HomeMy WebLinkAbout2004 Preliminary Drainage Report - Lionshead Core I
I
I
I
I PRELIMINARY
DRAINAGE REPORT
I
I LIONSHEAD CORE
VAIL, COLORADO
IAugust 2004
I
I
I
I
I
I
I
Prepared for: Vail Resorts Development Company
I P.O.Box 959
Avon,CO 81620
I Prepared by: Alpine Engineering, Inc.
P.O. Box 97
Edwards,Co 81632
1 (970)926-3373
TABLE OF CONTENTS
I. Vicinity Map
P
' II. Introduction
III. Drainage Basins 1
'
IV. Peak Flow Determination 2
V. Detention and Pollution Control 3
VI. Floodplain 3
VII. Summary
3
VIII. Table 1 —Existing and 2004 Pipe Capacity Summary
Table 2—Developed 2005 Pipe Capacity Summary
' IX. Appendices:
Appendix A - STORM DRAINAGE CALCULATIONS
' - Existing and 2004 Storm Drain Calculations
- Developed 2005 Storm Drain Calculations
' X. Maps:
Sheet 1 —Existing Conditions Drainage Area Map Scale 1"= 30'
Sheet 2—Construction 2004 Drainage Area Map Scale 1"= 30'
' Sheet 3 —Construction 2005 Drainage Area Map Scale 1"= 30'
Sheet 4—Existing Conditions Overall Drainage Area Map Scale 1"= 60'
Sheet 5 —Construction 2005 Overall Drainage Area Map Scale 1"= 60'
1
I
' August 2004 Lionshead Core Drainage
SOU-11-1
MARRIOTT FR T
ONAQE
L HOTEL ROAM
EAST
WEST LIONSHEAM
I LIONSHEAM CIRCLE LIONSHEAM
CIRCLE PARKINQ
LIONSHEAM STRUCTURE
IPLACE
X0-1• V ■IL
\ s■011.1j Amor 1 ,rv..
, / rAir, q , ,.
0 0 -
I ■I0 ° E:: ),c7, VA [63c`3 i= ° n . ei)
14, 1 I °R _c-
O
em it
r _,ii Fr/ -\ rilifr i,------___________
17/ ‘ V11 "II
I 91 :-PROJa . o
10 \01 „ _____ SITE o 4 IF
C1 --
----CREEK " j..) CI ri)C1 0 $->:,_---) c:3, 0 1=0 0 I
I\
f C LT D " 0 cl a c:23
lb ° ❑ a 0 � � n o
o rso , a ..4 a`" O O o ° ae6o a o �4
IJ o o # moo 1
Po ❑' / ,t000•/ FOREST \/
EAQLE ROAM
_ - N
I ir ill NMOLA
CHAIR 8
L ^ .,
I ! I
VICINITY MAP SCALE 1 s 400'
I
' II. Introduction
The Lionshead Core project is proposed to replace several buildings in the central
' area of Lionshead. The entire existing old Gondola building and the Sunbird Lodge are
' proposed to be removed. In their place three new buildings, which have an underground
parking structure, and an ice rink are proposed. Initial construction, which is expected in
the fall of 2004, will include relocating some utilities and installing some shoring for the
2005 construction.
This report preliminarily addresses drainage improvements proposed for 2004 and
also for the building construction planned for 2005. The storm drainage pipes to be
iinstalled in 2004 are partially a temporary measure to allow utility relocation and shoring
construction in 2004 and partially part of the permanent storm sewer system that will
provide drainage for the proposed buildings to be constructed in 2005.
' Storm drain pipe sizes, both existing and proposed, are evaluated in this report.
' Inlets will be evaluated in subsequent reports after preliminary plans are finalized.
III. Drainage Basins
' Drainage basins were delineated to calculate flows to several overall pipe runs to
determine the flows in that particular run. Each individual pipe flow was not calculated.
The western most drainage basin for this project includes Basins 1 through 6. It outfalls
' between the Antlers Condominiums and the Lionsquare Lodge from the Lionshead Place
cul-de-sac to Gore Creek. Existing storm sewer from a portion of West Lionshead Circle
' as well as the North Lot and several condominium complexes drain to this storm sewer
' outfall. Construction for 2004 includes installing storm sewer along the mall area in front
1
August 2004 Lionshead Core Drainage
I
of the Landmark Tower from east to west and then south between the Sunbird Lodge and
Montaneros and then southwest to the cul-de-sac on Lionshead Place to the existing 18"
RCP that outfalls to Gore Creek. The portion of storm sewer running east to west in front
of the Landmark Tower is temporary while other utilities are installed and will be
relocated in 2005 with the mall reconstruction. The portion of storm sewer running
southwest to Lionshead Circle will also be relocated in 2005 when the tunnel that will
provide access to underground parking is constructed. The portion of storm sewer
running north to south will remain permanently. The drainage areas are basically the
same in the existing condition and the proposed 2004 construction.
On the east side of the proposed buildings new storm sewer will be constructed in
1 2005 to carry runoff from the proposed buildings and the existing areas of the eastern
portion of Lionshead. This runoff is carried to an existing 18" CMP that runs adjacent to
the base of Chair 8 to Gore Creek.
I
IV. Peak Flow Determination
Peak flows for on-site facilities and culverts for this project have been calculated
for the 25-year frequency storm runoff in accordance with the Town of Vail 2003 Code,
Title 13, Subdivision Regulations, Chapter 10, Construction Design Standards, Methods
and Details, 13-10-9: Design Criteria, K. Drainage, 3.
