HomeMy WebLinkAboutB07-0096 Structural Design Calculations Earth RetentionCOGGINS & SO
Caisson Drilling, Excavation Shoring, Tieback Anchors
STRUCTURAL DESIGN CALCULATIONS
EARTH RETENTION
for
PROJECT NO. - 5223
THE WILLOWS
Prepared for
cc) CLIENT: RA NELSON _ a7
ADDRESS: 51 EAGLE ROAD #2 PO DRAWER 5400 D 6
CITY: AVON STATE: CO 81620
TEL: 970-949-5152 FAX: 970-949-4379
P~0 REGIS
pct-,.•~Y p~.•. T~
o -7
Prepared By:
JOHN H. HART, P.E.
COGGINS & SONS, INC.
DATE: MAY 7, 2007
MAY 14 2007
TOWN OF VAIL
9512 Titan Park Circle • Littleton, Colorado 80125 • (303) 791-9911 • FAX (303) 791-0967
COGGINS & SO
+(y
Caisson Drilling, Excavation Shoring, Tieback Anchors
STRUCTURAL DESIGN CALCULATIONS
SUBMITTAL INDEX
for
PROJECT NO. - 5223
PROJECT: THE WILLOWS
ITEM NO. DESCRIPTION PAGES
1 SOIL NAIL S1.0-S1.6
2 CANTILEVER SOLDIER BEAM AND LAGGING S2.0-S2.23
3 MICROPILE WITH CAP BEAM S3.0-S3.19
APPENDIX "A", REFERENCE MATERIAL AND CODES
APPENDIX "B". LAGGING DESIGN CRITERIA AND REFERENCES
9512 Titan Park Circle • Littleton, Colorado 80125 • (303) 791-9911 • FAX (303) 791-0967
Date: 05-07-2007 SnailUin 3.18 File: VIILOV4
Minimum Factor of Safety = 1.91
37.0 ft Behind Wall Crest
At Wall Toe
H= 12.7 ft
scale = 10 f t
LEGEND:
PS= 30.0 hips
-FY= 45.0 Hs i-
Sh= 0.e ft
Sv= Uaries
GAM PHI COH SIG
pcf deg psf psi
1 125.0 34 0 22.0
S i . v
File: WIILOW4
* CALIFORNIA DEPARTMENT OF TRANSPORTATION
* ENGINEERING SERVICE CENTER
* DIVISION OF MATERIALS AND FOUNDATIONS
* Office of Roadway Geotechnical Engineering
* Date: 05-07-2007 Time: 10:45:27
Project Identification - WILLOWS
- WALL
GEOMETRY
Vertical Wal
l Height
= 12.7
ft
Wall Batter
= 0.0
degree
Angle
Length
(Deg)
(Feet)
First Slope
from Wall
crest.
= 0.0
4.0
Second Slope
from lst
slope.
= 89.9
3.6
Third Slope
from 2nd
slope.
= 21.8
27.0
Fourth Slope
from 3rd
slope.
= 0.0
50.0
Fifth Slope
from 3rd
slope.
= 0.0
0.0
Sixth Slope
from 3rd
slope.
= 0.0
0.0
Seventh Slop
e Angle.
= 0.0
SLOPE BELOW THE WALL
There is NO SLOPE BELOW THE TOE of the wall
SURCHARGE
There is NO SURCHARGE imposed on the system.
OPTION #1
Factored Punching shear, Bond & Yield Stress are used.
SOIL PARAMETERS
Page - 1
Unit
Friction
Cohesion
Bond*
Coordinates
of Boundary
Soil Weight
Angle
Intercept
Stress
XS1 YS1
XS2 YS2
Layer (Pcf)
(Degree)
(Psf)
(Psi)
(ft) (ft)
(ft) (ft)
1 125.0
34.0
0.0
22.0
0.0 0.0
0.0 0.0
* Bond Stress also depends on BSF Factor in Option #5 when enabled.
( . -L-
File: WIILOW4
' WATER SURFACE
NO Water Table defined for this problem.
SEARCH LIMIT
The Search Limit is from 10.0 to 40.0 ft
You have chosen NOT TO LIMIT the search of failure planes
to specific nodes.
REINFORCEMENT PARAMETERS
Number of Reinforcement Levels = 4
Horizontal Spacing = 8.0 ft
Yield Stress of Reinforcement = 45.0 ksi
Diameter of Grouted Hole = 5.5 in
Punching Shear = 30.0 kips
(Varying Reinforcement Parameters)
Vertical
Bar
Level
Length
Inclination
Spacing
Diameter
Bond Stress
(ft)
(degrees)
(ft)
(in)
Factor
1
20.0
15.0
-2.8
1.00
1.00
2
20.0
15.0
4.8
1.00
1.00
3
20.0
15.0
3.8
1.00
1.00
4
20.0
15.0
3.8
1.00
1.00
Page - 2
~l
File: WIILOW4
MINIMUM DISTANCE
SAFETY BEHIND
FACTOR WALL TOE
(ft)
LOWER FAILURE
PLANE
ANGLE LENGTH
(deg) (ft)
UPPER FAILURE
PLANE
ANGLE LENGTH
(deg) (ft)
Toe 3.005
13.0
27.0 4.4
63.1
20.1
Reinf. Stress at
Level 1 =
45.000 Ksi (Yield
Stress
controls.)
2 =
45.000 Ksi (Yield
Stress
controls.)
3 =
45.000 Ksi (Yield
Stress
controls.)
4 =
45.000 Ksi (Yield
Stress
controls.)
MINIMUM
DISTANCE
LOWER FAILURE
UPPER
FAILURE
SAFETY
BEHIND
PLANE
PLANE
FACTOR
WALL TOE
ANGLE LENGTH
ANGLE
LENGTH
(ft)
(deg) (ft)
(deg)
(ft)
NODE 2
2.958 16.0 23.7 10.5 69.2 18.1
Reinf. Stress at
Level 1 =
40.424 Ksi
(Pullout controls...)
2 =
45.000 Ksi
(Yield
Stress
controls.)
3 =
45.000 Ksi
(Yield
Stress
controls.)
4 =
45.000 Ksi
(Yield
Stress
controls.)
MINIMUM
DISTANCE
LOWER FAILURE
UPPER
FAILURE
SAFETY
BEHIND
PLANE
PLANE
FACTOR
WALL TOE
ANGLE
LENGTH
ANGLE
LENGTH
(ft)
(deg)
(ft)
(deg)
(ft)
NODE 3
2.947
19.0 30.4 8.8
57.4
21.2
Reinf. Stress at
Level 1 =
40.938 Ksi
(Pullout contr
ols...)
2 =
45.000 Ksi
(Yield
Stress
controls.)
3 =
45.000 Ksi
(Yield
Stress
controls.)
4 =
45.000 Ksi
(Yield
Stress
controls.)
MINIMUM
DISTANCE
LOWER FAILURE
UPPER
FAILURE
SAFETY
BEHIND
PLANE
PL
ANE
FACTOR
WALL TOE
ANGLE LENGTH
ANGLE
LENGTH
(ft)
(deg)
(ft)
(deg)
(ft)
NODE 4
2.669
22.0 28.1 15.0
61.9
18.7
Reinf. Stress at
Level 1 =
22.978 Ksi
(Pullou
t controls...)
2 =
36.478 Ksi
(Pullou
t controls...)
3 =
45.000 Ksi
(Yield
Stress controls.)
4 =
45.000 Ksi
(Yield
Stress controls.)
