00 -65.14 0.00 -65.14 0.00 -65.14 13.4351 -12.38 0.00 -65.14 0.00 -65.14 0.00 -65.14 13.9331 -18.53 0.00 -65.14 0.00 -65.14 0.00 -65.14 16.4211 -49.26 0.00 -29.84 0.00 -29.84 -19.42 -49.26 B 1 18.4111 -91.85 0.00 -30.64 0.00 -30.64 -61.21 -91.85 B 1 20.8991 -122.58 0.00 -32.14 0.00 -32.14 -90.44 -122.58 B 1 23.3871 -126.46 0.00 -30.98 0.00 -30.98 -95.48 -126.46 B 1 3 24.8801 -126.46 0.00 -28.70 0.00 -28.70 -97.76 -126.46 B 1 3 Warnings & Notes B - WARNING, the factored design shear, Vu, is greater than the shear strength, OVn, provided [ACI 318-14::7.5.1.1/9.5.1.1]. 1 - Note, transverse shear or torsion steel is required. See the Shear/Torsion Transvese Reinforcing Design Check report. 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, the PCI recommended Zia/Hsu method was used to calculate the above shear design check results. TORSION DESIGN CHECK Design Code Used: ACI 318-14 (with the Zia-Hsu torsion method) I Design Threshold Maximum Shear/Torsion Limits Concrete Torsion Strength warnings 1 Torsion Torsion Max. SheariShear Load Max. Tors.ITors. Load Strength Provided Required & Notes x I Tu Tu(min) 0Vn(max) Vu corr Tu 0Tn(max) Tu corr Vu OTC 0Tn 0Tn ft 1 kip.ft kip.ft kip kip kip.ft kip.ft kip.ft kip.ft kip.ft 0.0001 98.52 14.34 137.35 126.29 107.16 98.52 22.39 22.39 98.52 1 1.493 98.52 14.81 140.54 126.29 109.65 98.52 24.17 24.17 98.52 1 3.981 95.54 15.05 142.08 122.41 110.90 95.54 25.09 25.09 95.54 6.469 71.92 15.05 141.45 91.67 110.97 71.92 24.04 24.04 71.92 8.459 37.80 15.06 143.98 49.17 110.67 37.80 22.94 22.94 37.80 10.947 14.17 15.06 0.00 18.44 0.00 14.17 0.00 0.00 0.00 12.440 -0.12 -15.06 0.00 -0.14 0.00 -0.12 0.00 0.00 0.00 13.4351 -9.52 -15.06 0.00 -12.38 0.00 -9.52 0.00 0.00 0.00 13.9331 -14.25 -15.06 0.00 -18.53 0.00 -14.25 0.00 0.00 0.00 16.4211 -37.87 -15.06 -143.96 -49.26 -110.67 -37.87 -22.94 -22.94 -37.87 18.4111 -72.07 -15.05 -141.43 -91.85 -110.97 -72.07 -24.04 -24.04 -72.07 20.8991 -95.69 -15.05 -142.06 -122.58 -110.90 -95.69 -25.09 -25.09 -95.69 23.3871 -98.67 -14.81 -140.53 -126.46 -109.65 -98.67 -24.18 -24.18 -98.67 1 24.8801 -98.67 -14.34 -137.34 -126.46 -107.16 -98.67 -22.39 -22.39 -98.67 1 Warnings & Notes 1 - Note, design torsion force at critical section near support used as a minimum [ACI 318-14::9.4.4.2/3]. Note, the PCI recommended Zia/Hsu method was used to calculate the above torsion design check results SHEAR/TORSION TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 (with the Zia-Hsu torsion method) 1 Shear Steel Required Shear Steel Stirrup Stirrup Spacing Additional Long. Steel warnings I Total Torsion* Provided Provided Provided Max. Allow' for Torsion, Al & Notes x I (Av+2At)/s At/s Av/s Av+2At s s Total Reduction** ft 1 inA2/ft inA2/ft inA2/ft inA2 in in inA2 inA2 0.0001 1.08 0.37 0.00 0.62 0.00 6.88 5.26 0.00 4 1.493 1.06 0.37 0.00 0.62 0.00 7.04 5.14 0.00 4 3.981 1.00 0.35 0.00 0.62 0.00 7.43 4.87 0.00 5 6.469 0.68 0.24 0.00 0.62 0.00 10.94 3.31 0.00 5 8.459 0.21 0.07 0.00 0.62 0.00 12.00 2.59 0.00 5 10.947 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 12.440 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 13.4351 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 13.9331 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 16.4211 0.21 0.07 0.00 0.62 0.00 12.00 2.58 0.00 5 18.4111 0.68 0.24 0.00 0.62 0.00 10.91 3.32 0.00 5 20.8991 1.00 0.35 0.00 0.62 0.00 7.41 4.88 0.00 23.3871 1.06 0.37 0.00 0.62 0.00 7.03 5.15 0.00 4 24.8801 1.08 0.37 0.00 0.62 0.00 6.86 5.27 0.00 4 Warnings & Notes 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: Shallow roof spandrel 5.5 6 of 6 Tue Mar 27 18:41:38 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.5.8 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Wheel load @ end Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4 in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S5: Use the Zia/Hsu Method for torsion design as recommended in the PCI Standard Practice guidelines (ACI Codes Only) ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Concrete Density Wt = 150 lb/ftA3 Compressive Strength f'c = 6000.0 psi Modulus of Elasticity Ec = 4.688E+6 psi Strength at Transfer f'c = 3000.0 psi Modulus of Elast. at Transfer Ec = 3.315E+6 psi Strength at Lifting f'c = 3000.0 psi Modulus of Elast. at Lifting Ec = 3.315E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT 1 Segment/Length I Section Identification I Offset 1 INoI From I To I Length I Folder 1 Section 1 Section I Z I Y I I I ft I ft I ft I Name 1 Name 1 Type I in I in I 111 0.0001 24.8801 24.8801 L-Shaped 1 8_5LB82 1 Ledger Beam I 0.001 0.001 * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 24.880 ft, Centre of Supports, Left @ 0.000 ft, Right @ 24.880 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 24.880 ft Loop Height = 0.00 ft Span Length in Service = 24.880 ft, Centre of Supports, Left @ 0.000 ft, Right @ 24.880 ft Total Beam Length = 24.880 ft, Bearing Length, Left = 6.00 in, Right = 6.00 in First flexural frequency of beam is approximately 0.76 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties 1 SectionI SectionI Shear 'volume /1 Section Moduli I I No.1 A I I I yb I Height I Width I Width I Surface' Sb I St 1 1 I inA2 I inA4 I in I in I in I in I in I inA3 I inA3 1 I 11 809.0 I 503929 I 36.291 82.001 16.501 8.501 4.111 -13886 I 11024 I UNCRACKED SECTION PROPERTIES SUMMARY 1 Net Precast Section Transformed Precast Section I Transformed Precast Section I I at Transfer (based on Eci) at Transfer (based on Eci) I in Service (based on Ec) I '(include rebar,deduct strand)I (include rebar and strand) I (include rebar and strand) I x I A I yb A I yb I A I yb I ft I inA2 inA4 in inA2 inA4 in I inA2 inA4 in I 0.0001 808.7 503673 36.30 809.0 503956 36.291 809.0 503947 36.29 1.4931 823.1 518713 35.73 825.3 520593 35.651 819.9 515155 35.86 3.9811 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 6.4691 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 8.9571 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 10.9471 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 11.9421 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 13.4351 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 13.4351 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 15.9231 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 18.4111 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 20.8991 831.9 527733 35.39 834.6 530049 35.301 826.1 521590 35.62 23.3871 823.1 518713 35.73 825.3 520593 35.651 819.9 515155 35.86 24.8801 808.7 503673 36.30 809.0 503956 36.291 809.0 503947 36.29 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. Engineer: Company: File: Shallow roof spandrel 5.5 wheel at end 1 of 6 Tue Mar 27 18:43:55 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.5.9 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: PRESTRESSING STEEL TENDONS I I I I I I Offsets )End Offset & Typel Tendon I Jacking Force I IIDIQtyl Grade 'Type' Strand Size I x I y 'Left "'Right **I Area I Pj I %fpul I I I ksi I * I 1 ft I in I ft I ft I inA2 I kip I I I 11 11 270.01 LRSI 0.5" (1/2) I 0.0001 4.001 0.000 BI 0.000 BI 0.153 I 26.85 I 0.651 11 1 I I I 24.8801 4.001 I I I I I I 21 11 270.01 LRSI 0.5" (1/2) 1 0.0001 8.001 0.000 BI 0.000 BI 0.153 I 26.85 I 0.651 11 1 I I I 24.8801 8.001 I I I I I note: * Type = LRS - Low-Relaxation Strand, SRS - Stress-Relieved Strand, PB - Plain Bar, DB - Deformed Bar, SW - Single Wire ** End Types = B - Fully Bonded (B), D - Debonded (D), C - Cut (C), A - Anchored (A) (fully developed) Calculated Losses: Initial = 0.5%, Final = 3.8% Maximum Total Prestress Forces: Pj(jacking) = 53.70 kip, Pi(transfer) = 53.42 kip, Pe(effective) = 51.65 kip @ x = 12.440 ft, See the "Development Length" text report for details of the strand transfer and development lengths LONGITUDINAL REINFORCING STEEL Reinforcing Steel Groups 'IDIQty1 Steel I Bar I Bar 'End Location & Typel Bar I I Cross Iverticall Offset ** I I I I Grade I Size I Area I From I I To I I Spacing) I Spacing' Offset I Reference I I I I ksi IC=coated I inA2 1 ft I *1 ft 1 *1 in I I in I in I 1 111 21 60.0 I # 9 1 2.000 10.00015E124.88015E1 6.001 1 - I 3.001 Bottom of Precast Beam I 121 11 60.0 I # 9 1 1.000 10.00015E124.8801SEI 6.001 I - I 5.001 Bottom of Precast Beam I * End Types: SE - Straight Embeddment, FD - Fully Developed, SH - Standard Hook, HB - Headed Bar ** Offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL I Shear Stirrups I From 1 To 1 Grade 1 Size 1 # of LegslTotal Areal Spacing I ft 1 ft I ksi I I I inA2 I in I 0.0001 24.8801 60.0 *I # 5 1 21 0.62 1 0.001 Interface Shear Ties I From 1 To I Grade I Size I # of LegslTotal Areal spacing 1 ft 1 ft 1 ksi I I I inA2 1 in I 0.0001 24.8801 58.0 I 15m I 01 0.00 1 0.001 * Useable steel strength limited by selected code. TORSION PARAMETERS Seg. Torsion Parameters 'No.' sum(xA2 * y) I x I xl I yl I I I inA3 I in I in I in I I 11 5924.50 1 8.50 1 5.50 I 79.00 1 sum(xA2 * y) is the sum of xA2 * y for all of the rectangles. x is the minimum section width. xl is the minimum width of the closed stirrups. yl is the maximum width of the closed stirrups. APPLIED LOADS Load Group Stages Applied Load Details & Type & Distribution (left to right) Beam Weight * Transfer to Final Service Segment #0- Vertical: 0.842 kip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Add. Beam Self-Weight Transfer to Final Service 1/2" vertical reveals- Vertical: 0.044 kip/ft full length (-0.38 D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Engineer: Company: File: Shallow roof spandrel 5.5 wheel at end 2 of 6 Tue Mar 27 18:43:55 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 5.5.10 Licensed to: 4457151211, Fadjar Kusumo-R - oK Project: Problem: DL after CIP Pour Grouted to Final Service 96.5 psf DT- vertical: 3 kip/ft full length (0.85 ft eccent.)I D: DL, General No Load Distribution I 5" topping, 62.5 psf- Vertical: 1.94 kip/ft full length (0.85 ft 1 lOpsf S.I.- vertical: 0.31 kip/ft full length (0.85 ft eccent.)I 1 25 plf solar panel- vertical: 0.025 kip/ft full length (-1.88 ft 1 1 Live Load Final Service stage only 20k left- Vertical: 18 kip at 0 ft (0.85 ft eccent.)I L1: LL, Garage, Parking No Load Distribution I 20k right- vertical: 18 kip at 10 ft (0.85 ft eccent.)I 1 1 snow Final service stage only 100 psf- Vertical: 3.1 kip/ft full length (0.85 ft eccent.)I S: Snow & Ice Accretion No Load Distribution I 1 * indicates load groups generated automatically by Concise Beam. LOAD COMBINATIONS Serviceability (SLS) & Fatigue (FLS) Limit state Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.0OL + 1.0OL1 + 1.00Lr + 1.00R + 1.00S + 1.00ws + 0.6OWu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr ultimate (Strength) Limit State (uLS) combinations (searched collectively to obtain envelope) 1: ULS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS combo 3 : 1.20D + 1.20F + 1.20T + 1.6OL + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: ULS Combo 5 : 1.20D + 0.50L + 1.00L1 + 1.6OLr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: ULS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: ULS Combo 8 : 1.20D + 1.6OLr + 0.80ws + 0.50wu 9: ULS Combo 9 : 1.20D + 1.60S + 0.80ws + 0.50wu 10: ULS Combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: ULS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60ws + 1.00wu 12: uLS combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60ws + 1.00wu 13: ULS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60ws + 1.00wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: uLS combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60ws + 1.00Wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Station' SLS (stress) Load combination uLS Load Envelopes I Moment Moment shear Moment Torsion x I Sustained Total Load Total Load Govern. Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip combo.' kip.ft combo.' kip.ft combo.' 1 min max min max min max min max min max min max min max 0.0001 0.00 0.00 0.00 68.97 164.43 15 6 0.00 0.00 1 1 49.25 127.26 15 6 1.493' 107.54 107.54 177.73 60.70 145.99 15 6 96.79 231.70 15 6 43.34 113.09 15 6 3.9811 256.27 256.27 428.08 46.90 115.26 15 6 230.64 556.70 15 6 33.49 89.47 15 6 6.469' 366.86 366.86 621.10 33.11 84.53 15 6 330.18 805.24 15 6 23.64 65.84 15 6 8.9571 439.32 439.32 756.81 19.31 53.79 15 6 395.39 977.31 15 6 13.79 42.22 15 6 10.9471 469.83 469.83 807.04 -3.30 18.44 15 6 422.85 1042.86 15 6 -3.93 14.17 15 6 11.942' 475.93 475.93 809.02 -8.82 6.15 15 6 428.34 1047.89 15 6 -7.87 4.72 15 6 13.435' 473.64 473.64 794.78 -20.48 -5.52 3 15 426.28 1032.50 15 6 -16.40 -3.94 3 15 13.435' 473.64 473.64 794.78 -20.48 -5.52 3 15 426.28 1032.50 15 6 -16.40 -3.94 3 15 15.9231 439.32 439.32 725.18 -50.26 -19.31 6 15 395.39 945.69 15 6 -39.22 -13.79 6 15 18.411' 366.86 366.86 598.27 -81.00 -33.11 6 15 330.18 782.40 15 6 -62.84 -23.64 6 15 20.8991 256.27 256.27 414.02 -111.73 -46.90 6 15 230.64 542.65 15 6 -86.47 -33.49 6 15 23.387' 107.54 107.54 172.46 -142.46 -60.70 6 15 96.79 226.43 15 6 -110.09 -43.34 6 15 24.8801 0.00 0.00 0.00 -160.90 -68.97 6 15 0.00 0.00 1 1 -124.26 -49.25 6 15 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) Unfactored Load Group Effects 1 Initial Lifting Truck Transport Erection Lifting In Service Load I Left Right Left Right Left Right Left Right Group I Vertical Vertical Vertical Vertical Vertical Vertical Vertical[*] Torsion[*] Vertical[*]I Torsion[*] 1 kip kip.ft kip kip.ft kip kip.ft kip kip.ft kip kip.ft Beam weight' 10.47 10.47 10.47 10.47 10.47 10.47 10.47 0.00 10.47 0.00 Add. Beam SI 0.55 0.55 0.55 0.55 0.55 0.55 0.55 -0.21 0.55 -0.21 DL after CII 65.62 54.93 65.62 54.93 Live Load 1 28.77 24.45 7.23 6.15 Snow 1 38.56 32.78 38.56 32.78 Load Envelope Effects SLS DL 1 76.64 1 54.72 I 76.64 1 54.72 1 SLS Sustain' 76.64 1 54.72 I 76.64 1 54.72 1 SLS Minimum' 11.02 11.02 11.02 11.02 11.02 11.02 76.64 1 54.72 I 76.64 1 54.72 1 SLS Maximum' 11.02 11.02 11.02 11.02 11.02 11.02 143.97 I 111.95 I 122.44 I 93.65 I ULS Minimum' 68.97 [1511 49.25 [1511 68.97 [1511 49.25 [1511 uLs Maximum' 182.43 [ 6]I 142.56 [ 6]I 160.90 [ 6]I 124.26 [ 6]I * Governing uLS Load combination (below) Engineer: Company: File: shallow roof spandrel 5.5 wheel at end 3 of 6 Tue Mar 27 18:43:55 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.5.11 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) I x I Stress 1 Limit 1 Overstress Location I ft I psi 1 psi 1 Notice STRESSES AT TRANSFER Critical Compression Top of Beam I 0.0001 0 1 2100 I 0% Bottom of Beam I 4.9761 134 1 1800 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam 1 4.9761 -28 1 -164 1 0% Bottom of Beam I 0.0001 0 1 -329 I 0% STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam I 0.0001 0 1 2100 I 0% Bottom of Beam I 4.9761 134 1 1800 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam 1 4.9761 -28 1 -164 1 0% Bottom of Beam I 0.0001 0 1 -329 I 0% STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam I 0.0001 0 1 4200 I 0% Bottom of Beam I 4.9761 134 1 3600 1 0% Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam 1 4.9761 -28 1 -232 1 0% Bottom of Beam I 0.0001 0 1 -465 1 0% STRESSES IN SERVICE Critical Compression Top of Beam I 11.4451 791 I 3600 I 0% Bottom of Beam I 22.8901 25 I 3600 1 0% Critical Tension Top of Beam I 0.0001 0 I -930 1* 0% Class U member - not cracked Bottom of Beam I 11.4451 -498 I -930 1* 0% Class U member - not cracked STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 11.4451 433 I 2700 I 0% Bottom of Beam I 22.8901 25 I 2700 I 0% * Tensile stress limit given is for Class T (controlled cracking). Beyond this limit crack control is required. At Transfer During Lifting In Service Modulus of Rupture, fr = -411 psi -411 psi -581 psi Strength Required for Transfer, f'ci = 223.8 psi (f'c specified = 3000.0 psi) Strength Required for Initial Lifting, f'c = 223.8 psi (f'c assumed = 3000.0 psi) CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING 1 I Bottom I Top of 1 1 1 of Beam I Beam 1 1 dc 1 0.00 I 0.00 1 in Concrete cover to center of steel closest to tension face 1 cc I 0.00 I 0.00 1 in Clear concrete cover to steel closest to tension face 1 fs I 0.0 I 0.0 1 ksi Steel stress nearest to tension face (after decompression) for crack control 1 Max spacing I 0.00 I 0.00 1 in Maximum centre-to-centre spacing of steel closest to tension face to control cracking Beam not cracked, cracking is controlled, or crack depth is less than concrete cover. DEFLECTION ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 A. Deflections at All Stages (-ve = deflection down, +ve = camber up) I Net Deflection Change in Deflection LocationI Net @ Net @ Net @ Net DL Net Total DL growth LL Span/Deflection x I Transfer Erection Completion @ Final @ Final + LL alone DL growth LL ft I in in in in in in in + LL alone Column I A B C D E E - C E - D L / (E-C) L / (E-D)I 0.0001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 1.4931 0.001 0.001 -0.002 -0.005 -0.006 -0.004 0.000 85222 386578 3.9811 0.003 0.003 -0.006 -0.013 -0.015 -0.009 -0.002 33418 153621 6.4691 0.004 0.005 -0.009 -0.019 -0.022 -0.013 -0.003 22194 101997 8.9571 0.005 0.006 -0.011 -0.024 -0.028 -0.017 -0.004 17968 82791 10.9471 0.005 0.006 -0.012 -0.026 -0.030 -0.018 -0.004 16620 77199 11.9421 0.006 0.006 -0.012 -0.027 -0.031 -0.018 -0.004 16404 76869 13.4351 0.006 0.006 -0.012 -0.027 -0.030 -0.018 -0.004 16567 78826 13.4351 0.006 0.006 -0.012 -0.027 -0.030 -0.018 -0.004 16567 78826 15.9231 0.005 0.006 -0.011 -0.024 -0.027 -0.016 -0.003 18254 89240 18.4111 0.004 0.005 -0.009 -0.019 -0.022 -0.013 -0.003 22713 113950 20.8991 0.003 0.003 -0.006 -0.013 -0.014 -0.009 -0.002 34394 176675 Engineer: Company: File: Shallow roof spandrel 5.5 wheel at end 4 of 6 Tue Mar 27 18:43:55 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 5.5.12 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: I 23.3871 0.001 I 0.001 I -0.002 I -0.005 I -0.005 I -0.003 I 0.000 I 88734 I 471166 I I 24.8801 0.000 I 0.000 1 0.000 1 0.000 I 0.000 1 0.000 1 0.000 I 0 I 0 I col. A: Net deflection at transfer includes prestressing and beam weight on temporary supports. Col. B: Net deflection at erection includes prestressing and all dead loads applied before the cast-in-place pour plus long-time deflection growth of the prestressing and beam weight up to erection col. c: Net deflection at completion of construction includes prestressing and all dead loads plus long-time deflection growth of the prestressing and dead load up to completion Col. D: Net DL deflection at final includes prestressing, all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes prestressing, all dead loads, and all live loads, plus long-time deflection growth. Deflection growth is estimated by use of the PCI suggested multipliers - see the Deflection Multipliers report. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design code used: ACI 318-14 B. unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation Change in Rotation SupportI Net @ I Net @ 1 Net @ I Net DL 1 Net Total DL growth I LL Location' Transfer I Erection 1 Completion I @ Final 1 @ Final + LL 1 alone I degrees I degrees 1 degrees I degrees 1 degrees degrees 1 degrees Column 1 A I B 1 C 1 D 1 E E - C 1 E - D Left I -0.0043 I -0.0046 I 0.0066 I 0.0154 I 0.0180 0.0113 I 0.0025 Right I 0.0043 I 0.0046 1 -0.0066 I -0.0154 1 -0.0174 -0.0108 1 -0.0020 C. unrestrained Longitudinal Change of Length Due to Creep and shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = -0.0052 in I I Total Change of Length (after elastic shortening) I Difference in change I I I I Erection 'Completion' Final I I to Comp1.1 to Final I to Final I I I I in I in I in I I in I in I in I I I I B I C I D I I C - B I D - C I D - 13 I I Creep I I -0.00201 -0.00361 -0.00761 I -0.00151 -0.00401 -0.00551 I Shrink.I I -0.03581 -0.06891 -0.12211 I -0.03321 -0.05321 -0.08641 I Total I I -0.03781 -0.07251 -0.12971 I -0.03471 -0.05721 -0.09191 FLEXURAL DESIGN CHECK Design Code used: ACI 318-14 concrete compressive stress-strain model used: PCA Parabola-Rectangle Curve Modulus of Rupture of Precast Concrete, fr = 581 psi (tension) I Factored Design Cracking Minimum Depth in Net TensileI Flexural 0 I Warnings 1 I Moment Strength Moment Required Compression' Strain IClassication I & Notes x I Mu 0Mn Mcr Strength c I I I ft I kip.ft kip.ft kip.ft kip.ft in I I I 0.0001 0.00 1.22 672.50 0.00 18.28 0.00001Tension 0.87 31 1.4931 231.70 709.13 824.41 989.29 19.01 0.00121Tension 0.86 B 31 3.9811 556.70 1327.60 907.50 1089.00 7.31 0.02941Tension 0.88 6.4691 805.24 1461.32 909.08 1090.89 7.94 0.02681Tension 0.90 8.9571 977.31 1463.01 910.11 1092.14 7.94 0.02681Tension 0.90 10.9471 1042.86 1463.01 910.55 1092.66 7.94 0.02681Tension 0.90 11.9421 1047.89 1463.01 910.64 1092.76 7.94 0.02681Tension 0.90 13.4351 1032.50 1463.01 910.60 1092.72 7.94 0.02681Tension 0.90 13.4351 1032.50 1463.01 910.60 1092.72 7.94 0.02681Tension 0.90 15.9231 945.69 1463.01 910.11 1092.14 7.94 0.02681Tension 0.90 18.4111 782.40 1461.32 909.08 1090.89 7.94 0.02681Tension 0.90 20.8991 542.65 1327.60 907.50 1089.00 7.31 0.02941Tension 0.88 23.3871 226.43 709.13 824.41 989.29 19.01 0.00121Tension 0.86 B 31 24.8801 0.00 1.22 672.50 0.00 18.28 0.00001Tension 0.87 31 Points of Maximum and Minimum Factored Moment I 11.9421 1047.89 I 1463.01 I 910.64 I 1092.76 I 7.94 I 0.02681Tension I 0.901 I I 0.0001 0.00 I -0.04 I 533.66 I 0.00 I 2.23 I 0.0000ITension 10.851 31 Points of Maximum Ratio of Factored Moment to Design Strength I 11.9421 1047.89 I 1463.01 I 910.64 I 1092.76 I 7.94 I 0.02681Tension I 0.901 I I 0.0001 0.00 I -0.04 I 533.66 I 0.00 I 2.23 I 0.0000ITension 10.851 31 Points of Maximum Ratio of Minimum Strength to Design Strength I 24.3821 78.54 I 237.31 I 723.56 I 868.28 I 18.69 I 0.0004ITension I 0.861 B 31 I 0.0001 0.00 I -0.04 I 533.66 I 0.00 I 2.23 I 0.0000ITension 10.851 31 warnings & Notes B - WARNING, 0Mn < 1.2Mcr and 0Mn < 2.OMu, minimum reinforcement requirement not met [ACI 318-14::7.6.2/9.6.2]. 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code used: ACI 318-14 Engineer: Company: File: shallow roof spandrel 5.5 wheel at end 5 of 6 Tue Mar 27 18:43:55 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.5.13 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 1 Design Prestress Concrete Strength Provided Min. Strength Req'd Warnings I Shear Component Strength Stirrups Total Stirrups Total & Notes x I Vu Vp 0Vc 0Vs 0Vn 0Vs 0Vn ft 1 kip kip kip kip kip kip kip 0.0001 119.14 0.00 28.85 0.00 28.85 90.29 119.14 B 1 3 1.4931 119.14 0.00 31.15 0.00 31.15 87.99 119.14 B 1 3 3.981 1 115.26 0.00 32.31 0.00 32.31 82.95 115.26 B 1 6.4691 84.53 0.00 30.75 0.00 30.75 53.78 84.53 B 1 8.9571 53.79 0.00 29.35 0.00 29.35 24.44 53.79 B 1 10.9471 18.44 0.00 65.14 0.00 65.14 0.00 65.14 11.9421 -8.82 0.00 -65.14 0.00 -65.14 0.00 -65.14 13.4351 -20.48 0.00 -28.88 0.00 -28.88 -27.27 -56.15 1 13.4351 -20.48 0.00 -28.88 0.00 -28.88 -27.27 -56.15 1 15.9231 -50.26 0.00 -29.49 0.00 -29.49 -20.77 -50.26 B 1 18.4111 -81.00 0.00 -30.81 0.00 -30.81 -50.18 -81.00 B 1 20.8991 -111.73 0.00 -32.41 0.00 -32.41 -79.32 -111.73 B 1 23.3871 -115.61 0.00 -31.23 0.00 -31.23 -84.38 -115.61 B 1 3 24.8801 -115.61 0.00 -28.93 0.00 -28.93 -86.68 -115.61 B 1 3 Warnings & Notes B - WARNING, the factored design shear, Vu, is greater than the shear strength, OVn, provided [ACI 318-14::7.5.1.1/9.5.1.1]. 1 - Note, transverse shear or torsion steel is required. See the Shear/Torsion Transvese Reinforcing Design Check report. 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, the PCI recommended Zia/Hsu method was used to calculate the above shear design check results. TORSION DESIGN CHECK Design Code Used: ACI 318-14 (with the Zia-Hsu torsion method) I Design Threshold Maximum Shear/Torsion Limits Concrete Torsion Strength Warnings 1 Torsion Torsion Max. SheariShear Load Max. Tors.ITors. Load Strength Provided Required & Notes x I Tu Tu(min) 0Vn(max) Vu corr Tu 0Tn(max) Tu corr Vu OTC 0Tn 0Tn ft 1 kip.ft kip.ft kip kip kip.ft kip.ft kip.ft kip.ft kip.ft 0.0001 92.45 14.34 138.00 119.14 107.08 92.45 22.39 22.39 92.45 1 1.4931 92.45 14.81 141.20 119.14 109.57 92.45 24.17 24.17 92.45 1 3.981 1 89.47 15.05 142.76 115.26 110.81 89.47 25.08 25.08 89.47 6.4691 65.84 15.05 142.32 84.53 110.86 65.84 23.95 23.95 65.84 8.9571 42.22 15.06 141.41 53.79 110.99 42.22 23.04 23.04 42.22 10.9471 14.17 15.06 0.00 18.44 0.00 14.17 0.00 0.00 0.00 11.9421 -7.87 -15.06 0.00 -8.82 0.00 -7.87 0.00 0.00 0.00 13.4351 -16.40 -15.06 -138.93 -20.48 -111.30 -16.40 -23.14 -23.14 -23.14 13.4351 -16.40 -15.06 -138.93 -20.48 -111.30 -16.40 -23.14 -23.14 -23.14 15.9231 -39.22 -15.06 -142.12 -50.26 -110.90 -39.22 -23.01 -23.01 -39.22 18.4111 -62.84 -15.05 -142.81 -81.00 -110.80 -62.84 -23.91 -23.91 -62.84 20.8991 -86.47 -15.05 -143.13 -111.73 -110.77 -86.47 -25.08 -25.08 -86.47 23.3871 -89.45 -14.81 -141.56 -115.61 -109.52 -89.45 -24.16 -24.16 -89.45 1 24.8801 -89.45 -14.34 -138.35 -115.61 -107.04 -89.45 -22.38 -22.38 -89.45 1 Warnings & Notes 1 - Note, design torsion force at critical section near support used as a minimum [ACI 318-14::9.4.4.2/3]. Note, the PCI recommended Zia/Hsu method was used to calculate the above torsion design check results SHEAR/TORSION TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 (with the Zia-Hsu torsion method) 1 Shear Steel Required Shear Steel Stirrup Stirrup Spacing Additional Long. Steel Warnings I Total Torsion* Provided Provided Provided Max. Allow' for Torsion, Al & Notes x I (Av+2At)/s At/s Av/s Av+2At s s Total Reduction** ft 1 inA2/ft inA2/ft inA2/ft inA2 in in inA2 inA2 0.0001 1.00 0.34 0.00 0.62 0.00 7.46 4.84 0.00 4 5 1.4931 0.97 0.34 0.00 0.62 0.00 7.65 4.72 0.00 4 5 3.9811 0.92 0.32 0.00 0.62 0.00 8.12 4.45 0.00 5 6.4691 0.60 0.21 0.00 0.62 0.00 12.00 2.90 0.00 5 8.9571 0.27 0.09 0.00 0.62 0.00 12.00 2.31 0.00 5 10.9471 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 11.9421 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 13.4351 0.09 0.00 0.00 0.62 0.00 12.00 2.98 0.00 1 5 13.4351 0.09 0.00 0.00 0.62 0.00 12.00 2.98 0.00 1 5 15.9231 0.23 0.08 0.00 0.62 0.00 12.00 2.51 0.00 5 18.4111 0.55 0.19 0.00 0.62 0.00 12.00 2.69 0.00 5 20.8991 0.87 0.30 0.00 0.62 0.00 8.50 4.24 0.00 5 23.3871 0.93 0.32 0.00 0.62 0.00 8.00 4.51 0.00 4 5 24.8801 0.96 0.33 0.00 0.62 0.00 7.79 4.64 0.00 4 5 Warnings & Notes 1 - Note, amount of shear steel required represents minimum code requirements [ACI 318-14::9.6.3.3]. 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: Shallow roof spandrel 5.5 wheel at end 6 of 6 Tue Mar 27 18:43:55 2018 Shear/Torsion Reinforcing Design Check Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.5.14 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SHEAR/TORSION TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 (with the Zia-Hsu torsion method) Shear Steel Required Shear Steell Stirrup Stirrup Spacing Additional Long. Steell warnings Total Torsion* Provided Provided Provided Max. Allow! for Torsion, Al & Notes x 1 (Av+2At)/s At/s Av/s Av+2At s s Total Reduction** ft inA2/ft inA2/ft inA2/ft inA2 in in inA2 inA2 0.0001 1.00 0.34 0.00 0.62 0.00 7.46 4.84 0.00 4 5 0.4981 0.99 0.34 0.00 0.62 0.00 7.52 4.80 0.00 4 5 1.367 0.97 0.34 0.00 0.62 0.00 7.64 4.73 0.00 4 5 1.990 0.96 0.33 0.00 0.62 0.00 7.72 4.68 0.00 4 5 2.9861 0.96 0.33 0.00 0.62 0.00 7.76 4.66 0.00 4 5 3.9811 0.92 0.32 0.00 0.62 0.00 8.12 4.45 0.00 5 4.9761 0.79 0.27 0.00 0.62 0.00 9.45 3.82 0.00 5 5.971 0.66 0.23 0.00 0.62 0.00 11.28 3.20 0.00 5 6.9661 0.53 0.18 0.00 0.62 0.00 12.00 2.59 0.00 5 7.9621 0.41 0.14 0.00 0.62 0.00 12.00 1.98 0.00 5 8.957 0.27 0.09 0.00 0.62 0.00 12.00 2.31 0.00 5 9.9521 0.14 0.05 0.00 0.62 0.00 12.00 2.97 0.00 5 10.4501 0.09 0.00 0.00 0.62 0.00 12.00 2.94 0.00 1 5 11.445 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 11.9421 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 12.440 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 12.938 0.00 0.00 0.00 0.62 0.00 24.00 0.00 0.00 13.93 3 1 0.09 0.00 0.00 0.62 0.00 12.00 2.97 0.00 1 5 14.9281 0.10 0.03 0.00 0.62 0.00 12.00 2.96 0.00 5 15.923 0.23 0.08 0.00 0.62 0.00 12.00 2.51 0.00 5 16.9181 0.37 0.13 0.00 0.62 0.00 12.00 1.85 0.00 5 17.9141 0.49 0.17 0.00 0.62 0.00 12.00 2.39 0.00 5 18.9091 0.62 0.21 0.00 0.62 0.00 12.00 3.00 0.00 5 19.9041 0.75 0.26 0.00 0.62 0.00 9.98 3.62 0.00 5 20.8991 0.87 0.30 0.00 0.62 0.00 8.50 4.24 0.00 5 21.8941 0.92 0.32 0.00 0.62 0.00 8.11 4.45 0.00 4 5 22.8901 0.92 0.32 0.00 0.62 0.00 8.07 4.48 0.00 4 5 23.5131 0.93 0.32 0.00 0.62 0.00 7.98 4.52 0.00 4 5 24.3821 0.95 0.33 0.00 0.62 0.00 7.86 4.59 0.00 4 5 24.8801 0.96 0.33 0.00 0.62 0.00 7.79 4.64 0.00 4 5 Warnings & Notes 1 - Note, amount of shear steel required represents minimum code requirements [ACI 318-14::9.6.3.3]. 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. 5 - Note, required stirrup spacing represents maximum code requirements [ACI 318-14::9.7.6.2.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: Shallow roof spandrel 5.5 wheel at end 1 of 1 Tue Mar 27 18:45:55 2018 0) DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION SUBMITTAL A 0E FOR APPROVAL- NOT FOR CONSTRUCTION E J c 12" solid spandrel °' f'ci = 3000 psi a M 0) M f'c = 5000 psi IT) Oi Oi �' Hard Rock concrete C 0It a .ii i II • II Lri I II II w a VS t VMe N U • O :M 0 0 O — 5 o (i U 0) e C X 0 x o 8-8 C LLJ 0) C CDn 0 C r- N c 464 Lu a — 8 1 733o 8 U M a N_ t� 9 E CO CO B 7k Cil rsk 8 8 E. l°Q Y 40 g I-8 1<I I II I II II • II II II. �� ,0—,l co Q RED SANDSTONE 12" x8' 0 1/2" non load bearing 0 6209 0 5TRE55CON Q 5.6 3 fik o ° LLArchitectural and Structural Precast Concrete _ i An ENCoN Company SHEET 1 OF 1 o_ Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.6.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4> in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** s5: Use the Zia/Hsu Method for torsion design as recommended in the PCI Standard Practice guidelines (ACI Codes Only) ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Concrete Density Wt = 150 lb/ftA3 Compressive Strength f'c = 5000.0 psi Modulus of Elasticity Ec = 4.279E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT 1 Segment/Length I Section Identification I Offset I INol From 1 To 1 Length I Folder I Section I Section I Z I Y I I I ft I ft I ft I Name I Name I Type I in I in I 111 0.0001 17.7501 17.7501 Rectangular I 11_5RB96_5 1 Solid Beam 1 0.001 0.001 * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. Span Length at Transfer = 17.750 ft, Centre of Supports, Left @ 0.000 ft, Right @ 17.750 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 17.750 ft Loop Height = 0.00 ft Span Length in Service = 17.750 ft, Centre of Supports, Left @ 0.000 ft, Right @ 17.750 ft Total Beam Length = 17.750 ft, Bearing Length, Left = 6.00 in, Right = 6.00 in First flexural frequency of beam is approximately 4.14 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) 1Seg.1 Section Properties I Section' Section' Shear 'volume /I Section Moduli I I NO.I A I I I Yb I Height I Width I Width I Surfacel Sb 1 St I I I inA2 1 inA4 1 in I in I in I in I in I inA3 1 inA3 I 1 11 1109.8 I 861189 1 48.251 96.501 11.501 11.501 5.141 -17848 1 17848 1 UNCRACKED SECTION PROPERTIES SUMMARY I Net Precast Section I Transformed Precast Section I Transformed Precast Section I 1 at Transfer (based on Eci) 1 at Transfer (based on Eci) 1 in Service (based on Ec) I '(include rebar,deduct strand)( (include rebar and strand) I (include rebar and strand) I x I A I yb I A I yb I A I yb I ft 1 inA2 inA4 in 1 inA2 inA4 in 1 inA2 inA4 in 1 0.0001 1109.8 861199 48.25 1109.8 861199 48.25 1109.8 861196 48.25 1.4201 1114.6 870983 48.05 1114.6 870983 48.05 1113.3 868499 48.10 2.8401 1114.6 870983 48.05 1114.6 870983 48.05 1113.3 868499 48.10 4.6151 1114.6 870983 48.05 1114.6 870983 48.05 1113.3 868499 48.10 6.3901 1114.6 870983 48.05 1114.6 870983 48.05 1113.3 868499 48.10 8.1651 1114.6 870983 48.05 1114.6 870983 48.05 1113.3 868499 48.10 8.8751 1114.6 870983 48.05 1114.6 870983 48.05 1113.3 868499 48.10 9.5851 1114.6 870983 48.05 1114.6 870983 48.05 1113.3 868499 48.10 9.9401 1114.6 870983 48.05 1114.6 870983 48.05 1113.3 868499 48.10 11.3601 1114.6 870983 48.05 1114.6 870983 48.05 1113.3 868499 48.10 13.1351 1114.6 870983 48.05 1114.6 870983 48.05 1113.3 868499 48.10 14.9101 1114.6 870983 48.05 1114.6 870983 48.05 1113.3 868499 48.10 16.3301 1114.6 870983 48.05 1114.6 870983 48.05 1113.3 868499 48.10 17.7501 1109.8 861199 48.25 1109.8 861199 48.25 1109.8 861196 48.25 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. LONGITUDINAL REINFORCING STEEL Engineer: Company: File: NLB spandrel 5.6 1 of 6 Tue Mar 27 19:31:08 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5'6'3 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: Reinforcing Steel Groups lID1Qty1 Steel I Bar I Bar 'End Location & Typel Bar I I Cross 'Vertical' Offset ** 1 I I I Grade I Size 1 Area I From 1 1 To I I Spacing' 1 Spacing' Offset I Reference 1 I I I ksi IC=coated I inA2 1 ft I *1 ft I *1 in I I in I in I 1 111 21 60.0 I # 5 1 0.620 1 0.000ISE117.7501SE' 6.001 I - I 3.001 Bottom of Precast Beam 1 * End Types: SE - Straight Embeddment, FD - Fully Developed, SH - Standard Hook, HB - Headed Bar ** Offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL I Shear Stirrups I I From I To 1 Grade I Size I # of LegslTotal Areal Spacing I 1 ft 1 ft 1 ksi 1 1 I inA2 1 in 1 1 0.0001 17.7501 60.0 *1 # 3 1 21 0.22 1 0.001 I Interface Shear Ties 1 I From I To 1 Grade I Size I # of LegslTotal Areal Spacing I 1 ft 1 ft 1 ksi 1 1 I inA2 1 in 1 1 0.0001 17.7501 58.0 1 15M 1 01 0.00 1 0.001 * useable steel strength limited by selected code. TORSION PARAMETERS Seg. Torsion Parameters Imo.' sum(xA2 * Y) I x I xl I yl I I I inA3 I in I in 1 in I 1 1' 6972.00 I 8.50 1 8.50 1 93.00 I sum(xA2 * y) is the sum of xA2 * y for all of the rectangles. x is the minimum section width. xl is the minimum width of the closed stirrups. yl is the maximum width of the closed stirrups. APPLIED LOADS Load Group Stages Applied Load Details & Type & Distribution (left to right) Beam weight * Stripping to Final Service Segment #0- Vertical: 1.155 kip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Add. Beam Self-weight Stripping to Final Service 1/2" reveal- Vertical: 0.05 kip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift +/-0% of Beam Weight, Cable Angle: 90 degrees Live Load Final Service sta9e only safety- Vertical: 0.1 kip/ft full length L: LL, General No Load Distribution car impact- Torsion: 16 kipft at 8.875 ft * indicates load groups generated automatically by Concise Beam. I6kx32"/12 LOAD COMBINATIONS `L Serviceability (SLS) & Fatigue (FLS) Limit State Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00ws + 0.60wu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr Ultimate (Strength) Limit State (ULS) Combinations (searched collectively to obtain envelope) 1: ULS Combo 1 : 1.40D + 1.40F 2: ULS Combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS Combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS Combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + O.50R 5: ULS Combo 5 : 1.20D + 0.50L + 1.00L1 + 1.60Lr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: ULS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: ULS Combo 8 : 1.20D + 1.60Lr + 0.80ws + 0.50wu 9: ULS Combo 9 : 1.20D + 1.60S + 0.80ws + 0.50wu 10: ULS Combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu 11: ULS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60ws + 1.00wu 12: ULS Combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60ws + 1.00wu 13: ULS Combo 13 : 1.20D + 0.50L + 1.00L1 + O.50R + 1.60Ws + 1.00Wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu Engineer: Company: File: NLB spandrel 5.6 2 of 6 Tue Mar 27 19:31:08 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.6.4 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 15: ULS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60Ws + 1.00Wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE StationI SLS (stress) Load Combination ULS Load Envelopes I Moment Moment Shear Moment Torsion x 1 Sustained Total Load Total Load Govern. Total Load Govern. Total Load Govern. ft 1 kip.ft kip.ft kip Combo.) kip.ft Combo.' kip.ft Combo.) 1 min max min max min max min max min max min max min max 0.0001 0.00 0.00 0.00 9.62 14.97 15 1 0.00 0.00 1 1 0.00 12.80 1 2 1.4201 13.97 13.97 15.13 8.08 12.57 15 1 12.57 19.55 15 1 0.00 12.80 1 2 2.8401 25.50 25.50 27.62 6.54 10.18 15 1 22.95 35.71 15 1 0.00 12.80 1 2 4.6151 36.51 36.51 39.54 4.62 7.18 15 1 32.86 51.11 15 1 0.00 12.80 1 2 6.3901 43.72 43.72 47.35 2.69 4.19 15 1 39.35 61.21 15 1 0.00 12.80 1 2 8.1651 47.14 47.14 51.05 0.77 1.20 15 1 42.42 65.99 15 1 0.00 12.80 1 2 8.8751 47.44 47.44 51.38 0.00 0.00 1 1 42.70 66.42 15 1 0.00 12.80 1 2 8.8751 47.44 47.44 51.38 0.00 0.00 1 1 42.70 66.42 15 1 -12.80 0.00 2 1 9.5851 47.14 47.14 51.05 -1.20 -0.77 1 15 42.42 65.99 15 1 -12.80 0.00 2 1 9.9401 46.76 46.76 50.64 -1.80 -1.15 1 15 42.08 65.46 15 1 -12.80 0.00 2 1 11.3601 43.72 43.72 47.35 -4.19 -2.69 1 15 39.35 61.21 15 1 -12.80 0.00 2 1 13.1351 36.51 36.51 39.54 -7.18 -4.62 1 15 32.86 51.11 15 1 -12.80 0.00 2 1 14.9101 25.50 25.50 27.62 -10.18 -6.54 1 15 22.95 35.71 15 1 -12.80 0.00 2 1 16.3301 13.97 13.97 15.13 -12.57 -8.08 1 15 12.57 19.55 15 1 -12.80 0.00 2 1 17.7501 0.00 0.00 0.00 -14.97 -9.62 1 15 0.00 0.00 1 1 -12.80 0.00 2 1 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) Unfactored Load Group Effects 1 I Initial Lifting 1 Truck Transport 1 Erection Lifting 1 In Service 1 1 Load I Left 1 Right 1 Left 1 Right 1 Left 1 Right 1 Left 1 Right 1 1 Group 1 Vertical 1 Vertical 1 Vertical 1 Vertical 1 Vertical 1 Vertical 1 Vertical[*]I Torsion[*] 1 Vertical[*]I Torsion[*] 1 1 I kip 1 kip.ft 1 kip 1 kip.ft 1 kip 1 kip.ft 1 kip I kip.ft 1 kip I kip.ft 1 'Beam weight' 10.25 1 10.25 1 10.25 1 10.25 1 10.25 1 10.25 1 10.25 I 0.00 1 10.25 I 0.00 1 Add. Beam SI 0.44 1 0.44 1 0.44 1 0.44 1 0.44 1 0.44 1 0.44 I 0.00 1 0.44 I 0.00 1 'Live Load I I I I I I I 0.89 I 8.00 1 0.89 I 8.00 1 Load Envelope Effects SLS DL 1 10.69 I 0.00 1 10.69 I 0.00 I SLS Sustain' 10.69 I 0.00 1 10.69 I 0.00 1 SLS Minimum' 10.69 10.69 10.69 10.69 10.69 10.69 10.69 I 0.00 1 10.69 I 0.00 1 SLS Maximum' 10.69 10.69 10.69 10.69 10.69 10.69 11.58 I 8.00 1 11.58 I 8.00 1 ULS Minimum' 9.62 [1511 0.00 [ 111 9.62 [1511 0.00 [ 111 ULS Maximum' 14.97 [ 1]I 12.80 [ 2]I 14.97 [ 1]I 12.80 [ 2]I * Governing ULS Load Combination (below) CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) I x I Stress 1 Limit * Location I ft I psi 1 psi STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam I 8.875' 32 1 1800 Bottom of Beam 1 0.0001 0 1 2100 Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 0.0001 0 1 -411 Bottom of Beam I 8.875' -31 1 -411 STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam I 8.875' 32 1 3000 Bottom of Beam 1 0.0001 0 1 3500 Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 0.0001 0 1 -530 Bottom of Beam I 8.875' -32 1 -530 STRESSES IN SERVICE Critical Compression Top of Beam I 8.875' 34 1 3000 Bottom of Beam 1 0.0001 0 1 3000 Critical Tension Top of Beam I 0.0001 0 1 -530 Not cracked Bottom of Beam 1 8.875' -34 1 -530 Check cracking below and cover requirements STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 8.875' 32 I 2250 Bottom of Beam I 0.0001 0 I 2250 * Tensile stress limit given is the modulus of rupture of the concrete. Beyond this limit crack control is required. Engineer: Company: File: NLB spandrel 5.6 3 of 6 Tue Mar 27 19:31:08 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.6.5 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING 1 I Bottom I Top of I 1 1 of Beam 1 Beam I 1 dc 1 3.00 1 0.00 I in Concrete cover to center of steel closest to tension face 1 cc 1 2.69 1 0.00 I in Clear concrete cover to steel closest to tension face 1 fs 1 40.0 1 0.0 I ksi Steel stress nearest to tension face (after decompression) for crack control 1 Max spacing 1 8.27 1 0.00 I in Maximum centre-to-centre spacing of steel closest to tension face to control cracking CRACK WIDTH ESTIMATE Crack width estimates are only approximations based on idealized behaviour and average crack spacing. These estimates only represent a level of cracking and should only be used in comparison with appropriate limits such as those given below. It would not be appropriate to compare these estimates to measured crack widths. Bottom Top of of Beam Beam Cracked? Yes No Cracking at 8.875 0.000 ft Location of maximum crack width from left end of beam Ms 51.38 0.00 kip.ft External service moment (DL + LL) Pdc 0.00 0.00 kip Prestress force at cracked centroid Mint 51.38 0.00 kip.ft Internal moment about cracked centroid c 7.91 0.00 in Concrete depth in compression Steel type Rebar Rebar Type of steel in tension Method Gergely-Lutz Gergely-Lutz Crack width estimate equation used * kl 75.842E-6 0.00 inA2/Kip Coefficient dependent on steel type kb 1.00 0.00 Adjustment coefficient for prestressing steel h2/h1 1.04 0.00 Ratio of depth in tension to depth of steel from NA Act 69.0 0.0 inA2 Area of concrete in tension centered on crack control steel A 34.5 0.0 inA2 Area of concrete in tension around each bar/strand fs 10.9 0.0 ksi stress in steel nearest to tension face (after decompression) for crack width Est Crack Width) 0.004 0.000 in Estimated maximum crack width fc -149 0 psi Maximum concrete compressive stress - opposite face to cracking limit -3000 -3000 psi Allowable concrete compressive stress Recommended Crack Width (in) - Maximum Limits (from PCI Design Handbook, 5th edition) 1 I Critical I Prestressed I Reinforced I 1 I Appearance I Concrete I Concrete I lExterior Exposure I 0.0071 0.0101 0.0131 llnterior Exposure 1 0.0101 0.0121 0.0161 * Gergely & Lutz equation: w = kl x fs x h2 / hl x CubicRoot(dc * A) DEFLECTION ESTIMATE AT ALL STAGES Design Code used: ACI 318-14 A. Deflections at All stages (-ye = deflection down, +ve = camber up) 1 Net Deflection Change in Deflection LocationI Net @ Net @ Net DL Net Total DL growth LL Span/Deflection x I Erection Completion @ Final @ Final + LL alone DL growth LL ft I in in in in in in + LL alone Column 1 B C D E E - C E - D L / (E-C) L / (E-D)I 0.0001 0.000 0.000 0.000 0.000 0.000 0.000 0 0 1.4201 0.000 0.000 0.000 0.000 0.000 0.000 1.275E+6 14.027E+6 2.8401 0.000 0.000 -0.001 -0.001 0.000 0.000 660517 7.270E+6 4.6151 0.000 -0.001 -0.002 -0.002 0.000 0.000 438954 4.831E+6 6.3901 -0.001 -0.001 -0.002 -0.002 0.000 0.000 355233 3.910E+6 8.1651 -0.001 -0.002 -0.002 -0.002 0.000 0.000 324739 3.574E+6 8.8751 -0.001 -0.002 -0.002 -0.002 0.000 0.000 322247 3.547E+6 9.5851 -0.001 -0.002 -0.002 -0.002 0.000 0.000 324739 3.574E+6 9.9401 -0.001 -0.002 -0.002 -0.002 0.000 0.000 327900 3.609E+6 11.3601 -0.001 -0.001 -0.002 -0.002 0.000 0.000 355233 3.910E+6 13.1351 0.000 -0.001 -0.002 -0.002 0.000 0.000 438954 4.831E+6 14.9101 0.000 0.000 -0.001 -0.001 0.000 0.000 660517 7.270E+6 16.3301 0.000 0.000 0.000 0.000 0.000 0.000 1.275E+6 14.027E+6 17.7501 0.000 0.000 0.000 0.000 0.000 0.000 0 0 Col. B: Net deflection at erection includes all dead loads applied before the cast-in-place pour plus long-time deflection growth of the beam weight up to erection. Col. C: Net deflection at completion of construction includes all dead loads plus long-time deflection growth of the dead load up to completion. Col. D: Net DL deflection at final includes all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes all dead loads, and all live loads, plus long-time deflection growth. Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise Engineer: Company: File: NLB spandrel 5.6 4 of 6 Tue Mar 27 19:31:08 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.6.6 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 B. Unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation Change in Rotation SupportI Net @ I Net @ I Net DL I Net Total DL growth I LL Location' Erection I Completion I @ Final I @ Final + LL I alone I degrees I degrees I degrees I degrees degrees I degrees column I B I C I D 1 E E - C E - D Left I 957.483E-6 I 0.0014 I 0.0019 I 0.0019 568.782E-6 I 0.0000 Right I-957.483E-6 I -0.0014 I -0.0019 I -0.0019 -568.782E-6 I 0.0000 C. Unrestrained Longitudinal Change of Length Due to Creep and Shrinkage (-ye = shortening, +ve = elongation) Elastic Shortening = 0.0000 in I I Total Change of Length I Difference in change I I I Erection ICompletionI Final I I to Compl.1 to Final I to Final I I I in I in I in I I in I in I in I I I B I C I D I I C - B I D - C I D - B I I Creep I 0.00001 0.00001 0.00001 I 0.00001 0.00001 0.00001 I Shrink.' -0.01661 -0.03501 -0.07361 I -0.01841 -0.03871 -0.05701 I Total I -0.01661 -0.03501 -0.07361 1 -0.01841 -0.03871 -0.05701 FLEXURAL DESIGN CHECK Design Code Used: ACI 318-14 Concrete compressive stress-strain model used: PCA Parabola-Rectangle Curve Modulus of Rupture of Precast Concrete, fr = 530 psi (tension) I Factored Design Cracking Minimum Depth in Net TensileI Flexural 0 I warnings I Moment Strength Moment Required Compression' Strain IClassication I & Notes x 1 Mu 0Mn Mcr Strength c I 1 ft I kip.ft kip.ft kip.ft kip.ft in I 1 0.0001 0.00 0.25 788.81 0.00 7.90 0.0000ITension 0.90 3 1.4201 19.55 259.21 797.90 26.07 1.68 0.0600ITension 0.90 3 2.8401 35.71 259.21 797.90 47.61 1.68 0.0600ITension 0.90 3 4.6151 51.11 259.21 797.90 68.15 1.68 0.0600ITension 0.90 3 6.3901 61.21 259.21 797.90 81.61 1.68 0.0600ITension 0.90 3 8.1651 65.99 259.21 797.90 87.99 1.68 0.0600ITension 0.90 3 8.8751 66.42 259.21 797.90 88.55 1.68 0.0600ITension 0.90 3 9.5851 65.99 259.21 797.90 87.99 1.68 0.0600ITension 0.90 3 9.9401 65.46 259.21 797.90 87.28 1.68 0.0600ITension 0.90 3 11.3601 61.21 259.21 797.90 81.61 1.68 0.0600ITension 0.90 3 13.1351 51.11 259.21 797.90 68.15 1.68 0.0600ITension 0.90 3 14.9101 35.71 259.21 797.90 47.61 1.68 0.0600ITension 0.90 3 16.3301 19.55 259.21 797.90 26.07 1.68 0.0600ITension 0.90 3 17.7501 0.00 0.25 788.81 0.00 7.90 0.0000ITension 0.90 3 Points of Maximum and Minimum Factored Moment 1 8.8751 66.42 I 259.21 1 797.90 1 88.55 1 1.68 1 0.0600ITension 1 0.901 31 I 0.0001 0.00 I 0.00 1 788.80 1 0.00 1 1.23 1 0.0000ITension 1 0.901 31 Points of Maximum Ratio of Factored Moment to Design Strength 1 8.8751 66.42 I 259.21 1 797.90 I 88.55 I 1.68 1 0.0600ITension 1 0.901 31 I 0.0001 0.00 I 0.00 1 788.80 I 0.00 I 1.23 1 0.0000ITension 1 0.901 31 Points of Maximum Ratio of Minimum Strength to Design Strength 1 8.8751 66.42 I 259.21 1 797.90 I 88.55 I 1.68 1 0.0600ITension 1 0.901 31 I 0.0001 0.00 I 0.00 1 788.80 I 0.00 I 1.23 1 0.0000ITension 1 0.901 31 Warnings & Notes 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code Used: ACI 318-14 1 Design Prestress Concrete Strength Provided Min. Strength Req'd Warnings I Shear Component Strength Stirrups Total Stirrups Total & Notes x I Vu vp 0vc 0vs 0vn 0vs 0vn ft I kip kip kip kip kip kip kip 0.0001 1.41 0.00 108.35 0.00 108.35 0.00 108.35 3 1.4201 1.41 0.00 109.51 0.00 109.51 0.00 109.51 3 2.8401 1.41 0.00 109.51 0.00 109.51 0.00 109.51 3 4.615' 1.41 0.00 109.51 0.00 109.51 0.00 109.51 3 6.3901 1.41 0.00 108.97 0.00 108.97 0.00 108.97 3 8.1651 1.20 0.00 108.51 0.00 108.51 0.00 108.51 8.8751 0.00 0.00 108.35 0.00 108.35 0.00 108.35 8.8751 0.00 0.00 -108.35 0.00 -108.35 0.00 -108.35 9.585' -1.20 0.00 -108.51 0.00 -108.51 0.00 -108.51 9.9401 -1.41 0.00 -108.59 0.00 -108.59 0.00 -108.59 3 11.3601 -1.41 0.00 -108.97 0.00 -108.97 0.00 -108.97 3 13.1351 -1.41 0.00 -109.51 0.00 -109.51 0.00 -109.51 3 Engineer: Company: File: NLB spandrel 5.6 5 of 6 Tue Mar 27 19:31:08 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 5.6.7 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 1 14.9101 -1.41 I 0.00 I -109.51 I 0.00 I -109.51 I 0.00 I -109.51 I 3 I 1 16.3301 -1.41 1 0.00 1 -109.51 1 0.00 1 -109.51 1 0.00 I -109.51 1 3 1 1 17.7501 -1.41 1 0.00 I -108.35 1 0.00 I -108.35 1 0.00 1 -108.35 1 3 1 Warnings & Notes 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, the PCI recommended Zia/Hsu method was used to calculate the above shear design check results. TORSION DESIGN CHECK Design Code used: ACI 318-14 (with the Zia-Hsu torsion method) 1 Design Threshold Maximum Shear/Torsion Limits Concrete Torsion Strength warnings 1 Torsion Torsion Max. ShearlShear Load Max. Tors.ITors. Load Strength Provided Required & Notes x 1 Tu Tu(min) 0Vn(max) Vu corr Tu 0Tn(max) Tu corr Vu 0Tc 0Tn 0Tn ft 1 kip.ft kip.ft kip kip kip.ft kip.ft kip.ft kip.ft kip.ft 0.0001 12.80 15.41 0.00 1.41 0.00 0.00 0.00 0.00 0.00 1 1.4201 12.80 15.41 0.00 1.41 0.00 0.00 0.00 0.00 0.00 1 2.8401 12.80 15.41 0.00 1.41 0.00 0.00 0.00 0.00 0.00 1 4.6151 12.80 15.41 0.00 1.41 0.00 0.00 0.00 0.00 0.00 1 6.3901 12.80 15.41 0.00 1.41 0.00 0.00 0.00 0.00 0.00 1 8.1651 12.80 15.41 0.00 1.20 0.00 0.00 0.00 0.00 0.00 8.8751 12.80 15.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.8751 -12.80 -15.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.5851 -12.80 -15.41 0.00 -1.20 0.00 0.00 0.00 0.00 0.00 9.9401 -12.80 -15.41 0.00 -1.41 0.00 0.00 0.00 0.00 0.00 1 11.3601 -12.80 -15.41 0.00 -1.41 0.00 0.00 0.00 0.00 0.00 1 13.1351 -12.80 -15.41 0.00 -1.41 0.00 0.00 0.00 0.00 0.00 1 14.9101 -12.80 -15.41 0.00 -1.41 0.00 0.00 0.00 0.00 0.00 1 16.3301 -12.80 -15.41 0.00 -1.41 0.00 0.00 0.00 0.00 0.00 1 17.7501 -12.80 -15.41 0.00 -1.41 0.00 0.00 0.00 0.00 0.00 1 Warnings & Notes 1 - Note, design torsion force at critical section near support used as a minimum [ACI 318-14::9.4.4.2/3]. Note, the PCI recommended Zia/Hsu method was used to calculate the above torsion design check results SHEAR/TORSION TRANSVERSE REINFORCING DESIGN CHECK Design Code used: ACI 318-14 (with the Zia-Hsu torsion method) 1 Shear Steel Required Shear Steel Stirrup Stirrup spacing Additional Long. Steel warnings 1 Total Torsion* Provided Provided Provided Max. Allow) for Torsion, Al & Notes x 1 (Av+2At)/s At/s Av/s Av+2At s s Total Reduction** ft 1 inA2/ft inA2/ft inA2/ft inA2 in in inA2 inA2 0.0001 0.00 0.00 0.00 0.22 0.00 24.00 0.00 0.00 4 1.4201 0.00 0.00 0.00 0.22 0.00 24.00 0.00 0.00 4 2.8401 0.00 0.00 0.00 0.22 0.00 24.00 0.00 0.00 4 4.6151 0.00 0.00 0.00 0.22 0.00 24.00 0.00 0.00 4 6.3901 0.00 0.00 0.00 0.22 0.00 24.00 0.00 0.00 4 8.1651 0.00 0.00 0.00 0.22 0.00 24.00 0.00 0.00 8.8751 0.00 0.00 0.00 0.22 0.00 24.00 0.00 0.00 8.8751 0.00 0.00 0.00 0.22 0.00 24.00 0.00 0.00 9.5851 0.00 0.00 0.00 0.22 0.00 24.00 0.00 0.00 9.9401 0.00 0.00 0.00 0.22 0.00 24.00 0.00 0.00 4 11.3601 0.00 0.00 0.00 0.22 0.00 24.00 0.00 0.00 4 13.1351 0.00 0.00 0.00 0.22 0.00 24.00 0.00 0.00 4 14.9101 0.00 0.00 0.00 0.22 0.00 24.00 0.00 0.00 4 16.3301 0.00 0.00 0.00 0.22 0.00 24.00 0.00 0.00 4 17.7501 0.00 0.00 0.00 0.22 0.00 24.00 0.00 0.00 4 Warnings & Notes 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: NLB spandrel 5.6 6 of 6 Tue Mar 27 19:31:08 2018 5.7 Floor spandrel 130.66k/2(see 2.1.4) 11.02k/2(see 2.1.4) 8th edition LEDGE DESIGN DL (kip = 15.35 JOB# LL (kips)= 5.50 SL (kips)= 0.00 f'c(ksi)= 5.00 Ash fy(ksi)= 60 X, 1pIb - 2- 1.0 As 1.0 0 = 0.75 f pc(ksi)= 0.00 y= 1.00 yt= 1.00 de s Al ii i de (in) = 20.00 /z(in) = 78.00 1p (in)= 8.00 s (in) = 60.00 bl (in)= 6.00 h1 (in) = 12.00 b (in)= 9.00 bl (in)= 17.00 Vu MAX(k)= (1.2)DL+(1.6)LL+(0.5)SL= 27.22 Nu (k)=0.2* 1.2*DL= 3.684 Punching Shear Calculation ae>u.0k, Eq.5-76 4)Vn(k)=11)x 2.x y x 13 x sqrt(fc)x hl x(bt+2h1+21p)= 29.27 Eq.5-77 4)Vn(k)=4)x 0.5 x k x y x[3 x sgrt(fc)x hl x(bt+2h1+s+21p)= 33.73 de<0.5bt+hi+Ir Eq.5-78 4)Vn(k)=4)x k x y x x sgrt(fc)x h1 x(0.5bt+hl+de+Ip)= 27.37 Eq.5-79 4)Vn(k)=4)x 0.5 x 2L x y x 13 x sqrt(fc)x hl x(0.5bt+hl+de+s+Ip)= 32.77 qVn(k)= 27.37 > Vu(k)= 27.22 OK Calculate the Flexural Reinforcement(As) s<6*hI a(in)= 1.5 +(0.75 x 1p) = 7.50 d(in)=hl - 1.5" 10.50 As(in2)=[Vu x(aid)+Nu x(h/id)]l(Ofy)= 0.526 As/ft(in2/ft)= As/s= 0.105 #4 @ 12",As=0.2in/ft a ds dl(in)=hi -2" 10.00 0 0 Al (in2)=(200 x 1p x(V) /&fy= 0.36 ^1:3 0 \ \ Calculate the Hanger Reinforcement (Ash) s<6*hI ds(in)=b -1.5"= 7.50 m=[(ds+a)-(3-2xhl/h)(hl/h)2(51/2)-e yt{x12 yl/(xh yl+xw2 yw)}]/ds = 1.49 use m= 1.49 Ash(in2)=Vu x m l(OFy) = 0.900 Ash/ft(in2/ft)= Ash/s= 0.180 #4 @ 12", As=0.2in/f t 5.7.1 Roof spandrel I34.90k/2(see 2.2.11) 18.82k/2(see 2.1.4) 8th edition LEDGE DESIGN 20.66k/2(see 2.1.4) DL (k = -18.00 JOB# s)= 10.00 SL (kips)= 10.50 f'c(ksi)= 6.00 Ash f y(ksi)= 60 bt, LPIb k- 1.0 As 1.0 0 = 0.75 f pc(ksi)= 0.00 y= 1.00 yt= 1.00 de s Al ii i dc (in) = 48.00 /z(in) = 85.00 /p (in)= 8.00 s (in) = 60.00 b/ (in)= 6.00 h/ (in) = 16.00 b (in)= 9.00 bl (in)= 17.00 Vu MAX(k)= (1.2)DL+(1)LL+(1.6)SL= 48.40 Nu (k)=0.2* 1.2*DL= 4.320 Punching Shear Calculation ae>u.ak, Eq.5-76 4)Vn(k)_4)x 2.x y x 13 x sqrt(fc)x hl x(bt+2h1+21p)= 50.19 Eq.5-77 4)Vn(k)=4)x 0.5 x X x y x[3 x sgrt(fc)x h1 x(bt+2h1+s+21p)= 52.98 de<0.5bt+hi+Ir Eq.5-78 4)Vn(k)=4)x k x y x x sgrt(fc)x h1 x(0.5bt+hl+de+Ip)= 69.71 Eq.5-79 4)Vn(k)=(x 0.5 x 2L x y x 13 x sqrt(fc)x h1 x(0.5bt+hl+de+s+Ip)= 62.74 qVn(k)= 50.19 > Vu(k)= 48.40 OK Calculatethe Flexural Reinforcement(As) s<6*hI a(in)= 1.5 +(0.75 x/p) = 7.50 d(in)=h/ - 1.5" 14.50 As(in2)=[Vu x(a/c/)+Nu x(h//c/)]/(OM= 0.662 As/ft(in2/ft)= As/s= 0.132 #5 @ 8",As=0.47 int/ft 1 a / ds ) d1(in)=h/ -2" 14.00 0 0 Al (in2)=(200 x 1p xdl) /&fy= 0.50 ^1:3 0 \ \ Calculatethe Hanger Reinforcement (Ash) s<6*hI ds(in)=b -1.5"= 7.50 m=[(ds+a)-(3-2xhl/h)(h//h)2(51/2)-e yt{x12 y1/(xh yl+xw2 yw)}]/ds = 1.28 use m= 1.28 Ash(in2)=Vu x cc l(OFy) = 1.379 Ash/ft(in2/ft)= Ash/s= 0.276 #5 @ 8",As=0.465 int/f t 5.7.1.1 CONCRETE HAUNCH DESIGN PCI HANDBOOK 6TH EDITION Input Data: PP !~ • fdh �I V„ (K)= 105.00 Plate or a Angle Nu (K)= 9.77 Vi, ;( As h (in.) = 16.00 u 1° b (in.) = 24.00 a1� 2/3d Ip (in.) = 8.00h d (Min.) (Max.) a (in.) = 6.00 1 + d (in.) = 15.00 Framing • Bar Ah f's (psi.)= 6,000 f fy(psi.)= 60,000 Welded 0 we (pcf.) = 150 Cross Bars v" A= 1.00 O = 1 Alternate Anchorage 0 = 0.75 1. As bar should be extended to the far face of the column. Provide fully developed AS bars by selecting the number of bars so that the bar size remains small Check concrete cross section: enough to ensure that the length, td,,, Is provided (Design Aid 11.2.9). Max. 4Vn (K)= 216 (O.K.) 2. Vertical length of a standard 90°hook is 12d `Design Aid 11.2.9). The horizontal length of A par, Fdh, must be provided in order to use a standard 90°hook. It 3_ may be assumed that the As bar is developed at the Reinforcement: outside face of the welded anchor bar when the A h bars are outside that point. Size of welded cross bar is µe = MIN(MAX.te,1000Abhµ/Vu)= 2.90 same as A5 bar. Asi (in2) = (1/0y)[V„(a/d)+N„(h/d)] = 1.16 A 2 (in2) = (1/4fy)[(2Vu/3µe)+Nu] = 0.75 As(MIN)(in2) =0.04(f'u/fy)bd = 1.44 (CONTROLS) ‘N_ (5)#5 in spread over 48". #5 @ 8"o.c. An (in2) = Nu/dfy= 0.22 Ah (in2) = 0.5(As-An)= 0.6114222 Distributed within upper 10". Av (in2) =As*fy/(4*fy*2.4) = 0.647 (minimum total framing bar area) Hanger bars: Ash = 105k x 1.28 / (0.9 x 60) = 2.49 int, (8) #5 spread over 5', @ 8" o.c. 5.8 Floor spandrel Ext. LB spandrel STABILITY ANALYSIS 1 L= 25.00 ft Pb= 10.59 k Pd = 43.16 k See 5.1.4 P1= 15.50 k Ps= 0.00 k A= 15.00 d = 9.00 in 3 Pad Width b = 5.00 in XL= 4.50 in k{ 1 H1 = 62.00 in m Ro= 69.25 k k Pd.rl.Fs 7 Bearing Pad Capacity = 4 ksi At Service x = (Pb+Pd+Pl+Ps)/(4 ksi*b)/2 = 1.73 in Mu = [(1.2)Pd+(1.6)PI+(0.5)Ps]*(A-d+x)-(0.9)Pb*(d-x-XL) = 565.76 k-in Tu = Mu / H1 = 9.13 k TOP CONNECTION USE: 9.24 CAPACITY: 29.5k BOTTOM CONNECTION USE: 9.23 CAPACITY: 32.4k 5.8.1 Floor spandrel w/opening (during erection) Ext. LB spandrel STABILITY ANALYSIS L= ft Pb= 10.59 k Pd = 43.16 k P1= 0.00 k Ps= 0.00 k Pb A= 15.00 XL d = 17.00 in Pad Width b = 5.00 in Pd.PI,Ps XL= 4.50 in H1 = 34.00 in A Ro= 53.75 k T xy R1 Bearing Pad Capacity = 2 ksi At Service x = (Pb+Pd+Pl+Ps)/(2 ksi*b)/2 = 2.69 in Mu = (1.4)Pd*(A-d+x)-(0.9)Pb*(d-x-XL) = -51.98 k-in Tu = Mu / H1 = -1.53 k TOP CONNECTION USE: 9.61 CAPACITY: 8.88k BOTTOM CONNECTION USE: 9.23 CAPACITY: 32.4k 5.8.2 Roof spandrel Ext. LB spandrel STABILITY ANALYSIS 1 L= 25.00 ft Pb= 10.85 k Pd = 66.82 k P1= 31.50 k See 5.2.10 Ps= 38.75 k A= 15.00 d = 9.00 in 3 Pad Width b = 5.00 in XL= 4.50 in k{ 1 H1 = 69.00 in m i Ro= 147.92 k k Pd,?I.I's 7 Bearing Pad Capacity = 4 ksi At Service x = (Pb+Pd+PI+Ps)/(4 ksi*b)/2 = 3.70 in Mu = (1.2)Pd+(1)PI+(1.6)Ps]*(A-d+x)-(0.9)Pb*(d-x-XL) = 1676.56 k-in Tu = Mu / H1 = 24.30 k TOP CONNECTION USE: 9.24 CAPACITY: 29.5k BOTTOM CONNECTION USE: 9.23 CAPACITY: 32.4k 5.8.3 Roof spandrel w/opening Ext. LB spandrel STABILITY ANALYSIS (during erection) L= 25.00 ft Pb= 11.63 k Pd = 75.88 k P1= 0.00 k Ps= 0.00 k Pb A= 19.00 , XL d = 17.00 in 'ad Width b = 6.00 in Pd.Pi,Ps XL= 4.50 in H1 = 34.00 in A .1- ., Ro= 87.51 k T x —10- -11- R! 10—R! D Bearing Pad Capacity = 4 ksi At Service x = (Pb+Pd+PI+Ps)/(4 ksi*b)/2 = 1.82 in Mu = (1.4)Pd*(A-d+x)-(0.9)Pb*(d-x-XL) = 294.38 k-in Tu = Mu / H1 = 8.66 k TOP CONNECTION USE: 9.61 CAPACITY: 8.88k BOTTOM CONNECTION USE: 9.23 CAPACITY: 32.4k 5.8.4 Car impact (load bearing) 10k v } Mu= 10k x 30in =300k-in M -c:� 0.9 Mdead ={0.9 x(64+37.5)/1000 x 60'/2 x 25'x 7"}-{1.4 x 10.59k x 2 x 3.5"} =375k-in>300k-in (no overturning) 9 T M Use 9.5,phi Tn= 15.89k, or 9.22,phi Tn= 16.74k 5 5.8.5 Car impact (non-load bearing) Tu=Cu= 10kx32'/78" =4.1 k Use 9.32, T phi Vn=4.17k o _ 10k M CV C p - C O go 5TRE55CON Architectural and Structural Precast Concrete An ENCow Company 6.0 COLUMN DESIGNS Design General Description 6.1 24" x 24" column 6.2 24" x 28" column 1° DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION - iv ., SUBMITTAL A oE FOR APPROVAL- NOT FOR CONSTRUCTION E D ,"-9.44 or 9.56 24"x24" precast column CD f'ci = 2500 psi N o , m.,......_ f'c = 6000 psi C III9.24 D yr III Hard Rock concrete o .I U / 203" i, 9.13 O °N c 2®3" O . • O VO: 9.23 N "N u.%//-/ d A / I 9.14 C 2®3"• 0 } 0 co D a ✓ II o m o 0) w) 9.54 or 9.59 9.24 C 1 I C 2®3 1 9.t5 • I I w • 0) I I I C 203" yy O 9.23 >, I I 6 lo I I C - 5) 11 N W Na 1 I I ' I 9.24• IT• N 74? II (9 -I co Q 203"-a- 9.15 0 yN T , I I & I I 1 1 CNI 203 2'-0" 9� r ®®� 9.23 1 (4)#11 BAR 0 • II 1 9.10 m 9.32 11 11 0 N in II II o -1- II II N I 12" CLR, TYP II II _al = = = = J _ _ 2®3" 2®3"• "� • J1 11 =-• 1 r #4-CS-0 18 9.2 "k-9.2 or 9.55 yP^.1 - 620 9 Mz Red Sandstone y 24"x 24"column o 0 1- 5TRE55CON 6.1 0 LL Architectural and Structural Precast Concrete w An ENCoN Company SHEET 1 OF 1 6.1.2 LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 0196 FadjarKusumo-Rahardjo INPUT DATA 03-27-2018 21:00:58 Pg. 1 File: 24X24 COLUMN 6.1.W12 Name: Job No: Mark: Designer: "Full Load" SECTION DIMENSIONS: No. of Wythes= 1 Bot Wythe: Width = 24 in Thickness = 24 in Member Length =479 in Bott Wythe(no rvls/opngs): Area = 576 in2 M of I = 27648 in4 Centroid from Bottom= 12 in MATERIALS: F'c(psi) Ec (ksi) F'ci(psi) Eci (ksi) Conc Wt (pcf) Bot Wythe: 6000 4463 2500 2881 150 Average Relative Humidity= 70 % Superimposed Load= 0 psf Fy, Reinf BarGrade= 60 ksi Fpu, Strand= 270 ksi Lo-Lax= Yes REBAR ROWS: A B C D E F G H BarDiam(in) = 1.41 1.41 No. Ba rsin Row= 2 2 Cent frm Bot/Sect(in)= 3 22 Start frm Bot/WaIldn) = 0 0 End frm Top/Wall(in) = 0 0 BarDev Length Mult = 1 1 REBAR LOCATIONS FROM LEFT: (Column ties used or non-bearing member) Row A 6.00 18.00 Row B 6.00 18.00 LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 6.1.3 0196 FadjarKusumo-Rahardjo INPUT DATA 03-27-2018 21:00:58 Pg. 2 File: 24X24 COLUMN 6.1.W12 Name: Job No: Mark: Designer: Coefficients: Initia I prestress loss = 0.00% (Calculated) Fina I prestress loss = 0.00% (Calculated) Outside temp, deg F: 105 Inside: 75 Initial member bow atmidheight, in: 0 Column ties used or non-bea ringmember Seismic coefficient, % = 0 Cracking stress coefficient: 7.5 Slenderness effects are included Inside horiz. surcharge at floor or grade,psf: 0 Outside horiz.surcharge at floor or grade,psf: 0 Inside activelateral earth pressure, psf: 0 Outside activelateral earth pressure, psf: 0 Inside dist. from base to top of retainedearth,in: 0 Outside dist. from base to top of retained earth,in: 0 Stra nddev. length mult. at ends = 1 , at openings= 2 Percent composite at ultimate: 100 Bottom face (form face) locationis outside Percent composite for deflection: 0 Floor tie activefor load cases with earth pressure Percent composite for stresses: 0 24 • • •0 24 LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 6.1.4 0196 FadjarKusumo-Rahardjo INPUT DATA 03-27-2018 21:00:58 Pg. 3 File: 24X24 COLUMN 6.1.W12 Name: Job No: Mark: Designer: SUPPORT LOCATIONS, INCHES: SPRING CONSTANTS, INCHES/KIP: Top support locationfrom top of member, in: 62.50 0 Connection locationfrom bottom, in, Row 3 : 278.50 0 Connection locationfrom bottom, in, Row 2 : 136.50 0 Slab-on-grade connection locationfrom bottom,in: 0.00 0 CONCENTRATED VERTICAL LOADS,KIPS: Pv Location Eccentricity Dead Live Roof Wind (2)x 53.75k (from bottom, in.) (from inside face, in.) see 5.1.4 (2)x 15.50k (see 5.1.4) Row 1 136.50 -11.00 107.50 31.00 0.00 0.00 Row 2 278.50 -11.00 