HomeMy WebLinkAboutB17-0161_KRM Repsonse TOW Building Comments 06-30-17_1499293440.pdf KRM CONSULTANTS, INC. RECORD
P.O. Box 4572 • Vail,Colorado 81658 • 970-949-9391
TO: Wayne Hellwig (Safe Built)
Town of Vail reviewer
DATE: 06/30/2017 JOB NUMBER: 1702-08
PROJECT: 2655 Davos Duplex
RFI n MEETING NOTES IX RESPONSE n CLARIFICATION/CHANGE
Mr. Hellwig,
We are in receipt of your comments on the 255 Davos Duplex. Your comment pertaining to our design
was in regards to the prescriptive requirements of R602.10 or IBC 2308. This section of the IRC is a
prescriptive method in the IRC that allows for a simplified wind loading design. The design of this
structure cannot use the method described in IRC 60.12.3, primarily due to the structure not fitting into a
60'x60' box. In order to design for the lateral wind loading this house was evaluated using the 2015 IBC
(International Building Code) and the corresponding wind load in ASCE 7-10. The wind load for this
location is 115MPH and is a Risk category 2 structure. To resist the wind load this house uses a steel
moment frame and a series of engineered shear walls that are detailed in the plans dated 06/1312017.
This type of lateral design for wind is common in Eagle County due to the custom nature and size of the
homes that are not suitable for the simplified methods described in the IRC.
I have provided wind calculations and the moment frame design for the structure.
Please let us know if you have any additional questions or comments regarding the lateral design for this
residence.
SIGNED: COPY TO:
1 i
Mark T. Newman
F�PDORE0/S1 N
REVIEWED: 4 •.......
. ;53 !i
Tim D. Hennum, P.E. r • .•rz •vSIONPA
��
JUN 3O 2017
Mark`Newrnanr{KRMfConsultants Inc
Project Name: 2655 Davos Duplex
Project No: 0702-08
Completed By: . MTN
Date: 4/1/2017
This worksheet is intended to aid in the calculation of design wind loads to be placed on the main wind force resisting
system(MWFRS)of an enclosed building. Calculations proceed according to ASCF7-10,Sections 27.4.1 and
27.4.2-directional procedure for MWFRS of rigid or flexible buildings of all heights,enclosed building.
ASCE 7-10 Reference:
Building Geometry:
Building Width= 86 ft
Building Length= 50 ft
Building Height,z= 20 ft
Mean Roof Height,h= 20 ft VCS. S�Mct' 134.0 Co 1AIT K[
Roof Pitch= 3 /12
Roof Angle, 8= 14.04 degrees
Wind Pressure:
Building Classification= II [Table 1.5-1,pg 2]
Wind Speed,V= 115 mph [Figures 26.5-1A,B,or C,pp 247-49]
Exposure Category= B [Section 26.7.3,pg251]
Wind Directionality Factor,Kd= 0.85 [Table 26.6-1,pg2501
Velocity Pressure Exposure Coefficient,K h= 0.66 [Table 27.3-1,pg261]
Velocity Pressure Exposure Coefficient,K = 0.66
Topographic Factor,lc= 1.00 [Section 26.8.1,pg251]
Velocity Pressure:
q2=0.00256*K,*Ku**Kd*V2*I= 18.99 psf [Eq.27.3-1,pg260]
qh=0.00256*Kb*K,,*Kd*V2*I= 18.99 psf [Eq.27.3-1,pg260]
q=q 2 for windward walls evaluated at height z above the ground.
q=q h for leeward walls,side walls,and roofs evaluated at mean roof height h above ground.
q. =q h for windward walls,leeward walls,side walls,and roofs of enclosed buildings.