Peak flows have been calculated using the Rational Method because drainage
areas are relatively small. Runoff coefficients were taken from the Denver Urban
Drainage and Flood Control District, Drainage Criteria Manual, Table 3-1 for the
appropriate land surface characteristics. The Rainfall Intensity-Duration Curve for Vail,
I
August 2004 Lionshead Core Drainage 2
I
IColorado was used for rainfall intensities in the Rational Method calculations. Time of
concentration was estimated to be 10 minutes for the larger areas and 5 minutes for the
I
smaller areas. Calculations may be found in Appendix A.
I
IV. Detention and Pollution Control
Detention is not recommended for the site because developed flows will not
Ichange significantly from existing flows.
IPollution control is being provided by a sand/oil separator for the parking garage
which is where the majority of the pollutants will originate.
I
1 VI. Floodplain
The proposed development will be outside and above the 100 year floodplain and
Iwill not impact the water surface of the 100 year floodplain. The floodplain was
Iinterpolated from FEMA maps by Peak Land Consultants and is shown on the overall
drainage area maps.
I
IVII. Summary
The existing storm sewer pipes and those proposed for construction in 2004 have
Ithe capacity to carry flows off-site. The existing and 2004 Construction Storm Drain
ICalculations in Appendix A contain the hydrology for the existing drainage areas. The
hydrology for the 2004 construction is basically the same as the existing condition. The
Ipipes are evaluated for capacity based upon Manning's Equation.
I
I
August 2004 Lionshead Core Drainage 3
I
The developed storm sewer pipes (2005 construction) are evaluated in the
Developed 2005 Construction Storm Drain Calculations in Appendix A. Proposed storm
sewer P i P es are evaluated using Manning's Equation based upon proposed drainage
divides shown on Sheet 3, Construction 2005 Drainage Area Map. The calculations
show that the storm sewer to be installed in 2004 will have capacity for the flows
generated by the developed drainage areas planned for 2005.
I
I
1
I
I
1
1
August 2004 Lionshead Core Drainage 4
I
Table 1
Existing and 2004 Pipe Capacity Summary
Drainage Basin Calculated Flow Pipe Capacity
Above 6 0 = 10.44 cfs total Temporary 18" Hancor @ 1.71% = 17.9 cfs
to6 (6-5) Q = 10.44cfs 18" RCP @4.08% = 21.2 cfs
to 5 (5-4) Q = 13.37 cfs 18" RCP @ 1.62% = 13.37 cfs
to 4 (4-3) Q = 14.78 cfs 18" Hancor @ 2.62% = 22.10 cfs
to 3 (existing box near Full Flow Slope = 2.63% (existing pipe slope
3 to 1 Q = 17.05 cfs unknown)
to 2 (2-1) Q = 9.80 cfs 15" RCP @ 3.03% = 11.24 cfs
to 1 (1-outfall) Q = 27.86 cfs 18" RCP @ 9.77% = 32.83 cfs
8 Q = 12.73cfs Existing 18" CMP:12.73 cfs @ 5.0%
7 0 = 4.84 cfs Existing 18" CMP:4.84 cfs @ 0.7%
Table 2
Developed 2005 Pipe Capcity Summary
Drainage Basin Calculated Flow Pipe Capacity
Above 6 Q = 8.92 cfs 18" RCP @ 2.0% = 14.86 cfs
to 6 (6-5) Q = 8.92 cfs 18" RCP @ 4.08% = 21.22 cfs
to 5 (5-4) Q = 13.34 cfs 18" RCP @ 1.62% = 13.37 cfs
to 4 (4-1) Q = 15.39 cfs 21" RCP @ 1.0% = 15.85 cfs
to 2 (2-1) Q = 9.80 cfs 18" RCP @ 1.0% = 10.5 cfs
to 1 (1-outfall) Q = 27.96 cfs 21" RCP @ 8.35% = 45.79 cfs
Existing 18" CMP:13.48 cfs @ 5.61%
8 Q = 13.48cfs 18" RCP @2.0% = 14.86 cfs
7 Q = 3.91 cfs Existing 18" CMP: 3.91 cfs @ 0.47%
Mt
.4,
MI
dfa
Appendix A
Storm Drain Calculations
a
a
a
1 DRAINAGE CRITERIA MANUAL RUNOFF
I- TABLE 3-1 (42)
RECOMMENDED •RUNOFF COEFFICIENTS AND PERCENT IMPERVIOUS
11 LAND USE QR PERCENT FREQUENCY •
II SURFACE CHARACTERISTICS IMPERVIOUS 2 5 10 100
Business:
Commercial Areas 95 .87 .87 .88 .89
1 • Neighborhood Areas 70 .60 .65 .70 .80
Residential :
1 Single-Family * .40 .45 .50 .60
Multi-Unit (detached) 50 .45 .50 .60 .70
II Multi-Unit (attached) 70 .60 .65 .70 ' .80
1/2 Acre Lot or Larger * .30 .35 .40 .60
Apartments 70 .65 .70 .70 .80
Industrial :
Light Areas 80 .71 .72 .76 .82
IIHeavy Acres 90 .80 .80 .85 . .90
Parks , Cemetaries: 7 .10 .18 .25 .45
Playgrounds: 13 ._15 .20 .30 .50
Schools: 50 .45 .50 .60 .70
1 Railroad Yard Areas 20 .20 .25 .35 .45
Undeveloped Areas:
1 Historic Flow Analysis- 2 (See "Lawns")
-
Greenbelts , Agricultural
1 Offsite Flow Analysis 45 .43 .47 .55 .65
(when land use not defined)
Streets:
II
Paved 100 .87 .88 .90 .93
Gravel (Packed) 40 .40 .45 .50 .60
IIDrive and Walks: 96 .87 .87 .88 .89
Roofs : 90 .80 .85 .90 .90
IILawns , Sandy Soil 0 .00 .01 .05 .20
Lawns , Clayey Soil 0 .05 .15 .25 .5C •
fNOTE: These Rational Formula coefficients may not be valid for large basins:
II *Sze Figure 2-1 for percent impervious.