MINIMUM
DISTANCE
LOWER F
AILURE
UPPER FAILURE
SAFETY
BEHIND
PLA
NE
PLANE
FACTOR
WALL TOE
ANGLE
LENGTH
ANGLE LENGTH
(ft)
(deg)
(ft)
(deg) (ft)
NODE 5
2.484 25.0 0.0 10.0 58.7 28.9
Reinf. Stress at
Level 1 =
15.778 Ksi
(Pullout
controls...)
2 =
30.849 Ksi
(Pullout
controls...)
3 =
42.780 Ksi
(Pullout
controls...)
4 =
45.000 Ksi
(Yield S
tress controls.)
MINIMUM
DISTANCE
LOWER F
AILURE
UPPER FAILURE
SAFETY
BEHIND
PLA
NE
PLANE
FACTOR
WALL TOE
ANGLE
LENGTH
ANGLE LENGTH
(ft)
(deg)
(ft)
(deg) (ft)
Page - 3
NODE 6
2.178 28.0 10.5 14.2 59.0 27.2.
Reinf. Stress at Level 1 = 3.498 Ksi (Pullout controls...)
2 = 18.426 Ksi (Pullout controls...)
3 = 30.244 Ksi (Pullout controls...)
4 = 45.000 Ksi (Yield Stress controls.)
MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE
SAFETY BEHIND PLANE PLANE
FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH
(ft) (deg) (ft) (deg) (ft)
NODE 7
2.028 31.0 9.6 15.7 56.8 28.3
Reinf. Stress at Level 1 = 0.000 Ksi
2 = 9.868 Ksi (Pullout controls...)
3 = 22.582 Ksi (Pullout controls...)
4 = 45.000 Ksi (Yield Stress controls.)
MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE
SAFETY BEHIND PLANE PLANE
FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH
(ft) (deg) (ft) (deg) (ft)
NODE 8
1.947 34.0 11.0 13.9 49.3 31.3
Reinf. Stress at Level 1 = 0.000 Ksi
2 = 15.789 Ksi (Pullout controls...)
3 = 31.768 Ksi (Pullout controls...)
4 = 45.000 Ksi (Yield Stress controls.)
MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE
SAFETY BEHIND PLANE PLANE
FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH
(ft) (deg) (ft) (deg) (ft)
NODE 9
1.906 37.0 10.1 15.0 46.9 32.5
Reinf. Stress at Level 1 = 0.000 Ksi
2 = 8.709 Ksi (Pullout controls...)
3 = 25.816 Ksi (Pullout controls...)
4 = 45.000 Ksi (Yield Stress controls.)
MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE
SAFETY BEHIND PLANE PLANE
FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH
(ft) (deg) (ft) (deg) (ft)
NODE10
1.934 40.0 12.4 12.3 40.2 36.7
Reinf. Stress at Level 1 = 0.000 Ksi
2 = 17.834 Ksi (Pullout controls...)
3 = 38.336 Ksi (Pullout controls...)
4 = 45.000 Ksi (Yield Stress controls.)
* For Factor of Safety = 1.0
* Maximum Average Reinforcement Working Force:
* 10.374 Kips/level
WILLOWS
5/7/2007
FLEXURE STRENGTH
VERTICAL SPACING (ft)
5
HOR. SPACING (ft)
8
MESH
4
WALER BARS (dia-in) (1)
0.63
VERTICAL REIN. (dia-in) ( 1)
0.50
ADDITIONAL VERT. REIN. (dia-in)(1)
0.50
WALL THICK (in)
5
GROUT HOLE (in)
4
BEARING PLATE
8
STEEL GRADE (psi)
60000
SHOTCRETE (psi)
4000
Cf (Table 4.2 p g. 89)
1.50
FACTOR OF SAFETY
1.35
4 4.0 4.0
0.31
0.20
0.20
8 0.5
VERTICAL DIRECTION HORIZONTAL DIRECTION
As NEG (s q. in
0.99
As POS (s q. in
2.10
My NEG #-in/in
2337
My POS #-in/in
4601
NOM. HEAD (Kips)
133
DESIGN HEAD (Kips)
36
SER. HEAD (Kips)
27
As NEG . in
1.58
As POS . in
2.17
My NEG #-in/in
2330
My POS #-in/in
3123
NOM. HEAD (Kips)
36
PUNCHING SHEAR
Cs (Table 4.2 pg. 89)
2
D'c (in)
13
Dc (in)
18
Ac (sq. in.)
25-4
A c (sq. in.)
13
Vn (Kips)
52
NOM. HEAD (kips)
56
SER. HEAD (Kips)
42,
<
DEVELOPED LENGTH
VERTICAL BARS
Lc/20 in
3.0
15Db in
7.5
d in
2.5
% TOTAL REIN. 0.40
Lvb in 25
WALER BARS
L in
12
Ld = 1.7 Ldb
20
SPLICE LTH in
20
MESH
1.5 Ldb in
4
Swire + 2 in
6
8 in
8
SPLICE LTH in
8
7.5
~x
Ok/ft
ITOP
5
Loads: BLC 1, TRIANGLE
Results for LC 1, TRI LOAD
E
COGGINS AND SONS, INC WILLOWS
JOHN H. HART, PE May 7, 2007 at 12:33 PM
5223 16FTHT.r2d
2. t
Bearn: M1
Shape: W18X71
Material: A572 Gr.50
Length: 16 ft
I Joint: TOP
J Joint: BASE
LC 1: TRI LOAD
Code Check: 0.639 (bending)
Report Based On 99 Sections
41.6 at 16 ft
fa
-.054 at 16 ft
21.015 at 16 ft
A
L1
fc - 944 ksi
-221.867 at 16 ft
ft ksi
-21.015 at 16 ft
A/SC ASD 9th Ed. Code Check
Max Bending Check 0.639
Location 16 ft
Equation H2-1
Compact
Fy 50 ksi
-1.132 at 16 ft
k
v k
M k-ft
.604 at 0 ft
D 7 7 in
Max Shear Check 0.228
Location 16 ft
Max Defl Ratio L/318
Out Plane In Plane
Fa
27.68 ksi
Cm
Ft
30 ksi
Lb
Fb
33 ksi
KL/r
Fv
20 ksi
Sway
Cb
1.75
L Comp Flange
1ft
.85
1 ft
16ft
7.048
25.6
No
No
Company COGGINS AND S-.4S, INC. May 7, 2007
Designer : JOHN H. HART, PE 12:34 PM
Job Number : 5223 WILLOWS Checked By:
Hot Rolled Steel Properties
Lahel E fksil G fksil Nu Therm (\1 F5 Fl nPnsitvrk/ff^.11 Yielrlrksil
1
A36 Gr.36
29000
11154
.3
.65
.49
36
2
A572 Gr.50
29000
11154 `
.3
.65
.49
S0
3
A992
29000
11154
.3
.65
.49
50
4
A500 Gr.42
29000
11154
.3`
.65
:49
42
5
A500 Gr.46
29000
11154
.3
.65
.49
46
Hot Rolled Steel Section Sets
Label _ Shape Desi n List Type Material Desi n Rules A in2 1(90,270) i... 1(0,180) in4
1 SOLDIER BE.. W 18X71 Wide Flange Beam A572 Gr.50 Typical 20.8 60.3 1170
Hot Rolled Steel Design Parameters
Label Shape Length[ft] Lb-out[ft] Lb-in ft Lcom to ...Lcom bot K-out K-in Cm Cb Out s... Ins way
1 M1 SOLDIER 16 1
Joint Coordinates and Temperatures
BASE
I Ia,
Joint Boundary Conditions
Joint Label X k/in Y k/in Rotation k-ft/rad Footing
1 BASE Reaction Reaction Reaction
Member Primary Data
Label I Joint J Joint Rotated Section/Shape Desi n List Type Material Desi n Rules
1 M1 TOP BASE SOLDIER BEAM Wide Flange Beam A572 Gr.50 Typical
Member Distributed Loads (BLC 1 : TRIANGLE)
Member Label Direction_ Start Ma nitude k/ft,... End Ma nitude k/ft d... Start Location ft,% End Location ft
1 M1 X 0 5.2 0 0
Joint Loads and Enforced Displacements