107.50 31.00 0.00 0.00 Row 3 385.50 6.00 34.90 18.65 20.66 0.00< (see 2.2.11) Row 4 416.50 -11.00 153.90 0.00 77.12 0.00 Row 5 479.00 -12.00 250.00 125.00 95.00 0.00 ElIfutureexpansion (2)x 38.56k (see 5.2.4) uture expansion (2)x 76.97k (see 5.2.4) LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 6.1.5 0196 Fadja rKusumo-Rahardjo APPLIED MOMENT&STRESS GRAPHS 03-27-2018 21:11:11 File: 24X24 COLUMN 6.1.W12 Name: Job No: Mark: Designer: LOAD CASE 1 ACI 318-11 9-1 Deac: MAGNIFIED MOMENT Suction at 98.20 in: Pu (kips)= 621.36 1 Mu (kip-in)= 710.19 Outer Stress (psi)=-770.51 — Inner Stress (psi)=-1386.99 Section is Uncracked _— Bow(in)= 0.01 (Outward Bow is Positive) Force in Top Conn. in Kips= -10.37 Force in 280 in. Conn. in Kips= 11.13 Force in 137 in. Conn. in Kips= -1.65 Force in Bottom Conn. in Kips= 0.89 = _ (Compression is Negative) Pressure at 193.99 in: Pu (kips)= 628.07 g _- Mu (kip-in)= -289.79 Inner Stress (psi)=-964.62 Outer Stress (psi)=-1216.17 , Section is Uncracked Bow(in)= 0.00 (Outward Bow is Positive) SUCTION PRESSURE Force in Top Conn. in Kips= -10.37 Force in 280 in. Conn. in Kips= 11.13 Force in 137 in. Conn. in Kips= -1.65 Force in Bott Conn. in Kips= 0.89 STRESSES (Compression is Negative) Percent composite at ultimate: 100 Percent composite for deflection: 0 Percent composite for stresses: 0 Cracking stress coefficient: 7.5 / \ / \ Slenderness effects a reincluded Outer Inner Outer Inner SUCTION PRESSURE LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 6.1.6 0196 Fadja rKusumo-Rahardjo APPLIED MOMENT&STRESS GRAPHS 03-27-2018 21:12:23 File: 24X24 COLUMN 6.1.W12 Name: Job No: Mark: Designer: LOAD CASE 2 ACI 318-11 9-2 Live+T+Earth: MAGNIFIED MOMENT Suction at 193.99 in: Pu (kips)= 864.57 Mu (kip-in)= -1424.55 Outer Stress (psi)=-2119.29 Inner Stress (psi)=-882.70 ' Section is Uncracked Bow(in)= 0.00 (Outward Bow is Positive) ' ' ' Force in Top Conn. in Kips= -23.51 Force in 280 in. Conn. in Kips= 25.16 \ \ Force in 137 in. Conn. in Kips=4.44 Force in Bottom Conn. in Kips= -6.09 (Compression is Negative) Pressure at 98.20 in: Pu (kips)= 858.83 Mu (kip-in)= 843.01 Inner Stress (psi)=-1856.91 '` Outer Stress (psi)=-1125.13 IN , Section is Uncracked Bow(in)= 0.02 (Outward Bow is Positive) SUCTION PRESSURE Force in Top Conn. in Kips= -23.51 Force in 280 in. Conn. in Kips= 25.16 Force in 137 in. Conn. in Kips=4.44 Force in Bott Conn. in Kips= -6.09 STRESSES (Compression is Negative) Percent composite at ultimate: 100 = _ Percent composite for deflection: 0 �' �' Percent composite for stresses: 0 Cracking stress coefficient: 7.5 / \ / \ Slenderness effects a reincluded Outer Inner Outer Inner SUCTION PRESSURE LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 6.1.7 0196 Fadja rKusumo-Rahardjo APPLIED MOMENT&STRESS GRAPHS 03-27-2018 21:13:30 File: 24X24 COLUMN 6.1.W12 Name: Job No: Mark: Designer: LOAD CASE 11 Service Dead+ Live,ASCE 7-10 2.4.1.2: MAGNIFIED MOMENT Suction at 352.07 in: Pu (kips)= 877.17 Mu (kip-in)= 105.23 _ Outer Stress (psi)=-1477.20 Inner Stress (psi)=-1568.54 Section is Uncracked Bow(in)= 0.00 _ (Outward Bow is Positive) Force in Top Conn. in Kips= -10.52 Force in 280 in. Conn. in Kips= 11.40 Force in 137 in. Conn. in Kips= -1.74 Force in Bottom Conn. in Kips= 0.85 (Compression is Negative) Pressure at 203.57 in: Pu (kips)= 731.25 Mu (kip-in)= -141.29 Inner Stress (psi)=-1208.20 Outer Stress (psi)=-1330.85 Section is Uncracked Bow(in)= 0.00 (Outward Bow is Positive) SUCTION PRESSURE Force in Top Conn. in Kips= -10.52 Force in 280 in. Conn. in Kips= 11.40 Force in 137 in. Conn. in Kips= -1.74 Force in Bott Conn. in Kips= 0.85 STRESSES (Compression is Negative) Percent composite at ultimate: 100 Percent composite for deflection: 0 — — — — Percent composite for stresses: 0 Cracking stress coefficient: 7.5 / \ / \ Slenderness effects a reincluded Outer Inner Outer Inner SUCTION PRESSURE LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 6.1.8 0196 FadjarKusumo-Rahardjo INTERACTION CURVES 03-27-2018 21:14:16 Pg. 1 File: 24X24 COLUMN 6.1.W12 Name: Job No: Mark: Designer: LOAD CASES: 24 1 ACI 318-11 9-1 Dead 2 ACI 318-11 9-2 Live+T+Earth 3 ACI 318-11 9-3 Roof-No LL Red. 4 ACI 318-11 9-4 Wind 0 5 ACI 318-11 9-5 Seismic 6 ACI 318-11 9-6 Wind+Earth 24 7 ACI 318-11 9-6 Wind 8 ACI 318-11 9-7 Seismic+Earth 9 ACI 318-11 9-7 Seismic 10 Service Dead+Temp 11 Service Dead+ Live,ASCE 7-10 2.4.1.2 12 Service Dead+ Live+ Roof,ASCE 7-10 2.4.1.4 13 Service Dead+Wind, ASCE 7-10 2.4.1.7 ACI 318 Phi factors used 14 User Defined Pu Mu-S Phi-Mn S 1.0Mcr S Mu-P Phi-Mn P 1.0Mcr P Pu Mu-S Phi-Mn S 1.0Mcr S Mu-P Phi-Mn P 1.0Mcr P 1 621.36 710.19 7310.06 3823.95 710.19 -7318.03 -3823.95 2 858.83 843.01 7579.67 4773.81 843.01 -7642.91 -4773.81 3 984.69 1307.86 7413.92 5277.28 1307.86 -7445.89 -5277.28 4 772.64 971.87 7650.68 4429.04 971.87 -7760.86 -4429.04 5 714.80 882.74 7640.26 4197.71 882.74 -7643.86 -4197.71 6 399.45 452.21 6108.13 2936.29 452.21 -6073.76 -2936.29 7 399.45 452.21 6108.13 2936.29 452.21 -6073.76 -2936.29 8 399.45 452.21 6108.13 2936.29 452.21 -6073.76 -2936.29 9 399.45 452.21 6108.13 2936.29 452.21 -6073.76 -2936.29 10 443.83 275.09 6416.54 3113.82 275.09 -6375.48 -3113.82 11 587.48 725.48 7175.33 3688.42 725.48 -7185.13 -3688.42 12 696.15 889.30 7592.93 4123.11 889.30 -7597.14 -4123.11 13 266.30 301.01 5155.23 2403.69 301.01 -5183.32 -2403.69 14 0.00 0.00 3396.62 0.00 0.00 -3635.16 0.00 Section cut locationfrom left end (in)= 98.19501 Compr. face not reversed. 1706 1706 SUCTION PRESSURE 3 0 2 PhiPn 4 PhiPn (kips) 12 (kips) 11 0 10 c 0 13 0 0 0 0 PhiMn (kip-in) 7680 0 PhiMn (kip-in) 7766 LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 6.1.9 0196 FadjarKusumo-Rahardjo INTERACTION CURVES 03-27-2018 21:14:42 Pg. 1 File: 24X24 COLUMN 6.1.W12 Name: Job No: Mark: Designer: LOAD CASES: 24 1 ACI 318-11 9-1 Dead 2 ACI 318-11 9-2 Live+T+Earth 3 ACI 318-11 9-3 Roof-No LL Red. 4 ACI 318-11 9-4 Wind 0 5 ACI 318-11 9-5 Seismic 6 ACI 318-11 9-6 Wind+Earth 24 7 ACI 318-11 9-6 Wind 8 ACI 318-11 9-7 Seismic+Earth 9 ACI 318-11 9-7 Seismic 10 Service Dead+Temp 11 Service Dead+ Live,ASCE 7-10 2.4.1.2 12 Service Dead+ Live+ Roof,ASCE 7-10 2.4.1.4 13 Service Dead+Wind, ASCE 7-10 2.4.1.7 ACI 318 Phi factors used 14 User Defined Pu Mu-S Phi-Mn S 1.0Mcr S Mu-P Phi-Mn P 1.0Mcr P Pu Mu-S Phi-Mn S 1.0Mcr S Mu-P Phi-Mn P 1.0Mcr P 1 628.07 -289.79 7341.81 3850.77 -289.79 -7349.35 -3850.77 2 864.57 -1424.55 7569.33 4796.80 -1424.55 -7642.91 -4796.80 3 990.44 -490.19 7413.92 5300.27 -490.19 -7426.90 -5300.27 4 778.38 -377.49 7642.81 4452.04 -377.49 -7748.67 -4452.04 5 720.55 -347.62 7662.77 4220.70 -347.62 -7666.08 -4220.70 6 403.76 -184.87 6161.46 2953.53 -184.87 -6073.76 -2953.53 7 403.76 -184.87 6161.46 2953.53 -184.87 -6073.76 -2953.53 8 403.76 -184.87 6161.46 2953.53 -184.87 -6073.76 -2953.53 9 403.76 -184.87 6161.46 2953.53 -184.87 -6073.76 -2953.53 10 448.62 -1034.45 6416.54 3132.98 -1034.45 -6375.48 -3132.98 11 592.27 -287.52 7210.17 3707.58 -287.52 -7185.13 -3707.58 12 700.94 -340.55 7592.93 4142.27 -340.55 -7597.14 -4142.27 13 269.17 -123.10 5174.21 2415.19 -123.10 -5200.03 -2415.19 14 0.00 0.00 3396.62 0.00 0.00 -3635.16 0.00 Section cut locationfrom left end (in)= 193.9949 Compr. face not reversed. 1706 1706 SUCTION PRESSURE 3 0 2 PhiPn PhiPn 4 0 (kips) (kips) 12 11 0 9 00 I0 13 0 0 0 0 PhiMn (kip-in) 7680 0 PhiMn (kip-in) 7766 6.1.10 LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 0196 FadjarKusumo-Rahardjo INPUT DATA 03-27-2018 21:24:02 Pg. 1 File: 24X24 COLUMN 6.1 PARTIAL LIVE 1.W12 Name: "Partial live Load" Job No: Mark: Designer: SECTION DIMENSIONS: No. of Wythes= 1 Bot Wythe: Width = 24 in Thickness = 24 in Member Length =479 in Bott Wythe(no rvls/opngs): Area = 576 in2 M of I = 27648 in4 Centroid from Bottom= 12 in MATERIALS: F'c(psi) Ec (ksi) F'ci(psi) Eci (ksi) Conc Wt (pcf) Bot Wythe: 6000 4463 2500 2881 150 Average Relative Humidity= 70 % Superimposed Load= 0 psf Fy, Reinf BarGrade= 60 ksi Fpu, Strand= 270 ksi Lo-Lax= Yes REBAR ROWS: A B C D E F G H BarDiam(in) = 1.41 1.41 No. Ba rsin Row= 2 2 Cent frm Bot/Sect(in)= 3 22 Start frm Bot/WaIldn) = 0 0 End frm Top/Wall(in) = 0 0 BarDev Length Mult = 1 1 REBAR LOCATIONS FROM LEFT: (Column ties used or non-bearing member) Row A 6.00 18.00 Row B 6.00 18.00 I LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 6.1.11 0196 FadjarKusumo-Rahardjo INPUT DATA 03-27-2018 21:24:02 Pg. 2 File: 24X24 COLUMN 6.1 PARTIAL LIVE 1.W12 Name: Job No: Mark: Designer: Coefficients: Initia I prestress loss = 0.00% (Calculated) Fina I prestress loss = 0.00% (Calculated) Outside temp, deg F: 105 Inside: 75 Initial member bow atmidheight, in: 0 Column ties used or non-bea ringmember Seismic coefficient, % = 0 Cracking stress coefficient: 7.5 Slenderness effects are included Inside horiz. surcharge at floor or grade,psf: 0 Outside horiz.surcharge at floor or grade,psf: 0 Inside activelateral earth pressure, psf: 0 Outside activelateral earth pressure, psf: 0 Inside dist. from base to top of retainedearth,in: 0 Outside dist. from base to top of retained earth,in: 0 Stra nddev. length mult. at ends = 1 , at openings= 2 Percent composite at ultimate: 100 Bottom face (form face) locationis outside Percent composite for deflection: 0 Floor tie activefor load cases with earth pressure Percent composite for stresses: 0 24 • • •0 24 LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 6.1.12 0196 FadjarKusumo-Rahardjo INPUT DATA 03-27-2018 21:24:02 Pg. 3 File: 24X24 COLUMN 6.1 PARTIAL LIVE 1.W12 Name: Job No: Mark: Designer: SUPPORT LOCATIONS, INCHES: SPRING CONSTANTS, INCHES/KIP: Top support locationfrom top of member, in: 62.50 0 Connection locationfrom bottom, in, Row 3 : 278.50 0 Connection locationfrom bottom, in, Row 2 : 136.50 0 Slab-on-grade connection locationfrom bottom,in: 0.00 0 CONCENTRATED VERTICAL LOADS,KIPS: Pv Location Eccentricity Dead Live Roof Wind (from bottom, in.) (from inside face, in.) Row 1 136.50 0.00 107.50 0.00 0.00 0.00 Row 2 278.50 0.00 107.50 0.00 0.00 0.00 Row 3 385.50 0.00 34.90 0.00 20.66 0.00 Row 4 416.50 0.00 153.90 0.00 77.12 0.00 Row 5 479.00 -12.00 250.00 125.00 95.00 0.00 Row 6 136.50 18.00 0.00 15.50 0.00 0.00 Row 7 278.50 -42.00 0.00 15.50 0.00 0.00 Row 8 416.50 18.00 0.00 18.65 0.00 0.00 LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 6.1.13 0196 Fadja rKusumo-Rahardjo APPLIED MOMENT&STRESS GRAPHS 03-27-2018 21:27:36 File: 24X24 COLUMN 6.1 PARTIAL LIVE 1.W12 Name: Job No: Mark: Designer: LOAD CASE 3 ACI 318-11 9-3 Roof-No LL Red.: MAGNIFIED MOMENT Suction at 69.46 in: Pu (kips)= 908.03 Mu (kip-in)= 3870.90 Outer Stress (psi)= 103.63 Inner Stress (psi)=-3256.52 Section is Uncracked Bow(in)= 0.02 (Outward Bow is Positive) Force in Top Conn. in Kips= -50.45 Force in 280 in. Conn. in Kips=48.29 Force in 137 in. Conn. in Kips= -7.00 = Force in Bottom Conn. in Kips= 9.16 (Compression is Negative) Pressure at 198.78 in: Pu (kips)= 990.73 Mu (kip-in)= -1549.67 Inner Stress (psi)=-1047.42 Outer Stress (psi)=-2392.62 Section is Uncracked Bow(in)= 0.00 (Outward Bow is Positive) SUCTION PRESSURE Force in Top Conn. in Kips= -50.45 Force in 280 in. Conn. in Kips=48.29 Force in 137 in. Conn. in Kips= -7.00 Force in Bott Conn. in Kips= 9.16 STRESSES (Compression is Negative) Percent composite at ultimate: 100 Percent composite for deflection: 0 = c Percent composite for stresses: 0 \ i Cracking stress coefficient: 7.5 � _ Slenderness effects a reincluded 11 1— 11 '1— i \ i \ Outer Inner Outer Inner SUCTION PRESSURE LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 6.1.14 0196 Fadja rKusumo-Rahardjo APPLIED MOMENT&STRESS GRAPHS 03-27-2018 21:29:16 File: 24X24 COLUMN 6.1 PARTIAL LIVE 1.W12 Name: Job No: Mark: Designer: LOAD CASE 12 Service Dead+ Live+ Roof,ASCE 7-10 2.4.1.4: MAGNIFIED MOMENT Suction at 69.46 in: Pu (kips)= 644.32 1 Mu (kip-in)= 2655.71 Outer Stress (psi)= 34.04 Inner Stress (psi)=-2271.27 — — Section is Uncracked Bow(in)= 0.01 (Outward Bow is Positive) Force in Top Conn. in Kips= -34.99 Force in 280 in. Conn. in Kips= 31.43 Force in 137 in. Conn. in Kips= -3.51 Force in Bottom Conn. in Kips= 7.07 = _ (Compression is Negative) - Pressure at 98.20 in: — Pu (kips)= 696.15 Mu (kip-in)= 2265.18 Inner Stress (psi)=-2191.75 Outer Stress (psi)=-225.44 Section is Uncracked Bow(in)= 0.03 (Outward Bow is Positive) SUCTION PRESSURE Force in Top Conn. in Kips= -34.99 Force in 280 in. Conn. in Kips= 31.43 Force in 137 in. Conn. in Kips= -3.51 Force in Bott Conn. in Kips= 7.07 STRESSES (Compression is Negative) Percent composite at ultimate: 100 Percent composite for deflection: 0 Percent composite for stresses: 0 \ 1� Cracking stress coefficient: 7.5 Slenderness effects a reincluded r' ) i \ i \ Outer Inner Outer Inner SUCTION PRESSURE LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 6.1.15 0196 FadjarKusumo-Rahardjo INTERACTION CURVES 03-27-2018 21:30:13 Pg. 1 File: 24X24 COLUMN 6.1 PARTIAL LIVE 1.W12 Name: Job No: Mark: Designer: LOAD CASES: 24 1 ACI 318-11 9-1 Dead 2 ACI 318-11 9-2 Live+T+Earth 3 ACI 318-11 9-3 Roof-No LL Red. 4 ACI 318-11 9-4 Wind 0 5 ACI 318-11 9-5 Seismic 6 ACI 318-11 9-6 Wind+Earth 24 7 ACI 318-11 9-6 Wind 8 ACI 318-11 9-7 Seismic+Earth 9 ACI 318-11 9-7 Seismic 10 Service Dead+Temp 11 Service Dead+ Live,ASCE 7-10 2.4.1.2 12 Service Dead+ Live+ Roof,ASCE 7-10 2.4.1.4 13 Service Dead+Wind, ASCE 7-10 2.4.1.7 ACI 318 Phi factors used 14 User Defined Pu Mu-S Phi-Mn S 1.0Mcr S Mu-P Phi-Mn P 1.0Mcr P Pu Mu-S Phi-Mn S 1.0Mcr S Mu-P Phi-Mn P 1.0Mcr P 1 570.49 2300.96 7103.35 3620.46 2300.96 -7077.50 -3620.46 2 804.89 3198.07 7626.28 4558.07 3198.07 -7723.70 -4558.07 3 908.03 3870.90 7524.23 4970.63 3870.90 -7583.10 -4970.63 4 718.70 2912.39 7662.77 4213.31 2912.39 -7666.08 -4213.31 5 667.06 2661.02 7489.03 4006.76 2661.02 -7494.60 -4006.76 6 366.74 1462.59 5884.57 2805.48 1462.59 -5811.21 -2805.48 7 366.74 1462.59 5884.57 2805.48 1462.59 -5811.21 -2805.48 8 366.74 1462.59 5884.57 2805.48 1462.59 -5811.21 -2805.48 9 366.74 1462.59 5884.57 2805.48 1462.59 -5811.21 -2805.48 10 407.49 1577.13 6161.46 2968.47 1577.13 -6136.39 -2968.47 11 551.14 2180.29 6989.59 3543.07 2180.29 -6991.92 -3543.07 12 644.32 2655.71 7403.00 3915.78 2655.71 -7409.73 -3915.78 13 244.50 973.31 5011.25 2316.49 973.31 -5056.57 -2316.49 14 0.00 0.00 3396.62 0.00 0.00 -3635.16 0.00 Section cut locationfrom left end (in)= 69.45501 Compr. face not reversed. 1706 1706 SUCTION PRESSURE 3 3 PhiPn o PhiPn (kips) 12 (kips) 11 10 0 13 0 0 0 0 PhiMn (kip-in) 7680 0 PhiMn (kip-in) 7766 LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 6.1.16 0196 FadjarKusumo-Rahardjo INTERACTION CURVES 03-27-2018 21:30:39 Pg. 1 File: 24X24 COLUMN 6.1 PARTIAL LIVE 1.W12 Name: Job No: Mark: Designer: LOAD CASES: 24 1 ACI 318-11 9-1 Dead 2 ACI 318-11 9-2 Live+T+Earth 3 ACI 318-11 9-3 Roof-No LL Red. 4 ACI 318-11 9-4 Wind 0 5 ACI 318-11 9-5 Seismic 6 ACI 318-11 9-6 Wind+Earth 24 7 ACI 318-11 9-6 Wind 8 ACI 318-11 9-7 Seismic+Earth 9 ACI 318-11 9-7 Seismic 10 Service Dead+Temp 11 Service Dead+ Live,ASCE 7-10 2.4.1.2 12 Service Dead+ Live+ Roof,ASCE 7-10 2.4.1.4 13 Service Dead+Wind, ASCE 7-10 2.4.1.7 ACI 318 Phi factors used 14 User Defined Pu Mu-S Phi-Mn S 1.0Mcr S Mu-P Phi-Mn P 1.0Mcr P Pu Mu-S Phi-Mn S 1.0Mcr S Mu-P Phi-Mn P 1.0Mcr P 1 623.04 1109.08 7341.81 3830.65 1109.08 -7318.03 -3830.65 2 860.26 1334.48 7579.67 4779.55 1334.48 -7642.91 -4779.55 3 986.13 2147.67 7413.92 5283.02 2147.67 -7445.89 -5283.02 4 774.07 1551.80 7650.68 4434.79 1551.80 -7760.86 -4434.79 5 716.24 1398.78 7640.26 4203.46 1398.78 -7643.86 -4203.46 6 400.52 698.04 6108.13 2940.60 698.04 -6073.76 -2940.60 7 400.52 698.04 6108.13 2940.60 698.04 -6073.76 -2940.60 8 400.52 698.04 6108.13 2940.60 698.04 -6073.76 -2940.60 9 400.52 698.04 6108.13 2940.60 698.04 -6073.76 -2940.60 10 445.03 400.48 6416.54 3118.61 400.48 -6375.48 -3118.61 11 588.68 1152.53 7175.33 3693.21 1152.53 -7185.13 -3693.21 12 697.35 1427.77 7592.93 4127.90 1427.77 -7597.14 -4127.90 13 267.02 463.79 5159.98 2406.57 463.79 -5187.50 -2406.57 14 0.00 0.00 3396.62 0.00 0.00 -3635.16 0.00 Section cut locationfrom left end (in)= 122.145 Compr. face not reversed. 1706 1706 SUCTION PRESSURE 3 0 2 PhiPn 4 PhiPn (kips) 12 (kips) 11� a 10 o 0 13 0 0 0 0 PhiMn (kip-in) 7680 0 PhiMn (kip-in) 7766 LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 6.1.17 0196 FadjarKusumo-Rahardjo INTERACTION CURVES 03-27-2018 21:31:08 Pg. 1 File: 24X24 COLUMN 6.1 PARTIAL LIVE 1.W12 Name: Job No: Mark: Designer: LOAD CASES: 24 1 ACI 318-11 9-1 Dead 2 ACI 318-11 9-2 Live+T+Earth 3 ACI 318-11 9-3 Roof-No LL Red. 4 ACI 318-11 9-4 Wind 0 5 ACI 318-11 9-5 Seismic 6 ACI 318-11 9-6 Wind+Earth 24 7 ACI 318-11 9-6 Wind 8 ACI 318-11 9-7 Seismic+Earth 9 ACI 318-11 9-7 Seismic 10 Service Dead+Temp 11 Service Dead+ Live,ASCE 7-10 2.4.1.2 12 Service Dead+ Live+ Roof,ASCE 7-10 2.4.1.4 13 Service Dead+Wind, ASCE 7-10 2.4.1.7 ACI 318 Phi factors used 14 User Defined Pu Mu-S Phi-Mn S 1.0Mcr S Mu-P Phi-Mn P 1.0Mcr P Pu Mu-S Phi-Mn S 1.0Mcr S Mu-P Phi-Mn P 1.0Mcr P 1 788.96 -935.44 7634.68 4494.35 -935.44 -7736.29 -4494.35 2 1027.28 -1921.85 7347.62 5447.63 -1921.85 -7367.29 -5447.63 3 1143.85 -802.28 7098.96 5913.91 -802.28 -7059.06 -5913.91 4 931.79 -889.02 7486.16 5065.67 -889.02 -7534.57 -5065.67 5 873.96 -911.36 7558.63 4834.34 -911.36 -7628.45 -4834.34 6 507.19 -602.11 6784.60 3367.26 -602.11 -6752.63 -3367.26 7 507.19 -602.11 6784.60 3367.26 -602.11 -6752.63 -3367.26 8 507.19 -602.11 6784.60 3367.26 -602.11 -6752.63 -3367.26 9 507.19 -602.11 6784.60 3367.26 -602.11 -6752.63 -3367.26 10 563.54 -1469.15 7066.20 3592.68 -1469.15 -7077.50 -3592.68 11 722.69 -791.30 7662.77 4229.28 -791.30 -7666.08 -4229.28 12 827.49 -706.33 7608.60 4648.47 -706.33 -7697.82 -4648.47 13 338.13 -401.49 5629.58 2691.01 -401.49 -5600.91 -2691.01 14 0.00 0.00 3396.62 0.00 0.00 -3635.16 0.00 Section cut locationfrom left end (in)= 342.485 Compr. face not reversed. 1706 1706 SUCTION PRESSURE 3 0 2 4 0 12 PhiPn PhiPn o (kips) (kips) 11 10 9 0 0 13 0 0 0 0 PhiMn (kip-in) 7680 0 PhiMn (kip-in) 7766 CD DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION ,; SUBMITTAL A o E FOR APPROVAL- NOT FOR CONSTRUCTION E D c 24"x24" precast column .473 9.44 or 9.56 f ci = 2500 psi c '4 IN lil IN 14' f'c = 5000 psi D Hard Rock concrete 111111 11 0 1 Ih IH 11111 II I 9.24 • o ��� III II } l� O °' • 9.44 or 9.56 I � � �� CI0 III III N © H .o.m Ili / 9.13 o co III 111111 III H III 2@3 I � ��t,71 r �,�/ t ts 1 III 111111111111111111 4"" . ,_1—a r .0 IN -11 I I 11- 2@3' 1 oo C ;1 1111 1111 11 -, � III III III II II III / %r 9.23 III III II II III III ► �� ac 2@3" n !Ilii 9.14 • � N J �� �� � 2@3' .it , o III I . c • E 2@3"" • a1 �,N II w • • o N I'Il,mI tlyi (.o 1 Illlji 9.14 11 I■li��rm1MMil■ » • —III t!'). 2@3 • II■IImII�I■N' oo oo m III III 111 111 © 111 2'-0" n I III III ro =11 11= }C • III = 111 (6)#10—BAR III 7 111 111 ^ � •. A A 111 111 01 11 N CilN• "Writ Imo= ===0} 11 11 ' 44 II 0 m� j�l 14 1 CLR, TYP II II N 9.54 or 9.59 / ,,,,���� IL9.54 or 9.59 - - _ _ 4 n .2 • I #4—CS—CEP 18" °° 6209 Red Sandstone 24"x 28"column o ch o ,, L 5TRE55CON 9 2 6.2 LLArchitectural and Structural Precast Concrete w _ a An ENCoN Company SHEET 1 OF 1 5TRE55CON Architectural and Structural Precast Concrete An ENCOM Company 7.0 WALLDESIGNS Design General Description 7.1 12" basement wall along D 7.2 12" shear wall (east & west) 73 8" x13' x24'-101/2" load bearing wall along A 7.4 3'-7" sill panel 7.5 9" panel 7.6 8" stair panel (horizontal) 7.7 8" stair panel (vertical) 0) DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION 8 SUBMITTAL A Eo FOR APPROVAL- NOT FOR CONSTRUCTION E D c 12" solid – precast o) f'ci = 2500 psi T.) f'c = 5000 psi Hard Rock concrete 0 N. C _o U 4) N C O 0 _U U v 24'-10Y" CDCD / / a) r/ 9.22 2–#6 bars 9.5 C 9.25 C th"24 r 1 LLJ 1ii - I .6 :Liii 1 I RI .ii. — I I CL kik I > _ o o ■■ _ 9. 2 ! _ ■■ - w T 9.32 o tk kl I Ti I I I I I I I I I I ik\ 1 I,, �lLi Id 1 Id III I l �� !,1. CO 9.21 9.1 2.. 8" 8"8"1'-3° (12) © 18" = 18'-0" 1'-3"8' 8"8" " i iii / / //#6 vertical bars VS 6 V 12" '-0" or 15'-8" U • 21.. 