Loading...
HomeMy WebLinkAbout2004 Preliminary Drainage Report - Lionshead Core I I I I I PRELIMINARY DRAINAGE REPORT I I LIONSHEAD CORE VAIL, COLORADO IAugust 2004 I I I I I I I Prepared for: Vail Resorts Development Company I P.O.Box 959 Avon,CO 81620 I Prepared by: Alpine Engineering, Inc. P.O. Box 97 Edwards,Co 81632 1 (970)926-3373 TABLE OF CONTENTS I. Vicinity Map P ' II. Introduction III. Drainage Basins 1 ' IV. Peak Flow Determination 2 V. Detention and Pollution Control 3 VI. Floodplain 3 VII. Summary 3 VIII. Table 1 —Existing and 2004 Pipe Capacity Summary Table 2—Developed 2005 Pipe Capacity Summary ' IX. Appendices: Appendix A - STORM DRAINAGE CALCULATIONS ' - Existing and 2004 Storm Drain Calculations - Developed 2005 Storm Drain Calculations ' X. Maps: Sheet 1 —Existing Conditions Drainage Area Map Scale 1"= 30' Sheet 2—Construction 2004 Drainage Area Map Scale 1"= 30' ' Sheet 3 —Construction 2005 Drainage Area Map Scale 1"= 30' Sheet 4—Existing Conditions Overall Drainage Area Map Scale 1"= 60' Sheet 5 —Construction 2005 Overall Drainage Area Map Scale 1"= 60' 1 I ' August 2004 Lionshead Core Drainage SOU-11-1 MARRIOTT FR T ONAQE L HOTEL ROAM EAST WEST LIONSHEAM I LIONSHEAM CIRCLE LIONSHEAM CIRCLE PARKINQ LIONSHEAM STRUCTURE IPLACE X0-1• V ■IL \ s■011.1j Amor 1 ,rv.. , / rAir, q , ,. 0 0 - I ■I0 ° E:: ),c7, VA [63c`3 i= ° n . ei) 14, 1 I °R _c- O em it r _,ii Fr/ -\ rilifr i,------___________ 17/ ‘ V11 "II I 91 :-PROJa . o 10 \01 „ _____ SITE o 4 IF C1 -- ----CREEK " j..) CI ri)C1 0 $->:,_---) c:3, 0 1=0 0 I I\ f C LT D " 0 cl a c:23 lb ° ❑ a 0 � � n o o rso , a ..4 a`" O O o ° ae6o a o �4 IJ o o # moo 1 Po ❑' / ,t000•/ FOREST \/ EAQLE ROAM _ - N I ir ill NMOLA CHAIR 8 L ^ ., I ! I VICINITY MAP SCALE 1 s 400' I ' II. Introduction The Lionshead Core project is proposed to replace several buildings in the central ' area of Lionshead. The entire existing old Gondola building and the Sunbird Lodge are ' proposed to be removed. In their place three new buildings, which have an underground parking structure, and an ice rink are proposed. Initial construction, which is expected in the fall of 2004, will include relocating some utilities and installing some shoring for the 2005 construction. This report preliminarily addresses drainage improvements proposed for 2004 and also for the building construction planned for 2005. The storm drainage pipes to be iinstalled in 2004 are partially a temporary measure to allow utility relocation and shoring construction in 2004 and partially part of the permanent storm sewer system that will provide drainage for the proposed buildings to be constructed in 2005. ' Storm drain pipe sizes, both existing and proposed, are evaluated in this report. ' Inlets will be evaluated in subsequent reports after preliminary plans are finalized. III. Drainage Basins ' Drainage basins were delineated to calculate flows to several overall pipe runs to determine the flows in that particular run. Each individual pipe flow was not calculated. The western most drainage basin for this project includes Basins 1 through 6. It outfalls ' between the Antlers Condominiums and the Lionsquare Lodge from the Lionshead Place cul-de-sac to Gore Creek. Existing storm sewer from a portion of West Lionshead Circle ' as well as the North Lot and several condominium complexes drain to this storm sewer ' outfall. Construction for 2004 includes installing storm sewer along the mall area in front 1 August 2004 Lionshead Core Drainage I of the Landmark Tower from east to west and then south between the Sunbird Lodge and Montaneros and then southwest to the cul-de-sac on Lionshead Place to the existing 18" RCP that outfalls to Gore Creek. The portion of storm sewer running east to west in front of the Landmark Tower is temporary while other utilities are installed and will be relocated in 2005 with the mall reconstruction. The portion of storm sewer running southwest to Lionshead Circle will also be relocated in 2005 when the tunnel that will provide access to underground parking is constructed. The portion of storm sewer running north to south will remain permanently. The drainage areas are basically the same in