Joint Label _ L,D,M Direction Ma nitude k k-ft in rad k*s^2/ftNo Data to Print
Member Point Loads
Member Label Direction Magnitude[k,k-ft] Locationjft
F No Data to Print
RISA-2D Version 6.5 [C:\...\...\My Documents\2007JOBS\WILLOWS\16FTHT.r2d] Page 4
Company COGGINS AND S-JS, INC. May 7, 2007
Designer JOHN H. HART, PE 12:34 PM
Job Number : 5223 WILLOWS Checked By:
Basic Load Cases
BLC _Description__-__ Cat o X Gravit Y Gravit Joint Point Distributed
1 TRIANGLE EPL 1 1
Load Combination Design
Description ASIF CD ABIF Service Hot Rolled Cold Formed Wood Concrete Footings
1 TRI LOAD Yes Yes Yes Yes Yes I
Load Combinations
Description Solve PD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor
1 TRI LOAD Yes 1 1
Joint Deflections
x
Joint Reactions
LC Joint Label X k Y k MZ k-ft
1
1
BASE
-41.6
-1.132
221.867
2
1
Totals:
-41.6
-1.132
3
1
COG ft :
X: 0
Y: 8
Member Section Deflections
LC Member Label Sec x rinl v rinl (n) L/v Ratin
1
1
M 1
1
0
.604
317.83
2
2 ,
0
.234
819.63
3
3
0
0
NC
Member Section Forces
LC Member Label Sec Axial k Shear k Moment k-ft
1
1
M1
1
0
0
0
2
2
-.566
10.4
-27.733
3
3
-1.132
41.6
-221.867
Member Section Stresses
LC Member Label Sec Axialrksil Shearrksil Tnn RPnrlinnrkcil Rnt Renriinnrkei1
1
1
M1
1
0
0
0
0
2
2
-.027 ,
1.138
2.627
-2,627
3
3
-.054
4.55
21.015
-21.015
RISA-2D Version 6.5 [C:\...\...\My Documents\2007JOBS\WILLOWS\16FTHT.r2d] Page 5
ar
Company COGGINS AND INC.
Designer JOHN H. HART, PE
Job Number : 5223 WILLOWS
May 7, 2007
12:34 PM
Checked By:
Member A/SC ASD Steel Code Checks (By Combination)
LC Member Shape UC Max Loc ft Shear UC Loc ft Fa ksi Ft ksi Fb ksi Cb Cm E n
1 1 M1 W1 8X71 .639 16 .228 16 27.68 30 33 1.75 .85 H2-1
RISA-2D Version 6.5 [C:\...\...\My Documents\2007JOBS\WILLOWS\16FTHT.r2d] Page 6
4
Ok/ft
TOP
E
Loads: BLC 1, TRIANGLE
Results for LC 1, TRI LOAD
COGGINS AND SONS, INC WILLOWS
JOHN H. HART, PE
5223
May 7, 2007 at 12:27 PM
13FTHT.r2d
Beam: M1
Shape: W16X57
Material: A572 Gr.50
Length: 13 ft
I Joint: TOP
J Joint: BASE
LC 1: TRI LOAD
Code Check: 0.512 (bending)
Report Based On 99 Sections
A k
-.743 at 13 ft
29.9 at 13 ft
fa
-.044 at 13 ft
16.851 at 13 ft
fc - gAj ksi
71
M k-ft
-129.567 at 13 ft
ft - ksi
-16.851 at 13 ft
RISC ASD 9th Ed. Code Check
Max Bending Check 0.512
Location 13 ft
Equation H2-1
Compact
Fy 50 ~ si
.363 at 0 ft
D 7 7 in
Max Shear Check 0.212
Location 13 ft
Max Defl Ratio L/429
Out Plane In Plane
Fa
27.95 ksi
Cm
Ft
30 ksi
Lb
Fb
33 ksi
KUr
Fv
20 ksi
Sway
Cb
1.75
L Comp Flange
1 ft
.85
1 ft
13ft
7.492
23.224
No
No
i
Company COGGINS AND S.-.4S, INC. May 7, 2007
Designer JOHN H. HART, PE 12:29 PM
Job Number : 5223 WILLOWS Checked By:
Hot Rolled Steel Properties
I ahel F fkGl G fkSil Nil Tharm mFs Fl .11 Yialrifksl
1
A36 Gr.36
29000
11154
.3
.65
.49
36
2
A572 Gr.50
29000-
11154
.3
.65
.49
50
3
A992
29000
11154
.3
.65
.49
50
4
A500 Gr.42
29000
11154 '
.3
.65
.49
42
5
A500 Gr.46
29000
11154
.3
.65
.49
46
Hot Rolled Steel Section Sets
Label Shape Desi n List Type Material Design Rules A in2 1(90,270) i... 1(0,18() iin4
1 SOLDIER BE... W16X57 Wide Flange Beam A572 Gr.50 Typical 16.8 43.1 758 I
Hot Rolled Steel Design Parameters
Label Shape Length[ft] Lb-out[ft] Lb-in ftLcom to ...Lcom bot K-out K-in Cm Cb Out s... In swa
1 M1 SOLDIER 13 1
Joint Coordinates and Temperatures
Label X fftl Y fftl Temn FR
1
BASE
0
0
0
2
TOP
0
13
0
Joint Boundary Conditions
Joint Label X k/in Y k/in Rotation k-ft/rad Footing
1 BASE Reaction Reaction Reaction
Member Primary Data
Label I Joint J Joint Rotate(deg) Section/Shape Design List Type Material Design Rules
1 M1 TOP BASE SOLDIER BEAM Wide Flange Beam A572 Gr.50 Typica~
Member Distributed Loads (BLC 1 : TRIANGLE)
Member Label Direction Start Ma nitude k/ft End Ma nitude k/ft d... Start Location ft,% End Location ft 1 M1 X 0 4.6 0 0
Joint Loads and Enforced Displacements
Joint Label L,D,M Direction Ma nitude k,k-ft in rad k`s^2/ftNo Data to Print
Member Point Loads
Member Label Direction Ma nitude k k-ft _ Location ft %
No Data to Print
RISA-2D Version 6.5 [C:\...\...\My Documents\2007JOBS\WILLOWS\13FTHT.r2d] Page 1
Company COGGINS AND Sk NS, INC. May 7, 2007
Designer JOHN H. HART, PE 12:29 PM
Job Number : 5223 WILLOWS Checked By:
Basic Load Cases
BLC Description Category X Gravity Y Gravity Joint Point Distributed
1 TRIANGLE EPL 1 1
Load Combination Design
Description ASIF CD ABIF Service Hot Rolled Cold Formed Wood Concrete Footin s
1 TRI LOAD Yes Yes Yes Yes Yes
Load Combinations
Description Solve PD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor
1 TRI LOAD Yes 1 1
Joint Deflections
LC Joint Label X finl Y finl Rotation fradl
1
1
BASE
0
0
0
1 2 1
1 1
TOP
.363
0
-2758e-3
Joint Reactions
LC Joint Label X W Y fkl MZ fk-ftl
1
1
BASE
-29.9
-.743
129.567
2
1
Totals:
-29.9
-.743
3
1
COG (ft):
X: 0
Y: 6.5
Member Section Deflections
LC Member Label Sec x finl v rinl (n) L/v Ratio
1
1
M 1
1
0
.363
429.185
2
2-
0
141
1103.278
3
3
0
0
NC
Member Section Forces
LC Member Label Sec Axialfkl Shearfkl Momentfk-ftl
1
1
M1
1
0
0
0
2
2
-:372
7.475
-16.196
3
3
-.743
29.9
-129.567
Member Section Stresses
LC Member Label Sec Axial ksi Shear ksi To Bendin ksi Bot Bendin ksi
1
1
M1
1
0
0
0
0
2
2
-.022
1.058
2.106
-2.106
3
3
-.044
4.232
16.851
-16.851
RISA-2D Version 6.5 [C:\...\...\My Documents\2007JOBS\WILLOWS\13FTHT.r2d] Page 2
Company COGGINS AND SvNS, INC.