1621"• ct N �# 6 bar (max) # 6 bar—•- c� •—IN S pQ e e • o CD I . . . . . • — P v CC 1 #6 vertical bars # 4 horizontal bars _i _ 14 18" oc (max) •-iN 0 N Q - 12" solid along grid D o 6209 z Red Sandstone r) o L a H eg 5TRE55LON a 7.1 OLLArchitectural and Structural Precast Concrete w d An ENCoN Company C SHEET 1 OF 1 DRAWING STATUS REVISION REVISION ED REVISION DATE DESCRIPTION SUBMITTAL 0 O FOR APPROVAL- NOT FOR CONSTRUCTION E D 12" solid — precast 0) f'ci = 2500 psi -,(173 f'c = 5000 psi Hard Rock concrete O 0 } a) C 5 U U c a) C .5) C LU 0) C 0 Y / 0 2—#6 bars 0 9.40 0 \ w a) C — O 9.22 11 I I I I I .6 7•M 9.a2 N. 1 111 1 1- I 1 1 1 1 1 932 I I a) /U I 9.21 2y4» 9.. 8.. 8" (12) @ 18" = 6'-23/4" Jl ) ° 2'-0" 2)74„ 9.1 #6 vertical bars N Q 12" solid along grid D o 6209 Red Sandstone co o LU J 5TRE55CDN Q 7.1.1 O - Architectural and Structural Precast Concrete An ENCoN Company SHEET 1 OF 1 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 7.1.2 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: SUMMARY REPORT "Check flexure" Design Code Used: ACI 318-14 NON-DEFAULT OPTION SETTINGS ** OFF ** G2: Use PCI Standard Design Practice, TR-7-05 (ACI codes only) ** ON ** P1: vary user defined losses along beam ** OFF ** F7: Reduce 4 in the development length of strands (CSA A23.3 only) ** OFF ** F8: Use a rectangular stress block at concrete ultimate strain ** ON ** S5: Use the Zia/Hsu Method for torsion design as recommended in the PCI Standard Practice guidelines (ACI Codes Only) ** ON ** S10: Use the ultimate section capacity for horizontal shear (moment region check) ** OFF ** D3: Have Concise Beam calculate the long-term deflection multipliers for prestressed Beams CONCRETE MATERIAL PROPERTIES Precast Beam Concrete Density Wt = 150 lb/ftA3 Compressive Strength f'c = 5000.0 psi Modulus of Elasticity Ec = 4.279E+6 psi Cement Content = 691 lb/ydA3 Construction Schedule Air Content = 5.00 % Age at Transfer = 0.75 days Slump = 1.97 in Age at Erection = 40 days Aggregate Mix = 0.40 (fine to total aggregate ratio) Age at Cast-in-Place Pour = 50 days Aggregate Size = 0.79 in Age Cast-in-Place is Composite = 53 days Basic Shrinkage Strain = 780.000E-6 Age Construction is Complete = 143 days Curing Method = Moist Relative Humidity in Service = 70 % Ambient Temperature in Service = 20 deg C PRECAST BEAM LAYOUT Segment/Length 1 Section Identification I Offset INol From I To I Length I Folder I Section I section I Z I Y 1 I I ft I ft I ft I Name I Name I Type I in I in 1 111 0.0001 25.0001 25.0001 Rectangular I 12RB144 1 Solid Beam 1 0.001 0.001 * Long offset from left end of beam. Transverse offset from top of precast to top of opening for horizontal orientation or from center of precast to center of opening for vertical orientation. span Length at Transfer = 25.000 ft, Centre of supports, Left @ 0.000 ft, Right @ 25.000 ft Span Length during Lift = 0.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 25.000 ft Loop Height = 0.00 ft Span Length in Service = 25.000 ft, Centre of Supports, Left @ 0.000 ft, Right @ 25.000 ft Total Beam Length = 25.000 ft, Bearing Length, Left = 6.00 in, Right = 6.00 in First flexural frequency of beam is approximately 1.77 Hz GROSS PRECAST SECTION PROPERTIES (NON-COMPOSITE) (based on Ec of the precast beam - transformed area of rebar and strand NOT included) ISeg.1 Section Properties I Section' section' Shear 'volume /1 Section Moduli 1 I No.1 A 1 I I Yb I Height I Width I Width I Surfacel Sb I St 1 I I inA2 I inA4 I in I in I in I in I in I inA3 I inA3 I I 1' 1728.0 I 2.986E+6 I 72.001 144.001 12.001 12.001 5.541 -41472 1 41472 I UNCRACKED SECTION PROPERTIES SUMMARY Net Precast Section I Transformed Precast Section I Transformed Precast Section I at Transfer (based on Eci) I at Transfer (based on Eci) I in Service (based on Ec) '(include rebar,deduct strand)' (include rebar and strand) I (include rebar and strand) x I A I yb I A I yb I A I yb ft I inA2 inA4 in I inA2 inA4 in I inA2 inA4 in 0.000 1728.0 2.986E+6 72.00 1728.0 2.986E+6 72.00 1728.0 2.986E+6 72.00 2.000 1739.9 3.028E+6 71.60 1739.9 3.028E+6 71.60 1737.7 3.020E+6 71.68 4.000 1739.9 3.028E+6 71.60 1739.9 3.028E+6 71.60 1737.7 3.020E+6 71.68 6.500 1739.9 3.028E+6 71.60 1739.9 3.028E+6 71.60 1737.7 3.020E+6 71.68 9.0001 1739.9 3.028E+6 71.60 1739.9 3.028E+6 71.60 1737.7 3.020E+6 71.68 11.500 1739.9 3.028E+6 71.60 1739.9 3.028E+6 71.60 1737.7 3.020E+6 71.68 12.500 1739.9 3.028E+6 71.60 1739.9 3.028E+6 71.60 1737.7 3.020E+6 71.68 13.5001 1739.9 3.028E+6 71.60 1739.9 3.028E+6 71.60 1737.7 3.020E+6 71.68 14.000 1739.9 3.028E+6 71.60 1739.9 3.028E+6 71.60 1737.7 3.020E+6 71.68 16.000 1739.9 3.028E+6 71.60 1739.9 3.028E+6 71.60 1737.7 3.020E+6 71.68 18.500 1739.9 3.028E+6 71.60 1739.9 3.028E+6 71.60 1737.7 3.020E+6 71.68 21.000 1739.9 3.028E+6 71.60 1739.9 3.028E+6 71.60 1737.7 3.020E+6 71.68 23.000 1739.9 3.028E+6 71.60 1739.9 3.028E+6 71.60 1737.7 3.020E+6 71.68 25.000 1728.0 2.986E+6 72.00 1728.0 2.986E+6 72.00 1728.0 2.986E+6 72.001 These section properties can used to calculate uncracked concrete stresses using the following guidelines. Net Precast Section at Transfer properties are used with the initial prestress after transfer (after elastic shortening loss). Transformed Precast Section at Transfer properties are used with the precast beam self-weight. Transformed Precast Section in Service properties are used with external loads applied to the non-composite precast beam. LONGITUDINAL REINFORCING STEEL Engineer: Company: File: 7.1 12in basement wall 1 of 6 Sat Mar 17 08:54:02 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 7.1.3 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: Reinforcing Steel Groups IIDlQtyl Steel I Bar 1 Bar 'End Location & Typel Bar I I Cross !vertical! Offset ** 1 11 1 Grade I Size I Area I From 11 To I I Spacing! 1 Spacing' Offset 1 Reference 1 I I I ksi 'C=coated I inA2 I ft I *1 ft 1 *1 in 1 1 in I in I 1 111 21 60.0 1 # 6 I 0.880 1 0.0001SE125.0001SE' 8.001 I - I 2.501 Bottom of Precast Beam I 121 21 60.0 I # 4 1 0.400 10.0001SE125.0001SE' 8.001 1 - I 18.501 Bottom of Precast Beam 1 131 21 60.0 I # 4 1 0.400 10.0001SE125.0001SE' 8.001 1 - I 34.501 Bottom of Precast Beam 1 * End Types: SE - Straight Embeddment, FD - Fully Developed, SH - Standard Hook, HB - Headed Bar ** Offsets are measured up from the bottom or down from the top See the "Development Length" text report for details of the bar and wire development lengths TRANSVERSE SHEAR STEEL I Shear Stirrups I I From I To 1 Grade I Size I # of LegslTotal Areal Spacing I 1 ft 1 ft I ksi I I I inA2 1 in 1 I 0.0001 25.0001 60.0 *1 # 6 I 21 0.88 1 0.001 I Interface Shear Ties I I From I To 1 Grade I Size I # of LegslTotal Areal Spacing I 1 ft 1 ft I ksi I I I inA2 1 in 1 I 0.0001 25.0001 This region of the beam is not reinforced for shear.' * useable steel strength limited by selected code. TORSION PARAMETERS Seg. Torsion Parameters 'No.' sum(xA2 * y) I x1 xl 1 yl I I I inA3 I in I in I in I I 11 6318.00 I 9.00 I 6.00 1 75.00 I sum(xA2 * y) is the sum of xA2 * y for all of the rectangles. x is the minimum section width. xl is the minimum width of the closed stirrups. yl is the maximum width of the closed stirrups. APPLIED LOADS 164psf x 62'/2/1000 Load Group stages Applied Load Details & Type & Distribution (left to right) Beam weight * Stripping to Final Service Segment #0- vertic : 1.798 kip/ft full length D: DL, Factory Produced No Load Distribution Initial Lift Dynamic Impact Initial Lift +/-0% of Beam weight, cable Angle: 90 degrees Erection Lift Dynamic Impact Erection Lift3"/12 X0.150 x 62'/2 +�-- L of Beam weight, Cable Angle: 90 degrees DL after CIP Pour Grouted to Final service 1 DT, psf- vertical: 1.98 kip/ft full length (0.85 ft eccent.)I D: DL, General No Load Distribution 1 10psf x 62 /2/1000 3" tope, 37.5 psf- vertical: 1.163 kip/ft full length (0.85 ft ec 10 psf- vertica 0.31 kip/ft full length (0.85 ft eccent.)I 1 panel above- vertical: 0.54 kip/ft full length 1 1 1 Live Load Final service sta9e only 40 psf- vertical: 1.24 ip/ft full length (0.85 ft eccent.)1 L1: LL, Garage, Parking No Load Distribution 1 1 * indicates load groups generated automatically by concise Beam. I40psf x 62'/2/1000 LOAD COMBINATIONS 13.583'X 1'X 0.150 Serviceability (SLS) & Fatigue (FLS) Limit State Combinations (used individually) SLS Stress : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + 1.00S + 1.00ws + 0.60wu SLS Deflect : 1.00P + 1.00D + 1.00F + 1.00T + 1.00L + 1.00L1 + 1.00Lr + 1.00R + LOOS FLS Fatigue : 1.00P + 1.00D + 1.00F + 1.00L + 1.00L1 + 1.00Lr ultimate (Strength) Limit State (uLS) combinations (searched collectively to obtain envelope) 1: ULS combo 1 : 1.40D + 1.40F 2: ULS combo 2 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50Lr 3: ULS combo 3 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50S 4: ULS combo 4 : 1.20D + 1.20F + 1.20T + 1.60L + 1.60L1 + 0.50R 5: uLS Combo 5 : 1.20D + 0.50L + 1.00L1 + 1.60Lr 6: ULS Combo 6 : 1.20D + 0.50L + 1.00L1 + 1.60S 7: ULS Combo 7 : 1.20D + 0.50L + 1.00L1 + 1.60R 8: ULS Combo 8 : 1.20D + 1.60Lr + 0.80ws + 0.50wu 9: uLS combo 9 : 1.20D + 1.60S + 0.80ws + 0.50wu 10: ULS Combo 10 : 1.20D + 1.60R + 0.80ws + 0.50wu Engineer: Company: File: 7.1 12in basement wall 2 of 6 sat Mar 17 08:54:03 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 7.1.4 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 11: ULS Combo 11 : 1.20D + 0.50L + 1.00L1 + 0.50Lr + 1.60Ws + 1.00wu 12: ULS Combo 12 : 1.20D + 0.50L + 1.00L1 + 0.50S + 1.60Ws + 1.00Wu 13: ULS Combo 13 : 1.20D + 0.50L + 1.00L1 + 0.50R + 1.60Ws + 1.00Wu 14: ULS Combo 14 : 1.20D + 0.50L + 1.00L1 + 0.20S + 1.40Es + 1.00Eu 15: ULS Combo 15 : 0.90D + 1.60L + 1.60L1 + 0.50Lr 16: ULS Combo 16 : 0.90D + 1.60Ws + 1.00Wu 17: ULS Combo 17 : 0.90D + 0.90F + 1.40Es + 1.00Eu COMBINED ANALYSIS IN SERVICE Station SLS (stress) Load Combination ULS Load Envelopes I Moment Moment Shear Moment Torsion x I Sustained Total Load Total Load Govern. Total Load Govern. Total Load Govern. ft I kip.ft kip.ft kip Combo.' kip.ft combo.) kip.ft combo.) I min max min max min max min max min max min max min max 0.000 0.00 0.00 0.00 65.15 111.66 15 2 0.00 0.00 1 1 33.02 65.11 15 2 2.000 133.19 133.19 161.71 54.72 93.80 15 2 119.87 205.46 15 2 27.74 54.69 15 2 4.000 243.21 243.21 295.29 44.30 75.93 15 2 218.89 375.18 15 2 22.45 44.27 15 2 6.500 348.17 348.17 422.73 31.27 53.60 15 2 313.35 537.09 15 2 15.85 31.25 15 2 9.0001 416.94 416.94 506.22 18.24 31.27 15 2 375.24 643.17 15 2 9.25 18.23 15 2 11.500 449.51 449.51 545.77 5.21 8.93 15 2 404.56 693.42 15 2 2.64 5.21 15 2 12.500 452.41 452.41 549.28 0.00 0.00 1 1 407.17 697.89 15 2 0.00 0.00 1 1 13.5001 449.51 449.51 545.77 -8.93 -5.21 2 15 404.56 693.42 15 2 -5.21 -2.64 2 15 14.000 445.89 445.89 541.37 -13.40 -7.82 2 15 401.30 687.84 15 2 -7.81 -3.96 2 15 16.000 416.94 416.94 506.22 -31.27 -18.24 2 15 375.24 643.17 15 2 -18.23 -9.25 2 15 18.500 348.17 348.17 422.73 -53.60 -31.27 2 15 313.35 537.09 15 2 -31.25 -15.85 2 15 21.000 243.21 243.21 295.29 -75.93 -44.30 2 15 218.89 375.18 15 2 -44.27 -22.45 2 15 23.000 133.19 133.19 161.71 -93.80 -54.72 2 15 119.87 205.46 15 2 -54.69 -27.74 2 15 25.000 0.00 0.00 0.00 -111.66 -65.15 2 15 0.00 0.00 1 1 -65.11 -33.02 2 15 COMBINED SUPPORT REACTIONS, ALL STAGES (+ve = upwards, counter-clockwise) Unfactored Load Group Effects I I Initial Lifting I Truck Transport 1 Erection Lifting 1 In Service 1 I Load I Left I Right 1 Left I Right 1 Left I Right 1 Left I Right 1 I Group I Vertical 1 Vertical 1 Vertical 1 Vertical 1 Vertical 1 Vertical 1 Vertical[*]I Torsion[*] 1 Vertical[*]I Torsion[*] 1 1 I kip 1 kip.ft 1 kip 1 kip.ft 1 kip 1 kip.ft 1 kip 1 kip.ft 1 kip 1 kip.ft 1 'Beam weight 1 22.47 1 22.47 1 22.47 1 22.47 1 22.47 1 22.47 1 22.47 1 0.00 1 22.47 1 0.00 1 IDL after CII I I I I I I 49.91 1 36.69 1 49.91 1 36.69 1 'Live Load I I I I I I I 15.50 1 13.18 1 15.50 1 13.18 1 Load Envelope Effects SLS DL 1 72.39 1 36.69 1 72.39 1 36.69 1 SLS Sustain' 72.39 1 36.69 1 72.39 1 36.69 1 SLS Minimum' 22.47 22.47 22.47 22.47 22.47 22.47 72.39 1 36.69 1 72.39 1 36.69 1 SLS Maximum' 22.47 22.47 22.47 22.47 22.47 22.47 87.89 1 49.86 1 87.89 1 49.86 1 ULS Minimum' 65.15 [1511 33.02 [15]' 65.15 [1511 33.02 [1511 ULS Maximum' 111.66 [ 2]I 65.11 [ 2]' 111.66 [ 2]' 65.11 [ 2]' * Governing ULS Load Combination (below) CONCRETE STRESS RESULTS (UNCRACKED ANALYSIS) (+ve = compression, -ve = tension) I x I Stress 1 Limit Location I ft I psi 1 psi STRESSES DURING INITIAL LIFTING Critical Compression Top of Beam I 12.5001 40 I 2100 Bottom of Beam I 0.0001 0 I 2450 Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 0.0001 0 I -444 Bottom of Beam I 12.5001 -40 1 -444 STRESSES DURING ERECTION LIFTING Critical Compression Top of Beam I 12.5001 40 1 3000 Bottom of Beam I 0.0001 0 1 3500 Longitudinal Tensile Rebar Needed (inA2) Critical Tension Required Provided Additional Top of Beam I 0.0001 0 1 -530 Bottom of Beam I 12.5001 -40 1 -530 STRESSES IN SERVICE Critical Compression Top of Beam I 12.5001 158 1 3000 Bottom of Beam I 0.0001 0 1 3000 Critical Tension Top of Beam I 0.0001 0 1 -530 Not cracked Bottom of Beam I 12.5001 -156 1 -530 Check cracking elow and cover requirements STRESSES IN SERVICE (SUSTAINED LOADS ONLY) Critical Compression Top of Beam I 12.5001 130 I 2250 Bottom of Beam I 0.0001 0 I 2250 Engineer: Company: File: 7.1 12in basement wall 3 of 6 Sat Mar 17 08:54:03 2018 summary Report concise Beam 4.61f, copyright 2002-2018 Black Mint Software, Inc. 7.1.5 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: * Tensile stress limit given is the modulus of rupture of the concrete. Beyond this limit crack control is required. CRACK CONTROL (+ve = tension, -ve = compression) CRACK CONTROL STEEL AND SPACING I I Bottom I Top of I 1 I of Beam I Beam I 1 dc 1 2.50 1 0.00 I in Concrete cover to center of steel closest to tension face 1 cc 1 2.13 1 0.00 I in Clear concrete cover to steel closest to tension face 1 fs 1 34.0 1 0.0 I ksi Steel stress nearest to tension face (after decompression) for crack control 1 Max spacing 1 12.31 I 0.00 I in Maximum centre-to-centre spacing of steel closest to tension face to control cracking CRACK WIDTH ESTIMATE Crack width estimates are only approximations based on idealized behaviour and average crack spacing. These estimates only represent a level of cracking and should only be used in comparison with appropriate limits such as those given below. It would not be appropriate to compare these estimates to measured crack widths. Bottom Top of of Beam Beam cracked? Yes No Cracking at 12.500 0.000 ft Location of maximum crack width from left end of beam Ms 549.28 0.00 kip.ft External service moment (DL + LL) Pdc 0.00 0.00 kip Prestress force at cracked centroid Mint 549.28 0.00 kip.ft Internal moment about cracked centroid c 14.79 0.00 in Concrete depth in compression Steel type Rebar Rebar Type of steel in tension Method Gergely-Lutz Gergely-Lutz Crack width estimate equation used * kl 75.842E-6 0.00 inA2/Kip Coefficient dependent on steel type kb 1.00 0.00 Adjustment coefficient for prestressing steel h2/h1 1.02 0.00 Ratio of depth in tension to depth of steel from NA Act 334.3 0.0 inA2 Area of concrete in tension centered on crack control steel A 87.6 0.0 inA2 Area of concrete in tension around each bar/strand fs 34.0 0.0 ksi stress in steel nearest to tension face (after decompression) for crack width Est crack width' 0.016 0.000 in Estimated maximum crack width fc -586 0 psi Maximum concrete compressive stress - opposite face to cracking limit -3000 -3000 psi Allowable concrete compressive stress Recommended crack width (in) - Maximum Limits (from PCI Design Handbook, 5th edition) 1 I Critical I Prestressed I Reinforced I 1 I Appearance I Concrete I Concrete I (Exterior Exposure I 0.0071 0.0101 0.0131 (interior Exposure I 0.0101 0.0121 0.0161 * Gergely & Lutz equation: w = kl x fs x h2 / hl x cubicRoot(dc * A) DEFLECTION ESTIMATE AT ALL STAGES Design Code used: ACI 318-14 A. Deflections at All stages (-ve = deflection down, +ve = camber up) 1 Net Deflection Change in Deflection I LocationI Net @ Net @ Net DL Net Total DL growth LL Span/Deflection I x 1 Erection completion @ Final @ Final + LL alone DL growth LL I ft 1 in in in in in in + LL alone I Column 1 B C D E E - C E - D L / (E-C) L / (E-D)I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 2.000 0.000 -0.002 -0.003 -0.003 -0.001 0.000 258539 1.408E+6 4.000 0.000 -0.004 -0.006 -0.006 -0.002 0.000 133991 729701 6.500 -0.001 -0.006 -0.009 -0.009 -0.003 0.000 89045 484930 9.0001 -0.002 -0.007 -0.011 -0.011 -0.004 0.000 72061 392439 11.500 -0.002 -0.008 -0.012 -0.013 -0.005 0.000 65875 358751 12.500 -0.002 -0.008 -0.012 -0.013 -0.005 0.000 65370 355999 13.5001 -0.002 -0.008 -0.012 -0.013 -0.005 0.000 65875 358751 14.000 -0.002 -0.008 -0.012 -0.012 -0.005 0.000 66516 362244 16.000 -0.002 -0.007 -0.011 -0.011 -0.004 0.000 72061 392439 18.500 -0.001 -0.006 -0.009 -0.009 -0.003 0.000 89045 484930 21.000 0.000 -0.004 -0.006 -0.006 -0.002 0.000 133991 729701 23.000 0.000 -0.002 -0.003 -0.003 -0.001 0.000 258539 1.408E+6 25.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0 col. B: Net deflection at erection includes all dead loads applied before the cast-in-place pour plus long-time deflection growth of the beam weight up to erection. col. C: Net deflection at completion of construction includes all dead loads plus long-time deflection growth of the dead load up to completion. col. D: Net DL deflection at final includes all dead loads, and sustained live loads,. plus long-time deflection growth. Col. E: Net total deflection at final includes all dead loads, and all live loads, plus long-time deflection growth. Engineer: Company: File: 7.1 12in basement wall 4 of 6 sat Mar 17 08:54:03 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 7.1.6 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: Span/Deflection Limits: DL growth + LL = L / 480 for non-structural attachments L / 240 otherwise LL alone = L / 360 for floors L / 180 for roofs SUPPORT ROTATION AND CHANGE OF LENGTH ESTIMATE AT ALL STAGES Design Code Used: ACI 318-14 B. Unrestrained Support Rotations at All Stages (-ve = counter-clockwise rotation, +ve = clockwise rotation) I Net Rotation Change in Rotation SupportI Net @ I Net @ I Net DL 1 Net Total DL growth I LL Location' Erection I Completion I @ Final 1 @ Final + LL alone I degrees I degrees I degrees I degrees degrees I degrees Column 1 B I C I D I E E - C E - D Left 1 0.0011 I 0.0049 I 0.0072 1 0.0077 0.0028 1 515.008E-6 Right 1 -0.0011 I -0.0049 I -0.0072 1 -0.0077 -0.0028 1-515.008E-6 C. Unrestrained Longitudinal Change of Length Due to Creep and Shrinkage (-ve = shortening, +ve = elongation) Elastic Shortening = 0.0000 in 1 1 Total Change of Length 1 Difference in Change 1 1 1 Erection 'CompletionFinal I I to Comp1.1 to Final I to Final 1 1 1 in 1 in I in I I in 1 in 1 in 1 1 1 B 1 C I D I 1 C - B I D - C I D - B 1 1 Creep 1 0.00001 0.00001 0.00001 1 0.00001 0.00001 0.00001 I Shrink.' -0.01961 -0.04291 -0.09751 -0.02331 -0.05451 -0.07791 1 Total 1 -0.01961 -0.04291 -0.09751 1 -0.02331 -0.05451 -0.07791 FLEXURAL DESIGN CHECK Design Code Used: ACI 318-14 Concrete compressive stress-strain model used: PCA Parabola-Rectangle Curve Modulus of Rupture of Precast Concrete, fr = 530 psi (tension) 1 Factored Design Cracking Minimum Depth in Net TensileI Flexural 0 I warnings 1 Moment Strength Moment Required Compression' Strain IClassication I & Notes x 1 Mu 0Mn Mcr Strength c I I ft 1 kip.ft kip.ft kip.ft kip.ft in I I 0.000 0.00 0.87 1832.85 0.00 14.79 0.0000ITension 0.90 3 2.000 205.46 973.81 1862.22 273.94 3.47 0.0600ITension 0.90 3 4.000 375.18 973.81 1862.22 500.25 3.47 0.0600ITension 0.90 3 6.500 537.09 973.81 1862.22 716.13 3.47 0.0600ITension 0.90 3 9.0001 643.17 973.81 1862.22 857.56 3.47 0.0600ITension 0.90 3 11.500 693.42 973.81 1862.22 924.56 3.47 0.0600ITension 0.90 3 12.500 697.89 973.81 1862.22 930.52 3.47 0.0600ITension 0.90 3 13.5001 693.42 973.81 1862.22 924.56 3.47 0.0600ITension 0.90 3 14.000 687.84 973.81 1862.22 917.12 3.47 0.0600ITension 0.90 3 16.000 643.17 973.81 1862.22 857.56 3.47 0.0600ITension 0.90 3 18.500 537.09 973.81 1862.22 716.13 3.47 0.0600ITension 0.90 3 21.000 375.18 973.81 1862.22 500.25 3.47 0.0600ITension 0.90 3 23.000 205.46 973.81 1862.22 273.94 3.47 0.0600ITension 0.90 3 25.000 0.00 0.87 1832.85 0.00 14.79 0.0000ITension 0.90 3 Points of Maximum and Minimum Factored Moment 1 12.5001 697.89 I 973.81 I 1862.22 I 930.52 I 3.47 1 0.0600ITension 1 0.901 31 1 0.0001 0.00 I -0.07 I 1832.83 1 0.00 I 4.20 1 0.0000ITension 1 0.901 31 Points of Maximum Ratio of Factored Moment to Design Strength 1 12.5001 697.89 I 973.81 I 1862.22 I 930.52 I 3.47 1 0.0600ITension 1 0.901 31 1 0.0001 0.00 I -0.07 I 1832.83 1 0.00 I 4.20 1 0.0000ITension 1 0.901 31 Points of Maximum Ratio of Minimum Strength to Design Strength 1 12.5001 697.89 I 973.81 I 1862.22 I 930.52 I 3.47 1 0.0600ITension I 0.901 31 1 0.0001 0.00 I -0.07 I 1832.83 1 0.00 I 4.20 1 0.0000ITension 10.901 31 Warnings & Notes 3 - Note, the design strength is based on a reduced maximum concrete strain to avoid steel slippage or rupture. See the Flexural Design Detail Report and the Help file's Technical Background for more information. SHEAR DESIGN CHECK Design Code Used: ACI 318-14 1 Design Prestress Concrete Strength Provided Min. Strength Req'd Warnings 1 Shear Component Strength Stirrups Total Stirrups Total & Notes x 1 Vu Vp 0Vc OVs OVn OVs OVn ft 1 kip kip kip kip kip kip kip 0.0001 11.48 0.00 159.11 0.00 159.11 0.00 159.11 3 2.0001 11.48 0.00 160.43 0.00 160.43 0.00 160.43 3 4.0001 11.48 0.00 160.43 0.00 160.43 0.00 160.43 3 6.5001 11.48 0.00 160.43 0.00 160.43 0.00 160.43 3 9.0001 11.48 0.00 158.94 0.00 158.94 0.00 158.94 3 11.5001 8.93 0.00 157.72 0.00 157.72 0.00 157.72 12.5001 0.00 0.00 157.28 0.00 157.28 0.00 157.28 12.5001 0.00 0.00 -157.28 0.00 -157.28 0.00 -157.28 13.5001 -8.93 0.00 -157.72 0.00 -157.72 0.00 -157.72 Engineer: Company: File: 7.1 12in basement wall 5 of 6 Sat Mar 17 08:54:03 2018 Summary Report Concise Beam 4.61f, Copyright 2002-2018 Black Mint Software, Inc. 7.1.7 Licensed to: 4457151211, Fadjar Kusumo-R - OK Project: Problem: 14.000 -11.48 0.00 -157.94 0.00 -157.94 0.00 -157.94 3 16.000 -11.48 0.00 -158.94 0.00 -158.94 0.00 -158.94 3 18.500 -11.48 0.00 -160.43 0.00 -160.43 0.00 -160.43 3 21.000 -11.48 0.00 -160.43 0.00 -160.43 0.00 -160.43 3 23.000 -11.48 0.00 -160.43 0.00 -160.43 0.00 -160.43 3 25.000 -11.48 0.00 -159.11 0.00 -159.11 0.00 -159.11 3 Warnings & Notes 3 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, the PCI recommended Zia/Hsu method was used to calculate the above shear design check results. TORSION DESIGN CHECK Design Code used: ACI 318-14 (with the Zia-Hsu torsion method) I Design Threshold Maximum Shear/Torsion Limits Concrete Torsion Strength Warnings 1 Torsion Torsion Max. ShearlShear Load Max. Tors.ITors. Load Strength Provided Required & Notes x 1 Tu Tu(min) 0Vn(max) Vu corr Tu 0Tn(max) Tu corr Vu 0Tc 0Tn 0Tn ft 1 kip.ft kip.ft kip kip kip.ft kip.ft kip.ft kip.ft kip.ft 0.000 6.69 13.96 0.00 11.48 0.00 6.69 0.00 0.00 0.00 1 2.000 6.69 13.96 0.00 11.48 0.00 6.69 0.00 0.00 0.00 1 4.000 6.69 13.96 0.00 11.48 0.00 6.69 0.00 0.00 0.00 1 6.500 6.69 13.96 0.00 11.48 0.00 6.69 0.00 0.00 0.00 1 9.0001 6.69 13.96 0.00 11.48 0.00 6.69 0.00 0.00 0.00 1 11.500 5.21 13.96 0.00 8.93 0.00 5.21 0.00 0.00 0.00 12.500 0.00 13.