the existing condition and the proposed 2004 construction. On the east side of the proposed buildings new storm sewer will be constructed in 1 2005 to carry runoff from the proposed buildings and the existing areas of the eastern portion of Lionshead. This runoff is carried to an existing 18" CMP that runs adjacent to the base of Chair 8 to Gore Creek. I IV. Peak Flow Determination Peak flows for on-site facilities and culverts for this project have been calculated for the 25-year frequency storm runoff in accordance with the Town of Vail 2003 Code, Title 13, Subdivision Regulations, Chapter 10, Construction Design Standards, Methods and Details, 13-10-9: Design Criteria, K. Drainage, 3. Peak flows have been calculated using the Rational Method because drainage areas are relatively small. Runoff coefficients were taken from the Denver Urban Drainage and Flood Control District, Drainage Criteria Manual, Table 3-1 for the appropriate land surface characteristics. The Rainfall Intensity-Duration Curve for Vail, I August 2004 Lionshead Core Drainage 2 I IColorado was used for rainfall intensities in the Rational Method calculations. Time of concentration was estimated to be 10 minutes for the larger areas and 5 minutes for the I smaller areas. Calculations may be found in Appendix A. I IV. Detention and Pollution Control Detention is not recommended for the site because developed flows will not Ichange significantly from existing flows. IPollution control is being provided by a sand/oil separator for the parking garage which is where the majority of the pollutants will originate. I 1 VI. Floodplain The proposed development will be outside and above the 100 year floodplain and Iwill not impact the water surface of the 100 year floodplain. The floodplain was Iinterpolated from FEMA maps by Peak Land Consultants and is shown on the overall drainage area maps. I IVII. Summary The existing storm sewer pipes and those proposed for construction in 2004 have Ithe capacity to carry flows off-site. The existing and 2004 Construction Storm Drain ICalculations in Appendix A contain the hydrology for the existing drainage areas. The hydrology for the 2004 construction is basically the same as the existing condition. The Ipipes are evaluated for capacity based upon Manning's Equation. I I August 2004 Lionshead Core Drainage 3 I The developed storm sewer pipes (2005 construction) are evaluated in the Developed 2005 Construction Storm Drain Calculations in Appendix A. Proposed storm sewer P i P es are evaluated using Manning's Equation based upon proposed drainage divides shown on Sheet 3, Construction 2005 Drainage Area Map. The calculations show that the storm sewer to be installed in 2004 will have capacity for the flows generated by the developed drainage areas planned for 2005. I I 1 I I 1 1 August 2004 Lionshead Core Drainage 4 I Table 1 Existing and 2004 Pipe Capacity Summary Drainage Basin Calculated Flow Pipe Capacity Above 6 0 = 10.44 cfs total Temporary 18" Hancor @ 1.71% = 17.9 cfs to6 (6-5) Q = 10.44cfs 18" RCP @4.08% = 21.2 cfs to 5 (5-4) Q = 13.37 cfs 18" RCP @ 1.62% = 13.37 cfs to 4 (4-3) Q = 14.78 cfs 18" Hancor @ 2.62% = 22.10 cfs to 3 (existing box near Full Flow Slope = 2.63% (existing pipe slope 3 to 1 Q = 17.05 cfs unknown) to 2 (2-1) Q = 9.80 cfs 15" RCP @ 3.03% = 11.24 cfs to 1 (1-outfall) Q = 27.86 cfs 18" RCP @ 9.77% = 32.83 cfs 8 Q = 12.73cfs Existing 18" CMP:12.73 cfs @ 5.0% 7 0 = 4.84 cfs Existing 18" CMP:4.84 cfs @ 0.7% Table 2 Developed 2005 Pipe Capcity Summary Drainage Basin Calculated Flow Pipe Capacity Above 6 Q = 8.92 cfs 18" RCP @ 2.0% = 14.86 cfs to 6 (6-5) Q = 8.92 cfs 18" RCP @ 4.08% = 21.22 cfs to 5 (5-4) Q = 13.34 cfs 18" RCP @ 1.62% = 13.37 cfs to 4 (4-1) Q = 15.39 cfs 21" RCP @ 1.0% = 15.85 cfs to 2 (2-1) Q = 9.80 cfs 18" RCP @ 1.0% = 10.5 cfs to 1 (1-outfall) Q = 27.96 cfs 21" RCP @ 8.35% = 45.79 cfs Existing 18" CMP:13.48 cfs @ 5.61% 8 Q = 13.48cfs 18" RCP @2.0% = 14.86 cfs 7 Q = 3.91 cfs Existing 18" CMP: 3.91 cfs @ 0.47% Mt .4, MI dfa Appendix A Storm Drain Calculations a a a 1 DRAINAGE CRITERIA MANUAL RUNOFF I- TABLE 3-1 (42) RECOMMENDED •RUNOFF COEFFICIENTS AND PERCENT IMPERVIOUS 11 