Designer JOHN H. HART, PE
Job Number : 5223 WILLOWS
May 7, 2007
12:29 PM
Checked By:
Member A/SC ASD Steel Code Checks (By Combination)
LC Member Shape UC Max Loc ft Shear UC Loc ft Fa ksi Ft ksi Fb ksi Cb Cm E n
1 1 M1 W16X57 .512 13 .212 13 27.95 30 33 1.75T.85 H2-1
RISA-2D Version 6.5 [C:\...\...\My Documents\2007JOBS\WILLOWS\13FTHT.r2d] Page 3
to
Cl)
O
N
W
O
~
D
O
N
O
N
O
N
N
O
N
O
O
7
O
co
r
0
r
O
N
C)
v
C
0 r
O
V
d
d o
~ O
O
L
d
J O
0
O
N
O
O
0
N
O
9
-
9
-
co
O
O
O
Q
0 Z b 9 8 OL U bL
W) Ladea
T
LO
M
W
D
r
J
O
r
r
O
O
r
C
O
O t
r+
C
d
O J
OD d
CL
L'4 6'0 8'0 L'0 9'0 5'0 b'0 £'0 Z"0 6'0
(ui) uoi;oai}aa peaH-arid
0
r`
0
co
0
LO
0
v
O
co
O
N
O
r
1O
0
16HEIGHT. 1po
LPILE Plus for Windows, version 5.0 (5.0.1)
Analysis of Individual Piles and Drilled Shafts
Subjected to Lateral Loading using the p-y method
(c) copyright ENSOFT, Inc., 1985-2004
All Rights Reserved
This program is licensed to:
JOHN H. HART
COGGINS
Path
to
file locations:
C:\DOCuments and Settings\COGGINS AND SONS\My
Documents\2007JOBS\WILLOWS\
Name
of
input data file:
16HEIGHT.lpd
Name
of
output file:
16HEIGHT.lpo
Name
of
plot output file:
16HEIGHT.Ipp
Name
of
runtime file:
16HEIGHT.Ipr
Time and Date of Analysis
Date: May 7, 2007 Time: 13:18:48
Problem Title
THE WILLOWS
Program Options
Units Used in computations - US Customary units, inches, pounds
Basic Program Options:
Analysis Type 1:
- Computation of Lateral Pile Response using user-specified constant EI
Computation options:
- Only internally-generated p-y curves used in analysis
- Analysis does not use p-y multipliers (individual pile or shaft action only)
- Analysis assumes no shear resistance at pile tip
- Analysis includes automatic computation of pile-top deflection vs.
pile embedment length
- No computation of foundation stiffness matrix elements
- output pile response for full length of pile
- Analysis assumes no soil movements acting on pile
- No additional p-y curves to be computed at user-specified depths
Solution Control Parameters:
Page 1
16HEIGHT.lpo
- Number of pile increments = 60
- Maximum number of iterations allowed = 100
- Deflection tolerance for convergence = 1.0000E-05 in
- Maximum allowable deflection = 1.0000E+02 in
Printing options:
- values of pile-head deflection, bending moment, shear force, and
soil reaction are printed for full length of pile.
- Printing increment (spacing of output points) = 1
Pile structural Properties and Geometry
Pile Length = 180.00 in
Depth of ground surface below top of pile = .00 in
slope angle of ground surface = .00 deg.
Structural properties of pile defined using 2 points
Point Depth
Pile
Moment of
Pile
Modulus of
X
Diameter
Inertia
Area
Elasticity
in
in
in**4
Sq.in
lbs/Sq.in
1 0.0000
24.000
17456.0000
452.0000
32122019.000
2 180.0000
24.000
17456.0000
452.0000
32122019.000
Soil and Rock Layering Information
The soil profile is modelled using 1 layers
Layer 1 is sand, p-y criteria by API RP-2A, 1987
Distance from top of
pile to top of layer =
.000
in
Distance from top of
pile to bottom of layer =
p
180.000
in
p-y subgrade modulus
for top of soil layer =
200.000
lbs/in**3
p-y subgrade modulus
k for bottom of layer =
200.000
lbs/in**3
(Depth of lowest layer extends .00 in below pile tip)
Effective unit weight of soil vs. Depth
Distribution of effective unit weight of soil with depth
is defined using 2 points
Point Depth X Eff. Unit weight
No. in lbs/in**3
1 .00 .07200
2 180.00 .07200
Shear Strength of soils
Page 2
16HEIGHT.lpo
Distribution of
shear strength
parameters with depth
defined
using 2
points
Point
Depth x
cohesion c
Angle of Friction E50 or RQD
No.
in
lbs/in *2
Deg. k_rm
1
.000
.00000
34.00
2
180.000
.00000
34.00
Notes:
(1) Cohesion = uniaxial compressive strength for rock materials.
(2) values of E50 are repported for clay strata.
(3) Default values will be generated for E50 when input values are 0.
(4) RQD and k_rm are reported only for weak rock strata.
Loading Type
static loading criteria was used for computation of p-y curves
Pile-head Loading and Pile-head Fixity conditions
Number of loads specified = 1
Load Case Number 1
Pile-head boundary conditions are shear and moment (BC Type 1)
shear force at pile head = 41600.000 lbs
Bending moment at pile head = 2662404.000 in-lbs
Axial load at pile head = 1000.000 lbs
Non-zero moment at pile head for this load case indicates the pile-head
may rotate under the applied pile-head loading, but is not a free-head
(zero moment) condition.
Computed values of Load Distribution and Deflection
for Lateral Loading for Load Case Number 1
Pile-head boundary conditions are shear and moment (BC Type 1)
specified shear force at pile head = 41600.000 lbs
specified bending moment at pile head = 2662404.000 in-lbs
specified axial load at pile head = 1000.000 lbs
Non-zero moment for this load case indicates the pile-head may rotate under
the applied pile-head loading, but is not a free-head (zero moment )condition.