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.5001 -5.21 -13.96 0.00 -8.93 0.00 -5.21 0.00 0.00 0.00 14.000 -6.69 -13.96 0.00 -11.48 0.00 -6.69 0.00 0.00 0.00 1 16.000 -6.69 -13.96 0.00 -11.48 0.00 -6.69 0.00 0.00 0.00 1 18.500 -6.69 -13.96 0.00 -11.48 0.00 -6.69 0.00 0.00 0.00 1 21.000 -6.69 -13.96 0.00 -11.48 0.00 -6.69 0.00 0.00 0.00 1 23.000 -6.69 -13.96 0.00 -11.48 0.00 -6.69 0.00 0.00 0.00 1 25.000 -6.69 -13.96 0.00 -11.48 0.00 -6.69 0.00 0.00 0.00 1 Warnings & Notes 1 - Note, design torsion force at critical section near support used as a minimum [ACI 318-14::9.4.4.2/3]. Note, the PCI recommended Zia/Hsu method was used to calculate the above torsion design check results SHEAR/TORSION TRANSVERSE REINFORCING DESIGN CHECK Design Code Used: ACI 318-14 (with the Zia-Hsu torsion method) 1 Shear Steel Required Shear Steel Stirrup Stirrup Spacing Additional Long. Steel Warnings 1 Total Torsion* Provided Provided Provided Max. Allow) for Torsion, Al & Notes x 1 (Av+2At)/s At/s Av/s Av+2At s s Total Reduction** ft 1 inA2/ft inA2/ft inA2/ft inA2 in in inA2 inA2 0.000 0.00 0.00 0.00 0.88 0.00 24.00 0.00 0.00 4 2.000 0.00 0.00 0.00 0.88 0.00 24.00 0.00 0.00 4 4.000 0.00 0.00 0.00 0.88 0.00 24.00 0.00 0.00 4 6.500 0.00 0.00 0.00 0.88 0.00 24.00 0.00 0.00 4 9.0001 0.00 0.00 0.00 0.88 0.00 24.00 0.00 0.00 4 11.500 0.00 0.00 0.00 0.88 0.00 24.00 0.00 0.00 12.500 0.00 0.00 0.00 0.88 0.00 24.00 0.00 0.00 12.500 0.00 0.00 0.00 0.88 0.00 24.00 0.00 0.00 13.5001 0.00 0.00 0.00 0.88 0.00 24.00 0.00 0.00 14.000 0.00 0.00 0.00 0.88 0.00 24.00 0.00 0.00 4 16.000 0.00 0.00 0.00 0.88 0.00 24.00 0.00 0.00 4 18.500 0.00 0.00 0.00 0.88 0.00 24.00 0.00 0.00 4 21.000 0.00 0.00 0.00 0.88 0.00 24.00 0.00 0.00 4 23.000 0.00 0.00 0.00 0.88 0.00 24.00 0.00 0.00 4 25.000 0.00 0.00 0.00 0.88 0.00 24.00 0.00 0.00 4 Warnings & Notes 4 - Note, design shear force at critical section near support used [ACI 318-14::7.4.3.2/9.4.3.2]. Note, shear steel requirements for pre-tension bursting have NOT been included (calculation option S8). * Portion of the total stirrup area required to resist torsional shear flow (one leg around periphery). ** The allowable reduction in Al within the flexural compression zone. Engineer: Company: File: 7.1 12in basement wall 6 of 6 Sat Mar 17 08:54:03 2018 7.1.8 17 S3.40 a GRADE VARIES=SEE CIVIL " L -' H ''''' -' i-,-,'1"‘:;-; ' Q 715 PSF 50 PSF ° NOTES - ALL LOADS ARE UNFACTORED SOIL(1.0H)TO BE ASSUMED FOR PRECAST WALL DESIGN -LOADING APPLIES GRID 2 TO 7.5 14 3/4" = 1'-0" GRID D WALL LOADING 7.1.8.1 3/19/2018 Soil pressure per ft INPUT DATA: VERSION:07292009 Beam properties Steel properties Beam length L (ft) = 11 Yield strength for rebar fy (ksi) = 60 Cross sectional area A (in2)= 144.0 Modulus of elasticity of steel Es (ksi)= 29000 Neutral axis from bottom Yb (in) = 6.0000 Ulti.Strength of prestressed steel fp„ (ksi)= 270 Moment of inertia I (Ina)= 1728 Modulus of elas.of prestressed steel Eps (ksi)= 28500 Compression width bf(in) = 12 Composite Section Properties Stem width by,/(in) = 12 Topping strength at 28 days fbt (ksi)= 4 Total height h (in)= 12 Concrete density w, (pCf) = 150 Total perimeter length S (in)= 144 Modulus of elasticity Eb (ksi)= 3834.3 Volumn to surface ratio V/S= 1.00 Topping weight WBT (k/ft) = 0.00 Section modulus at top st(in3)= 288 tt (in) = 0 b1 (in) = 144 Section modulus at bottom sb (in3)= 288 A, (in2)= 144.0 sb (in3)= 288.0 Concrete properties: I, (in4)= 1728 st(in3)= 288.0 Concrete density we (pCf) = 150 Yb (in) = 6.00 stt(in3)= 288.0 Beam self weight wB (k/ft) = 0.150 Yt (in) = 6.00 hb (in) = 12.00 Concrete strength at 28 days fb' (ksi)= 5 Ytt(in) = 6.00 Concrete strength at release I'd' (ksi)= 3 Loss Modulus of elasticity E, (ksi)= 4286.83 Average relative humidity R.H. = 70% Modu. of elas.at release Ed (ksi)= 3320.56 Initial prestress loss = 0.00% Factor (3t = 0.80 Final prestress loss = 0.00% Effective stress after loss fSe (ksi) = 0.0 LOADINGS: REINFORCEMENTS: Prestressinj Point Load #of strands 0 0 0 0 0 0 Load# 1 2 3 4 5 6 Size 0 0 0 0 0 0 From left(ft) 0 0 0 0 0 0 Location from Bot. 0 0 0 0 0 0 D.L. (k) 0 0 0 0 0 0 Mask from left(ft) 0' 0' 0' 0' 0' 0' L.L. (k) 0 0 0 0 0 0 Mask from right(ft) 0' 0' 0' 0' 0' 0' %of Pull 0% 0% 0% 0% 0% 0% APS(int) 0 0 0 0 0 0 deduct self weight 12"/18" Linear Load #6@18"o.c. Load# 1 2 3 4 5 6 Mild Reinforc ent Start from left(ft) 0 0 0 0 0 0 #of bars 0.667 0 0 0 0 0 End from left(ft) 11 0 0 0 0 0 Size 6 0 0 0 0 0 Initial D.L.(k/ft) -0.15 0 0 0 0 0 Location from Bot. 2 0 0 0 0 0 End D.L.(k/ft) -0.15 0 0 0 0 0 From left(ft) 0 0 0 0 0 0 Initial L.L.(k/ft) 0.05 0 0 0 0 0 From right(ft) 0 0 0 0 0 0 End L.L.(k/ft) 0.715 0 0 0 0 0 As(in2) 0.293 0 0 0 0 0 7.1.8.2 3/19/2018 Beam Reaction: Left Right Ultimate Moment: Self Weight 0.83 0.83 Mu = 113.3 k-in @ 6.27 ft from left Topping 0.00 0.00 (13,Mn = 155.7 k-in (O.K.) S. I. Dead Load -0.83 -0.83 S. I. Live Load 1.49 2.71 p= 0.0024 Total Sustained Load 0.00 0.00 p max= 0.0252 (O.K.) Total Unfactored Load 1.49 2.71 p min = 0.0035 Total Factored Load 2.39 4.34 9.21 @ 2'-6"o.c. 12.09k> 10.85k Stress Analysis: =4.34k1f x 2.5' Horizontal Shear Transfer: x f top fallow f bot fallow Fh (kips)= 0 (ft) (ksi) (ksi) (ksi) (ksi) Acs(in2)= Not Required At transfer 0 0.00 -0.33 0.00 2.10 Max. spacing = N/A 5.5 0.09 2.10 -0.09 -0.16 At service 6.3 0.25 3.00 -0.25 -0.85 ftopping= 0.25 2.40 9.22 @ 4'-6"o.c. 12.09k>10.76k =2.39k1f x 4.5' Deflection (+ )=camber,(- )=deflection Maximum downward deflection under all final loads at x = 5.72 ft Load Case Initial 8 @ transfer @ Erection @ Final Prestressing 0.000 0.000 x 1.8 0.000 x 2.45 0.000 Beam weight -0.009 -0.009 x 1.2 -0.010 x 2 -0.017 Topping wt. 0.000 x 2 0.000 Dead load 0.007 x 2 0.013 Live load -0.017 x 1.0 -0.017 Total: -0.009 -0.010 -0.021 Flexural Analysis Shear Analysis x Mu eMn Vu eVn Av/ft (ft) (k-in) (k-in) (k-in) (kips) (kips) (in/ft) 0.0 0.0 0.0 183.3 2.3 25.2 0.000 1.1 30.7 81.4 183.3 2.2 14.4 0.000 2.2 58.7 155.7 183.3 2.0 14.4 0.000 3.3 82.5 155.7 183.3 1.6 14.4 0.000 4.4 100.5 155.7 183.3 1.1 14.4 0.000 5.5 111.1 155.7 183.3 0.5 14.4 0.000 6.6 112.8 155.7 183.3 -0.2 -14.4 0.000 7.7 104.1 155.7 183.3 -1.1 -14.4 0.000 8.8 83.4 155.7 183.3 -2.1 -14.4 0.000 9.9 49.2 81.4 183.3 -3.1 -14.4 0.000 11.0 0.0 0.0 183.3 -3.4 -25.2 0.000 3/19/2018 7.1.8.3 Ultimate Shear SHEAR - - PhiVc 30 - 20 1 a 10 - Y 0 -10 - -20 - -30 - ft 0.000 2.000 4.000 6.000 8.000 10.000 MOMENT Ultimate Moment 200 - - Allowable Strength c 150 - i ♦ Q / • ♦ Y 100 - g / 50 - / 0 ft 0.000 2.000 4.000 6.000 8.000 10.000 STRESS AT RELEASE Beam Bottom Beam Top ----Allowed Comp. Allowed Ten. 3.00 - 2.50 - 2.00 N 1.50 - N 1.00 - E 0.50 - 0.00 -0.50 - ft 0.000 2.000 4.000 6.000 8.000 10.000 STRESS AT SERVICE Beam Bottom - - Beam Top ----Allowed Comp. ---Rupture Allowed Tension 4.00 - •7) 3.00 - Y 2.00 - N 1.00 - m ` 0.00 - -1.00 -2.00 ft0.000 2.000 4.000 6.000 8.000 10.000 DEFLECTION Final Deflection Deflection/Camber @ Release 0 - - Deflection/Camber @ Erection 0.005 - -- -- �-� -------- ---- u= 0.01 - - - - - - U 0.015 - -0.02 - -0.025 - ft 0.000 2.000 4.000 6.000 8.000 10.000 7.1.9 LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 0196 FadjarKusumo-Rahardjo INPUT DATA 03-19-2018 10:09:17 Pg. 1 File: 7.1 121N BASEMENT WALL.W12 Name: Job No: Mark: Designer: SECTION DIMENSIONS: assume 2'-6"wide column/wall at end No. of Wythes= 1 Bot Wythe: Width = 30 in Thickness = 12 in Member Length = 144 in Bott Wythe(no rvls/opngs): Area = 360 in2 M of I =4320 in4 Centroid from Bottom= 6 in MATERIALS: F'c(psi) Ec (ksi) F'ci(psi) Eci (ksi) Conc Wt (pcf) Bot Wythe: 5000 4074 3000 3156 150 Average Relative Humidity= 70 % Superimposed Load= 0 psf Fy, Reinf BarGrade= 60 ksi Fpu, Strand= 270 ksi Lo-Lax= Yes REBAR ROWS: A B C D E F G H BarDiamlin) = 0.75 0.75 No. Ba rsin Row= 3 3 Cent frm Bot/Sect(in)= 2 10 Start frm Bot/Walliin) = 0 0 End frm Top/Wall(in) = 0 0 BarDev Length Mult = 1 1 REBAR LOCATIONS FROM LEFT: (Column ties used or non-bearing member) Row A 5.00 15.00 25.00 Row B 5.00 15.00 25.00 7.1.9.1 LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 0196 FadjarKusumo-Rahardjo INPUT DATA 03-19-2018 10:09:17 Pg. 2 File: 7.1 121N BASEMENT WALL.W12 Name: Job No: Mark: Designer: Coefficients: Initial prestress loss = 0.00% (Calculated) Fina 1 prestress loss = 0.00% (Ca lculated) Outside temp, deg F: 105 Inside: 75 Initial member bow atmidheight, in: 0 Column ties used or non-bea ringmember Seismic coefficient, % = 0 Cracking stress coefficient: 7.5 Slenderness effects are included Inside horiz. surcharge at floor or grade,psf: 0 Outside horiz.surcharge at floor or grade,psf: 50 Inside activelateral earth pressure, psf: 0 Outside activelateral earth pressure, psf: 65 Inside dist. from base to top of retainedearth,in: 0 Outside dist. from base to top of retained earth,in: 132 Stra nddev. length mult. at ends = 1 , at openings= 2 Percent composite at ultimate: 100 Bottom face (form face) locationis outside Percent composite for deflection: 0 Floor tie activefor load cases with earth pressure Percent composite for stresses: 0 12 • • • 0 0 30 0 LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 7.1.9.2 0196 FadjarKusumo-Rahardjo INPUT DATA 03-19-2018 10:09:17 Pg. 3 File: 7.1 121N BASEMENT WALL.W12 Name: Job No: Mark: Designer: SUPPORT LOCATIONS, INCHES: SPRING CONSTANTS, INCHES/KIP: Top support locationfrom top of member, in: 0.00 0 Slab-on-grade connection locationfrom bottom,in: 12.00 0 CONCENTRATED VERTICAL LOADS,KIPS: Pv Location Eccentricity Dead Live Roof Wind (from bottom, in.) (from inside face, in.) Row 1 111.00 6.00 72.39 15.50 0.00 0.00 see 7.1.4. see 7.1.4. LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 7.1.9.3 0196 FadjarKusumo-Rahardjo INTERACTION CURVES 03-19-2018 10:10:58 Pg. 1 File: 7.1 121N BASEMENT WALL.W12 Name: Job No: Mark: Designer: LOAD CASES: 12 1 ACI 318-14 5.3.1a Dead • 2 ACI 318-14 5.3.1b Live+T+Earth 3 ACI 318-14 5.3.1c Live+Roof 4 ACI 318-14 5.3.1d Wind+Live 0 • 5 ACI 318-14 5.3.1e Live+Seismic 6 ACI 318-14 5.3.1f Wind+Earth 7 ACI 318-14 5.3.1f Wind Only 30 8 ACI 318-14 5.3.1c Roof+Wind 9 ACI 318-14 5.3.1g Seismic Only 10 Service Dead+Temp. 11 Service Dead+ Live,ASCE 7-10 2.4.1.2 12 Service Dead+ Live+ Roof,ASCE 7-10 2.4.1.4 13 Service Dead+Wind, ASCE 7-10 2.4.1.7 ACI 318 Phi factors used 14 User Defined Pu Mu-S Phi-Mn S 1.0Mcr S Mu-P Phi-Mn P 1.0Mcr P Pu Mu-S Phi-Mn S 1.0Mcr S Mu-P Phi-Mn P 1.0Mcr P 1 102.98 741.82 1057.55 587.81 741.82 -1057.55 -587.81 2 113.07 613.01 1087.43 607.98 613.01 -1087.43 -607.98 3 103.77 749.19 1059.89 589.38 749.19 -1059.89 -589.38 4 103.77 748.51 1059.89 589.38 748.51 -1059.89 -589.38 5 103.77 748.51 1059.89 589.38 748.51 -1059.89 -589.38 6 66.20 373.95 948.61 514.25 373.95 -948.61 -514.25 7 66.20 476.16 948.61 514.25 476.16 -948.61 -514.25 8 88.27 635.05 1013.97 558.38 635.05 -1013.97 -558.38 9 66.20 476.16 948.61 514.25 476.16 -948.61 -514.25 10 73.56 444.47 970.40 528.96 444.47 -970.40 -528.96 11 89.06 643.00 1016.31 559.96 643.00 -1016.31 -559.96 12 85.18 614.63 1004.83 552.21 614.63 -1004.83 -552.21 13 44.14 317.37 883.24 470.11 317.37 -883.24 -470.11 14 0.00 0.00 752.51 0.00 0.00 -752.51 0.00 Section cut locationfrom left end (in)= 36.72001 Compr. face not reversed. 872 872 SUCTION PRESSURE PhiPn PhiPn (kips) (kips) 5 10 12 2 0 13 q9 o' cam 0 0 0 0 PhiMn (kip-in) 1822 0 PhiMn (kip-in) 1822 CD DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION ..; SUBMITTAL A oE FOR APPROVAL- NOT FOR CONSTRUCTION E D E 12" solid — precast o' f'ci = 3000 psi o f'c = 5000 psi 0 Hard Rock concrete o Ay = [(Vu/phi)—Vc] x s / (fy x d) = [(664/2/0.75)—(2xV(5000)x11.5"x195"/1000)] x 18" / (60 x 195") o = [442.67 — 317.14] x 18" / 11700 = 0.19 in2 O (2) layers of #5 bars, As = 2x0.31 = 0.62 in2 Nc 17'-3Y" o i / 09.26 U CJ 1 IF --1- T ,/ .L_ 01 $ $ '; .5 9.35 9.17 �� w , V Ai o '' • 9.32 Ai o 0 4/ 9.10 g inli i‘ i _ , . 1 ii 11 .„. E. 9.4 9.3 13'-4" • • ,42 1„ 18" 21" -•- #5 bar 1T (max) #5 bar +� U.2,7 , , A_ I I 'IN d •—ICJ El CO _ o o 0 0 0 0 4 \\_#5 vertical bars #5 horizontal bars CD 18" oc (max) line of Y" reveals - N O c--\-.4. .z Red Sandstone w 12" wall along 2 and 10 0 6209 co o r ,5TRE55CON z fik 7.2 LLArchitectural and Structural Precast Concrete i _ An ENCoN Company 0 ° SHEET 1 OF 1 SEISMIC (, ) SOIL 0 co 0 SEISMIC SOIL FLOOR FLOOR DIAPHRAGM DIAPHRAGM FORCE FORCE I FORCE FORCE ROOF (FUTURE) > _ I \ 70k • / 45k _ LEVEL 6 (FUTURE) j_<_ _ 7-1- 110k • / 85k _ 4_<_ , :1LEVEL 5 (FUTURE) ti _ - - _ _ 85k < i' • / 85k _ LEVEL 4 accumulative 380k 115k V 1 (15) 9.17 —>160k -\ i (15) 11.5k = 172.5k LEVEL 3 (12) 23.75k + 0.9x0.6x60x(3)x 1.56 in2=436.6k 65k <=> - -(12) 9.26 @ joint -H - - - <>115k - - (11) 9.17 II (11) 11.5k = 126.5k LEVEL 2 (10) 23.75k + 0.9x0.6x60x(5)x 1.56 in2=490.2k 480k +1.6x115k 35k <`, 115k (GRID 2)(10) 9.26 @ joint — - C >105k N115k (GRID 2) _ = 664k (30) 9.17 (30) 11.5k = 345k > 289k LEVEL 1 (NORTH) (14) 9.3 @ base = 105k + 1.6 x 115k NOTES (14) 23.75k + 0.9x0.6x60x(7)x 1.56 in2= 686.3k -ALL LOADS ARE UNFACTORED SEISMIC LOADS (1.0xE) TO BE ASSUMED FOR PRECAST SHEAR WALL DESIGN - PRECAST SHEAR WALLS SHALL BE DESIGNED FOR THE OVERTURNING MOMENTS AND SHEARS FROM FUTURE LEVELS -PROVIDE PANEL TO PANEL CONNECTIONS ALONG SHEAR WALL LENGTH TO DELIVER OVERTURNING FORCES TO THE FOUNDATIONS AT WALL ENDS -BRACED FRAME COLUMNS TO BE CENTERED ON GRIDLINES - 1 NO SCALE GRID 2 DESIGN LOADING PRECAST SHEAR WALL 7.2.2.1 "Shear wall along grid 2" Version:20120713 SHEAR WALL ANALYSIS Panel Width [ft.] = 39.8 Panel Thickness[in.] = 12 38'x 39.8'x 1 x 0.150 Dist.from edge WL+EL+HL N Inte ,it [K ips] x[ft.] DL+LL+SL Panel Weight PD 226.86 19.9 x Dead Load D 0 0 Live Load L 0 0 y Snow Load S 0 0 Point of h Intensity[Kips] application h [ft.] Wind Load W 0 0 Seismic Load E 480 48.05 Earth Pressure H 115 12.25 N Concrete Strength fc[Ksi]= 4.0 A dA c B Dist from edge of panel to center of Tensile force [in.] / 1 dA= 24 dB = 24 T C j, Sds= 0 /c dB � [if Seismic present] C T For Lateral Loadsto Right Bearing Ultimate Condition Load Cases Reaction @ A[K ips] Reaction @ B [K ips] Length c[in] #1 (1.4)D 158.80 Comp. 158.80 Comp. 6.0 #2 (1.2)D + (1.6)L +(0.5)S+ (1.6)H 78.20 Comp. 194.03 Comp. 7.5 #3a (1.2)D +(1.6)S +(1.6)H 78.20 Comp. 194.03 Comp. _ 7.5 #3b 2)D +(1)L +(1.6)S +(0.5)W+(1.E 78.20 Comp. 194.03 Comp. 7.5 #4 .2)D +(1)L +(0.5)S+(1)W +(1.6' 78.20 Comp. 194.03 Comp. 7.5 #5 (1.2)D +(1)L +(0.2)S+(1)E 491.29 Tension 763.52 Comp. 29.0 #6 (0.9)D+(1)W +(1.6)H 44.54 Comp. 159.63 Comp. 6.0 CONTROLS #7 (0.9-0.2Sds)D +(1)E +(1.6)H 588.56 Tension 792.73 Comp. 30.0 Use(7)9.4, phi Tn=0.9 x 60 x(7)1.56 in2=589.68k For Lateral Loadsto Left Bearing Ultimate Condition Load Cases Reaction @ A[K ips] Reaction @ B [K ips] Length c[in] #1 (1.4)D 158.80 Comp. 158.80 Comp. 6.0 #2 (1.2)D + (1.6)L +(0.5)S+(1.6)H 194.03 Comp. 78.20 Comp. 7.5 #3a (1.2)D +(1.6)S +(1.6)H 194.03 Comp. 78.20 Comp. 7.5 #3b 2)D +(1)L +(1.6)S +(0.5)W+(1.E 194.03 Comp. 78.20 Comp. 7.5 #4 .2)D +(1)L +(0.5)S+ (1)W +(1.0 194.03 Comp. 78.20 Comp. 7.5 #5 (1.2)D +(1)L +(0.2)S+(1)E 763.52 Comp. 491.29 Tension 29.0 #6 (0.9)D+(1)W +(1.6)H 159.63 Comp. 44.54 Comp. 6.0 CONTROLS #7 (0.9-0.2Sds)D +(1)E +(1.6)H n 792.73 Comp. 588.56 Tension 30.0 Use(7)9.4, phi Tn=0.9 x 60 x(7)1.56 in2=589.68k V(kip)= 664 L(ft)= 39.8 VQ/I x h= 910.5865 kips x(ft)= 20.5 Use(15)9.10, h(ft)= 36.42 phi Vn=15x 64k=960k (14) 9.3 @ base+ (7)9.4 phi Vn = (14) 23.75k + 0.9x0.6x60x(7)x 1.56 in2 = 686.3k > 664k 7.2.3 SEISMIC (, ) SOIL 0 co 0 SEISMIC SOIL FLOOR FLOOR DIAPHRAGM DIAPHRAGM FORCE FORCE I I FORCE FORCE ROOF (FUTURE) > ` 4 _ \ 70k • / 45k _ LEVEL 6 (FUTURE) j_<_ _ 7.1- 110k 1‘ / 85k _ o LEVEL 5 (FUTURE) I 4_<_ , :kr 85k - 85k . �,‘ / - - I 85k = q m LEVEL 4 accumulative \ / 1 380k 115k V I (15) 9.17 [< >160k -\ I (15) 11.5k = 172.5k LEVEL 3 (12) 23.75k+ 0.9x0.6x60x(3)x 1.56 in2= 436.6k 65k <=> (12) 9.26 @ joint —H - <>115k (11) 9.17 (11) 11.5k = 126.5k LEVEL 2 (10) 23.75k + 0.9x0.6x60x(5)x 1.56 in2=490.2k 480k +1.6x50k 35k� � -. 