Wind pressure:
p=q*(G*Cp)-qi*(GCv) psf [Eq.27.4-1,pg260]
[Eq.27.4-2,pg262]
Gust Effect Factor,G= 0.86 [Section 6.5.8.1,pg26]
Internal Pressure Coefficient,GC ;= 0.18 (+/-) [Fig.26.11-1,pg258]
External Pressure Coefficient,Cp= * [Fig.27.4-1,pg2641
*See tables below for the calculation of C
Created:11/28/12 6/30/2017
ASCE 7-10 MWFRS.xls By:ADH Page 1 of 3
a
II
1
1
Wall Wind Loads(psf)
External GC
Internal Total
Wind Direction L/B Cp s
Pressure2 Pressure Pressure
Windward 0.58 0.8 13.07 0.18 3.42 9.65
Building Dimension, -0.18 -3.42 16.49
B,Normal to Wind 0.18 3.42 -11.59
Leeward 0.58 -0.50 -8.17
Direction= -0.18 -3.42 -4.75
ii
86 ft Side 0.58 -0.7 -11.43 0.18 3.42 -14.85
-0.18 -3.42 -8.02
Windward 1.72 0.8 13.07 0'18 3.42 9.65
Building Dimension, -0.18 -3.42 16.49
B,Norma! to Wind 0.18 3.42 -9.23
Leeward 1.72 -0.36 -5.81
Direction= -0.18 -3.42 -2.40
50 ft Side 1.72 -0.7 -11.43 0.18 3.42 -14.85
-0.18 -3.42 -8.02
Notes:
1.) Definition of terms:
B=Horizontal dimension of building(ft)measured normal to wind direction.
L=Horizontal dimension of building(ft)measured parallel to wind direction.
h=Mean roof height(ft)(used in roof wind load tables below).
8 =Angle of plane of roof from horizontal,in degrees(used in roof wind load tables below).
2.) External pressure=q*(G*Cp)
For use with diaphragm design-apply both windward and leeward pressures
at the same time to the diaphragm.
(Internal pressures cancel each other out and hence do not contribute to diaphragm loading.)
3.) Total pressure=q*(G*Cp)-qi*(GCpi)
For use with the design of individual components(e.g.out-of-plane design of a wall).
This is the sum of the internal and external pressures acting normal to a given wall
such that positive external pressure and negative Internal pressure act in the same direction,
and vice versa.
For example,the larger of the two total pressures shown for each wall surface represents
the critical load case for out-of-plane wall design.
Created:11/28/12 6/30/2017
ASCE 7-10 MWFRS.xls By:ADH Page 2 of 3
i.!
Roof Wind Loads(psf)1
External Internal Total
Wind Direction h IL. Cr, , GCni
Pressure" - Pressure Pressure
3
0.18 3.4 -14.2
a)) . -0.66 -10.8
".0 o -0.18 -3.4 -7.3
c c:, Windward 0.40
0.18 3.4 -5.4
• Al -0.12 -2.0
-0.18 -3.4 1.4
E a.2
8 .2 0.18 3.4 -11.3
2 Leeward 0.40 -0.48 -7.9
-0.18 -3.4 -4.5
..V;',.. ',,;!':•-',::''' '' :i.7. :,, ,':;.-.„'-',.;.''''. ;.;:;..':6-''.;-`..`,.'''.''. -:.; .">:',:\r, !/J;...i.',U:.`:..' '-:1.----:',.,..: -.,.y r. -; :;,.:•\.'
-0.90 -14.7 0.18 3.4 -18.1
Do
Building Dimension, 72 0t0h/2 0.40 -0.18 -3.4 -11.3
B,Normal to Wind .p., 0.18 3.4 -6.4
-0.18 -2.9
Direction= IJ -0.18 -3.4 0.5
86 ft 72
to -0.80 -13.1 0.18 3.4 -16.5
0.
-0 -0.18 3.4- 9.6-
O h/2t0 h 0.40
co 0.18 3.4 -6.4 .,
o co -0.18 -2.9
R - -0.18 -3.4 0.5
0 To
N-1
v -0.50 -8.2 0.18 3.4 -11.6
8
-0.18 -3.4 -4.7
h to 2h 0.40
-0.18 -2.9 0.18 3.4 -6.4
ho
72 -0.18 -3.4 0.5
.