Depth Deflect. Moment Shear Slope Total Soil Res
X y M V S Stress p
in in lbs-in lbs Rad. lbs/in**2 lbs/in
Page 3
16HEIGHT.Ipo
0.000
.296000
2.662E+06
41600.0000
-.002671
1832.4626
0.0000
3.000
.288007
2.787E+06
41519.2116
-.002657
1918.2610
-53.8589
6.000
.280059
2.912E+06
41268.0394
-.002642
2003.7261
-113.5893
9.000
.272158
3.035E+06
40830.6978
-.002626
2088.4883
-177.9718
12.000
.264305
3.157E+06
40195.0728
-.002609
2172.1495
-245.7782
15.000
.256504
3.276E+06
39352.7156
-.002592
2254.2900
-315.7932
18.000
.248754
3.393E+06
38298.7716
-.002574
2334.4766
-386.8361
21.000
.241059
3.506E+06
37031.8512
-.002556
2412.2698
-457.7775
24.000
.233421
3.615E+06
35553.8559
-.002537
2487.2308
-527.5527
27.000
.225840
3.719E+06
33869.7738
-.002517
2558.9277
-595.1687
30.000
.218319
3.818E+06
31987.4598
-.002497
2626.9423
-659.7073
33.000
.210860
3.911E+06
29917.4139
-.002476
2690.8753
-720.3234
36.000
.203463
3.998E+06
27672.5693
-.002455
2750.3516
-776.2397
39.000
.196130
4.077E+06
25268.1020
-.002433
2805.0253
-826.7385
42.000
.188863
4.149E+06
22721.2703
-.002411
2854.5839
-871.1493
45.000
.181663
4.214E+06
20051.2937
-.002389
2898.7527
-908.8350
48.000
.174530
4.270E+06
17279.2816
-.002366
2937.2984
-939.1730
51.000
.167465
4.317E+06
14428.2221
-.002343
2970.0335
-961.5333
54.000
.160470
4.356E+06
11523.0459
-.002320
2996.8196
-975.2507
57.000
.153545
4.386E+06
8590.7852
-.002297
3017.5717
-979.5897
60.000
.146690
4.408E+06
5660.8513
-.002273
3032.2631
-973.6996
63.000
.139906
4.420E+06
2765.4674
-.002250
3040.9301
-956.5564
66.000
.133193
4.424E+06
-191.6893
-.002226
3043.6789
-1014.8814
69.000
.126551
4.419E+06
-3317.5631
-.002202
3040.1487
-1069.0345
72.000
.119980
4.404E+06
-6597.7630
-.002179
3030.0042
-1117.7654
75.000
.113479
4.380E+06
-10014.1641
-.002155
3012.9441
-1159.8353
78.000
.107049
4.344E+06
-13545.0139
-.002132
2988.7081
-1194.0645
81.000
.100689
4.298E+06
-17165.1801
-.002109
2957.0844
-1219.3796
84.000
.094397
4.241E+06
-20846.5290
-.002086
2917.9164
-1234.8530
87.000
.088174
4.173E+06
-24558.4114
-.002063
2871.1082
-1239.7352
90.000
.082017
4.094E+06
-28268.2249
-.002041
2816.6299
-1233.4739
93.000
.075927
4.004E+06
-31942.0190
-.002020
2754.5199
-1215.7222
96.000
.069900
3.902E+06
-35545.1036
-.001998
2684.8883
-1186.3342
99.000
.063937
3.790E+06
-39042.6307
-.001978
2607.9169
-1145.3505
102.000
.058034
3.668E+06
-42400.1193
-.001958
2523.8591
-1092.9753
105.000
.052190
3.536E+06
-45583.9061
-.001939
2433.0390
-1029.5493
108.000
.046402
3.395E+06
-48561.5090
-.001920
2335.8491
-955.5193
111.000
.040669
3.245E+06
-51301.8997
-.001902
2232.7474
-871.4078
114.000
.034989
3.087E+06
-53775.6895
-.001885
2124.2543
-777.7854
117.000
.029357
2.922E+06
-55955.2349
-.001869
2010.9489
-675.2449
120.000
.023773
2.751E+06
-57814.6736
-.001854
1893.4659
-564.3809
123.000
.018233
2.575E+06
-59329.9043
-.001840
1772.4909
-445.7729
126.000
.012734
2.395E+06
-60478.5218
-.001827
1648.7580
-319.9722
129.000
.007274
2.212E+06
-61239.7207
-.001814
1523.0453
-187.4937
132.000
.001849
2.028E+06
-61594.1766
-.001803
1396.1727
-48.8102
135.000
-.003543
1.843E+06
-61523.9159
-.001793
1268.9980
95.6507
138.000
-.008906
1.659E+06
-61012.1799
-.001783
1142.4151
245.5066
141.000
-.014242
1.477E+06
-60043.2902
-.001775
1017.3511
400.4198
144.000
-.019555
1.298E+06
-58602.5191
-.001767
894.7644
560.0943
147.000
-.024846
1.125E+06
-56675.9676
-.001761
775.6431
724.2733
150.000
-.030120
958320.4786
-54250.4546
-.001755
661.0028
892.7353
153.000
-.035378
799591.6820
-51313.4163
-.001751
551.8859
1065.2902
156.000
-.040623
650450.4842
-47852.8181
-.001747
449.3598
1241.7753
159.000
-.045858
512485.2532
-43857.0781
-.001744
354.5166
1422.0514
162.000
-.051085
387318.4768
-39315.0021
-.001741
268.4717
1605.9993
165.000
-.056305
276605.6879
-34215.7296
-.001739
192.3630
1793.5157
168.000
-.061521
182034.5354
-28548.6910
-.001738
127.3507
1984.5101
171.000
-.066734
105323.9709
-22303.5731
-.001737
74.6166
2178.9018
174.000
-.071945
48223.5211
-15470.2948
-.001737
35.3633
2376.6170
177.000
-.077156
12512.6238
-8038.9903
-.001737
10.8141
2577.5860
180.000
-.082366
0.0000
0.0000
-.001737
2.2124
2781.7409
Page 4
j
16HEIGHT.Ipo
Output verification:
Computed forces and moments are within specified convergence limits.
Output summary for Load Case No. 1:
Pile-head deflection =
Computed slope at pile head =
Maximum bending moment =
Maximum shear force =
Depth of maximum bending moment =
Depth of maximum shear force =
Number of iterations =
Number of zero deflection points =
VJ jc, Lxvi.-
.29599995 in
-.00267136 -
4424320.013 1 bs-i n
-61594.177 lbs
66.000 in
132.000 in t,
17
I 3
summary
of Pile-head
Response
Definition of symbols for pile-head boundary conditions:
y = pile-head displacment, in
m = pile-head moment, lbs-in
v = pile-head shear force, lbs
S = pile-head slope, radians
R = rotational stiffness of pile-head, in-lbs/rad
BC Boundary
Boundary
Axial
Pile Head
maximum
maximum
Type Condition
Condition
Load
Deflection
Moment
Shear
1
2
lbs
in
in-lbs
lbs
1 v= 41600.000
-
M= 2.66E+06
1000.0000
-
.2960
4.424E+06
-61594.1766
Pile-head Deflection vs. Pile Length
Boundary condition Type 1, shear and moment
Shear =
Moment =
Axial Load =
Pile
Length
in
180.000
171.000
162.000
153.000
41600. lbs
2662404. in-lbs
1000. lbs
Pile Head
Deflection
in
.29599995
.37520750
.54148225
1.13711221
Maximum
Moment
in-lbs
4424320.013
4396089.260
4381902.117
4380615.198
The analysis ended normally.
Maximum
Shear
lbs
-61594.177
-66894.247
-74810.481
-89193.653
Page 5
S~
M
W
U)
L
M D
O
Cl?