4(10) 9.26 @ joint ' 105k _ = 560k 50k (GRID 10) (20)9.17 (20) 11.5k = 230k > 185k ) 10) LEVEL 1 (NORTH)_(11) 9.3 @ base = 105k + 1.6 x 50k NOTES (11) 23.75k + 0.9x0.6x60x(7)x 1.56 in2= 615k -ALL LOADS ARE UNFACTORED SEISMIC LOADS (1.0xE) TO BE ASSUMED FOR PRECAST SHEAR WALL DESIGN - PRECAST SHEAR WALLS SHALL BE DESIGNED FOR THE OVERTURNING MOMENTS AND SHEARS FROM FUTURE LEVELS -PROVIDE PANEL TO PANEL CONNECTIONS ALONG SHEAR WALL LENGTH TO DELIVER OVERTURNING FORCES TO THE FOUNDATIONS AT WALL ENDS -BRACED FRAME COLUMNS TO BE CENTERED ON GRIDLINES - 1 NO SCALE GRID 10 PRECAST SHEAR WALL DESIGN LOADING 7.2.3.1 "Shear wall along grid 10" Version:20120713 SHEAR WALL ANALYSIS Panel Width [ft.] = 39.8 Panel Thickness[in.] = 12 38'x 39.8'x 1 x 0.150 Dist.from edge WL+EL+HL N _Intens [K ips] x[ft.] DL+LL+SL Panel Weight PD _ 226.86 19.9 x Dead Load D _ 0 0 Live Load L 0 0 y Snow Load S 0 0 Point of h Intensity[Kips] application h [ft.] Wind Load W 0 0 Seismic Load E 480 48.05 Earth Pressure H 50 12.25 N Concrete Strength f'c[Ksi]= 4.0 A dA c B Dist from edge of panel to center of Tensile force [in.] / 1 dA= 24 dB = 24 T C j, Sds= 0 /c dB � [if Seismic present] C T For Lateral Loadsto Right Bearing Ultimate Condition Load Cases Reaction @ A[K ips] Reaction @ B [K ips] Length c[in] #1 (1.4)D 158.80 Comp. 158.80 Comp. 6.0 #2 (1.2)D + (1.6)L +(0.5)S+ (1.6)H 110.86 Comp. 161.37 Comp. 6.5 #3a (1.2)D +(1.6)S +(1.6)H 110.86 Comp. _ 161.37 Comp. 6.5 #3b 2)D +(1)L +(1.6)S +(0.5)W+(1.E 110.86 Comp. 161.37 Comp. 6.5 #4 .2)D +(1)L +(0.5)S+(1)W +(1.6; 110.86 Comp. 161.37 Comp. 6.5 #5 (1.2)D +(1)L +(0.2)S+(1)E 490.86 Tension 763.09 Comp. 28.5 #6 (0.9)D+(1)W +(1.6)H _ 76.93 Comp. 127.24 Comp. 5.5 CONTROLS #7 (0.9-0.2Sds)D +(1)E +(1.6)H 552.41 Tension 756.58 Comp. 28.5 Use(7)9.4, phi Tn=0.9 x 60 x(7)1.56 in2=589.68k For Lateral Loadsto Left Bearing Ultimate Condition Load Cases Reaction @ A[K ips] Reaction @ B [K ips] Length c[in] #1 (1.4)D 158.80 Comp. 158.80 Comp. 6.0 #2 (1.2)D + (1.6)L +(0.5)S+(1.6)H 161.37 Comp. 110.86 Comp. 6.5 #3a (1.2)D +(1.6)S +(1.6)H 161.37 Comp. 110.86 Comp. 6.5 #3b 2)D +(1)L +(1.6)S +(0.5)W+(1.E 161.37 Comp. 110.86 Comp. 6.5 #4 .2)D +(1)L +(0.5)S+ (1)W +(1.61 161.37 Comp. r 110.86 Comp. 6.5 #5 (1.2)D +(1)L +(0.2)S+(1)E 763.09 Comp. 490.86 Tension 28.5 #6 (0.9)D+(1)W +(1.6)H 127.24 Comp. 76.93 Comp. 5.5 CONTROLS #7 (0.9-0.2Sds)D +(1)E +(1.6)H n 756.58 Comp. 552.41 Tension 28.5 Use(7)9.4, phi Tn=0.9 x 60 x(7)1.56 in2=589.68k V(kip)= 560 L(ft)= 39.8 VQ/I x h= 767.9645 kips x(ft)= 20.5 Use(14)9.10, h(ft)= 36.42 phi Vn= 14x 64k=896k (14) 9.3 @ base+ (7)9.4 phi Vn = (11) 23.75k+ 0.9x0.6x60x(7)x 1.56 in2 = 615k > 560k 0) DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION SUBMITTAL A. oE FOR APPROVAL- NOT FOR CONSTRUCTION E D E 8" solid – precast °' f'ci = 3000 psi o f'c = 5000 psi o Hard Rock concrete 0 N. C 0 U a) v7 c phi Vc = 0.75 x (2xV'(5000)x8"x290"/1000)] o = 246 k > 238.75k , use minimum shear bar 0 = 955k/4 C U ID U 24'-10Y" / c a, L 9.26 m — — CD 11 op LU ® SII ll� _ � T_ 9.5 9.20 0 C °' _ 9.6 © floor ) - 9.7 © roof 1U 9.10 Q, 9.32 o = 1 c ii i \ il li li li li li li li 9.3 13'-0" 1.. 18" 1» 1*I (max) 1}I 2-- 0 CD I I 7_IN J e e e e e e g el #5 vertical bars #5 horizontal bars 1 6) 18" oc (max) ._IN 0 N L. N z Red Sandstone w 8"wall along A o 6209 co R L 5TRE5503N Qfik ° 9 7.3 F 0 LLArchitectural and Structural Precast Concrete i a An ENCoN Company ° SHEET 1 OF 1 LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 7.5.2 0196 FadjarKusumo-Rahardjo INPUT DATA 03-28-2018 13:32:41 Pg. 1 File: 8IN ALONG A WALL 7.3.W12 Name: Job No: Mark: Designer: SECTION DIMENSIONS: check 4.7'strip No. of Wythes= 1 Bot Wythe: Width = 56.5 in Thickness = 8 in Member Length = 156 in Bott Wythe(no rvls/opngs): Area =452 in2 M of I = 2410.667 in4 Centroid from Bottom=4 in MATERIALS: F'c(psi) Ec (ksi) F'ci(psi) Eci (ksi) Conc Wt (pcf) Bot Wythe: 5000 4074 3000 3156 150 Average Relative Humidity= 70 % Superimposed Load= 0 psf Fy, Reinf BarGrade= 60 ksi Fpu, Strand= 270 ksi Lo-Lax= Yes REBAR ROWS: A B C D E F G H BarDiam(in) = 0.625 0.625 No. Ba rsin Row= 4 4 Cent frm Bot/Sect(in)= 2 6 Start frm Bot/Walliin) = 0 0 End frm Top/Wall(in) = 0 0 BarDev Length Mult = 1 1 REBAR LOCATIONS FROM LEFT: (Column ties used or non-bearing member) Row A 7.06 21.19 35.31 49.44 Row B 7.06 21.19 35.31 49.44 LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 7.5.3 0196 FadjarKusumo-Rahardjo INPUT DATA 03-28-2018 13:32:41 Pg. 2 File: 8IN ALONG A WALL 7.3.W12 Name: Job No: Mark: Designer: Coefficients: Initia I prestress loss = 0.00% (Calculated) Fina I prestress loss = 0.00% (Calculated) Outside temp, deg F: 105 Inside: 75 Initial member bow atmidheight, in: 0 Column ties used or non-bea ringmember Seismic coefficient, % = 0 Cracking stress coefficient: 7.5 Slenderness effects are included Inside horiz. surcharge at floor or grade,psf: 0 Outside horiz.surcharge at floor or grade,psf: 0 Inside activelateral earth pressure, psf: 0 Outside activelateral earth pressure, psf: 0 Inside dist. from base to top of retainedearth,in: 0 Outside dist. from base to top of retained earth,in: 0 Stra nddev. length mult. at ends = 1 , at openings= 2 Percent composite at ultimate: 100 Bottom face (form face) locationis outside Percent composite for deflection: 0 Floor tie activefor load cases with earth pressure Percent composite for stresses: 0 8 • • • • • • • • 56.5 0 LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 7.5.4 0196 FadjarKusumo-Rahardjo INPUT DATA 03-28-2018 13:32:41 Pg. 3 File: 8IN ALONG A WALL 7.3.W12 Name: Job No: Mark: Designer: SUPPORT LOCATIONS, INCHES: SPRING CONSTANTS, INCHES/KIP: Top support locationfrom top of member, in: 46.38 0 Slab-on-grade connection locationfrom bottom,in: 0.00 0 WIND LOAD,PLF: Suction Pressure Start Stop (elevationfrom bottom,in.) Row 1 50.00 50.00 0.00 156.00 1\-110psf x4.7' CONCENTRATED VERTICAL LOADS,KIPS: Pv Location Eccentricity Dead Live Roof Wind (from bottom, in.) (from inside face, in.) 3.45 x 4.7' 1.24k1f x 4.7' Row 1 109.63 6.00 16. 3 5.83 0.00 0.00 Row 2 156.00 -4.00 53.00 23.83 14.57 0.00 Row 3 156.00 -4.00 0.00 0.00 0.00 428.43 478k x 46.5'/51.88' 3.1klf x 4.7 1.24kIf x 4.7' + 18k [(8"/12 x 25.83' x 0.150) + 3.45 + 5.25]x 4.7' dead load f rom f loor tee = 1.163 + 0.31 + 1.98 = 3.45 klf dead load f rom roof tee = 3 + 1.94 + 0.31 = = 5.25 klf LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 7.5.5 0196 Fadja rKusumo-Rahardjo APPLIED MOMENT&STRESS GRAPHS 03-28-2018 13:41:28 File: 8IN ALONG A WALL 7.3.W12 Name: Job No: Mark: Designer: LOAD CASE 3 ACI 318-14 5.3.1c Live+Roof: MAGNIFIED MOMENT Suction at 47.58 in: Pu (kips)= 138.32 Mu (kip-in)= 255.04 Outer Stress (psi)= 117.15 Inner Stress (psi)=-729.21 Section is Uncracked Bow(in)= 0.01 (Outward Bow is Positive) Force in Top Conn. in Kips= -2.38 Force in Bottom Conn. in Kips= 2.38 (Compression is Negative) Pressure at47.58 in: Pu (kips)= 138.32 Mu (kip-in)= 255.04 Inner Stress (psi)=-729.21 _— Outer Stress (psi)= 117.15 Section is Uncracked Bow(in)= 0.01 (Outward Bow is Positive) Force in Top Conn. in Kips= -2.38 Force in Bott Conn. in Kips= 2.38 SUCTION PRESSURE (Compression is Negative) Percent composite at ultimate: 100 STRESSES Percent composite for deflection: 0 Percent composite for stresses: 0 • - - - Cracking stress coefficient: 7.5 Slenderness effects a reincluded Outer Inner Outer Inner SUCTION PRESSURE LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 7.5.6 0196 Fadja rKusumo-Rahardjo APPLIED MOMENT&STRESS GRAPHS 03-28-2018 13:41:59 File: 8IN ALONG A WALL 7.3.W12 Name: Job No: Mark: Designer: LOAD CASE 4 ACI 318-14 5.3.1d Wind+Live: MAGNIFIED MOMENT Suction at 47.58 in: Pu (kips)= 550.73 Mu (kip-in)= 268.65 Outer Stress (psi)=-772.65 Inner Stress (psi)=-1664.20 Section is Uncracked Bow(in)= 0.00 (Outward Bow is Positive) Force in Top Conn. in Kips= -2.07 Force in Bottom Conn. in Kips= 2.72 (Compression is Negative) Pressure at47.58 in: Pu (kips)= 550.73 Mu (kip-in)= 275.70 Inner Stress (psi)=-1675.90 Outer Stress (psi)=-760.95 Section is Uncracked Bow(in)= 0.00 (Outward Bow is Positive) Force in Top Conn. in Kips= -2.99 Force in Bott Conn. in Kips= 2.34 SUCTION PRESSURE (Compression is Negative) Percent composite at ultimate: 100 STRESSES Percent composite for deflection: 0 Percent composite for stresses: 0 Cracking stress coefficient: 7.5 Slenderness effects a reincluded Outer Inner Outer Inner SUCTION PRESSURE LECWALL- PRECAST WALL& COLUMN DESIGN (c)2017 LOSCH SOFTWARE, LTD Release12.3.4 2017-08-16 7.5.7 0196 FadjarKusumo-Rahardjo INTERACTION CURVES 03-28-2018 13:40:10 Pg. 1 File: 8IN ALONG A WALL 7.3.W12 Name: Job No: Mark: Designer: LOAD CASES: 8 1 ACI 318-14 5.3.1a Dead • • • • 2 ACI 318-14 5.3.1b Live+T+Earth 3 ACI 318-14 5.3.1c Live+Roof 0 4 ACI 318-14 5.3.1d Wind+Live • • • • 5 ACI 318-14 5.3.1e Live+Seismic 6 ACI 318-14 5.3.1f Wind+Earth 7 ACI 318-14 5.3.1f Wind Only 8 ACI 318-14 5.3.1c Roof+Wind 56.5 9 ACI 318-14 5.3.1g Seismic Only 10 Service Dead+Temp. ° 11 Service Dead+ Live,ASCE 7-10 2.4.1.2 12 Service Dead+ Live+ Roof,ASCE 7-10 2.4.1.4 13 Service Dead+Wind, ASCE 7-10 2.4.1.7 ACI 318 Phi factors used 14 User Defined Pu Mu-S Phi-Mn S 1.0Mcr S Mu-P Phi-Mn P 1.0Mcr P Pu Mu-S Phi-Mn S 1.0Mcr S Mu-P Phi-Mn P 1.0Mcr P 1 99.58 227.64 690.86 452.38 227.64 -690.86 -452.38 2 140.09 298.02 772.78 506.40 298.02 -772.78 -506.40 3 138.32 255.04 769.21 504.05 255.04 -769.21 -504.05 4 550.73 268.65 1347.89 1053.92 275.70 -1347.89 -1053.92 5 117.93 250.51 727.96 476.85 250.51 -727.96 -476.85 6 492.44 152.20 1328.85 976.21 159.26 -1328.85 -976.21 7 492.44 152.20 1328.85 976.21 159.26 -1328.85 -976.21 8 322.88 199.13 1144.71 750.12 202.69 -1144.71 -750.12 9 64.01 143.35 618.94 404.97 143.35 -618.94 -404.97 10 71.13 164.15 633.32 414.45 164.15 -633.32 -414.45 11 100.79 220.20 693.30 454.00 220.20 -693.30 -454.00 12 104.30 205.92 700.40 458.68 205.92 -700.40 -458.68 13 299.73 98.07 1102.08 719.26 102.33 -1102.08 -719.26 14 0.00 0.00 489.50 0.00 0.00 -489.50 0.00 Section cut locationfrom left end (in)=47.58001 Compr. face not reversed. 1070 1070 SUCTION PRESSURE 4 PhiPn 7 PhiPn (kips) ° (kips) 13 0 22 12 0 1 v� 0 0 0 PhiMn (kip-in) 1355 0 PhiMn (kip-in) 1355 7.3.2 SEISMIC °SEISMIC FLOOR O © O DIAPHRAGM FORCE FORCE ROOF (FUTURE) 140k > P • / _ • / I < > 90k \ / '71- \ // LEVEL 6 (FUTURE) _ �„/ ___ 220k • / • / 170k \ / ' 1- \ / LEVEL 5 (FUTURE) / / 170kC — • v / • v <=>170k LEVEL 4 accumulative St / St / 760k 230k 9.7 (8)9.5+ (12) 9.20 9.7 320k I (8) 9.3k + (12) 24.97k = 374k LEVEL 3 (32) 23.75k= 760k ' (32) 9.26 @ joint — -f < 885' 125k (11) 9.5+ (8) 9.20 (11) 9.3k30(8)24.97k= 302k LEVEL 2 _ _ (40)293.75k= 950k 955k 70k (40)9.26 @joint N--`210k (12) 9.5 + (8)9.20 (12) 9.3k+ (8)24.97k = 311k LEVEL 1 — (44) 9.3 @ base — (44) 23.75k= 1045k NOTES -ALL LOADS ARE UNFACTORED SEISMIC LOADS (1.0xE) TO BE ASSUMED FOR PRECAST SHEAR WALL DESIGN - PRECAST SHEAR WALLS SHALL BE DESIGNED FOR THE OVERTURNING MOMENTS AND SHEARS FROM FUTURE LEVELS -PROVIDE PANEL TO PANEL CONNECTIONS ALONG SHEAR WALL LENGTH TO DELIVER OVERTURNING FORCES TO THE FOUNDATIONS AT WALL ENDS 2 NO SCALE GRID A PRECAST SHEAR WALL DESIGN LOADING "Shear wall along grid A" 7.3.2.1 analized at one of the braced frame Version:20120713 SHEAR WALL ANALYSIS Panel Width [ft.] = 51.88 Panel Thickness[in.] = 8 38'x39.8'x1 x 0.150 Dist.from edge WL+EL+HL Intensi/-1 ps] x[ft.] 4 DL+LL+SL Panel Weight PD 201.45004 25.94 x Dead Load D 960.45964 25.94 Live Load L 0 0 + Snow Load S 0 0 ((2x(63psf+37.5psf)+(96.6psf+62.5psf))x 6012/1000)x 51.88'+2 x 200k (future dead) Point of h Intensity I.K ips] app'cation h [ft.] Wind Load W 0 0 Seismic Load E 477.5 46.5773822 Earth Pressure H 0 0 N Concrete Strength fc[Ksi]= 4.0 A dAc B / Dist from edge of panel to center of Tensile force [in.] / 1 dA= 24 dB = 24 T C C 1 i dB Sds= 0 / / [if Seismic present] * C T For Lateral Loads to Right Bearing Ultimate Condition Load Cases Reaction @ A[K ips] Reaction @ B [K ips] Length c[in] #1 (1.4)D 812.98 Comp. 813.69 Comp. 46.5 #2 (1.2)D +(1.6)L +(0.5)S+ (1.6)H 697.15 Comp. 697.15 Comp. 39.5 #3a (1.2)D +(1.6)S +(1.6)H 697.15 Comp. 697.15 Comp. _ 39.5 #3b 2)D +(1)L +(1.6)S +(0.5)W+(1.E 697.15 Comp. 697.15 Comp. 39.5 i #4 .2)D +(1)L +(0.5)S+(1)W +(1.6; 697.15 Comp. 697.15 Comp. 39.5 CONTROLS #5 _ (1.2)D +(1)L +(0.2)S+(1)E 206.02 Comp. 1188.27 Comp. 67.5 #6 1- (0.9)D+(1)W +(1.6)H 522.86 Comp. 522.86 Comp. 30.0 #7 (0.9-0.2Sds)D +(1)E +(1.6)H 49.06 Comp. 996.66 Comp. 56.5 "no uplift" For Lateral Loads to Left Bearing Ultimate Condition Load Cases Reaction @ A[K ips] Reaction @ B [K ips] Length c[in] #1 (1.4)D 813.69 Comp. 812.98 Comp. 46.5 #2 (1.2)D +(1.6)L +(0.5)S+(1.6)H 697.15 Comp. 697.15 Comp. 39.5 #3a (1.2)D +(1.6)S +(1.6)H 697.15 Comp. 697.15 Comp. 39.5 #3b 2)D +(1)L +(1.6)S +(0.5)W+(1.E 697.15 Comp. 697.15 Comp. 39.5 #4 .2)D +(1)L +(0.5)S+ (1)W +(1.6; 697.15 Comp. 697.15 Comp. 39.5 CONTROLS #5 I (1.2)D +(1)L +(0.2)S+(1)E 1188.27 Comp. 206.02 Comp. 67.5 #6 (0.9)D+(1)W +(1.6)H 522.86 Comp. 522.86 Comp. 30.0 #7 (0.9-0.2Sds)D +(1)E +(1.6)H 996.66 Comp. 49.06 Comp. 56.5 "no uplift" V(kip)= 477.5 L(ft)= 51.88 VQ/I x h= 535.1879 kips x(ft)= 24.88 Use(9)9.10, h(ft)= 38.83 phi Vn=9x 64k=576k (22) 9.3 @ base phi Vn = (22) 23.75k = 522.5k>477.5k 0) DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION v; SUBMITTAL 0 aE FOR APPROVAL- NOT FOR CONSTRUCTION E D V) 12" solid - precast °' f'ci = 3000 psi o f'c = 5000 psi Hard Rock concrete 0 i< C 0 } U a) v) 0 .� 13'-8Y" 3 U o 9.32 O '— 't E It II II C II II II AiLU4 _4_ CD �'— 9.25 6 a- a } a) 24'-10%" E V 0 LTJ c 9.32 o _ 0 TI II II II II 4\ ge i co 9.25 6' 3'-7" # 4bar imiumm J U # 6bar o a)_ ,—IN •0 ae .0, El N #5 vertical bars Q@ 18" oc (max) ��N 0 N o < 12" sill panel ° 6209 Red Sandstone '-°,' L J 5TRE55CDN fik 7.4 A ? O - Architectural and Structural Precast Concrete A w An ENCoN Company ° SHEET 1 OF 1 o_ 7.4.2 For 7' long spandrel, Pb = 1' x 7' x 3.58' x 0.150 = 3.76k Tu = Cu = [10k x 30" - 0.9 x 3.76k x (6" - 1") - 33.48 x (12" - 3")] / 31" = [ 300 k"- 16.92 k" - 301.32k"] / 31" = -0.59k, no overturning use (2)9.32 at top, phi Vn = (2) 4.17k = 8.34k use 9.1 at base, phi Vn = 16.74k > 10k - T 0 10k Pb E 6" N C , < T Mu = 10k x 30" = 300 k" assume 48" strip resist the car impact. a = (4 x 0.31 x 60) / (0.85 x 5 x 48") = 0.36" phi Mn = 0.9 x 60 x (4) x 0.31 x (12" - 2" - 0.5x0.36") = 657.55 k" > 300 k" 0) DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION 0 v;o SUBMITTAL 0 o E FOR APPROVAL- NOT FOR CONSTRUCTION E D c 9" solid — precast o) f'ci = 3000 psi o f'c = 5000 psi 0 Hard Rock concrete o — C _o U 0 N C 0 o _U U 0) .� 9.39 0 9.32 C — — ; LLJ C // C II o ,s,,. L.- 9.63 IIkd- �� 9.62 0 1 E0 — (2) #5 LTJ — 10I_0 9.63 C 0 — N 0 fe VS gVaries (14'-04" max) 1„ 18" 1„ +� (max) 2t._ 0 f t _IN ab o 0 0 0 0 0 o a o 3 el co aep. o 0 0 0 0 0 o 0 0 #5 vertical bars #5 horizontal bars c_.) © 18" oc (max) ,—ICN 0 N N o Red Sandstone N 9" triangularpanel 0 6209 o J 5TRE55LON Q fik w 5 Architectural and Structural Precast Concrete LZ' a O An ENCoN Company SHEET 1 OF 1 0 3/27/2018 INPUT DATA: VERSION:07292009 Beam properties Steel properties Beam length L (ft) = 20 Yield strength for rebar fy (ksi) = 60 Cross sectional area A (in2)= 270.0 Modulus of elasticity of steel Es (ksi)= 29000 Neutral axis from bottom Yb (in) = 15.0000 Ulti.Strength of prestressed steel fp„ (ksi)= 270 Moment of inertia I (Ina)= 20250 Modulus of elas.of prestressed steel Eps (ksi)= 28500 Compression width bf(in) = 9 Composite Section Properties Stem width bW(in) = 9 Topping strength at 28 days f,t (ksi)= 4 Total height h (in)= 30 Concrete density w, (pCf) = 150 Total perimeter length S (in)= 100 Modulus of elasticity E, (ksi)= 3834.3 Volumn to surface ratio V/S= 2.70 Topping weight wBT (k/ft) = 0.00 Section modulus at top st(in3)= 1350 tt (in) = 0 bf (in) = 144 Section modulus at bottom sb (in3)= 1350 A, (in2)= 270.0 sb (in3)= 1350.0 Concrete properties: I, (in4)= 20250 st(in3)= 1350.0 Concrete density we (pcf) = 150 Yb (in) = 15.00 stt(in3)= 1350.0 Beam self weight wB (k/ft) = 0.281 Yt (in) = 15.00 h0 (in) = 30.00 Concrete strength at 28 days f0' (ksi)= 5 Ytt(in) = 15.00 Concrete strength at release I'd' (ksi)= 3.5 Loss Modulus of elasticity E0 (ksi)= 4286.83 Average relative humidity R.H. = 70% Modu. of elas.at release Ed (ksi)= 3586.62 Initial prestress loss = 0.00% Factor (3t = 0.80 Final prestress loss = 0.00% Effective stress after loss fSe (ksi) = 0.0 LOADINGS: REINFORCEMENTS: Prestressing Point Load #of strands 0 0 0 0 0 0 Load# 1 2 3 4 5 6 Size 0 0 0 0 0 0 From left(ft) 0 0 0 0 0 0 Location from Bot. 0 0 0 0 0 0 D.L. (k) 0 0 0 0 0 0 Mask from left(ft) 0' 0' 0' 0' 0' 0' L.L. (k) 0 0 0 0 0 0 Mask from right(ft) 0' 0' 0' 0' 0' 0' %of Pull 0% 0% 0% 0% 0% 0% APS(int) 0 0 0 0 0 0 Linear Load Load# 1 2 3 4 5 6 Mild Reinforcement Start from left(ft) 0 4 0 0 0 0 #of bars 3 0 0 0 0 0 End from left(ft) 20 20 0 0 0 0 Size 5 0 0 0 0 0 Initial D.L.(k/ft) 0.862 0.45 0 0 0 0 Location from Bot. 2 0 0 0 0 0 End D.L.(k/ft) 0.113 0.45 0 0 0 0 From left(ft) 0 0 0 0 0 0 Initial L.L.(k/ft) 0 0 0 0 0 0 From right(ft) 0 0 0 0 0 0 End L.L.(k/ft) 0 0 0 0 0 0 As(in2) 0.93 0 0 0 0 0 3/27/2018 Beam Reaction: Left Right Ultimate Moment: Self Weight 2.81 2.81 Mu = 994.6 k-in @ 9.60 ft from left Topping 0.00 0.00 (13,Mn = 1369.5 k-in (O.K.) S. I. Dead Load 9.00 7.94 S. I. Live Load 0.00 0.00 p= 0.0037 Total Sustained Load 11.81 10.76 p max= 0.0252 (O.K.) Total Unfactored Load 11.81 10.76 p min = 0.0035 Total Factored Load 16.54 15.06 Stress Analysis: Horizontal Shear Transfer: x f top fallow f bot fallow Fh (kips)= 0 (ft) (ksi) (ksi) (ksi) (ksi) Acs(in2)= Not Required At transfer 0 0.00 -0.35 0.00 2.45 Max. spacing = N/A 10.0 0.13 2.45 -0.13 -0.18 At service 9.6 0.53 3.00 -0.53 -0.85 ftopping= 0.00 2.40 Deflection (+ )=camber,(- )=deflection Maximum downward deflection under all final loads at x = 10.00 ft Load Case Initial 8 @ transfer @ Erection @ Final Prestressing 0.000 0.000 x 1.8 0.000 x 2.45 0.000 Beam weight -0.014 -0.014 x 1.2 -0.017 x 2 -0.028 Topping wt. 0.000 x 2 0.000 Dead load -0.037 x 2 -0.074 Live load 0.000 x 1.0 0.000 Total: -0.014 -0.017 -0.102 Flexural Analysis Shear Analysis x Mu (i)Mn Vu il)Vn Av/ft (ft) (k-in) (k-in) (k-in) (kips) (kips) (in/ft) 0.0 0.0 0.0 859.1 12.8 53.0 0.000 2.0 359.3 1369.5 859.1 12.8 30.8 0.000 4.0 646.9 1369.5 859.1 10.6 30.3 0.000 6.0 852.6 1369.5 859.1 6.6 30.3 0.000 8.0 966.4 1369.5 859.1 2.9 30.3 0.000 10.0 993.2 1369.5 859.1 -0.6 -30.3 0.000 12.0 938.2 1369.5 859.1 -3.9 -30.3 0.000 14.0 806.3 1369.5 859.1 -7.0 -30.3 0.000 16.0 602.7 1369.5 859.1 -9.9 -30.3 0.000 18.0 332.2 1369.5 859.1 -12.1 -30.9 0.000 20.0 0.0 0.0 859.1 -12.1 -53.0 0.000 0) DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION 0 SUBMITTAL A a E FOR APPROVAL- NOT FOR CONSTRUCTION E D C 8" solid - precast 6' � 18'-5Y" f'ci = 3000 psi of'c = 5000 psi a 9.37 ' IMINI Hard Rock concrete 9.25 c o (2) #5 0 _I10 2 i— 9.39 \ o \ / O -i x O / \ a9.32 / \ U � / 11 H II o V9.25 II II w a — s, 9.25 0 C a) E a E o IN 9.32 4I I II� I II II 6 12'-0" (max) • • 1„ 18" 1„ 1 t� 1T (max) I 22 c, OI SIN • 2 o 0 0 0 d = -/ Ge _, o o � o 0 0 o Ln lb S #5 vertical bars #5 horizontal bars cp ® 18" oc (max) -N 0 N co °- 8" horizontalstairpanel 6209 Red Sandstone o co Q W e• 5TRE55CON fik 2 2 2 7.6 OLLArchitectural and Structural Precast Concrete w An ExCoN Company a SHEET 1 OF 1 a_ 0) DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION 0 „,,o SUBMITTAL 0 o E FOR APPROVAL- NOT FOR CONSTRUCTION E D 12'-4y" 8" solid — precast °' f'ci = 3000 psi 0 9.58 f'c = 5000 psi 0 sw. ""' Hard Rock concrete o — i< C g _ U _ _ o \ / % \ / C X C / \ O / \ J _U U U 9.39 c :.:4, ® 9.37 N — i ter .1 W N c 9.32 9.62 6 a_ O \ / a \ / E X a) / v a / \ c o} II II II 0 9.25 g : °" (max)• „ 22 (max) 21”2 cp N —•-•— N.IN .o— ta 2 t o o o a ce , o o a a o o In• cL / — #5 vertical bars #5 horizontal bars 18" oc (max) �1N 0 N CO 2 R Red Sandstone N 8"vertical stair pa nel 2 620 9 o J 5TRE55LON fik LL Architectural and Structural Precast Concretei2iw _ 2 O An ENCoN Company SHEET 1 OF 1 0_ 0) DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION 0 v,o SUBMITTAL A E U FOR APPROVAL- NOT FOR CONSTRUCTION E D C4'-1Y" 8" solid — precast f'ci = 3000 psi 0 9 25 f'c = 5000 psi 0 -\ Hard Rock concrete II 0 9.37 U ( 1 _w1wI o) C 6 a) C 9.32 w c N La CL ■ o 4E Ca) C W N C 1 � � 1 0 9.25 g4'-14" 1" 18"2 1>r 1} (max) 1T 2 2 U I I -IN N El ir _, #5 horizontal bars cc, #5 vertical bars t�N U@ 18" oc (max) 0 N o Q8"x 4' 1%4'vertica l sta it panel ° 620 9 c\IRed Sandstone o ✓ o 0 o J 5TRE55LON fik L, LL Architectural and Structural Precast Concrete w _ a 0 An ENCoN Company G SHEET 1 OF 1 o_ 3 DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION SUBMITTAL FOR APPROVAL- NOT FOR CONSTRUCTION E C N 0) Q C 0 U 0 C C 0 U c o: C 0 U 0 D U 0 U 0) C 0 C "EXTERIOR" "INTERIOR" .0) w P753 REC 1" 0) C 0 5/16 V 4 <EAE102 tL r 2 1/2 lel1 1/2 I E102 0 Kt V C� C — � vIi 3/8 V 2 1/2 <EAE102 c� J (�I $T.O.GRADEBEAM SEEFOUNDATIONPLAN FULL GROUT , I E202 C@] I F105 C'V 0 kti N. 5 o Red Sandstone PANEL BASE CONNECTION a 6209 LU ENCON Ilk 9.1 0 DESIGN,LLC - 06/26/2017 6 SHEET 1 OF 1 9.1.1 DRAWING STATUS REVISION# REVISION BY REVISION DATE JOB -USE 0 FOR CONSTRUCTION 1.13.12 / 4" 3 a o \ i ('7 0 a \ 1-PL3/8"x3"x0'-4" PRECAST STANDARDS w STANDARD EMBEDS - ERECTION MATERIAL o 0367.C 0 R l k ENCON E102 3 ROBO JMJ 1.22.13 0 O - 9.1.2 DRAWING STATUS REVISION# REVISION BY REVISION DATE JOB -USE 0 FOR CONSTRUCTION 1.22.13 2-PL 1/8"x4"x0'-4" 1-PL 1/4"x4"x0'-4" 1-PL 1/2"x4"x0'-4" 3 a 0 `o- u N / 4 / 0 O n u 5 °u o \ PRECAST STANDARDS w STANDARD EMBEDS - ERECTION MATERIAL o 036 7.C 0 l k QENCON E202 3 RDA JMJ 1.22.13 0 O - 9.1.3 DRAWING STATUS REVISION# REVISION BY