I 11-1-90
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
INTENSITY - DURATION
FREQUENCY CURVES •
6 i
• I ....m •/.n•.. . ■.
.
ILIUM Ij • •■■•••■■•■.umn•m nni
••••••••■•nn•••••■•••••••nu•••
.•.•nm•MUM••
■• • ••••••• ■• • ••••••••••••••
•••••r••• •• • ••••••••• .m•n■./••n••.■.
. 1511••••11111• ■••■•••au■i• ••■■•••n.•.a•/•uwn -�
am�1■■i•�Gimm■■•w.m■w■■ ..■..■■■•n•■■.n■ Cc
' •n•si.ni�iii.■q u/n■.� i■a■■...�.mi...an.......■.u�
a U1/7••m.. ••. u u
��..... .../...■. .. _. •••••
/0.
7 , ■./■1 /. ..•■O. /. Z
i •►u•r�..I•••nn••■.••••u
■/7Or•.n.■.■••.■ i� u• ..
mut �iigi� .■•••••■• ■u•.n/nn■ nn. �"
marentrumbungismurediriuminuripmissuaragi i.°n■aaUIn'i'i.4 .ono.n. �`■■u.L v■u�Iu..aui u•u■°■■m■■u...u■■ ■ui.■ii■n
.►mow. ••. ..•■..■•./n•.■.■.■.. u..... .. (o
.■'• . ■■■►�■■ .=i..•.u■•..u.m..■. ■n..■.=■■
.■■■ ��/ 7.. ......aau.aa ■■uuu■■■.....
�umi u•► -�.$► �i"•■nn■■■n■u■u■■■u.u.a. •nnua
3 i.,n.�•11• •••na,C■• •n■■ ..•a■___ w
• .I.4_F..:::a'• .4 n°�••`��i-iii-i.. ■en ..,.....r..,_, ■. . 4.., . .. ....- .„. ......m z
ma .atr,,_ mnimiedhamb_mwtsisoniumr,..ii
2 Moutimunr....mmosaamingumatinannumumasinum..n■w •■'/■ aim w -J
si ■ ` Nam ���i . ,•'m i''�ie mn..--•:
uw./�.• u ar4L—AlsaimmbiamEnurnImiamm....e.Wil Li...
wsusim./•.�u ■....at.....
yaw �._•■c.■..=••■■■■.■■ ■.•■.q■�m.wi
I
I
I
I
I
IExistin g and 2004 Construction
iStorm Drain Calculations
4
I
I
V
I
I
I
I
I
I
I
I
I
W
Z O I` e- CO d
Z 'd) CO e- CO 0 CO w O- co e- V
e-
' lz d ! i E
J I�I� IIZ
E
Q ;, ' 3 o rn LUN- - cocooN
j z A 0
co N co r` N- ` N- ti
w i3O 00,0o66 0
`tea)>
I
N �) co p lN N) O I� �- CO
Z N
O Z rn O U O N O O O -
N
Q t
< o0 I Ca
Z m ce 1 0
W
Q 1 O
W to O I N- N up r`i CA O V• U
I- Z w- CA 1 ti N e- LA 1 r` LC) CO (0
W Q 0 O U O O'0 0!� ,-iN,• CD
Q d' cu a)
1 1 ui
O a ca a E
L.L. I N N N CO M ems- N CO 'c O) Qom) 45 2
Y W O 0 0 0 0 0 0 e-
(9 C C
I-
n. U To E
z z Q 0 C
W Z p
g O _ s 1 co MchMMCOC7m CIS
E c (ta)
l H C 1 4 () 4 V V CO M N
0 U a)
J
C c co T
W _ 4-: N
W �L o l 1, , ,, p
N Z
W O
p c cn
1—
W O N C6 , a) >, co O •=
C) 2
O (Z N N c4 CU N ! (:Y) O N e- Cr). 00 O C (ll Lc)
0 W "a ca Q cci O cO e- O e- 4 e- O O O O 0 Q U C
C
Li Q CV I LL C c0 Q O O Ca
W 0 >' 0 Q c o TT) U c
Z ' 0
I Z P a Q C cLa O
Z Q CV U) e- N C r) 11� CO ti CO U I Q O O
+' E
D 0 W m 1- 0001. < I— F-
E - C00 d0' CO O co - MO M cs4 W 0 . 0 O O O O O O O
Z
z t C� r
- Z co CV N CO 0 N- O CO
a _ N 00 V N N-
J a)
Qz
E5 >+
z W C- to N M CO C0 CO O)
O 0 CO In ,..; O
co I
—cu `. O) .- N
> 1
a' o o N I � N, h CO O) N M ti
a - ao ;N e- e- e- 0)
r-' N. I,- O co
O U N 4 O M r-t N- 6 N-
N
r
c4 r• _
. Q) (f) " co LO lf) 1` In In
>, C L CD c M co N M N
6 0 .c N M M M CO 6 M M j
N C
1 - I
N
C I o V C cO!' O C N I LO 1 N O CO
'y I- E ' l e- O O O ,-1 0
CUe- e- H A---,
+a
C
O. 0 I I
E
Q N c): I Nr n 'M O
0 a)
d:' O N N W CO'
o E 2 V 1 - M v v f I N 100
U I I 0_ I
a
0 2 O v I N co Nr 1 !co CO
2 * o rni -: �- 0),Nr N- 1O)I�
O Q c o v 0'6 o o o 1 C',1 o
(N Co CD CO r` If) 0)
I- p 0 r- N- r` ti r` CO r` CO
Z of 0 0 0'00 0 0
W
2 C
a- o I 1 N
W i 0 Q 0 CD 1 4 to to (1)
H
> }'
W N
C
W0 y 92 co CD N CD - 0) ,Nn 0 Ce I-0 c.) (0 v o (V) o
W Ce Tr Q ca I
Ce O o O
o O
-a 1.- a)aa)I � In 'cr c�
ix cri
C
W• 0 c13 c
cn Z - E 1
Z• Q 0) N o 03 ti CD If) V CO (N e-I
J 0 0 W I I
Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: 5 2004
Solve For Actual Depth
Given Input Data:
Diameter 1.50 ft
' Slope 0.0162 ft/ft
Manning's n 0.013
Discharge 13.30 cfs
Computed Results:
Depth 1.22 ft
Velocity 8.63 fps
' Flow Area 1.54 sf
Critical Depth1.36 ft
Critical Slope0.0140 ft/ft
Percent Full 81.49 %
Full Capacity 13.37 cfs
QMAX @.94D 14.38 cfs
Froude Number 1.32 (flow is Supercritical)
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd • Waterbury, Ct 06708
I/
I
Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: 4
Solve For Actual Depth
Given Input Data:
Diameter 1.50 ft
Slope 0.0198 ft/ft
Manning's n 0.013
Discharge 14.80 cfs
Computed Results:
Depth 1.23 ft
Velocity 9.53 fps
' Flow Area 1.55 sf
Critical Depth1.40 ft
Critical Slope0.0172 ft/ft
Percent Full 82.08 i
Full Capacity 14.78 cfs
QMAX @.94D 15.90 cfs
Froude Number 1.45 (flow is Supercritical)
1
1
1
1
1
' Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
1
t
i
f
Circular Channel Analysis & Design
Solved with Manning's Equation
f
Open Channel - Uniform flow
Worksheet Name:
f
II Comment: 3 t.