O
LO
N
O
N
O
LO
r
O
C
C
O
v o
d
d
D
L In
d ~
J
0
LO
0
0 OX
0
in
T7
O
0 ~ Z E b 5 9 L 8 6 06 LL Z6
(:1) y;daa
O
co
co
W
(n O
D ~
O
M
r
O
N
r
O
r
O
O
r
O
O
O
co
C
:i
.C
r.+
O C
~ C
d
J
d
a
O
O
Z'l V 6 6'0 9'0 L'0 9'0 50 b'0 £'0 Z'0
(ui) uoi;osuea peaH-alld
O
LO
O
v
O
M
O
N
O
r
O
6'0 0
13HEIGHT.Ipo
LPILE Plus for Windows, version 5.0 (5.0.1)
Analysis of Individual Piles and Drilled shafts
subjected to Lateral Loading using the p-y method
(c) Copyright ENSOFT, Inc., 1985-2004
All Rights Reserved
This program is licensed to:
JOHN H. HART
COGGINS
Path
to
file locations:
C:\DOCUments and Settings\COGGINS AND SONS\My
Documents\2007JOBS\WILLOWS\
Name
of
input data file:
13HEIGHT.lpd
Name
of
output file:
13HEIGHT.Ipo
Name
of
plot output file:
13HEIGHT.lpp
Name
of
runtime file:
13HEIGHT.Ipr
Time and Date of Analysis
Date: May 7, 2007 Time: 13:13:19
Problem Title
THE WILLOWS
Program options
units used in Computations - us customary units, inches, pounds
Basic Program Options:
Analysis Type 1:
- Computation of Lateral Pile Response using user-specified constant EI
Computation Options:
- only internally-generated p-y curves used in analysis
- Analysis does not use p-y multipliers (individual pile or shaft action only)
- Analysis assumes no shear resistance at pile tip
- Analysis includes automatic computation of pile-top deflection vs.
pile embedment length
- No computation of foundation stiffness matrix elements
- output pile response for full length of pile
- Analysis assumes no soil movements acting on pile
- No additional p-y curves to be computed at user-specified depths
Solution Control Parameters:
Page 1
....n Cr`
13HEIGHT.Ipo
- Number of pile increments = 48
- Maximum number of iterations allowed = 100
- Deflection tolerance for convergence = 1.0000E-05 in
- Maximum allowable deflection = 1.0000E+02 in
Printing Options:
- values of pile-head deflection, bending moment, shear force, and
soil reaction are printed for full length of pile.
- Printing Increment (spacing of output points) = 1
Pile structural Properties and Geometry
Pile
length
=
144.00 in
Depth
of ground surfa
ce below
top of pile =
.00 in
slope
angle of ground
surface
=
.00 deg.
Structural properties
of pile
defined using
2 points
Point
Depth
Pile
Moment of
Pile
Modulus of
X
Diameter
Inertia
Area
Elasticity
in
in
in**4
Sq.in
lbs/Sq.in
1
0.0000
24.000
17044.0000
452.0000
32122019.000
2
144.0000
24.000
17044.0000
452.0000
32122019.000
Soil and Rock Layering Information
The soil profile is modelled using 1 layers
Layer 1 is sand, p-y
criteria by API RP-2A, 1987
Distance from top of
pile to top of layer =
.000
in
Distance from top of
ppile to bottom of layer =
144.000
in
p-y subgrade modulus
k for top of soil layer =
200.000
lbs/in**3
p-y subgrade modulus
k for bottom of layer =
200.000
lbs/in**3
(Depth of lowest layer extends .00 in below pile tip)
Effective unit weight of soil VS. Depth
Distribution of effective unit weight of soil with depth
is defined using 2 points
Point Depth X Eff. Unit Weight
No. in lbs/in**3
1 .00 .07200
2 144.00 .07200
Shear strength of Soils
Page 2
l I
13HEIGHT.Ipo
Distribution of shear strength parameters with depth
defined using 2 points
Point Depth X Cohesion c Angle of Friction E50 or RQD
No. in lbs/in**2 Deg. k_rm
1 .000 .00000 34.00
2 144.000 .00000 34.00
Notes:
(1) Cohesion = uniaxial compressive strength for rock materials.
(2) values of E50 are repported for clay strata.
(3) Default values will be generated for E50 when input values are 0.
(4) RQD and k_rm are reported only for weak rock strata.
Loading Type
Static loading criteria was used for computation of p-y curves
Pile-head Loading and Pile-head Fixity conditions
Number of loads specified = 1
Load Case Number 1
Pile-head boundary conditions are shear and moment (BC Type 1)
Shear force at pile head = 29900.000 lbs
Bending moment at pile head = 1560000.000 in-lbs
Axial load at pile head = 1000.000 lbs
Non-zero moment at pile head for this load case indicates the pile-head
may rotate under the applied pile-head loading, but is not a free-head
(zero moment) condition.
Computed values of Load Distribution and Deflection
for Lateral Loading for Load Case Number 1
Pile-head boundary conditions are shear and moment (BC Type 1)
Specified shear force at pile head = 29900.000 lbs
specified bending moment at pile head = 1560000.000 in-lbs
specified axial load at pile head = 1000.000 lbs
Non-zero moment for this load case indicates the pile-head may rotate under
the applied pile-head loading, but is not a free-head (zero moment )condition.
Depth Deflect. Moment shear slope Total Soil Res
X y M V S Stress p
in in 1bs-in 1bs Rad. 1bs/in**2 1bs/in
Page 3
13HEIGHT.lpo
0.000
.349919
1.560E+06
29900.0000
-.003455
1100.5461
0.0000
3.000
.339567
1.650E+06
29819.0276
-.003446
1163.7076
-53.9816
6.000
.329242
1.739E+06
29567.0595
-.003437
1226.5270
-113.9971
9.000
.318945
1.827E+06
29127.7180
-.003427
1288.6240
-178.8972
12.000
.308678
1.914E+06
28488.1084
-.003417
1349.5875
-247.5093
15.000
.298443
1.998E+06
27638.8715
-.003406
1408.9825
-318.6487
18.000
.288241
2.080E+06
26574.2002
-.003395
1466.3584
-391.1322
21.000
.278073
2.158E+06
25291.8126
-.003383
1521.2558
-463.7929
24.000
.267940
2.231E+06
23792.8821
-.003371
1573.2144
-535.4941
27.000
.257844
2.300E+06
22081.9293
-.003359
1621.7798
-605.1411
30.000
.247786
2.364E+06
20166.6816
-.003346
1666.5106
-671.6907
33.000
.237767
2.421E+06
18057.9091
-.003333
1706.9853
-734.1576
36.000
.227787
2.472E+06
15769.2470
-.003320
1742.8078
-791.6171
39.000
.217848
2.516E+06
13317.0120
-.003306
1773.6143
-843.2062
42.000
.207951
2.552E+06
10720.0220
-.003292
1799.0777
-888.1205
45.000
.198096
2.580E+06
7999.4279
-.003278
1818.9134
-925.6089
48.000
.188282
2.600E+06
5178.5651
-.003264
1832.8840
-954.9662
51.000
.178512
2.611E+06
2282.8341
-.003250
1840.8033
-975.5211
54.000
.168785
2.614E+06
-660.3799
-.003235
1842.5412
-986.6215
57.000
.159100
2.607E+06
-3621.7340
-.003221
1838.0273
-987.6145
60.000
.149459
2.592E+06
-6569.8836
-.003207
1827.2553
-977.8186
63.000
.139860
2.568E+06
-9471.3412
-.003193
1810.2873
-956.4865
66.000
.130303
2.535E+06
-12419.4236
-.003179
1787.2584
-1008.9018
69.000
.120788
2.494E+06
-15512.1238
-.003165
1757.8366
-1052.8983
72.000
.111314
2.442E+06
-18720.1132
-.003151
1721.7430
-1085.7613
75.000
.101880
2.381E+06
-22005.8126
-.003138
1678.7694
-1104.7049
78.000
.092485
2.310E+06
-25323.4506
-.003125
1628.7958
-1107.0537
81.000
.083128
2.229E+06
-28619.6954
-.003113
1571.8072
-1090.4428
84.000
.073808
2.139E+06
-31834.8760
-.003101
1507.9090
-1053.0109
87.000
.064523
2.038E+06
-34904.7276
-.003089
1437.3383
-993.5568
90.000
.055271
1.929E+06
-37762.5102
-.003079
1360.4719
-911.6316
93.000
.046051
1.812E+06
-40341.2899
-.003068
1277.8289
-807.5549
96.000
.036861
1.687E+06
-42576.1528
-.003059
1190.0687
-682.3537
99.000
.027699
1.556E+06
-44406.1386
-.003050
1097.9848
-537.6369
102.000
.018562
1.421E+06
-45775.7421
-.003042
1002.4941
-375.4321
105.000
.009449
1.282E+06
-46635.9023
-.003034
904.6244
-198.0080
108.000
3.57E-04
1.141E+06
-46944.4768
-.003028
805.5000
-7.7083
111.000
-.008717
1.000E+06
-46666.2586
-.003022
706.3268
193.1871
114.000
-.017774
860956.8000
-45772.6299
-.003017
608.3777
402.5654
117.000
-.026817
725459.4973
-44240.9621
-.003012
512.9795
618.5465
120.000
-.035848
595529.1016
-42053.8675
-.003009
421.5007
839.5165
123.000
-.044869
473154.3448
-39198.3917
-.003006
335.3415
1064.1340
126.000
-.053882
360356.7858
-35665.2136
-.003003
255.9252
1291.3182
129.000
-.062890
259181.0843
-31447.8983
-.003002
184.6914
1520.2253
132.000
-.071893
171687.4067
-26542.2322
-.003001
123.0906
1750.2188
135.000
-.080893
99945.6950
-20945.6489
-.003000
72.5802
1980.8368
138.000
-.089892
46031.5127
-14656.7506
-.002999
34.6213
2211.7620
141.000
-.098890
12023.1879
-7674.9181
-.002999
10.6774
2442.7930
144.000
-.107888
0.0000
0.0000
-.002999
2.2124
2673.8191
output ve
rification
:
computed
forces and
moments are
within spec
ified convergence limits
.