0.18 3.4 -8.3
2 -0.30 -4.9
To' >211 0.40 -0.18 -3.4 -1.5
E
-0.18 -2.9 0.18 3.4 -6.4
8
z -0.18 -3.4 0.5
10
-0.54 -8.8 0.18 3.4 -12.2
tai.
7 cz! -0.18 -34 -54
c o Windward 0.23
• Al -0.03 -0.6 0.18 3.4 -4.0
E '2 -0.18 -3.4 2.9
0.18 3.4 -11.0
8 '2 Leeward 0.23 -0.46 -7.5
Z -0.18 -3.4 -4.1
],..-.. .,.?:ti!:;i:', ... ...:' • :-;:',*.';': :;-: ' ',.":.':;';-.';;;;•;, :.,'.?' ':'";21:::: :-...'... .- 0.,-;.'''..,'..,..',A''''' '--.;.';'-''.'.:.'-''S' :.':: :''''..,''' ''' '''.''''-;'' '':-')::`':.'.
a) 0.18 3.4 -18.1
hp
Building Dimension, .r.. -
O 0 to h/2 0.23 -0.90 -14.7 0.18 -3.4 -11.3
B,Normal to Wind ... 0.18 3.4 -6.4
To
Direction= -0.18 -2.9 -0.18 -3.4 0.5
13.
50 ft CO 0.18 3.4 -16.5
0. -0.80 -13.1
-0
h/2toh 0.23 -0.18 -3.4 -9.6
c
tu 0.18 3.4 -6.4
1, 0 • -0.18 -2.9
•
-0.18 -3.4 0.5
0 TD
t-c ,
v
0.18 3.4 -11.6
.0 -0.50 -8.2
s"
h to 2h 0.23 -0.18 -3.4 -4.7
16
.4- 0.18 3.4 -6.4
w -0.18 -2.9
ho -0.18 -3.4 05
7.,
2 -0.30 4.9
0.18 3.4 -8.3
-
2h 0.23 -0.18 -3.4 -1.5>
-0.18 -2.9 0.18 3.4 -6.4
8
Z -0.18 -3.4 0.5
Notes:
1.) See table notes on previous page.
Created:11/28/12 6/30/2017
ASCE 7-10 MWFRS.xls By:ADH Page 3 of 3
ti` ti Mark Newman (KRM - s ntS Inc.)
Project Name: 2655 Davos Duplex
Project No: 1702-08
Completed By: MTN
Date: 4/112017
This worksheet is intended to aid in the calculation of the gust effect factor to be used in the design of the
main wind force resisting system(MWFRS)of enclosed and partially enclosed buildings. Calculations proceed
according to ASCE7-10,Section 29.9.
ASCE 7-10 Reference:
Building Geometry:
Building Width= 86 ft
Building Length= 50 ft
Building Height,z= 20 ft
Mean Roof Height,h= 20 ft
Wind Pressure:
Basic Wind Speed(3-sec Gust),V= 115 mph
Terrain Exposure Coefficients: [Table 26.9-1,pg2551
3-sec Gust Power Law Exponent, a= 7
Nominal Atm Boundary Layer Height,zg= 1200 ft
Reciprocal of a,ahat= 0.143
3-sec Gust Speed Factor,b hat= 0.84
Mean Hrly Power Law Exponent, abar= 0.250
Mean Hrly Wind Speed Factor,b bar= 0.45
Turbulent Intensity Factor,c= 0.30
Integral Length Scale Factor,I= 320 ft
Integral Length Scale Power Law Exp, Ebar= 0.333
Exposure Constant,zmin* = 30 ft
Equivalent Height of Structure,z bar= 30 ft (Section 26.9.4,pg254)
Created: 11/28/12 6/30/2017
ASCE 7-10 MWFRS.xls By:ADH Page 1 of 3
Rigid Structures: jSection 26.9.4,pg2541
•
Turbulent Intensity at height zbar, I ib,r= 0.305 [Eqn 29.9-7,pg254]
Peak Factor for Background Response,g Q= 3.4
Peak Factor for Wind Response,g = 3.4
Integral Length Scale of Turbulence,L zbar= 310 [Eqn 26.9-9, pg255]