LAND USE QR PERCENT FREQUENCY • II SURFACE CHARACTERISTICS IMPERVIOUS 2 5 10 100 Business: Commercial Areas 95 .87 .87 .88 .89 1 • Neighborhood Areas 70 .60 .65 .70 .80 Residential : 1 Single-Family * .40 .45 .50 .60 Multi-Unit (detached) 50 .45 .50 .60 .70 II Multi-Unit (attached) 70 .60 .65 .70 ' .80 1/2 Acre Lot or Larger * .30 .35 .40 .60 Apartments 70 .65 .70 .70 .80 Industrial : Light Areas 80 .71 .72 .76 .82 IIHeavy Acres 90 .80 .80 .85 . .90 Parks , Cemetaries: 7 .10 .18 .25 .45 Playgrounds: 13 ._15 .20 .30 .50 Schools: 50 .45 .50 .60 .70 1 Railroad Yard Areas 20 .20 .25 .35 .45 Undeveloped Areas: 1 Historic Flow Analysis- 2 (See "Lawns") - Greenbelts , Agricultural 1 Offsite Flow Analysis 45 .43 .47 .55 .65 (when land use not defined) Streets: II Paved 100 .87 .88 .90 .93 Gravel (Packed) 40 .40 .45 .50 .60 IIDrive and Walks: 96 .87 .87 .88 .89 Roofs : 90 .80 .85 .90 .90 IILawns , Sandy Soil 0 .00 .01 .05 .20 Lawns , Clayey Soil 0 .05 .15 .25 .5C • fNOTE: These Rational Formula coefficients may not be valid for large basins: II *Sze Figure 2-1 for percent impervious. I 11-1-90 URBAN DRAINAGE AND FLOOD CONTROL DISTRICT INTENSITY - DURATION FREQUENCY CURVES • 6 i • I ....m •/.n•.. . ■. . ILIUM Ij • •■■•••■■•■.umn•m nni ••••••••■•nn•••••■•••••••nu••• .•.•nm•MUM•• ■• • ••••••• ■• • •••••••••••••• •••••r••• •• • ••••••••• .m•n■./••n••.■. . 1511••••11111• ■••■•••au■i• ••■■•••n.•.a•/•uwn -� am�1■■i•�Gimm■■•w.m■w■■ ..■..■■■•n•■■.n■ Cc ' •n•si.ni�iii.■q u/n■.� i■a■■...�.mi...an.......■.u� a U1/7••m.. ••. u u ��..... .../...■. .. _. ••••• /0. 7 , ■./■1 /. ..•■O. /. Z i •►u•r�..I•••nn••■.••••u ■/7Or•.n.■.■••.■ i� u• .. mut �iigi� .■•••••■• ■u•.n/nn■ nn. �" marentrumbungismurediriuminuripmissuaragi i.°n■aaUIn'i'i.4 .ono.n. �`■■u.L v■u�Iu..aui u•u■°■■m■■u...u■■ ■ui.■ii■n .►mow. ••. ..•■..■•./n•.■.■.■.. u..... .. (o .■'• . ■■■►�■■ .=i..•.u■•..u.m..■. ■n..■.=■■ .■■■ ��/ 7.. ......aau.aa ■■uuu■■■..... �umi u•► -�.$► �i"•■nn■■■n■u■u■■■u.u.a. •nnua 3 i.,n.�•11• •••na,C■• •n■■ ..•a■___ w • .I.4_F..:::a'• .4 n°�••`��i-iii-i.. ■en ..,.....r..,_, ■. . 4.., . .. ....- .„. ......m z ma .atr,,_ mnimiedhamb_mwtsisoniumr,..ii 2 Moutimunr....mmosaamingumatinannumumasinum..n■w •■'/■ aim w -J si ■ ` Nam ���i . ,•'m i''�ie mn..--•: uw./�.• u ar4L—AlsaimmbiamEnurnImiamm....e.Wil Li... wsusim./•.�u ■....at..... yaw �._•■c.■..=••■■■■.■■ ■.•■.q■�m.wi I I I I I IExistin g and 2004 Construction iStorm Drain Calculations 4 I I V I I I I I I I I I W Z O I` e- CO d Z 'd) CO e- CO 0 CO w O- co e- V e- ' lz d ! i E J I�I� IIZ E Q ;, ' 3 o rn LUN- - cocooN j z A 0 co N co r` N- ` N- ti w i3O 00,0o66 0 `tea)> I N �) co p lN N) O I� �- CO Z N O Z rn O U O N O O O - N Q t < o0 I Ca Z m ce 1 0 W Q 1 O W to O I N- N up r`i CA O V• U I- Z w- CA 1 ti N e- LA 1 r` LC) CO (0 W Q 0 O U O O'0 0!� ,-iN,• CD Q d' cu a) 1 1 ui O a ca a E L.L. I N N N CO M ems- N CO 'c O) Qom) 45 2 Y W O 0 0 0 0 0 0 e- (9 C C I- n. U To E z z Q 0 C W Z p g O _ s 1 co MchMMCOC7m CIS E c (ta) l H C 1 4 () 4 V V CO M N 0 U a) J C c co T W _ 4-: N W �L o l 1, , ,, p N Z W O p c cn 1— W O N C6 , a) >, co O •= C) 2 O (Z N N c4 CU N ! (:Y) O N e- Cr). 00 O C (ll Lc) 0 W "a ca Q cci O cO e- O e- 4 e- O O O O 0 Q U C C Li Q CV I LL C c0 Q O O Ca W 0 >' 0 Q c o TT) U c Z ' 0 I Z P a Q C cLa O Z Q CV U) e- N C r) 11� CO ti CO U I Q O O +' E D 0 W m 1- 0001. < I— F- E - C00 d0' CO O co - MO M cs4 W 0 . 0 O O O O O O O Z z t C� r - Z co CV N CO 0 N- O CO a _ N 00 V N N- J a) Qz E5 >+ z W C- to N M CO C0 CO O) O 0 CO In ,..; O co I —cu `. O) .- N > 1 a' o o N I � N, h CO O) N M ti a - ao ;N e- e- e- 0) r-' N. I,- O co O U N 4 O M r-t N- 6 N- N r c4 r• _ . Q) (f) " co LO lf) 1` In In >, C L CD c M co N M N 6 0 .c N M M M CO 6 M M j N C 1 - I N C I o V C cO!' O C N I LO 1 N O CO 'y I- E ' l e- O O O ,-1 0 CUe- e- H A---, +a C O. 0 I I E Q N c): I Nr n 'M O 0 a) d:' O N N W CO' o E 2 V 1 - M v v f I N 100 U I I 0_ I a 0 2 O v I N co Nr 1 !co CO 2 * o rni -: �- 0),Nr N- 1O)I� O Q c o v 0'6 o o o 1 C',1 o (N Co CD CO r` If) 0) I- p 0 r- N- r` ti r` CO r` CO Z of 0 0 0'00 0 0 W 2 C a- o I 1 N W i 0 Q 0 CD 1 4 to to (1) H > }' W N C W0 y 92 co CD N CD - 0) ,Nn 0 Ce I-0 c.) (0 v o (V) o W Ce Tr Q ca I Ce O o O o O -a 1.