output Su
mmary for
Load case No
. l:
Pile-head
deflectio
n
= .34
991905 in '
"
- -
computed
slope at p
ile head
= -.00
345505
Maximum b
ending mom
ent
= 26138
80.386 lbs-in
maximum s
hear force
= -469
44.477 lbs
F -
Depth of
maximum be
nding moment
=
54.000 in
Page
4
`moo ° .
IN f
13HEIGHT.Ipo
Depth of maximum shear force = 108.000 in
Number of iterations = 23
Number of zero deflection points = 1
summary of Pile-head Response
Definition of symbols for pile-head boundary conditions:
y = pile-head displacment, in
m = pile-head moment, lbs-in
v = pile-head shear force, lbs
s = pile-head slope, radians
R = rotational stiffness of pile-head, in-lbs/rad
BC Boundary
Boundary
Axial
Pile Head
maximum
maximum
Type condition
condition
Load
Deflection
Moment
shear
1
2
lbs
in
in-lbs
lbs
1 V= 29900.000
M= 1.56E+06
1000.0000
.3499
2.614E+06
-46944.4768
Pile-head Deflection vs. Pile Length
Boundary condition Type 1, shear and moment
shear = 29900. lbs
Moment = 1560000. in-lbs
Axial Load = 1000. lbs
Pile
Pile Head
Length
Deflection
in
in
144.000
.34991905
136.800
.51449928
129.600
1.26811373
Maximum
Moment
in-lbs
2613880.386
2602516.352
2601077.218
The analysis ended normally.
Maximum
shear
lbs
-46944.477
-51953.357
-62459.641
Page 5
Section:#5 WITH 6.25 DIA
Section Properties:
Number of Shapes = 2
Total Width
= 6.25
in
Total Height
= 6.25
in
Center, Xo
= 0.00
in
Center, Yo
= 0.00
in
X-bar (Right)
=3.125in
X-bar (Left)
=3.125in
Y-bar (Top)
=3.125in
Y-bar (Bot)
=3.125in
Equivalent Propertie
s:
Area, Ax
= 3.99
in^2
Inertia, Ixx
= 8.996
in^4
Inertia, lyy
= 8.996
in^4
Inertia, Ixy
= 0.00
in^4
Torsional, J
= 17.992
in^4
Modulus, Sx(Top)
= 2.879
in^3
Modulus, Sx(Bot)
= 2.879
in^3
Modulus, Sy(Left)
= 2.879
in^3
Modulus, Sy(Right)
= 2.879
in^3
Plastic Modulus, Zx
= 5.214
in^3
Plastic Modulus, Zy
= 5.214
in^3
Radius, rx
= 1.502
in
Radius, ry
= 1.502
in
Basic Properties
of Shapes in Section:
Sh. No. Shape
Factor Width
Height
in
in
1 Circular
0.12 6.25
6.25
2 Solid Bar
1 0.630
0.630
Additional Properties of Shapes in Section:
Sh. No. Shape
J Sx
Sy
in^4 in^3
in^3
1 Circular
149.80 2.811
2.811
2 Solid Bar
0.0155 0.024
0.024
Y
e. @.2@0 -.i
fi 6t 3.125 -pidt- 3.125 -+1
I
~ I
I
Y
I
N
I
m
I
I
Y
X
Section Diagram
Xo
Yo
Ax
Ixx
lyy
in
in
in A2
in^4
in A4
0.00
0.00
30.68
74.901
74.901
0.000
0.000
0.3082
0.0076
0.0076
Zx
Zy
rx
ry
in^3
in^3
in
in
4.80
4.80
1.563
1.563
0.041
0.041
0.1566
0.1566
1k
Loads: BLC 1, TRIANGLE
Results for LC 1, TRI LOAD
COGGINS AND SONS, INS
JOHN H. HART, PE
5223
77
WILLOWS
May 7, 2007 at 2:23 PM
11 FTTEMPMICRO.r2d
1L.1 -
h -
3.6
s
Results for LC 1, TRI LOAD
Member Bending Moments (k-ft)
Reaction units are k and k-ft
COGGINS AND SONS, INC
JOHN H. HART, PE
5223
-4.5 -3.2
WILLOWS
May 7, 2007 at 2:24 PM
11 FTTEMPMICRO.r2d
W
J
0-
0
U_
a
w
H
D,
O
O
O
O
O
C O
i O
c
O
w
V
d
4- LO
d
Q O
R
L
N
r
!4
J v
0
Cl?
O
N
O
r
O
O
QL
0
I Z E ti 9 9 L
(4) yjdaa
0
0
w
J
_
d
U
_
a
rn
w
D
O
O
O
ti
O
(O
C
17'L Z'6 L 8'0 9'0 b'0 Z'0
O
LO
C
d
J
a
0
It
0
Cl)
O
N
O
r
i O
0
(u!) u0143090a peOH-01!d
1 3
11HEIGHTTEMP.Ipo
LPILE Plus for Windows, version 5.0 (5.0.1)
Analysis of Individual Piles and Drilled Shafts
Subjected to Lateral Loading using the p-y method
(c) Copyright ENSOFT, Inc., 1985-2004
All Rights Reserved
This program is licensed to:
JOHN H. HART
COGGINS
Path
to
file locations:
C:\Documents and Settings\COGGINS AND SONS\My
Documents\2007JOBS\WILLOWS\
Name
of
input data file:
11HEIGHTTEMP.lpd
Name
of
output file:
11HEIGHTTEMP.lpo
Name
of
plot output file:
11HEIGHTTEMP.Ipp
Name
of
runtime file:
11HEIGHTTEMP.lpr
Time and Date of Analysis
Date: May 7, 2007 Time: 14:43:14
Problem Title
THE WILLOWS
Program Options
units used in Computations - US Customary units, inches, pounds
Basic Program Options:
Analysis Type 1:
- Computation of Lateral Pile Response using user-specified constant EI
Computation options:
- only internally-generated p-y curves used in analysis
- Analysis does not use p-y multipliers (individual pile or shaft action only)
- Analysis assumes no shear resistance at pile tip
- Analysis includes automatic computation of pile-top deflection vs.
pile embedment length
- No computation of foundation stiffness matrix elements
- Output pile response for full length of pile
- Analysis assumes no soil movements acting on pile
- No additional p-y curves to be computed at user-specified depths
solution control Parameters:
Page 1
11HEIGHTTEMP.lpo
- Number of pile increments = 48
- Maximum number of iterations allowed = 100
- Deflection tolerance for convergence = 1.0000E-05 in
- Maximum allowable deflection = 1.0000E+02 in
Printing Options:
- values of pile-head deflection, bending moment, shear force, and
soil reaction are printed for full length of pile.