Solve For Full Flow Slope
Given Input Data:
f
Diameter 1.50 ft
I Manning's n 0.013
Discharge 17.00 cfs
II
Computed Results: `IF
I Full Flow Channel Slope 0.0262 ft/ft
Full Flow Depth 1.50 ft
Velocity 9.62 fps i
II Flow Area 1.77 sf
Critical Depth1.44 ft
Critical Slope0.0228 ft/ft (
I Percent Full 100.00 t
Full Capacity 17.00 cfs
QMAX @.94D 18.29 cfs
Froude Number FULL `
f
II
I t
,
1
1
1 a
II
i
Open Channel Flow Module, Version 3.41 (c) 1991
ii
Haestad Methods, Inc. • 37 Brookside Rd ` Waterbury, Ct 06708
1
it
I ri
I I
Circular Channel Analysis & Design
tSolved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: 3
Solve For Actual Depth
' Given Input Data:
Diameter 1.50 ft
Slope 0.0198 ft/ft
Manning's n 0.013
Discharge 17.00 cfs
Computed Results:
Worksheet does not have calculated results...
I
I
I
1
Open Channel Flow Module, Version 3.41 (c) 1991 1
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
lIII�!
1
1
I
{
Circular Channel Analysis & Design
1 Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: 2
Solve For Actual Depth
Given Input Data:
Diameter 1.25 ft
' Slope
Manning's n 0.0300 ft/ft f.
0.013
Discharge 9.80 cfs
' Computed Results:
Depth 0.91 ft
Velocity 10.28 fps
Flow Area 0.95 sf
Critical Depth1.18 ft
Critical Slope0.0199 ft/ft
Percent Full 72.53 %
Full Capacity 11.19 cfs y'
QMAX ®.94D 12.04 cfs
Froude Number 1.96 (flow is Supercritical)
1
1 }
1
1
i
1
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. • 37 Brookside Rd • Waterbury, Ct 06708
4
I
1 N
1 a
t
I
20011 e_
I
•
- 16 (-IL/ so z 66,4 _ r
- . c_, s
+c) ' 3 , 37 c.P
= 14 ,7e ejs te." 02.‘z%
•I-- -1 0-1—
-1-o ecf , =
!: 62,( t-tkisooc.,) Cek(-544.11,1 Stefc2. LAAkkALINANK)
nea-e-QP,J4ifsu
I +0 E3c ej5 c_ J ,5Pso3 12t-f
cz
( Q Z7Cc le" r-c-T)e 9:77%
- 0,1 Pcq
(.r\) iz 6P5 z 6/0
•
" critiD : eLI °6
I
1
Circular Channel Analysis & Design
ISolved with Manning's Equation
Open Channel - Uniform flow
1
Worksheet Name:
IIComment: Lionshead Core 146°Q-®
Solve For Full Flow Capacity
II Given Input Data:
Diameter 1.50 ft
II Slope 0.0171 ft/ft
Manning's n 0.010
Discharge 17.86 cfs
II Computed Results:
Full Flow Capacity 17.86 cfs
Full Flow Depth 1.50 ft •
I Velocity 10.11 fps
Flow Area 1.77 sf
Critical Depth1.45 ft
Critical Slope0.0150 ft/ft
I Percent Full 100.00 t
Full Capacity 17.86 cfs
QMAX S.940 19.21 cfs
IFroude Number FULL
I
1
II
I
1
Open Channel Flow Module, Version 3.41 (c) 1991
IIHaestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
S
t
II
i
Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: Lionshead Core U
Solve For Full Flow Capacity
Given Input Data:
Diameter 1.50 ft
Slope 0.0408 ft/ft
Manning's n 0.013
Discharge 21.22 cfs
Computed Results:
Full Flow Capacity 21.22 cfs
Full Flow Depth 1.50 ft
Velocity 12.01 fps
Flow Area 1.77 sf
Critical Depth1.47 ft
Critical Slope0.0368 ft/ft
Percent Full 100.00 °s
Full Capacity 21.22 cfs
QMAX @.94D 22.82 cfs
' Froude Number FULL
I/
i
E
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
I
I
Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: Lionshead Core CD 40
Solve For Full Flow Capacity
Given Input Data:
Diameter 1.50 ft
' Slope 0.0162 ft/ft
Manning's n 0.013
Discharge 13.37 cfs
' Computed Results:
Full Flow Capacity 13.37 cfs
Full Flow Depth 1.50 ft
Velocity 7.57 fps
Flow Area 1.77 sf
Critical Depth1.36 ft
Critical Slope0.0142 ft/ft
Percent Full 100.00 4
Full Capacity 13.37 cfs
QMAX ®.94D 14.38 cfs
' Froude Number FULL
1
1
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. + 37 Brookside Rd * Waterbury, Ct 06708
I/
f
Circular Channel Analysis & Design
' Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: Lionshead Core L
Solve For Full Flow Capacity
Given Input Data:
Diameter 1.50 ft
' Slope 0.0262 ft/ft
Manning's n 0.010
Discharge 22.10 cfs
' Computed Results:
Full Flow Capacity 22.10 cfs
Full Flow Depth 1.50 ft
' Velocity 12.51 fps
Flow Area 1.77 sf
Critical Depth1.48 ft
Critical Slope0.0238 ft/ft
Percent Full 100.00 f
Full Capacity 22.10 cfs
QMAX @.94D 23.78 cfs
' Froude Number FULL
1
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
Circular Channel Analysis & Design
' Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: Lionshead Core
Solve For Full Flow Slope Ce��SKyl� � n,eG¢-f-CS) }p(-))
Given Input Data: J
Diameter 1.50 ft
' Manning's n 0.013
Discharge 17.05 cfs
Computed Results:
Full Flow Channel Slope 0.0263 ft/ft
Full Flow Depth 1.50 ft
Velocity 9.65 fps
' Flow Area 1.77 sf
Critical Depth1.44 ft
Critical Slope0.0230 ft/ft
Percent Full 100.00 V
Full Capacity 17.05 cfs
QMAX @.94D 18.34 cfs
Froude Number FULL
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
1
1
Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: Lionshead Core ////^ L U O
Solve For Full Flow Capacity
Given Input Data:
Diameter 1.25 ft
' Slope 0.0303 ft/ft
Manning's n 0.013
Discharge 11.24 cfs
Computed Results:
Full Flow Capacity 11.24 cfs
Full Flow Depth 1.25 ft
' Velocity 9.16 fps
Flow Area 1.23 sf
Critical Depth1.21 ft
' Critical Slope0.0265 ft/ft
Percent Full 100.00 4
Full Capacity 11.24 cfs
QMAX ®.94D 12.10 cfs
' Froude Number FULL
1
1
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. • 37 Brookside Rd • Waterbury, Ct 06708
I
' Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
1
Worksheet Name:
Comment: Lionshead Core (j b D4-4-4�44-1 (
Solve For Full Flow Capacity
Given Input Data:
Diameter 1.50 ft
' Slope 0.0977 ft/ft
Manning's n 0.013
Discharge 32.83 cfs
Computed Results:
Full Flow Capacity 32.83 cfs
Full Flow Depth 1.50 ft
' Velocity 18.58 fps
Flow Area 1.77 sf
Critical Depth1.50 ft
Critical Slope0.0933 ft/ft
Percent Full 100.00 2
Full Capacity 32.83 cfs
' QMAX ®.94D 35.32 cfs
Froude Number FULL
1
1
1
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
11
' Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
�_ LJ
Comment: Lionshead Core C5 rC✓ ] 0
' Solve For Full Flow Slope
Given Input Data:
Diameter 1.50 ft
' Manning's n 0.024
Discharge 12.73 cfs
Computed Results:
Full Flow Channel Slope 0.0501 ft/ft
Full Flow Depth 1.50 ft
Velocity 7.20 fps
Flow Area 1.77 sf
Critical Depth1.34 ft
Critical Slope0.0443 ft/ft
' Percent Full 100.00 f
Full Capacity 12.73 cfs
QMAX @.94D 13.69 cfs
' Froude Number FULL
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. • 37 Brookside Rd • Waterbury, Ct 06708
1
1
Circular Channel Analysis & Design
IISolved with Manning's Equation
Open Channel - Uniform flow
1
Worksheet Name:
Comment: Lionshead Core �k( 4.n O
1 5
Solve For Full Flow Slope
IIGiven Input Data:
Diameter 1.50 ft
1 Manning's n 0.024
Discharge 4.84 cfs
Computed Results:
1 Full Flow Channel Slope 0.0072 ft/ft
Full Flow Depth 1.50 ft
Velocity 2.74 fps ,
I Flow Area 1.77 sf
Critical Depth0.85 ft
Critical Slope0.0195 ft/ft
Percent Full 100.00 4 I'
Full Capacity 4.84 cfs '
I
QMAX W.940 5.21 cfs
Froude Number FULL
1
1
1 i
1
1
1
1 '
1
I i
1 Open Channel Flow Module, Version 3.41 (c) 1991
{
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
I
M
1
1 ;
a
a
a
a
Developed 2005 Construction
Storm Drain Calculations
a
r
I
I
E
I
a
I
•
efR
I
W 0
z ICD'cn () CO M rn rn r-
Z Lo oococo
0 ai ai d N Sri cd c6
Z ' 1
LL lI l w
Q w i
HZ' E
'I� 0 o �'nioo1 oltiiti N-
1w n
iii U QI0'IO 0 0!0 O O
a)
� N I
LA - i
N C a) O a) co 0) co M U) CO
' (/) CO N CD I N O N- O a) co
Z Z j O V O'CV 0 o 0 — O CV,
O (n -o 1 1 m -t
Z W I I O
Q I 11 0
IX W Z rn NN e- NCON cB
W Q o 0 2 0 0 O O �- O N� >
0 p `°
o ca U) E
a)
0 O o N in MIco1 . N CO a)I W C 2 co
Ll
Y j 2 •0 _ •O Oi O O O O
Q o n u i I I U co a)
Y
H W J 0 I CU
a 0 :
U)CD
E CD
0 0 _ M i CO . . CO M C
a H F- C .4.,6 d INr C7 M N
O c O -
J 0 E as cc
wp c i �n ° cn �n cn O o 0o ea Li I� co LJJ
o c cn c3 CL O ca c
O a- O O f0 N N a1 OM co ti O CO N C a) 2 ." a)
V Ce a) N Id Q CD r i M D D M I� -§-
O N O O CD Q V C
O N W I 1 U � u O C o c —
Q W >, a 0 ca 3 Ca , — O
W O O O c U c
2 Z • J c c) Q 0 c c E O
ZQ N r I N Mid cc) CO f� CO V Q Q' p Q) CL
cp O C C W 0 1 1 I ' I ' _, Ca Ca I I i i E
J 00 0 1 H 0 0 0 L < H H
CD
- O0) �E • (p MN v O O
O O O O O O O O
A .iO
ILL.• 1' z CO' It) -'co ;L() N N'
O v N (O CO N N
J °'
Q z
LIJ J
Z
W U to
� I CO N U) 1
( N ti 0 r O r CO O
O• v
i
0 • O' i CO CO CO - CO CO CO
c-I 1-- - N �In-
I
O Q I CO CO N (fl
O o N i N O (fl - CO v- Cr).