Bldg Dim Normal to Wind,B= 86 ft
Mean Roof Height,h= ,20 ft
Background Response,Q= 0.870 [Eqn 26.9-8,pg255]
r.m ,.y�r ...,.,. 7rt"'^
w_Calculated Gust Effect Factor,G6ic r�-Y4 0848' [Eqn 26.9-6,pg254]
•
Bldg Dim Normal to Wind,B= 50 ft
Mean Roof Height,h= 20 ft
Background Response,Q= 0.896 [Eqn 26.9-8,pg255]
[7-
ryCalculatii Gust EffectFactor,Gm�c ,y 0•863 [Eqn 26.9-6,pg254]
Flexible or Dynamically Sensitive Structures: jSection 26.9.5,pg255]
Building Natural Frequency,n1= 2 Hz [Sections 26.9.2,26.9.3,pg254]
Building Damping Ratio, 13= 0.05 . [Section C26.9,pg521]
Peak Factor for Background Response,g Q= 3.4
[Section 26.9.5,pg255]
Peak Factor for Wind Response,g = 3.4 [Section 26.9.5,pg255]
Peak Factor for Resonant Response,g R= 4.4 [Eqn 26.9-11, pg2551
Mean Hourly Wind Speed,Vbarzbar= 74 [Eqn 29.9-16,pg255]
Reduced Frequency,Ni= 8 Hz [Eqn 26.9-14,,pg255]
Coefficient,R;,= 0.0365 [Eqn 26.9-13,pg255]
Bldg Dim Normal to Wind,B= 86 ft
Bldg Dim Along Wind,L= 50 ft
Mean Roof Height, h= 20 ft
Coefficient,Th3= 10.68 [Eqn 26.9-15,pg255]
Coefficient,rl4= 20.78
Coefficient,rlh= 2.48
Coefficient,Re= 0.089
Coefficient,RL= 0.047
Coefficient,Rh= 0.322
Resonant Response Factor, R= 0.108 [Eqn 26.9-12,pg255]
Calculated Gust Effect Factor,G oak 0 85 [Eqn 26.9-10,pg255]
Created: 11/28/12 6/30/2017
ASCE 7-10 MWFRS.xls By:ADH Page 2 of 3
Flexible or Dynamically Sensitive Structures: jSection 6.5.8.2,og2551
Bldg Dim Normal to Wind,B= 50 ft
Bldg Dim Along Wind,L= 86 ft
Mean Roof Height,h= 20 ft
Coefficient,la= 6.21 [Eqn 6-13,pg255]
Coefficient,1L- 35.74
Coefficient,•nh= 2.48
Coefficient, RD= 0.148
Coefficient, RL= 0.028
•
Coefficient, R h= 0.322
Resonant Response Factor,R= 0.137 [Eqn 26.9-12,pg255)
Gust Effect Factor;6"61e rEqn 26.9-10,pg2551
Created: 11/28/12 6/30/2017
ASCE 7-10 MWFRS.xls By:ADH Page 3 of 3
s _
Y Code Ch dk
N}Ca c
1A
X 90-1.0
75-1.0
00-75
41)10
0-s0
0,/
01 54'6 7yev-81.,---ei
ti .51117 41) ft
M5
18.3
t:.9
• W14X26
-16.1
-18.1
-23 31.1)
'4-
7.. c-2ZO
i1. 6' �K GlLL67 wt A'S
•
70P /3a7 ' Z ,t
"X y% x o,�5
r
S
-1w ty
41 7O L1/L k vki\
-1 5
1.7
6 L lid Os a k}
3.6
Loads;BLC 4,WIND LOAD
Results for LC 2,.60L+W
Member Bending Moments(k-fl)
Reaction units are k and k-ft
KRMMOMENT FRAME 1
MTN 1 June 5, 2017 at 4:50 PM
MOMENT 1.R2D
Beam: 'l M
Shap ' r 4X26
Materia. 1.694 at 0 ft
Length:
I Joint: N
J Joint: N5 A IIIIIIIMIIIIIIII k
LC 2: .6DL+W
Code Check: 0.38 (i ' il g)
Report Based On 97 S oMr s
,o)
Itt„ 2.116 at 0 ft
V k
.22atOft
4/44°' .
fa
Ole
-3.431 at 15 ft
7.921 atOft .46 - .15ft
M -'. . k-ft
E r
'tiorlp
i a 1�
fc ksi = � .