- a)aa)I � In 'cr c� ix cri C W• 0 c13 c cn Z - E 1 Z• Q 0) N o 03 ti CD If) V CO (N e-I J 0 0 W I I Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: 5 2004 Solve For Actual Depth Given Input Data: Diameter 1.50 ft ' Slope 0.0162 ft/ft Manning's n 0.013 Discharge 13.30 cfs Computed Results: Depth 1.22 ft Velocity 8.63 fps ' Flow Area 1.54 sf Critical Depth1.36 ft Critical Slope0.0140 ft/ft Percent Full 81.49 % Full Capacity 13.37 cfs QMAX @.94D 14.38 cfs Froude Number 1.32 (flow is Supercritical) Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd • Waterbury, Ct 06708 I/ I Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: 4 Solve For Actual Depth Given Input Data: Diameter 1.50 ft Slope 0.0198 ft/ft Manning's n 0.013 Discharge 14.80 cfs Computed Results: Depth 1.23 ft Velocity 9.53 fps ' Flow Area 1.55 sf Critical Depth1.40 ft Critical Slope0.0172 ft/ft Percent Full 82.08 i Full Capacity 14.78 cfs QMAX @.94D 15.90 cfs Froude Number 1.45 (flow is Supercritical) 1 1 1 1 1 ' Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 1 t i f Circular Channel Analysis & Design Solved with Manning's Equation f Open Channel - Uniform flow Worksheet Name: f II Comment: 3 t. Solve For Full Flow Slope Given Input Data: f Diameter 1.50 ft I Manning's n 0.013 Discharge 17.00 cfs II Computed Results: `IF I Full Flow Channel Slope 0.0262 ft/ft Full Flow Depth 1.50 ft Velocity 9.62 fps i II Flow Area 1.77 sf Critical Depth1.44 ft Critical Slope0.0228 ft/ft ( I Percent Full 100.00 t Full Capacity 17.00 cfs QMAX @.94D 18.29 cfs Froude Number FULL ` f II I t , 1 1 1 a II i Open Channel Flow Module, Version 3.41 (c) 1991 ii Haestad Methods, Inc. • 37 Brookside Rd ` Waterbury, Ct 06708 1 it I ri I I Circular Channel Analysis & Design tSolved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: 3 Solve For Actual Depth ' Given Input Data: Diameter 1.50 ft Slope 0.0198 ft/ft Manning's n 0.013 Discharge 17.00 cfs Computed Results: Worksheet does not have calculated results... I I I 1 Open Channel Flow Module, Version 3.41 (c) 1991 1 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 lIII�! 1 1 I { Circular Channel Analysis & Design 1 Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: 2 Solve For Actual Depth Given Input Data: Diameter 1.25 ft ' Slope Manning's n 0.0300 ft/ft f. 0.013 Discharge 9.80 cfs ' Computed Results: Depth 0.91 ft Velocity 10.28 fps Flow Area 0.95 sf Critical Depth1.18 ft Critical Slope0.0199 ft/ft Percent Full 72.53 % Full Capacity 11.19 cfs y' QMAX ®.94D 12.04 cfs Froude Number 1.96 (flow is Supercritical) 1 1 } 1 1 i 1 Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. • 37 Brookside Rd • Waterbury, Ct 06708 4 I 1 N 1 a t I 20011 e_ I • - 16 (-IL/ so z 66,4 _ r - . c_, s +c) ' 3 , 37 c.P = 14 ,7e ejs te." 02.‘z% •I-- -1 0-1— -1-o ecf , = !: 62,( t-tkisooc.,) Cek(-544.11,1 Stefc2. LAAkkALINANK) nea-e-QP,J4ifsu I +0 E3c ej5 c_ J ,5Pso3 12t-f cz ( Q Z7Cc le" r-c-T)e 9:77% - 0,1 Pcq (.r\) iz 6P5 z 6/0 • " critiD : eLI °6 I 1 Circular Channel Analysis & Design ISolved with Manning's Equation Open Channel - Uniform flow 1 Worksheet Name: IIComment: Lionshead Core 146°Q-® Solve For Full Flow Capacity II Given Input Data: Diameter 1.50 ft II Slope 0.0171 ft/ft Manning's n 0.010 Discharge 17.86 cfs II Computed Results: Full Flow Capacity 17.86 cfs Full Flow Depth 1.50 ft • I Velocity 10.11 fps Flow Area 1.77 sf Critical Depth1.45 ft Critical Slope0.0150 ft/ft I Percent Full 100.00 t Full Capacity 17.86 cfs QMAX S.940 19.21 cfs IFroude Number FULL I 1 II I 1 Open Channel Flow Module, Version 3.41 (c) 1991 IIHaestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 S t II i Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: Lionshead Core U Solve For Full Flow Capacity Given Input Data: Diameter 1.50 ft Slope 0.0408 ft/ft Manning's n 0.013 Discharge 21.22 cfs Computed Results: Full Flow Capacity 21.22 cfs Full Flow Depth 1.50 ft Velocity 12.01 fps Flow Area 1.77 sf Critical Depth1.47 ft Critical Slope0.0368 ft/ft Percent Full 100.00 °s Full Capacity 21.22 cfs QMAX @.94D 22.82 cfs ' Froude Number FULL I/ i E Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 I I Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: Lionshead Core CD 40 Solve For Full Flow Capacity Given Input Data: Diameter 1.50 ft ' Slope 0.0162 ft/ft Manning's n 0.013 Discharge 13.37 cfs ' Computed Results: Full Flow Capacity 13.37 cfs Full Flow Depth 1.50 ft Velocity 7.57 fps Flow Area 1.77 sf Critical Depth1.36 ft Critical Slope0.0142 ft/ft Percent Full 100.00 4 Full Capacity 13.37 cfs QMAX ®.94D 14.38 cfs ' Froude Number FULL 1 1 Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. + 37 Brookside Rd * Waterbury, Ct 06708 I/ f Circular Channel Analysis & Design ' Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: Lionshead Core L Solve For Full Flow Capacity Given Input Data: Diameter 1.50 ft ' Slope 0.0262 ft/ft Manning's n 0.010 Discharge 22.10 cfs ' Computed Results: Full Flow Capacity 22.10 cfs Full Flow Depth 1.50 ft ' Velocity 12.51 fps Flow Area 1.77 sf Critical Depth1.48 ft Critical Slope0.0238 ft/ft Percent Full 100.00 f Full Capacity 22.10 cfs QMAX @.94D 23.78 cfs ' Froude Number FULL 1 Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 Circular Channel Analysis & Design ' Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: Lionshead Core Solve For Full Flow Slope Ce��SKyl� � n,eG¢-f-CS) }p(-)) Given Input Data: J Diameter 1.50 ft ' Manning's n 0.013 Discharge 17.05 cfs Computed Results: Full Flow Channel Slope 0.0263 ft/ft Full Flow Depth 1.50 ft Velocity 9.65 fps ' Flow Area 1.77 sf Critical Depth1.44 ft Critical Slope0.0230 ft/ft Percent Full 100.00 V Full Capacity 17.05 cfs QMAX @.94D 18.34 cfs Froude Number FULL Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 1 1 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: Lionshead Core ////^ L U O Solve For Full Flow Capacity Given Input Data: Diameter 1.25 ft ' Slope 0.0303 ft/ft Manning's n 0.013 Discharge 11.24 cfs Computed Results: Full Flow Capacity 11.24 cfs Full Flow Depth 1.25 ft ' Velocity 9.16 fps Flow Area 1.23 sf Critical Depth1.21 ft ' Critical Slope0.0265 ft/ft Percent Full 100.00 4 Full Capacity 11.24 cfs QMAX ®.94D 12.10 cfs ' Froude Number FULL 1 1 Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. • 37 Brookside Rd • Waterbury, Ct 06708 I ' Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow 1 Worksheet Name: Comment: Lionshead Core (j b D4-4-4�44-1 ( Solve For Full Flow Capacity Given Input Data: Diameter 1.50 ft ' Slope 0.0977 ft/ft Manning's n 0.013 Discharge 32.83 cfs Computed Results: Full Flow Capacity 32.83 cfs Full Flow Depth 1.50 ft ' Velocity 18.58 fps Flow Area 1.77 sf Critical Depth1.50 ft Critical Slope0.0933 ft/ft Percent Full 100.00 2 Full Capacity 32.83 cfs ' QMAX ®.94D 35.32 cfs Froude Number FULL 1 1 1 Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 11 ' Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: �_ LJ Comment: Lionshead Core C5 rC✓ ] 0 ' Solve For Full Flow Slope Given Input Data: Diameter 1.50 ft ' Manning's n 0.024 Discharge 12.73 cfs Computed Results: Full Flow Channel Slope 0.0501 ft/ft Full Flow Depth 1.50 ft Velocity 7.20 fps Flow Area 1.77 sf Critical Depth1.34 ft Critical Slope0.0443 ft/ft ' Percent Full 100.00 f Full Capacity 12.73 cfs QMAX @.94D 13.69 cfs ' Froude Number FULL Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. • 37 Brookside Rd • Waterbury, Ct 06708 1 1 Circular Channel Analysis & Design IISolved with Manning's Equation Open Channel - Uniform flow 1 Worksheet Name: Comment: Lionshead Core �k( 4.n O 1 5 Solve For Full Flow Slope IIGiven Input Data: Diameter 1.50 ft 1 Manning's n 0.024 Discharge 4.84 cfs Computed Results: 1 Full Flow Channel Slope 0.0072 ft/ft Full Flow Depth 1.50 ft Velocity 2.74 fps , I Flow Area 1.77 sf Critical Depth0.85 ft Critical Slope0.0195 ft/ft Percent Full 100.00 4 I' Full Capacity 4.84 cfs ' I QMAX W.940 5.21 cfs Froude Number FULL 1 1 1 i 1 1 1 1 ' 1 I i 1 Open Channel Flow Module, Version 3.41 (c) 1991 { Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 I M 1 1 ; a a a a Developed 2005 Construction Storm Drain Calculations a r I I E I a I • efR I W 0 z ICD'cn () CO M rn rn r- Z Lo oococo 0 ai ai d N Sri cd c6 Z ' 1 LL lI l w Q w i HZ' E 'I� 0 o �'nioo1 oltiiti N- 1w n iii U QI0'IO 0 0!0 O O a) � N I LA - i N C a) O a) co 0) co