a `. i co v
I
E U, u) vi 0) c c co rn
C) CO M 06 co L Oj N co
,- 1 N
O
CC = L (O co M M CM co M N
O O C N CO M Co M (,.5 M Co
Ix) E
N
() ; 10 co
u) U .E co O O co (O O'IC) O
O H- E .-I ,- , p p e-Ip
CC
45' 0 1 1 1 1
Q mch CO I (O,� 'COI IMO N''
E
L ,1 , (D O (Oi i(3) i-4-
O E v O' N Ti 4 i 'N CO 1 CO
U
e
d 0 w CO' N (O 00 N Co co i
_ * L r (c co. (� I 0) co.
Q O :CV
i
0
0 NI co N- O ti (o
Z O O O O O O O O
W —
2
a C ca cv
N
O O - O Cf) A N
J +_
O Q (0 N- w- Co O 6 Co cc r-
W O I-
1
W L•
O C C a) N CO CO h co O N I O
W Ce v U
• 0 °o u)
0
V
el
�w '4
C1i " f; N N O
r
c
Q W >, O Q
Z a> O O co f-- (o (n "cf N
O
J 0 0 0
Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: 5 developed
Solve For Actual Depth
Given Input Data:
Diameter 1.50 ft
' Slope 0.0162 ft/ft
Manning's n 0.013
Discharge 13.30 cfs
Computed Results:
Depth 1.22 ft
Velocity 8.63 fps
Flow Area 1.54 sf
Critical Depth1.36 ft
Critical Slope0.0140 ft/ft
Percent Full 81.49 %
Full Capacity 13.37 cfs
QMAX @.94D 14.38 cfs
Froude Number 1.32 (flow is Supercritical)
I
I/
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
I
1
Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: 4 developed
Solve For Actual Depth
' Given input Data:
Diameter 1.50 ft
' Slope 0.0100 ft/ft
Manning's n 0.013
Discharge 15.39 cfs
Computed Results:
Worksheet does not have calculated results...
1
1
1
1
1
Open Channel Flow Module, Version 3.41 (c) 1991
I/ Haestad Methods, Inc. • 37 Brookside Rd * Waterbury, Ct 06708
t
1
I
Circular Channel Analysis & Design
ISolved with Manning's Equation
Open Channel - Uniform flow
I
Worksheet Name:
II Comment: 4 developed (
I
Solve For Full Flow Slope
IIGiven Input Data:
Diameter 1.50 ft f
II Manning's n 0.013
Discharge 15.39 cfs
s
Computed Results: s
I Full Flow Channel Slope
Full Flow Depth 0.0215 ft/ft
ft t
Velocity 8.71 fps
II Flow Area 1.77 sf 5
Critical Depth1.41 ft i
Critical Slope0.0186 ft/ft t
s
0
Percent Full 100.00 k
IIFull Capacity 15.39 cfs
QMAX ®.94D 16.56 cfs
Froude Number FULL
II I
I
II i
(
1
II i
t
II 1
1
1
II 1
IIOpen Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 p
II
i
i
I
Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: 4 developed
Solve For Actual Depth
Given Input Data:
Diameter 1.75 ft
' Slope 0.0100 ft/ft
Manning's n 0.013
Discharge 15.39 cfs
' Computed Results:
Depth 1.39 ft
Velocity 7.51 fps
' Flow Area 2.05 sf
Critical Depth1.45 ft
Critical Slope0.0092 ft/ft
' Percent Full 79.49 t
Full Capacity 15.85 cfs
QMAX d.94D 17.04 cfs
Froude Number 1.10 (flow is Supercritical)
1
1
Open Channel Flow Module, Version 3.41 (c) 1991
■
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
1
Circular Channel Analysis & Design
' Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: 2 developed
Solve For Actual Depth
Given Input Data:
Diameter 1.50 ft
Slope 0.0100 ft/ft
Manning's n 0.013
Discharge 9.80 cfs
Computed Results:
Depth 1.15 ft
Velocity 6.75 fps
' Flow Area 1.45 sf
Critical Depth1.21 ft
Critical Slope0.0090 ft/ft
Percent Full 76.52 %
Full Capacity 10.50 cfs
AMAX ®.940 11.30 cfs
Froude Number 1.11 (flow is Supercritical)
1
1
I
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. • 37 Brookside Rd • Waterbury, Ct 06708
1
1
1
Circular Channel Analysis & Design
' Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: 1 developed
Solve For Full Flow Slope
Given Input Data:
Diameter 1.75 ft
' Manning's n 0.013
Discharge 27.00 cfs
Computed Results:
' Full Flow Channel Slope 0.0290 ft/ft
Full Flow Depth 1.75 ft
Velocity 11.23 fps
' Flow Area 2.41 sf
Critical Depth1.70 ft
Critical Slope0.0256 ft/ft
' Percent Full 100.00 ?:
Full Capacity 27.00 cfs
QMAX a.94D 29.04 cfs
Froude Number FULL
I/
(
I
1 Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
1
1
1
If
I
I '
jLl- �aT-e._ g - 3 -at(
112cosf7
i
1
1 (11 ,2_ e g= B ,?Z c h GAIL l att 'p_ z,o-/, L-- 14.8 6 ,c.,h
) rt -\,
1 Lk,';
i
_ = 8 .9. a ,_is , c,'I� 13t! 2�-P@ L.1,0S% = z/,ZZ c,Q�
1 1 C6-s
+0 4 = X3 .34 6.,P-`. TDac .L.4.