.008 at 9.219 ft -23.254 at 0 ft IS%
OA
.008at9.219ft .001 at0ft IF
ft ksi D = int
-7.921 at 0 ft -.041 at 4.688 ft
AISC ASD 9th Ed. Code Check
Max Bending Check 0.382 Max Shear Check 0.048
Location 0 ft Location 15 ft
Equation H1-3 Max Defl Ratio L14340
Compact
Fy 50 ksi Out Plane In Plane
Fa 5.34 ksi Cm .85
Ft 30 ksi Lb 15 ft 15 ft
Fb 23.265 ksi KLIr 167.223 31.89
Fv 20 ksi Sway No No
Cb 2.3 L Comp Flange 15 ft
{
1 Colum ' ,:l
Shap; -..,R S5.5X5.5X6 .03 at 10.833 ft
Materia. ,10.4 r.46iiimir
Length: A k
I Joint: N
J Joint: N3 i-
LC2: ,6DL+W
Code Check: 0.60 ( = g) -2.083 at 10.698 ft
Report Based On 97 S=, -��s
00)It stie,
3.2 at 10.833 ft
.004 at 10.833 ft 4"
fa
-.303 at 10.698 ft
imok♦V k
1.506 at 0 ft
17.918 at 10.698 ft ; ' 3 at 10.833 ft
M s x k-ft
fc ksi
-16.111 at 10. 9
XSIN
ir
ft ksi D in
I
-17.918 at 10.698 ft -1.586 at 13 ft
AISC ASD 9th Ed. Code Check
Max Bending Check 0.601 Max Shear Check 0.045
Location 10.698 ft Location 10.833 ft
Equation H2-1 Max Defl Ratio L1425
Compact
Fy 46 ksi Out Plane In Plane
Fa 18.917 ksi Cm .6
Ft 27.6 ksi Lb 13 ft 13 ft
Fb 30.36 ksi KLIr 75.078 75.078
FN/ 18.4 ksi Sway No No
Cb 1 L Comp Flange 13 ft
_,!
CodeCheck
r_eTl-y_ry K I':�Cak
90..1.1.
0
elk
5.90
—1�1►11r401)? 7.5500
0.:50
.75
040) 14
Norieir�
•
ti
04) i
t -C3/� f; I/
77:5
-9.333c
It
29.6
T c�= 66.Z k,ps •
10
. %.9 41tL.LS GA pitta-,4k c-0
GfZ
s
0.9iict,s at3/'t F(Li_e-r l,tZb
K
.
toX
V
I
a74 ' CAP $.. 3/; 6wIK y
= v, s
s ,
fiNi` 1 r �" 2cw t.) NI,
I
34'4
t
r s. Q07, Q.,
kk 5"X Orb
-6,
7.2
s 2.1
3,4 el
pl'1 =
i r
,i . ,,
i?O.& Iii.
(a} `e 7/0u-36.-1S
9
f
a
R
f
f
,
Loads:BIC 4,WIND LOAD t
Results for lC 2,.6DL+W
Member Betiding Moments(k-fl)
Reaction units are k and k-ft
KRM I MOMENT FRAME 2 i •
MTN E
June 6, 2017 at 11:12 AM
MOMENT 2.R2D
Project:2655 Davos Roof StruCalc Version 9.0.2.5 6/30/2017 11:30:05 AM page
Location 12-6 tall studs
Column
[2015 Intiernational Building Code(2012 NDS)] JJ CAS( CkSr?'� Loa PM)4 °f
1.5 INx5.5INx12.5FT@16O.C.
#2-Dougias-Fir-Larch-Dry Use
Section Adequate By:51.6%
DEFLECTIONS LOADING DIAGRAM
Deflection due to lateral loads only: Defl= 0.44 IN=L/341
Live Load Deflection Criteria: L/180
VERTICAL REACTIONS !