M U) CO ' (/) CO N CD I N O N- O a) co Z Z j O V O'CV 0 o 0 — O CV, O (n -o 1 1 m -t Z W I I O Q I 11 0 IX W Z rn NN e- NCON cB W Q o 0 2 0 0 O O �- O N� > 0 p `° o ca U) E a) 0 O o N in MIco1 . N CO a)I W C 2 co Ll Y j 2 •0 _ •O Oi O O O O Q o n u i I I U co a) Y H W J 0 I CU a 0 : U)CD E CD 0 0 _ M i CO . . CO M C a H F- C .4.,6 d INr C7 M N O c O - J 0 E as cc wp c i �n ° cn �n cn O o 0o ea Li I� co LJJ o c cn c3 CL O ca c O a- O O f0 N N a1 OM co ti O CO N C a) 2 ." a) V Ce a) N Id Q CD r i M D D M I� -§- O N O O CD Q V C O N W I 1 U � u O C o c — Q W >, a 0 ca 3 Ca , — O W O O O c U c 2 Z • J c c) Q 0 c c E O ZQ N r I N Mid cc) CO f� CO V Q Q' p Q) CL cp O C C W 0 1 1 I ' I ' _, Ca Ca I I i i E J 00 0 1 H 0 0 0 L < H H CD - O0) �E • (p MN v O O O O O O O O O O A .iO ILL.• 1' z CO' It) -'co ;L() N N' O v N (O CO N N J °' Q z LIJ J Z W U to � I CO N U) 1 ( N ti 0 r O r CO O O• v i 0 • O' i CO CO CO - CO CO CO c-I 1-- - N �In- I O Q I CO CO N (fl O o N i N O (fl - CO v- Cr). a `. i co v I E U, u) vi 0) c c co rn C) CO M 06 co L Oj N co ,- 1 N O CC = L (O co M M CM co M N O O C N CO M Co M (,.5 M Co Ix) E N () ; 10 co u) U .E co O O co (O O'IC) O O H- E .-I ,- , p p e-Ip CC 45' 0 1 1 1 1 Q mch CO I (O,� 'COI IMO N'' E L ,1 , (D O (Oi i(3) i-4- O E v O' N Ti 4 i 'N CO 1 CO U e d 0 w CO' N (O 00 N Co co i _ * L r (c co. (� I 0) co. Q O :CV i 0 0 NI co N- O ti (o Z O O O O O O O O W — 2 a C ca cv N O O - O Cf) A N J +_ O Q (0 N- w- Co O 6 Co cc r- W O I- 1 W L• O C C a) N CO CO h co O N I O W Ce v U • 0 °o u) 0 V el �w '4 C1i " f; N N O r c Q W >, O Q Z a> O O co f-- (o (n "cf N O J 0 0 0 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: 5 developed Solve For Actual Depth Given Input Data: Diameter 1.50 ft ' Slope 0.0162 ft/ft Manning's n 0.013 Discharge 13.30 cfs Computed Results: Depth 1.22 ft Velocity 8.63 fps Flow Area 1.54 sf Critical Depth1.36 ft Critical Slope0.0140 ft/ft Percent Full 81.49 % Full Capacity 13.37 cfs QMAX @.94D 14.38 cfs Froude Number 1.32 (flow is Supercritical) I I/ Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 I 1 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: 4 developed Solve For Actual Depth ' Given input Data: Diameter 1.50 ft ' Slope 0.0100 ft/ft Manning's n 0.013 Discharge 15.39 cfs Computed Results: Worksheet does not have calculated results... 1 1 1 1 1 Open Channel Flow Module, Version 3.41 (c) 1991 I/ Haestad Methods, Inc. • 37 Brookside Rd * Waterbury, Ct 06708 t 1 I Circular Channel Analysis & Design ISolved with Manning's Equation Open Channel - Uniform flow I Worksheet Name: II Comment: 4 developed ( I Solve For Full Flow Slope IIGiven Input Data: Diameter 1.50 ft f II Manning's n 0.013 Discharge 15.39 cfs s Computed Results: s I Full Flow Channel Slope Full Flow Depth 0.0215 ft/ft ft t Velocity 8.71 fps II Flow Area 1.77 sf 5 Critical Depth1.41 ft i Critical Slope0.0186 ft/ft t s 0 Percent Full 100.00 k IIFull Capacity 15.39 cfs QMAX ®.94D 16.56 cfs Froude Number FULL II I I II i ( 1 II i t II 1 1 1 II 1 IIOpen Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 p II i i I Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: 4 developed Solve For Actual Depth Given Input Data: Diameter 1.75 ft ' Slope 0.0100 ft/ft Manning's n 0.013 Discharge 15.39 cfs ' Computed Results: Depth 1.39 ft Velocity 7.51 fps ' Flow Area 2.05 sf Critical Depth1.45 ft Critical Slope0.0092 ft/ft ' Percent Full 79.49 t Full Capacity 15.85 cfs QMAX d.94D 17.04 cfs Froude Number 1.10 (flow is Supercritical) 1 1 Open Channel Flow Module, Version 3.41 (c) 1991 ■ Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 1 Circular Channel Analysis & Design ' Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: 2 developed Solve For Actual Depth Given Input Data: Diameter 1.50 ft Slope 0.0100 ft/ft Manning's n 0.013 Discharge 9.80 cfs Computed Results: Depth 1.15 ft Velocity 6.75 fps ' Flow Area 1.45 sf Critical Depth1.21 ft Critical Slope0.0090 ft/ft Percent Full 76.52 % Full Capacity 10.50 cfs AMAX ®.940 11.30 cfs Froude Number 1.11 (flow is Supercritical) 1 1 I Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. • 37 Brookside Rd • Waterbury, Ct 06708 1 1 1 Circular Channel Analysis & Design ' Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: 1 developed Solve For Full Flow Slope Given Input Data: Diameter 1.75 ft ' Manning's n 0.013 Discharge 27.00 cfs Computed Results: ' Full Flow Channel Slope 0.0290 ft/ft Full Flow Depth 1.75 ft Velocity 11.23 fps ' Flow Area 2.41 sf Critical Depth1.70 ft Critical Slope0.0256 ft/ft ' Percent Full 100.00 ?: Full Capacity 27.00 cfs QMAX a.94D 29.04 cfs Froude Number FULL I/ ( I 1 Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 1 1 1 If I I ' jLl- �aT-e._ g - 3 -at( 112cosf7 i 1 1 (11 ,2_ e g= B ,?Z c h GAIL l att 'p_ z,o-/, L-- 14.8 6 ,c.,h ) rt -\, 1 Lk,'; i _ = 8 .9. a ,_is , c,'I� 13t! 2�-P@ L.1,0S% = z/,ZZ c,Q� 1 1 C6-s +0 4 = X3 .34 6.,P-`. TDac .L.4. IBt( 2c:@ i 2% = 13. 37c,N I , +n , = 15-,3°1 J-s ,i_ c_i.: a 1 1 Zz-P i.0°/6 = 15. 8 c.S (4 -9 I -'- ' 1)- E c-4L IS" 2cp 1,03/4 = 10,5' n-Ps 1 . EZ-() +o U (Q = �7.6“. cA i &b c,,, at° Ec- @ e.-3s6/ = /t ,76/ GPs I6 -o,,--f pall) 1 I - - Exi, �-�° �c I = (, = 13,��3 cPs 1Y cr\ii? : 13,42 -.\-- 5—,c0( % 6-Pci-c-` leat' E2c-P € 2.0% = I4. 8� c41s f 1 1 ' k i 5(-6 3,q 6 l3ci-c_L. l8"GMIJ : 3,91 &L @ a.47 '/' 1 I �I I 1 I i 1 I I( 11 Circular Channel Analysis & Design ' Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Loo � Comment: Lionshead Core / ► Loo e (c?J Solve For Full Flow Capacity 17 �J Given Input Data: Diameter 1.50 ft ' Slope 0.0200 ft/ft Manning's n 0.013 Discharge 14.86 cfs ' Computed Results: Full Flow Capacity 14.86 cfs Full Flow Depth 1.50 ft Velocity 8.41 fps Flow Area 1.77 sf Critical Depth1.40 ft t Critical Slope0.0173 ft/ft Percent Full 100.00 Full Capacity 14.86 cfs QMAX @.94D 15.98 cfs Froude Number FULL it 1 1 i 1 1 1 Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd • Waterbury, Ct 06708 t t I II I i Circular Channel Analysis & Design II Solved with Manning's Equation i i 7 Open Channel - Uniform flow II /� f Worksheet Name: /(C ) 4-03 L� k I IIComment: Lionshead Core Solve For Full Flow Capacity K II Given Input Data: 1 p Diameter 1.50 ft E II Slope 0.0408 ft/ft k Manning's n 0.013 Discharge 21.22 cfs II Computed Results: Full Flow Capacity 21.22 cfs [' Full Flow Depth 1.50 ft II Velocity 12.01 fps Flow Area 1.77 sf r i,. Critical Depth1.47 ft Critical Slope0.0368 ft/ft 1 II Percent Full 100.00 Full Capacity 21.22 cfs QMAX @.94D 22.82 cfs If IIFroude Number FULL C 1 u 1 i. Pt� 1 • 1 II 1 Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 Ia k dl I r It • 1 Circular Channel Analysis & Design • ' Solved with Manning's Equation Open Channel - Uniform flow i Worksheet Name: /�� Comment: Lionshead Core &--) c: . 1 Solve For Full Flow Capacity �/ Given Input Data: Diameter 1.50 ft ' Slope 0.0162 ft/ft Manning's n 0.013 Discharge 13.37 cfs ' Computed Results: Full Flow Capacity 13.37 cfs Full Flow Depth 1.50 ft Velocity 7.57 fps Flow Area 1.77 sf Critical Depth1.36 ft Critical Slope0.0142 ft/ft Percent Full 100.00 4 Full Capacity 13.37 cfs QMAX 41).94D 14.38 cfs ' Froude Number FULL 1 1 1 I Open Channel Flow Module, Version 3.41 (c) 1991 I/ Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 1 Circular Channel Analysis 6, Design ' Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: /D Comment: Lionshead Core Solve For Full Flow Capacity Given Input Data: Diameter 1.75 ft ' Slope 0.0100 ft/ft Manning's n 0.013 Discharge 15.85 cfs ' Computed Results: Full Flow Capacity 15.85 cfs Full Flow Depth 1.75 ft ' Velocity 6.59 fps Flow Area 2.41 sf Critical Depth1.47 ft Critical Slope0.0096 ft/ft Percent Full 100.00 k Full Capacity 15.85 cfs QMAX ®.94D 17.04 cfs ' Froude Number FULL I/ I I/ Open Channel Flow Module, Version 3.41 (c) 1991 I/ Haestad Methods, Inc. • 37 Brookside Rd * Waterbury, Ct 06708 I Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: /T 4, › O Comment: Lionshead Core �� Solve For Full Flow Capacity Given Input Data: Diameter 1.75 ft ' Slope 0.1024 ft/ft Manning's n 0.013 Discharge 50.70 cfs ' Computed Results: Full Flow Capacity 50.70 cfs Full Flow Depth 1.75 ft ' Velocity 21.08 fps Flow Area 2.41 sf Critical Depth1.75 ft ' Critical Slope0.0982 ft/ft Percent Full 100.00 % Full Capacity 50.70 cfs AMAX @.94D 54.54 cfs ' Froude Number FULL I I/ Open Channel