IBt( 2c:@ i 2% = 13. 37c,N
I , +n , = 15-,3°1 J-s ,i_ c_i.: a 1 1 Zz-P i.0°/6 = 15. 8 c.S
(4 -9
I -'- ' 1)- E c-4L IS" 2cp 1,03/4 = 10,5' n-Ps
1 . EZ-()
+o U (Q = �7.6“. cA i &b c,,, at° Ec- @ e.-3s6/ = /t ,76/ GPs
I6 -o,,--f pall)
1
I
- - Exi, �-�° �c
I = (, = 13,��3 cPs 1Y cr\ii? : 13,42 -.\-- 5—,c0( %
6-Pci-c-` leat' E2c-P € 2.0% = I4. 8� c41s
f 1
1
' k i 5(-6
3,q 6 l3ci-c_L. l8"GMIJ : 3,91 &L @ a.47 '/'
1 I
�I
I 1
I i
1
I
I(
11
Circular Channel Analysis & Design
' Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name: Loo �
Comment: Lionshead Core / ► Loo e (c?J
Solve For Full Flow Capacity 17 �J
Given Input Data:
Diameter 1.50 ft
' Slope 0.0200 ft/ft
Manning's n 0.013
Discharge 14.86 cfs
' Computed Results:
Full Flow Capacity 14.86 cfs
Full Flow Depth 1.50 ft
Velocity 8.41 fps
Flow Area 1.77 sf
Critical Depth1.40 ft
t Critical Slope0.0173 ft/ft
Percent Full 100.00
Full Capacity 14.86 cfs
QMAX @.94D 15.98 cfs
Froude Number FULL
it
1
1
i
1
1
1
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd • Waterbury, Ct 06708
t
t
I
II I
i
Circular Channel Analysis & Design
II Solved with Manning's Equation i
i
7
Open Channel - Uniform flow
II /� f
Worksheet Name: /(C ) 4-03
L� k
I
IIComment: Lionshead Core
Solve For Full Flow Capacity K
II Given Input Data: 1
p
Diameter 1.50 ft E
II Slope 0.0408 ft/ft
k
Manning's n 0.013
Discharge 21.22 cfs
II Computed Results:
Full Flow Capacity 21.22 cfs ['
Full Flow Depth 1.50 ft
II Velocity 12.01 fps
Flow Area 1.77 sf r
i,.
Critical Depth1.47 ft
Critical Slope0.0368 ft/ft 1
II Percent Full 100.00
Full Capacity 21.22 cfs
QMAX @.94D 22.82 cfs If
IIFroude Number FULL
C
1 u
1 i.
Pt�
1 •
1
II 1
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
Ia
k
dl
I r
It
•
1
Circular Channel Analysis & Design •
' Solved with Manning's Equation
Open Channel - Uniform flow
i
Worksheet Name: /��
Comment: Lionshead Core &--) c: . 1
Solve For Full Flow Capacity �/
Given Input Data:
Diameter 1.50 ft
' Slope 0.0162 ft/ft
Manning's n 0.013
Discharge 13.37 cfs
' Computed Results:
Full Flow Capacity 13.37 cfs
Full Flow Depth 1.50 ft
Velocity 7.57 fps
Flow Area 1.77 sf
Critical Depth1.36 ft
Critical Slope0.0142 ft/ft
Percent Full 100.00 4
Full Capacity 13.37 cfs
QMAX 41).94D 14.38 cfs
' Froude Number FULL
1
1
1
I
Open Channel Flow Module, Version 3.41 (c) 1991
I/ Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
1
Circular Channel Analysis 6, Design
' Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name: /D
Comment: Lionshead Core
Solve For Full Flow Capacity
Given Input Data:
Diameter 1.75 ft
' Slope 0.0100 ft/ft
Manning's n 0.013
Discharge 15.85 cfs
' Computed Results:
Full Flow Capacity 15.85 cfs
Full Flow Depth 1.75 ft
' Velocity 6.59 fps
Flow Area 2.41 sf
Critical Depth1.47 ft
Critical Slope0.0096 ft/ft
Percent Full 100.00 k
Full Capacity 15.85 cfs
QMAX ®.94D 17.04 cfs
' Froude Number FULL
I/
I
I/
Open Channel Flow Module, Version 3.41 (c) 1991
I/ Haestad Methods, Inc. • 37 Brookside Rd * Waterbury, Ct 06708
I
Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name: /T 4, › O
Comment: Lionshead Core ��
Solve For Full Flow Capacity
Given Input Data:
Diameter 1.75 ft
' Slope 0.1024 ft/ft
Manning's n 0.013
Discharge 50.70 cfs
' Computed Results:
Full Flow Capacity 50.70 cfs
Full Flow Depth 1.75 ft
' Velocity 21.08 fps
Flow Area 2.41 sf
Critical Depth1.75 ft
' Critical Slope0.0982 ft/ft
Percent Full 100.00 %
Full Capacity 50.70 cfs
AMAX @.94D 54.54 cfs
' Froude Number FULL
I
I/
Open Channel Flow Module, Version 3.41 (c) 1991
1/ Haestad Methods, Inc. • 37 Brookside Rd • Waterbury, Ct 06708
1
Circular Channel Analysis & Design
' Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: Lionshead Core /2 ) 1 c
Solve For Full Flow Capacity
Given Input Data:
Diameter 1.50 ft
' Slope 0.0100 ft/ft
Manning's n 0.013
Discharge 10.50 cfs
Computed Results:
Full Flow Capacity 10.50 cfs