Live Load: Vert-LL-Rxn= 1173 lb ,
Dead Load: Vert-DL-Rxn= 196 lb B
-
Total Load: Vert-TL-Rxn= 1369 lb _
HORIZONTAL REACTIONS s`
ig
Total Reaction at Top of Column: TL-Rxn-Top= 167 lb
Total Reaction at Bottom of Column: TL-Rxn-Bottom= 167 lb +. ,
COLUMN DATA °
Total Column Length: 12.5 ft
Unbraced Length(X-Axis)Lx: 12.5 ft
Unbraced Length(Y-Axis)Ly: 0 ft
Column End Condtion-1<(e): 1 'N
Axial Load Duration Factor 1.00 12.5 ft .'t,i,..,-' is
Lateral Load Duration Factor(Wind/Seismic) 1.33
COLUMN PROPERTIES
#2-Douglas-Fir-Larch z
l$:,4:1
Base Values Adjusted
Compressive Stress: Fc= 1350 psi Fc'= 591 psi << �
Cd=1.33 Cf=1.10 Cp=0.30 a ti
Bending Stress(X-X Axis): Fbx= 900 psi Fbx'= 1790 psi n<,
Cd=1,33 CF=1.30 Cr-1.15 C1=1.00 41
Bending Stress(Y-Y Axis): Fby= 900 psi Fby'= 1790 psi
Cd=1.33 CF=1.30 Cr-1.15
Modulus of Elasticity: E= 1600 ksi E= 1600 ksi A
Column Section(X-X Axis): dx= 5.5 in AXIAL LOADING
Column Section(Y-Y Axis): dy= 1.5 in Live Load: PL= 880 plf
Area: A= 8.25 in2 Dead Load: PD= 130 plf
Section Modulus(X-X Axis): Sx= 7.56 in3 Column Self Weight: CSW= 22 plf
Section Modulus(Y-Y Axis): Sy= 2.06 in3 Total Load: PT= 1032 plf
Slenderness Ratio: Lex/dx= 27.27
Ley/dy= 0 LATERAL LOADING (Dy Face)
Uniform Lateral Load: wL-Lat= 20 psf
Column Calculations(Controlling Case Only):
Controlling Load Case:Axial total Load and Lateral loads(D+0.75[L+W]
Actual Compressive Stress: Fc= 130 psi
Allowable Compressive Stress: Fe= 591 psi
Eccentricity Moment(X-X Axis): Mx-ex= 0 ft-lb
Eccentricity Moment(Y-Y Axis): My-ey= 0 ft-lb
Moment Due to Lateral Loads(X-X Axis): Mx= 391 ft-lb
Moment Due to Lateral Loads(Y-Y Axis): My= 0 ft-lb
Bending Stress Lateral Loads Only(X-X Axis): Fbx= 620 psi
Allowable Bending Stress(X-X Axis): Fbx'= 1790 psi
Bending Stress Lateral Loads Only(Y-Y Axis):Fby= 0 psi
Allowable Bending Stress(Y-Y Axis): Fby'= 1790 psi
Combined Stress Factor: CSF= 0.48
NOTES
Project: 655 Davos Roof StruCalc Version 9.0.2.5 6/30/2017 11:30:40 AM page
Location 14'-6 tall studs
Column
[2015 Int-enational Building Code(2012 NDS)] of
1.5 IN x 55 IN x 14.5 FT @ 12 0.C. (06g_s-r CAS 4.01%.0144)C.%
#2-Dou0s-Fir-Larch-Dry Use
Section Adequate By:51.1%
DE ELF G IONS LOADING DIAGRAM •
Deflectia4due to lateral loads only: Defl= 0.6 IN=L/291
Live Load Deflection Criteria: L1180
VERT1 AL EACTIONS t
Live Load Vert-LL-Rxn= 880 lb
Dead Load: Vert-DL-Rxn= 156 lb B
Total Load: Vert-TL-Rxn= 1036 lb
•HORIZOITAL REACTIONS ;
Total Reaction at Top of Column: TL-Rxn-Top= 145 lb P4