REVISION DATE JOB -USE 0 FOR CONSTRUCTION 1.18.13 10" 2" 6" 0 0 0 0 -r� 1-PL1/2"x8"x0'-10" 0 4-S040110 a a 6 5/16 I TYP. 0) u U 1 Z PRECAST STANDARDS w STANDARD EMBEDS - FIELD o 0367.C § 4g. ENCONRDA JMJ 1 F105 3 w .18.13 p LL U a 9.1.4 DRAWING STATUS REVISION# REVISION BY REVISION DATE JOB -USE 0 FOR CONSTRUCTION 6.20.12 , 1-L5x5x3/8x0'-5" ii\o/ 1PP,), O 3 2-S050206 a u r 5/16 C < TYP. 1/2 � w PRECAST STANDARDS STANDARD EMBEDS-GENERAL 0367.C ENCON P753 3 ROBO w ENCON 0— DESIGN, LLC 1 of 3 03 StandarcronneCtinn Wall-to-Foundation m (Intermediate Precast Wall) o co Material Properties: *Note: ACI Refers to ACI 318-11 p PCI Refers to PCI 7th Edition Y Concrete(Foundation) re:= 3000•psi U Concrete(Wall Panel) fc1:= 5000•psi X:= 1 Rebar 60•ksi 80•ksi PLATE B PlateFY:= 36•ksi Weld Fexx 70•ksi Wall-FDN Joint PJ:= lin X (OUT—OF—PLANE) Panel Thickness t:= 8in III I, PLATE C (ERECTION MATERIAL) I Strength Reduction Factors: I 41IA Tension: (1)t:= 0.9 Z Shear Friction: \,:= 0.75 PLATE A Weld: (1)w:= 0.75 Seismic Category Factors: (ACI 21.4.3+ D.3.3) SCF:= 1.5 = 1.5 for Intermediate and Special Shear Walls u u := 1.0 = 1.0for Seismic Design Category A&B = 0.75 for Seismic Design Category C,D,E&F Plate Input: Plate A: Foundation Plate Plate Height XplateA:= 8in Rebar Input-#4 Bar: Plate Width zplateA:= loin ASA:= 0.2in2 Plate Thickness tplateA:= 0.Sin nbarA:— 4 Plate B:Wall Plate Plate Height XplateB 5in Rebar Size-#5 Bar: Plate Width zplateB 5in ASB:= 0.31in2 Plate Thickness tplateB 0.3751n nbarB:— 2 Plate C: Erection Material (per Connection): #of Plates nplate 2 Plate Width XplateC 31n Plate Height YplateC 41n Plate Thickness tplateC 0.3751n Plate Area: AplateC XplateCtplateC Weld Input: Plate A: Straight,No Return Plate B: With Return,1 Side Length lweldA:=3in Length lweldB:=2.5in Return breturnA Oin Return breturnB 1.Sin 3, 5 Thickness tweldA' 81n Thickness twel dB:= 16 in Print Date: 10/18/2016 11:22 AM 9.1 .6 OVAO ENCONa' Z W DESIGN,LLC a O s 2 oof 3 Standarctonnectan Wall-to-Foundation cocu u 6 V i= (Intermediate Precast Wall) 0 u • Tensile Capacity in Y-Direction (Uplift): Plate A: Foundation Plate 1) Rebar Tension Failure (0(Asteet _(1)t'(nbarA)'ASA•fy=43.20•kip (Designed to Yield) Plate B: Wall Plate 1) Rebar Tension Failure (I)YBsteel _(l)f("harB)•ASB•fy=33.48 skip (Designed to Yield) Plate C: Erection Plate 1) Plate Tension Failure 1YCsteel:=4 t(npl ate).Apl ateCFy=72.90•kip (Designed to Yield) Governing Tensi/eCapacity Based on Yie/din forL oadin Y direction: cillYn:=mm(0Asteel'(1)YBsteel'(0(Csteel)=33.48'kip Weld Capacities Per ACI 318-11,21.4.3: Elements of the Connection that are NOT Designed to Yield Shall Develp at Least 1.5Sy Therefore, Welds MUST BE Designed for 150%of the Governing Tensile Capacity: 4,Yweld:=SCF•4Yn=50.22•kip Weld of Foundation Plate(Plate A)to Erection Plates(Plate C): rt 'wel dA // �YAweld:=�w' _ /•(0.6•Fexx)'(lwel dAl\ 'npl ate=50'12•kip Wel dChecicA:=if(�YAwel e(1)Ywel d'"Weld OK","Check Wel d')="Check Wel d" Weld of Wall Plate(Plate B)to Erection Plates(Plate C): r twel dB (1)YBweld=(l'w' /— •(0.6•Fexx)'(lweldB+hreturnB)'nplate=55'68•kip v2 / Wel dCheclB:=if(OBwel e(13Ywel d' Weld OK","Check Wel d")="Weld OK" Print Date: 10/18/2016 11:22 AM 9.1 .7 OCCO ENCON 0 0 W DESIGN,LLC a 3 of 3 Standard ConnectionWall-to-Foundation m 1- (Intermediate Precast Wall) 0 • Shear Capacity: Use Shear Friction Concept for Fully Grouted Joint. Shear Friction Capacity Governed by Maximum Tensile Force Developed Across Horizonta/Joint; Yn:= n =37.20•kip Maximum Tensile Force Developed Across Horizontal Joint (See Previous Page) ()t := 0.6 Shear Friction Coefficient per(ACI 1 1.6.4.3) • Shear Capacity in X-Direction (Out-of-Plane): epXn:_ epv•Yn•µ= 16.74•kip • Shear Capacity in Z-Direction (In-Plane): epZn:= � Y •µ= 16.74•kip Ultimate Capacities of Connection for Fully Grouted Joint under One-Dimensional Loading: ()Yn=33.48.kip �Xn=16.74.kip �Zn=16.74.kip Connection does not resist Tension and Lateral Shear simultaneously. Only connections in compression resist lateral shear. Print Date: 10/18/2016 11:22 AM DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION SUBMITTAL FOR APPROVAL- NOT FOR CONSTRUCTION E T C .N 0 C 2'—O" O 0 0) C C 0 - - - - U 0 Cr: C 0 0 0) VT C 0 0 D 0 0 24"x24"COLUMN I P657 IIS O 1 1 II II 1 0 11 1 1 d: NON-SHRINK ,,. ..__..... .,..,..,, .__.. GROUT E207 10" 'I 10" cto s CV a Z_ F102I CLI 4 THUS 1 1 1 144, kr .a eel 0.I Red Sandstone Column base 6209 a Lu ENCON fik 9.2 3 2 DESIGN,LLC 06/26/2017 6 - SHEET 1 OF 1 9.2.1 DRAWING STATUS REVISION# REVISION BY REVISION DATE JOB -USE 0 FOR CONSTRUCTION 1.22.13 • 2-PL1/8'5(8"x0'-8" 1-PL 1/4"x8"x0'-8" 1-PL 1/2"x8"x0'-8" 1-PL 1"x8"x0'-8" a / / 0 `o- u w \0 0 a 6 O n u ib u a \ * 2"SHIM STACK. THICKNESS SIZES AS REQ'D. PRECAST STANDARDS w STANDARD EMBEDS - ERECTION MATERIAL o 0367.0 0 R l k Qogo ENCON E207 3 RDA JMJ 1.22.13 0 � U O - 9.2.2 DRAWING STATUS REVISION# REVISION BY REVISION DATE JOB -USE FOR CONSTRUCTION 1.18.13 W • 1111111•( 2-WSHR1 1/4"dia. v 2-NUT] 1/4"dia. N ' 1-ATHD 1 1/4"dia.x2'-b" ASTM F1554,GR36 IU1 N 1■1 '43T) 2-NUT] 1/4"dia. ib a 0 u CV z PRECAST STANDARDS w STANDARD EMBEDS -GENERAL 0367.C o � , fFiG ENCON F102 3 ROBO JMJ 1.18.13 0 9.2.3 DRAWING STATUS REVISION# REVISION BY REVISION DATE JOB -USE A FOR CONSTRUCTION 2-20-12 / 20 / 1 to 6" 1'-0" 6" / / / / 3/4'CHAMFER )'/ 1'-6" 7/ \ \ - \ - . / M\ O 0 0 ° \ 0 0 o CV 7— \ 0 0 \ N \ �\ c'\ •° o o \ 2"\ 4-1 9/16" DIA HOLES // - [ _ _ m 3 a 0 E 8-S050408 a U 1 0 a a 6 U O n c a > 3/8 V 1-PL 1"x24"x2'-0" 0 0. 0 24"x24" COLUMN BASE PLATE Lt,' PRECAST STANDARDSw STANDARD EMBEDS COLUMN 0367.0 o i 2 § iii• ENCON ¢ Q P657 3 KR LL TK w U a DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION •,„ SUBMITTAL a FOR APPROVAL- NOT FOR CONSTRUCTION i= • E C N 0) U C Q (1) C C 0 U 0 C a 1-L6x6x3/8"xCY-6" } (1) O �V6 0 U "EXTERIOR' "INTERIOR" 0) C () C .U) 2-S060300 Lu 0) C 5/16 V 6 <EA p late 3/8 3 3 3/8 3 3 ( C PL "x4)2"x0'-4Y" lir I E202 3/8 V 4 1/2 <EAplate ' FULL GROUT i, T.O.GRADE BEAM Lip 8" O ce 111 r - c@1 = h _ 6-5040110 t>.z 0 111 kdPL Y2"x8"x1'-0" 5/16 ca Panel Base connection �9 Red Sandstone L o L (heavy) 6" LU LL a ENCON fik 9.3 a U DESIGN,LLC 06/26/2017 SHEET 1 OF 1 9.3.1 0) DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION 75 .„ SUBMITTAL A. OE FOR APPROVAL- NOT FOR CONSTRUCTION E D v) C CD '63 U C O U O C C 0 U 0 O` C a } 1-L6x6x3/8"x0'-6" U O v) V� i 2 >> J O �V6 U O phi Tn=0.9 x 60 x(2)x 0.44 in2 U =47.5k "EXTERIOR" "INTERIOR" 0) C N c CLU 2-S060300 phi Tn_83).52k>771 25k n (=1.5 x 47.5k) c 5/16 i/6 <EA plate O 3/8 3 3 3/8 3 „� 3r PL 3/8"x4 1/2"x4 1/2" phi Tn=0.9 x 36 x(2)x 0.375"x 4.5” 0 QD 1 1.111 = 109k N I E202 3/8 V 4 1/2 <EA p late FULL GROUT IC phi Tn=(2)x 4.5"x 8.35k/in � =75.15k>71.25k (=1.5 x 47.5k) e. T.O.GRADE BEAM _(� �SEE FOUNDATION PLAN 8" 4� 18 O 1.1 c@1 = h6-5040110 r z :c.,,,, 0 O. PL)12"x8"x1'-0" a 5/16 co phi Tn=0.9 x 60 x(6)x 0.20 in2 "'ll =64.8k N I phi Vn=(0.75/0.9)x 0.6 x 47.5k =23.75k phi Tn = 47.5k phi Vn = 23.75k czi Panel Base connection ° 6209 QRed Sandstone o L (heavy) a LL ENCON Iii U fik L. a 9.3 U DESIGN,LLC 06/26/2017 SHEET 1 OF 1 oT DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION SUBMITTAL o FOR APPROVAL- NOT FOR CONSTRUCTION E C 0) a U C 0 a C C 0 U 0 C 0 U 1'-0" PANEL 6" y 6" / CL CRIT DIM +1-1/8" 0 U 0 UERECTORS NOTE: USE TYPE HYIOL GROUT. C GRAVITY FILL INSTALLATION a I P916 a C OR 0) MI C W • C _ GROUT TUBES me TO INTERIOR D_ ■■` — FACE &TO FTG a VARIES Ca C = 0 G CO F901 Z � w 4zQ 0 cv 1S EN =900 C'V tT .IBJ kn 0 ¢I a Red Sandstone Shear wall tension connection 6209 LU Z fik e, 9.4 ENCON t 06/26/2017 DESIGN,LLC a SHEET 1 OF 1 9.4.1 �T DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION 1,7 SUBMITTAL FOR APPROVAL- NOT FOR CONSTRUCTION i= E C 0) a U C O a C C 0 U 0 C 0 U 1'-0" PANEL 6"1Tu 6" CL CRIT DIM +1-1/8" O phi Tn = 0.9 x 60 x 1.56 in2 T7) = 84.24k UERECTORS NOTE: USE TYPE HYIOL GROUT. C GRAVITY FILL INSTALLATION a I P916 C OR 0) MI C W V C _1 m1 GROUT TUBES �1 TO INTERIOR D_ ■11` _ FACE � TO FTG o VARIES \ _ 8) 0 `n CO F901 IzQ � m _ o C5 2 phi Tn = 84.24k 0 Red Sandstone Shear wall tension connection 6209 a LU ENCON Z fik o 9.4 0 U DESIGN,LLC t 06/26/2017 a SHEET 1 OF 1 DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION -0> SUBMITTAL FOR APPROVAL- NOT FOR CONSTRUCTION E C 0) T.) 0 C O O C C 0 U 0 C O U V O C � O <7 / 3/16/4 U O U E101 N 3/163 C 3/16 3 < .i) C w C O P200 P100 OR O ®i (I) 2 occi4V) (-kJ C C4 LU ci Tee to wall /spandrel connection o �y Z Red Sandstone w 6209 (light) LU Q ENCON Z fik 9.5 3 z 01-23-2018 DESIGN,LLC SHEET 1 OF 1 9.5.1 DRAWING STATUS REVISION# REVISION BY REVISION DATE JOB -USE 0 FOR CONSTRUCTION 1.22.13 ma10011...° • / 4" / a0 7%; U \O n 1-PL3/8"x4'x0-4" 5 z PRECAST STANDARDS w STANDARD EMBEDS - ERECTION MATERIAL o 0367.0 0 R l k a eENCON E101 3 ROBO JMJ 1.22.13 a O - 9.5.2 DRAWING STATUS REVISION# REVISION BY REVISION DATE JOB -USE 0 FOR CONSTRUCTION 6.20.12 % 1/2/ 3„ % 1/2/ 0 0 �O M 0 0 1-PL3/8"x6"x0'-6' 4-HCA1/2"x4" 0 Imo moo a a 6 TYP 5 0 u 0 � w a PRECAST STANDARDS STANDARD EMBEDS-GENERAL o 0367.C ogo ENCON ROBO w JMJ P 100 3 3 L. L. 9.5.3 DRAWING STATUS REVISION# REVISION BY REVISION DATE 1 REVISED-JOB- USE A RLO 9/11/2013 FOR CONSTRUCTION- DESTROY ALL PREVIOUS PRINTS 2.19.13 10. ::.7 ----,_ \ ____________________ __._..____ TYP> 1/410 / 4„ / 1/4 2 1 3/8" /, /2 5/8" V 1/4 I/ N co 7,0 CV ° 3 1/4"j� 3/4" 3 O 9 � N r N 2'-1 5/8" 0 / / a 0 1-HCA3/8"x13/8" Q 0 U 1 U i 3 1 PL3/8"x4"x0' 6" ^ 2-B040204.19A / \ w ZPRECAST STANDARDS STANDARD EMBEDS DOUBLE TEE o 0367.0 a N 3 U P200 U ogo ENCON _ROBO JMJ o -p 9.5.4 DRAWING STATUS REVISION# REVISION BY REVISION DATE REVISED-JOB- USE RLO 9/11/2013 FOR CONSTRUCTION- DESTROY ALL PREVIOUS PRINTS 1.11.13 * / 6' 1 1/2" / /4 1/2"/ 2-B040204.19B N / • c\I N V 1/4 -2 C TYP 1/4 I 2 /( 2 1/2" 0 9 1-HCA3/8"x 13/8" 1/4 V o - 1-PL3/8"x6"x0'-6" 0 � w a z PRECAST STANDARDS STANDARD EMBEDS- DOUBLE TEE 0367.C a ogo ENCON _ Q P201 3 ROBO w JMJ p U 9.5.5 DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION -0> SUBMITTAL FOR APPROVAL- NOT FOR CONSTRUCTION E C (3) T.) 0 C 0 U C C 0 U 0 C 0 N phi Tn=phi Vn=4"x 4.18 k/in C ► =16.72k O / 3/16 /4 C\ U 17) U / Eloll N 3/16 \3 phi Tn= 6"x 4.18 k/in=25.08k phi Tn= 15.89k(see 9.5.6) / 3/16 /3 C phi Vn= 10k(see 9.5.8) phi Vn= 13.75k(see 9.5.7) V u C Tu P200 I phi Tn= (2 x 0.90)x 60 x 0.20 cos 30° IP100 OR =18.7k O ®i phi Vn=(0.65+0.90)x 60 x 0.20 sin 30° =9.3 k 2 0 c4 uY r\ phi Tn = 15.89k phi Vn = 9.3k ci Tee to wall /spandrel connection �y Z Red Sandstone w (light) 6209 a ° Q 01E50 ENCON fik 9.5 3 z DESIGN,LLC 01-23-2018 SHEET 1 OF 1 9.5.6 PCI 6TH EDITION STUD CALCULATION Version 02042009 X (in)= 3 28 days strength fc' (ksi5 Concrete reduction factor(13.= 0.70 Y (in)= 3 Stud Dia. (in)= 0.5 Assume Concrete is Cracked?(Y/N) N del (in)= 12 #of tension stud= 4 Tension eccentricity e'N(in)= 1.0 de2(in)= 24 Stud Length hef(in)= 4 Breakout Strength: 4Ncb(k)= 15.89 de3 (in)= 12 Concrete weight factor X= 1.0 Pullout Strength: 4Ncp(k)= 92.51 de4(in)= 24 Side-face blowout: st•Nsb(k)= N/A Ne(k)= 15.89 4 Ns (k) = 38.29 a — a o de2 / 4 X 5' 4 del / c� D / 4 a� 4 4 / ] a 4 . ! 4 < - 4_ ' j N. © © © Z a a ›- .4 .4 I 4 11 00 0 a 4 4 4 4Q Q d 4 Fief \ PANEL 4a EDGE 9.5.7 PCI 6TH EDITION STUD CALCULATION Vers lon:02042009 X (in)= 3 28 days strength fc' (ksip 5 Concrete reduction factor i:1)= 0.75 Y (in)= 3 Stud Dia. (in)= 0.5 Assume Concrete is Cracked?(Y/N) N nX= 2 Total # of stud= 4 Shear eccentricity e'v(in)= 0.0 n,= 2 Stud Length hef(in)= 4 BED (in)= 15 del (in)= 12 Panel thk. h (in)= 10 SED/BED= 1.00 de2(in)= 24 Min.thk. h (in) = 5.5 Front edge shear: ifiVc3 (k)= 13.75 de3 (in)= 12 Concrete weight factor X= 1.0 Side edge shear: (13,Vcl (k)= 32.9528 de4(in)= 24 4 Vc (k)= 13.75 (I)Vs (k)= 33.18 4 a a a a a a a a Vu PANEL 4 -Vu, a a EDGE a a e'° 4 -A a aC. 4 0 4 \ • O O © a D a 4 ° 0 © © > , v 0 0 0 0 4 a a a o m a 0 0 0 Z a o / Xi ,I,X2 /n. a hef a4 a/ / de2>=del X 4 del a - / a - / - / / a C SED 9.5.8 U serForm 1 X WELD DESIGN 1 Y Forces&ecfentridty Vux=0 kips; ey1=0 in; ezl=0 in Vuy=10 lips; ex2=3in; ez2=0 in Vuz=0 kips; ex3=0 in; ey3=0 in % Mux=0.00 k-in; Muy=0.00 k-in; Muz=30.00 k-in; 0- Weld information Weld type:3 6 weld=3in; d weld=4 in; tw=0.1875 in Vux= kips ey1= in ezl= 0 in x weld=1.5000 in; y weld=2.0000 in; A weld=6.00; Ip weld=28.50 Vuy= 1kips ext= I— .3. ein ez2= in SxweldSyweldft=3.00; Syweldrightri12.00bot= =3.00 Vuz= 'o kips ex3= moin ey3= �" in Stresses Weld Configuration fxtop=-2.11ksifn; fxbot=2.11ksifn; — fy left=0.09 ksi f n; fy right=3.25 ksi f n; f Type 1 C Type 2 ['Type 3 y 6weld= in fzTopkeft=0.00 ksi f n; frTopflight=0.00 ksi f n; fiBotieft=0.00 ksi f n; fiBoWight=0.00 ksi fin; r Type 4 C Type 5 C Type 6 x dweld= in frMax=3.87 ksi fin; frMin=2.11 ksi fin; f Type 7 C Type 8 C Type 9 T tw= I ..875 in frMax=3.87 ksi fin <phi fn=4.18 ksi fin Weld is ok Compute Clear 0) DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION eA b- SUBMITTAL A. oE FOR APPROVAL- NOT FOR CONSTRUCTION E v) C (5) .T.) 0 C O } U a) c c O U b 0 a c O U O N r O U o U 0) N O E300 P224 c .(3 c LU CD _ q C r o o o CL / / 7„ 2-6030106.19A EMI 1 Elipp 1-L8x4x1/2 x0._9)2" Q Ern 3-B040106.17A F10" al 1/4 2 CV 1/4 r 9 2" 6" 1/4 2 6.Ed8„ ROUGHENED / X SURFACE ,\ I6" \ I 1-B030306.26A $ 11 N\ kff GO I O Co nn L \ �S 110 , AN - Red Sandstone w Floor tee bearing at wall ° o o 6209 a N LU ENCON fik 9.6 3 O LL DESIGN,LLC o 01-23-2018 - SHEET 1 OF 1 9.6.1 DRAWING STATUS REVISION# REVISION BY REVISION DATE JOB -USE A FOR CONSTRUCTION 1.22.13 ilihool,. N11. 6" / / 3 U a MI - g d i o - 0 d a a 6 U \O n u 5 a 0 1-PL3/8"x4"x0'-6" MASTICORD PAD Iv 0 ZPRECAST STANDARDS w STANDARD EMBEDS - ERECTION MATERIAL o 036 7.C o i R l P Q eENCON E300 3 ROBO JMJ 1.22.13 � U O - 9.6.2 DRAWING STATUS REVISION# REVISION BY REVISION DATE REVISED-JOB- USE RLO 9/11/2013 FOR CONSTRUCTION- DESTROY ALL PREVIOUS PRINTS 1.11.13 21/ 1/2"/ r N \\ o L I I I \ oC . I / /41/2"/ 1 1/2" 3 a D 9 2-S050202 N N `c,°0 6'• 36" 3/8 3 2-B060306.19A 3/8 3 3/8 w� 0 7- 1-P L3/8"x4"x0'-6" � w a PRECAST STANDARDS STANDARD EMBEDS- DOUBLE TEE 0367.C ogo ENCON P224 3 JIMD w JMJ 9.6.3 CONCRETE HAUNCH DESIGN PCI HANDBOOK 6TH EDITION Input Data: rp idh V„ (K)= 35.00 >30.5k Plate or a I� (=61.04k/2,see 2.3.5) Angle v Nu (K)= 6.00 As h (in.) = 12.00 1" b (in.) = 10.00d Yad Ip (in.) = 8.00 h d (Min.) ` (Max.] a (in.) = 6.00 l 1 d (in.) = 11.00 Framing A f'c(psi.) = 5,000 fy (psi.) = 60,000 i Welded w c(pcf.) = 150 Cross Bars • A= 1.00 = 1 Alternate Anchorage = 0.75 1, A, bar should be extended to the far face of the column. Provide fully developed A,bars by selecting the number of bars so that the bar size remains small Check concrete cross section: enough to ensure thatthe length, edh. Is provided (Design Aid 11.2.9). Max. (I)Vn (K)= 66 (O.K.) 2. Vertical length of a standard 90"hook is 12d Design Aid 11.2.9). The horizontal length of A Oar, edh, must be provided in order to use a standard 90"hook. It 3. may be assumed that the A5 bar is developed at the Reinforcement: outside face of the welded anchor bar when the A h bars are outside that point. Size of welded cross bar is same as A,bar. = MIN(MAXµe,1000Abhµ/V„)= 2.90 Asi (in2) _ (114fy)[V„(a/d)+N„(h/d)] = 0.57 (CONTROLS) Ase((3 4)x0 0.20in2 =0.60 in2 As2 (in2) = (1/0y)[(2VU/3µe)+Nu] = 0.31 As(MIN)(in2) = 0.04(f'c/fy)bd = 0.37 A„ (in2) = N„/pfy= 0.13 Ah (in2) = 0.5(As-An)= 0.2181818 Distributed within upper 7". Av (in2) =As*fy/(4*fy*2.4) = 0.316 (minimum total framing bar area) DRAWING STATUS REVISION REVISION BY REVISION DATE DESCRIPTION SUBMITTAL FOR APPROVAL- NOT FOR CONSTRUCTION i= E C m 0 C O U (1) C C O U — 0 C 0 O O O `I U O U E310 P224 .ice LU o N � I 0 10" 12"[ 8" 7" 2-B030110.19A 8" .11W1-L8x4x1/2"x09y" CC9 4-B040106.17A 10" M1 1/4 2 GC91/4 w' 2" 6" 1/4 2 cv C cr9 8" ROUGHENED \ / SURFACE „N I6" 11 8 " 1-B030306.26A �I \ 10 f I Z Red Sandstone LT, Roof tee bearing at wall620 9 o T, ° LU ENCON 3 fik 9.7 o DESIGN,LLC 01-23-2018 SHEET 1 OF 1 9.7.1 DRAWING STATUS REVISION# REVISION BY REVISION DATE JOB -USE 0 FOR CONSTRUCTION 1.22.13 / 6' / 3 a a0 `O- u i 0 d a a U \O n u 5 1-3/8"x4"x0'-6" CAPRALON PAD 0 2 Z PRECAST STANDARDS w STANDARD EMBEDS - ERECTION MATERIAL o 036 7.C o R l k a ENCON E310 3 RDA JMJ 1.22.13 � U O - 9.7.2 CONCRETE HAUNCH DESIGN PCI HANDBOOK 6TH EDITION Input Data: rp idh V„ (K)= 52.52 '52.39k Plate or a I� (=104.77k/2,see 2.2.11) Angle V, Nu (K)= 4.89 As h (in.) = 16.00 1" b (in.) = 10.00d Yad Ip (in.) = 8.00 h d (Min.) ` (Max.) a (in.) = 6.00 l 1 d (in.) = 15.00 Framing A f'c(psi.) = 5,000 fy (psi.) = 60,000 i Welded we(pcf.) = 150 Cross Bars • A= 1.00 = 1 Alternate Anchorage = 0.75 1, A, bar should be extended to the far face of the column. Provide fully developed A,bars by selecting the number of bars so that the bar size remains small Check concrete cross section: enough to ensure thatthe length, edh. Is provided (Design Aid 11.2.9). Max. (I)Vn (K)= 90 (O.K.) 2. Vertical length of a standard 90"hook is 12d Design Aid 11.2.9). The horizontal length of A Oar, edh, must be provided in order to use a standard 90"hook. It 3. may be assumed that the A5 bar is developed at the Reinforcement: outside face of the welded anchor bar when the A h bars are outside that point. Size of welded cross bar is same as A,bar. = MIN(MAXµe,1000Abhµ/Vu)= 2.90 Use(4)#4 bars, As1 (in2) = (114 fy)[V„(a/d)+Nu(h/d)] = 0.58 (CONTROLS) As=(4)x 0.20 in2 =0.80 in2 As2 (in2) = (1/0y)[(2V„/3µe)+Nu] = 0.38 AS(MIN)(in2) = 0.04(f'c/fy)bd = 0.50 An (in2) = NAfy= 0.11 Ah (in2) =0.5(As-An)= 0.2370193 Distributed within upper 10". Av (in2) =As*fy/(4*fy*2.4) = 0.324 (minimum total framing bar area) DRAWING S TATUS REVISION REVIS IONBY REVIS IONDATE DES CRIPTION ,,--.) o SUBMITTAL A E FOR APPROVAL- NOT FOR CONSTRUCTION E 3 U) c 0) 9-B050802.S 10 0• 10 10 r , Cl 16 r 716 22 C 46 8-B050306.17 o US } a.) �- L C pJ O O O O O O 0 oAZ2// _ _ o 1" CLEAR / c ,- \ �• 0 0 0 — o 0 o 0 0 O — - — 2Y2" (3) © 3" 2'_1" (3) ®3" 2" C / / / / / / C p 4'-0" / / 3 U T7 EOR NOTE, U PLEASE VERIFY DIMENSION EOR NOTE, c /A PLEASE VERIFY PLATE SIZE - /"� FOR FUTURE CONNECTION O 1 C c C LL w o:. ',1 N C Z • 1-6 6 \ 12in9" 1 P L l"x l'4"x l' 6"0 4" i � � 1-PL3/4"x6"xl'-6" ,r / 4-6070204.148 aCi IIfillk 1 E I`i 1/4 \ 12 soN 1/4 r 12 Ca7 aN7/16 1/\ - - i�\ 4-B070203.19A cs O > 8-S 040106 i- > TYP 7/16 C3 1/2 \ 7/16 31/2 8 \ 12 bs 64 I PSI I N N 5 Red Sandstone w SHEAR CONNECTION @ 8" panel 6209 o © FUTURE BRACED FRAME a ENCON fik o 9.8 3 L'.' DESIGN,LLC 02-26-2018 S HEET 1 OF 2 9.8.1 DRAWING S TATUS REVISION REVIS IONBY REVIS IONDATE DES CRIPTION D .,,--.) SUBMITTAL A E FOR APPROVAL- NOT FOR CONSTRUCTION E j U) C 0) . aN3 �' 0 s" C 0 \ \ \ \ o `� I 1 `o ,--^ M = = = —, C C \ I I o U \ & 3"04° 04° 04° 03° - ., / k k k / O> 0 ( 'k— -- 1 0 0 I ) o • O \ \ \ \ 0 C 0 L) EOR NOTE, 0 T3 PLEASE VERIFY PLATE SIZE U FOR FUTURE CONNECTION 0 C Lo 4) Lo .� c_ o� 0) w C -o w cp 9° 9„ / 6 \ c 1-P L 1"x l'-4"x l'-6" 4,. a2 \ 01 PL3/4"xb"x l' b" / 14-B070306.19A } \ Ii!1!J -I I I 4 Ii1i1i_�1_� i_� 2-5070304 t IIIIII•II•I 60 I!!ff •!— \ - 3MiTYP7/16 C3 1/2 N 1!1! s cv cs OC 10„ 8" A i g I gLiN 5 oQ Red Sandstone w SHEAR CONNECTION @ 8" panel 0 6209 @ FUTURE BRACED FRAME o ENCON fik o 9.8 3 .`<) DESIGN,LLC 02 26 2018 SHEET 2 OF 2 9.8.2 DRAWING S TATUS REVISION REVIS IONBY REVIS IONDATE DES CRIPTION ,6)-.) a CONCEPTUAL A E NOT FOR CONSTRUCTION E V) C al o V2= phi Vn x 3.5"/ 11.5" C = 0.30xphi Vn 0 t , J 1 1 o V2 < _ I 0 A 8'— —0. . . . 0 s.,_ - - — C 3 1/2" I 0 0 1- ) o V1 < phi Vn () 1 1 0 0 I ) U) V1 = phi Vn x 8"/ 11.5" o = 0.70 x phi Vn 3'-10" -f,3 _U a EOR NOTE, o PLEASE VERIFY DIMENS ION EOR NOTE, 0 A/A PLEASE VERIFY PLATE SIZE - FOR FUTURE CONNECTION o c DphiVn = [0.75x60x0.60in2x (4sin 60 +4)] /0.70 C LLQ = 287.86 k W H2 w N H2 U 6 w Q 1'-6" U m / 0 8 "4" 8" 1-PL3/4"xl'-6"xl'-6" 12 a / / / ' / / 4-6070204.148 L- 1-PL3/4"x6"xl'-6" V1 a 0 -111§1.11�� E _IIIIIII•I1\II_ _111�111•I1__1_ 1/4 v 12 '''°°"crt.2: k --,„, [[[777///1�ryryry��,j N _IIIIII1E11= 1/4 V 12 o o 1� I _1111111.11.1_ 6 . 1111=!x11=I - - e -11.1 MI_ c ii � _ . _ _ - N\ 4-B070203.19A 7/16 C33 1/21/2A TYP > 7/16 u 12 r al r_\ I 4 411I phiVn = 309k N Red Sandstone P SHEAR CONNECTION @ 8" panel `z6,° 609 o © FUTURE BRACED FRAME ENCON Z fik 9.8 cV DESIGN,LLC 01-23-2018 ' S HEFT 1 OF 2