Full Flow Depth 1.50 ft
Velocity 5.94 fps
Flow Area 1.77 sf
Critical Depth1.25 ft
Critical Slope0.0098 ft/ft
Percent Full 100.00 % I
Full Capacity 10.50 cfs
QMAX 61).94D 11.30 cfs �If
' Froude Number FULL
If
1
II
t
II
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
1 i
t
1
Circular Channel Analysis & Design
' Solved with Manning's Equation
Open Channel - Uniform flow
1
Worksheet Name:
CD —CD ouzE"ga-( 1
Comment: Lionshead Core
Solve For Full Flow Capacity
Given Input Data:
Diameter 1.75 ft
' Slope 0.0835 ft/ft
Manning's n 0.013
Discharge 45.79 cfs
Computed Results:
Full Flow Capacity 45.79 cfs
Full Flow Depth 1.75 ft
' Velocity 19.04 fps
Flow Area 2.41 sf
Critical Depth1.74 ft
Critical Slope0.0793 ft/ft
Percent Full 100.00 4
Full Capacity 45.79 cfs
QMAX @.94D 49.25 cfs
Froude Number FULL
i
1
Open Channel Flow Module, Version 3.41 (c) 1991
I/ Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
I/
1
Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: Lionshead Core _/}_�__1
Solve For Full Flow Slope
�J�v1
Given Input Data:
Diameter 1.50 ft
' Manning's n 0.024
Discharge 13.48 cfs
Computed Results:
' Full Flow Channel Slope 0.0561 ft/ft
Full Flow Depth 1.50 ft
Velocity 7.63 fps
' Flow Area 1.77 sf
Critical Depth1.37 ft
Critical Slope0.0490 ft/ft
' Percent Full 100.00 %
Full Capacity 13.48 cfs
QMAX a.94D 14.50 cfs
Froude Number FULL
I/ Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
1
I
I
1
Circular Channel Analysis & Design
1 Solved with Manning's Equation
Open Channel - Uniform flow
1
Worksheet Name:
Comment: Lionshead Core
Solve For Full Flow Capacity
Given Input Data:
Diameter 1.50 ft
' Slope 0.0200 ft/ft
Manning's n 0.013
Discharge 14.86 cfs
Computed Results:
Full Flow Capacity 14.86 cfs
Full Flow Depth 1.50 ft
1 Velocity 8.41 fps
Flow Area 1.77 sf
Critical Depth1.40 ft
Critical Slope0.0173 ft/ft
' Percent Full 100.00 %
Full Capacity 14.86 cfs
QMAX @.94D 15.98 cfs
1 Froude Number FULL
1
1
1
1
1
1
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
1
1
Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: Lionshead Core
Solve For Full Flow Capacity
' Given Input Data:
Diameter 1.50 ft
' Slope 0.0394 ft/ft
Manning's n 0.013
Discharge 20.85 cfs
Computed Results:
Full Flow Capacity 20.85 cfs
Full Flow Depth 1.50 ft
Velocity 11.80 fps
Flow Area 1.77 sf
Critical Depth1.47 ft
Critical Slope0.0354 ft/ft
Percent Full 100.00 %
Full Capacity 20.85 cfs
QMAX ®.940 22.43 cfs
' Froude Number FULL
1
I
I
1
1
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. • 37 Brookside Rd * Waterbury, Ct 06708
1
i
II
Circular Channel Analysis & Design
ISolved with Manning's Equation
Open Channel - Uniform flow
1 1.
Worksheet Name:
Comment: Lionshead Core (i
Solve For Full Flow Capacity `UJ
II Given Input Data: jj
Diameter 1.50 ft
1
I Slope 0.0412 ft/ft
Manning's n 0.013
Discharge 21.32 cfs
II Computed Results:
Full Flow Capacity 21.32 cfs
l
Full Flow Depth 1.50 ft
II Velocity 12.07 fps
Flow Area 1.77 sf
1
Critical Depth1.47 ft
i
II Critical Slope0.0372 ft/ft
Percent Full 100.00 t
Full Capacity 21.32 cfs
AMAX ®.94D 22.94 cfs
r
I Froude Number FULL
1
t
I 1
II 1
1
i
II 1
1
I f,
1
Open Channel Flow Module, Version 3.41 (c) 1991
II Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
f
C
1
1
II I
1
Circular Channel Analysis & Design
' Solved with Manning's Equation
Open Channel - Uniform flow
1
Worksheet Name:
Comment: Lionshead Core TfLZ
Solve For Full Flow Slope
Given Input Data:
Diameter 1.50 ft
Manning's n 0.024
Discharge 3.91 cfs
Computed Results:
' Full Flow Channel Slope 0.0047 ft/ft
Full Flow Depth 1.50 ft
Velocity 2.21 fps
' Flow Area 1.77 sf
Critical Depth0.76 ft
Critical Slope0.0183 ft/ft
Percent Full 100.00 1
Full Capacity 3.91 cfs
QMAX ®.94D 4.21 cfs
Froude Number FULL
i
I
I
Open Channel Flow Module, Version 3.41 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
I
1
MAPS