Total Reaction at Bottom of Column: TL-Rxn-Bottom= 145 lb ''
41
COLUM NDATA
Total Column Length: 14.5 ft
UnbracedLength(X-Axis)Lx: 14.5 ft
UnbracedLength(Y-Axis)Ly: 0 ft
Column End Condtion-K(e): 1 ,.'5_
Axial Load Duration Factor 1.00 14.5 ft `'
Lateral Load Duration Factor(Wind/Seismic) 1.33
COLUMN PROPERTIES:
•
#2-Douglas-Fir-Larch :... ;Base Values Adjusted `"p`'
Compressive Stress: Fc= 1350 psi Fc'= 450 psi
Cd=1.33 C1.10 Cp=0.23 ''4
f
Bending Stress(X-X Axis): Fbx= 900 psi Fbx'= 1790 psi "
Cd=1.33 CF=1.30 Cr=1.15 CI=1.00 '
Bending Stress(Y-Y Axis): Fby= 900 psi Fby'= 1790 psi
Cd=1.33 CF=1.30 Cr=1.15
Modulus of Elasticity: E= 1600 ksi E'= 1600 ksi A
•
Column Section(X-X Axis): dx= 5.5 in AXIAL LOADING
•
Column Section(Y-Y Axis): dy= 1.5 in Live Load: PL= 880 plf
Area: A= 8.25 in2 Dead Load: PD= 130 plf
Section Modulus(X-X Axis): Sx= 7.56 in3 Column Self Weight: CSW= 26 plf
Section Modulus(Y-Y Axis): Sy= 2.06 in3 Total Load: PT= 1036 plf
Slenderness Ratio: Lex/dx= 31.64
Ley/dy= 0 LATERAL LOADING (Dy Face)
Uniform Lateral Load: wL-Lat= 20 psf
Column Calculations(Controlling Case Only):
Controlling Load Case:Axial total Load and Lateral loads(D+0.75[L+W]
Actual Compressive Stress: Fc= 99 psi
Allowable Compressive Stress: Fc'= 450 psi
Eccentricity Moment(X-X Axis): Mx-ex= 0 ft-lb
Eccentricity Moment(Y-Y Axis): My-ey= 0 ft-lb
Moment Due to Lateral Loads(X-X Axis): Mx= 394 ft-lb
Moment Due to Lateral Loads(Y-Y Axis): My= 0 ft-lb
Bending Stress Lateral Loads Only(X-X Axis):Fbx= 626 psi
Allowable Bending Stress(X-X Axis): Fbx'= 1790 psi
Bending Stress Lateral Loads Only(Y-Y Axis):Fby= 0 psi
Allowable Bending Stress(Y-Y Axis): Fby'= 1790 psi
Combined Stress Factor: CSF= 0:49
NOTES
•
1
Project: 655 Davos Roof StruCalc Version 9.0.2.5 6/30/2017 11:31:18 AM page
Location. lr-4 tall studs
Column LA/ 0(01 .CAS E 40 N 0 I AlC4 of
[2015 Int.erlational Building Code(2012 NDS))
(2) 1.5 1*NK 5.5 IN x 17.33 FT@ 16 0.0.
#2-Douglas-Fir-Larch-Dry Use
Section Adequate By:42.1% KID 6100s / -9.4.1.,60- a
cAUTioNs
*Laminatians to be nailed together per National Design Specifications for Wood Construction Section 15.3.3.1
DEFLECMONS LOADING DIAGRAM
Deflection due to lateral loads only: Defl= 0.81 IN=L1256
Live Load Deflection Criteria: L/180
VERTICAL REACTIONS
Live Load: Vert-LL-Rxn= 1173 lb• B
Dead Load: Vert-DL-Rxn= 235 lb
Total Lvad: Vert-TL-Rxn= 1409 lb —
HORIZONTAL REACTIONS
Total Reaction at Top of Column: TL-Rxn-Top= 231 lb 4
Total Reaction at Bottom of Column: TL-Rxn-Bottom= 231 lb
COLUMN DATA
Total Column Length: 17.33 ft.