Flow Module, Version 3.41 (c) 1991 1/ Haestad Methods, Inc. • 37 Brookside Rd • Waterbury, Ct 06708 1 Circular Channel Analysis & Design ' Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: Lionshead Core /2 ) 1 c Solve For Full Flow Capacity Given Input Data: Diameter 1.50 ft ' Slope 0.0100 ft/ft Manning's n 0.013 Discharge 10.50 cfs Computed Results: Full Flow Capacity 10.50 cfs Full Flow Depth 1.50 ft Velocity 5.94 fps Flow Area 1.77 sf Critical Depth1.25 ft Critical Slope0.0098 ft/ft Percent Full 100.00 % I Full Capacity 10.50 cfs QMAX 61).94D 11.30 cfs �If ' Froude Number FULL If 1 II t II Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 1 i t 1 Circular Channel Analysis & Design ' Solved with Manning's Equation Open Channel - Uniform flow 1 Worksheet Name: CD —CD ouzE"ga-( 1 Comment: Lionshead Core Solve For Full Flow Capacity Given Input Data: Diameter 1.75 ft ' Slope 0.0835 ft/ft Manning's n 0.013 Discharge 45.79 cfs Computed Results: Full Flow Capacity 45.79 cfs Full Flow Depth 1.75 ft ' Velocity 19.04 fps Flow Area 2.41 sf Critical Depth1.74 ft Critical Slope0.0793 ft/ft Percent Full 100.00 4 Full Capacity 45.79 cfs QMAX @.94D 49.25 cfs Froude Number FULL i 1 Open Channel Flow Module, Version 3.41 (c) 1991 I/ Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 I/ 1 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: Lionshead Core _/}_�__1 Solve For Full Flow Slope �J�v1 Given Input Data: Diameter 1.50 ft ' Manning's n 0.024 Discharge 13.48 cfs Computed Results: ' Full Flow Channel Slope 0.0561 ft/ft Full Flow Depth 1.50 ft Velocity 7.63 fps ' Flow Area 1.77 sf Critical Depth1.37 ft Critical Slope0.0490 ft/ft ' Percent Full 100.00 % Full Capacity 13.48 cfs QMAX a.94D 14.50 cfs Froude Number FULL I/ Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 1 I I 1 Circular Channel Analysis & Design 1 Solved with Manning's Equation Open Channel - Uniform flow 1 Worksheet Name: Comment: Lionshead Core Solve For Full Flow Capacity Given Input Data: Diameter 1.50 ft ' Slope 0.0200 ft/ft Manning's n 0.013 Discharge 14.86 cfs Computed Results: Full Flow Capacity 14.86 cfs Full Flow Depth 1.50 ft 1 Velocity 8.41 fps Flow Area 1.77 sf Critical Depth1.40 ft Critical Slope0.0173 ft/ft ' Percent Full 100.00 % Full Capacity 14.86 cfs QMAX @.94D 15.98 cfs 1 Froude Number FULL 1 1 1 1 1 1 Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 1 1 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: Lionshead Core Solve For Full Flow Capacity ' Given Input Data: Diameter 1.50 ft ' Slope 0.0394 ft/ft Manning's n 0.013 Discharge 20.85 cfs Computed Results: Full Flow Capacity 20.85 cfs Full Flow Depth 1.50 ft Velocity 11.80 fps Flow Area 1.77 sf Critical Depth1.47 ft Critical Slope0.0354 ft/ft Percent Full 100.00 % Full Capacity 20.85 cfs QMAX ®.940 22.43 cfs ' Froude Number FULL 1 I I 1 1 Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. • 37 Brookside Rd * Waterbury, Ct 06708 1 i II Circular Channel Analysis & Design ISolved with Manning's Equation Open Channel - Uniform flow 1 1. Worksheet Name: Comment: Lionshead Core (i Solve For Full Flow Capacity `UJ II Given Input Data: jj Diameter 1.50 ft 1 I Slope 0.0412 ft/ft Manning's n 0.013 Discharge 21.32 cfs II Computed Results: Full Flow Capacity 21.32 cfs l Full Flow Depth 1.50 ft II Velocity 12.07 fps Flow Area 1.77 sf 1 Critical Depth1.47 ft i II Critical Slope0.0372 ft/ft Percent Full 100.00 t Full Capacity 21.32 cfs AMAX ®.94D 22.94 cfs r I Froude Number FULL 1 t I 1 II 1 1 i II 1 1 I f, 1 Open Channel Flow Module, Version 3.41 (c) 1991 II Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 f C 1 1 II I 1 Circular Channel Analysis & Design ' Solved with Manning's Equation Open Channel - Uniform flow 1 Worksheet Name: Comment: Lionshead Core TfLZ Solve For Full Flow Slope Given Input Data: Diameter 1.50 ft Manning's n 0.024 Discharge 3.91 cfs Computed Results: ' Full Flow Channel Slope 0.0047 ft/ft Full Flow Depth 1.50 ft Velocity 2.21 fps ' Flow Area 1.77 sf Critical Depth0.76 ft Critical Slope0.0183 ft/ft Percent Full 100.00 1 Full Capacity 3.91 cfs QMAX ®.94D 4.21 cfs Froude Number FULL i I I Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 I 1 MAPS