Unbraced Length(X-Axis)Lx: 17.33 ft •
Unbraced Length(Y-Axis)Ly: 0 ft
Column End Condtion-K(e): 1
Axial Load Duration Factor 1.00 17.33 f
Lateral Load Duration Factor(Wind/Seismic) 1.33 ,
COLUMN PROPERTIES s �k
#2-Douglas-Fir-Larch "•
Base Values Adiusted
Compressive Stress: Fc= 1350 psi Fc'= 321 psi
Cd=1.33 Cl`=1.10 Cp=0.16
Bending Stress(X-X Axis): Fbx= 900 psi Fbx'= 1790 psi
Cd=1.33 CF=1.30 Cr=1.15
Bending Stress(Y-Y.Axis): Fby= 900 psi Fby'= 1790 psi
Cd=1.33 CF=1.30 Cr=1.15 — _
Modulus of Elasticity: E= 1600 ksi E= 1600 ksi A
Column Section(X-X Axis): dx= 5.5 in AXIAL LOADING -
Column Section(Y-Y Axis): dy= 3 in Live Load: PL= 880 plf
Area: A= 16.5 in2 Dead Load: PD= 130 plf
Section Modulus(X-X Axis): Sx= 15.13 in3 Column Self Weight: CSW= 62 plf
Section Modulus(Y-Y Axis): Sy= 4.13 in3 Total Load: PT= 1072 plf
Slenderness Ratio: Lex/dx= 37.81
Ley/dy= 0 LATERAL LOADING (Dy Face)
Uniform Lateral Load: wL-Lat= 20 psf
Column Calculations(Controlling Case Only):
Controlling Load Case:Axial Dead Load and Lateral loads(D+W or E)
Actual Compressive Stress: Fc= 14 psi
Allowable Compressive Stress: Fc'= 321 psi
Eccentricity Moment(X-X Axis): Mx-ex= 0 ft-lb
Eccentricity Moment(Y-Y Axis): My-ey= 0 ft-lb
Moment Due to Lateral Loads(X-X Axis): Mx= 1001 ft-lb
Moment Due to Lateral Loads(Y-Y Axis): My= 0 ft-lb
Bending Stress Lateral Loads Only(X-X Axis): Fbx= 794 psi
Allowable Bending Stress(X-X Axis): Fbx'= 1790 psi
Bending Stress Lateral Loads Only(Y-Y Axis):Fby= 0 psi
Allowable Bending Stress(Y-Y Axis): Fby'= 1790 psi
Combined Stress Factor: CSF= 0.47
NOTES
F.
1
KRM CONSULTANTS, INC. JOB 1762`0 8 Z6 65 DA/0,5 d d1L6
P.O. Box 4572
Vail, Colorado 81658 SHEET NO. OF i.
(970) 949-9391 CALCULATED 13Y MTA/ DATE C/i°Ii7
www.krmconsultants.com
CHECKED BY DATE
3 004.44 & WALL. CA L co L417 J SCALE
2 3 ',1 ., 6 '1 0 I :3 .. „ ., c ,. - 1, f y. '1 .1 ., „ 1 i 1 3 5 ., 0 1 2 3
Z.A-t,cP.qq I ,b - p �r .._ Cid-7tie- eU Pressure. r ce+6,14m .S+r.ctures seperuie F
,7 4J{�/Y �� G
�M'orA (es �f Yl[
,_ G) ,AA • V
i(— "z / g 2. kh-
N I OW Zr (Moto t
1
1 1
$lo lbs
- �`" z [3' AMG
�a��d 512E
,
F,
/62 33
OD°REGI° s
r 0 sj.
1
/i • �Flrl
i : 34167
ff�0°° t(c. 0"
Iii�s rOrr rrr°.+°\'i
‘e1��ONA4 �\G
JUN 3 0 211
,
„
I ,
,,
1
I
1
3
3
i
1
0 PRODUCT 207