- Printing increment (spacing of output points) = 1
Pile structural Properties and Geometry
Pile Length = 96.00 in
Depth of ground surface below top of pile = .00 in
slope angle of ground surface = .00 deg.
Structural properties of pile defined using 2 points
Point Depth
Pile
Moment of
Pile
Modulus of
X
Diameter
Inertia
Area
Elasticity
in
in
in**4
Sq.in
lbs/Sq.in
1 0.0000
6.25000000
9.0000
4.0000
29000000.000
2 96.0000
6.25000000
9.0000
4.0000
2900000.000
soil and Rock Layering Information
The soil profile is modelled using 1 layers
Layer 1 is sand, p-y criteria by API RP-2A, 1987
Distance from top of
pile to top of layer =
.000
in
Distance from top of
ppile to bottom of layer =
96.000
in
p-y subgrade modulus
k for top of soil layer =
200.000
lbs/in**3
p-y subgrade modulus
k for bottom of layer =
200.000
lbs/in**3
(Depth of lowest layer extends .00 in below pile tip)
Effective unit weight of soil vs. Depth
Distribution of effective unit weight of soil with depth
is defined using 2 points
Point Depth x Eff. Unit weight
No. in l bs/i n**3
1 .00 .07200
2 96.00 .07200
Shear strength of soils
Page 2
Distribution of shear strength
defined using 2 points
Point Depth X Cohesion c
No. in lbs/in**2
1 .000 .00000
2 96.000 .00000
Notes:
11HEIGHTTEMP.Ipo
jarameters with depth
Angle of Friction E50 or RQD
Deg. k_rm
34.00
34.00
(1) Cohesion = uniaxial compressive strength for rock materials.
(2) values of E50 are reported for clay strata.
(3) Default values will be generated for E50 when input values are 0.
(4) RQD and k_rm are reported only for weak rock strata.
Loading Type
Static loading criteria was used for computation of p-y curves
Pile-head Loading and Pile-head Fixity Conditions
Number of loads specified = 1
Load Case Number 1
Pile-head boundary conditions are shear and moment (BC Type 1)
shear force at pile head = 3200.000 lbs
Bending moment at pile head = 54000.000 in-lbs
Axial load at pile head = 1000.000 lbs
Non-zero moment at pile head for this load case indicates the pile-head
may rotate under the applied pile-head loading, but is not a free-head
(zero moment) condition.
Computed values of Load Distribution and Deflection
for Lateral Loading for Load Case Number 1
Pile-head boundary conditions are shear and moment (BC T e 1)
specified shear force at pile head = 3200.000 lbs
specified bending moment at pile head = 54000.000 in-lbs
specified axial load at pile head = 1000.000 lbs
Non-zero moment for this load case indicates the pile-head may rotate under
the applied pile-head loading, but is not a free-head (zero moment )condition.
Depth Deflect. Moment shear Slope Total Soil Res
X y M v S Stress p
in in lbs-in lbs Rad. lbs/in**2 lbs/in
Page 3
11HEIGHTTEMP.Ipo
0.000
1.121
54000.0000
3200.0000
-.033590
19000.0000
0.0000
2.000
1.054
60466.7577
3515.5848
-.033143
21245.4020
-10.1870
4.000
.987968
66891.8228
3157.2541
-.032640
23476.3274
-22.3718
6.000
.923220
73226.3356
3099.5313
-.032077
25675.8110
-35.3510
8.000
.859661
79418.2552
3016.2592
-.031451
27825.7831
-47.9211
10.000
.797418
85417.1745
2909.4593
-.030760
29908.7412
-58.8788
12.000
.736619
91179.1342
2783.5599
-.030006
31909.4216
-67.0206
14.000
.677395
96671.4370
2645.3963
-.029186
33816.4712
-71.1431
16.000
.619876
101877.4622
2504.2104
-.028300
35624.1188
-70.0428
18.000
.564194
106801.4792
2353.3273
-.027349
37333.8469
-80.8403
20.000
.510481
111400.1660
2175.6132
-.026331
38930.6132
-96.8738
22.000
.458870
115609.2562
1964.4217
-.025248
40392.1029
-114.3177
24.000
.409490
119358.8436
1716.9322
-.024100
41694.0429
-133.1718
26.000
.362471
122573.3834
1430.3242
-.022889
42810.2026
-153.4362
28.000
.317936
125171.6945
1101.7770
-.021617
43712.3939
-175.1109
30.000
.276002
127066.9606
728.4702
-.020290
44370.4724
-198.1959
32.000
.236777
128166.7337
307.5835
-.018911
44752.3381
-222.6907
34.000
.200359
128372.9378
-163.6956
-.017487
44823.9367
-248.5884
36.000
.166828
127581.9004
-688.1057
-.016027
44549.2710
-275.8218
38.000
.136249
125684.6246
-1267.8880
-.014542
43890.4947
-303.9605
40.000
.108662
122568.5147
-1902.9271
-.013042
42808.5121
-331.0786
42.000
.084081
118125.0848
-2585.1540
-.011544
41265.6544
-351.1483
44.000
.062485
112274.0756
-3287.7951
-.010065
39234.0540
-351.4928
46.000
.043819
105014.1665
-3956.0350
-.008626
36713.2523
-316.7471
48.000
.027982
96484.4392
-4515.4787
-.007246
33751.5414
-242.6966
50.000
.014834
86981.2369
-4902.4130
-.005947
30451.8184
-144.2377
52.000
.004195
76898.5746
-5090.1810
-.004745
26950.8940
-43.5303
54.000
-.004145
66639.4915
-5089.0329
-.003653
23388.7123
44.6784
56.000
-.010416
56557.0536
-4929.0246
-.002679
19887.8658
115.3298
58.000
-.014862
46934.1102
-4645.0054
-.001829
16546.5660
168.6894
60.000
-.017732
37984.3479
-4269.6207
-.001102
13439.0097
206.6953
62.000
-.019271
29860.0362
-3831.5517
-4.964E-04
10618.0681
231.3737
64.000
-.019717
22660.1265
-3355.7253
-6.093E-06
8118.0995
244.4527
66.000
-.019295
16437.1593
-2863.8504
3.761E-04
5957.3470
247.4222
68.000
-.018213
11203.2204
-2374.7420
6.597E-04
4140.0071
241.6861
70.000
-.016657
6935.5522
-1904.3818
8.555E-04
2658.1779
228.6741
72.000
-.014791
3582.2713
-1465.8273
9.750E-04
1493.8442
209.8804
74.000
-.012757
1068.3431
-1069.1112
.001031
620.9525
186.8357
76.000
-.010669
-698.2957
-721.2394
.001035
492.4638
161.0360
78.000
-.008618
-1820.7532
-426.3470
9.994E-04
882.2060
133.8564
80.000
-.006671
-2407.6813
-186.0190
9.365E-04
1086.0005
106.4716
82.000
-.004872
-2568.5755
.2487
8.571E-04
1141.8665
79.7962
84.000
-.003243
-2410.1147
134.4941
7.711E-04
1086.8454
54.4492
86.000
-.001788
-2033.6832
219.6845
6.874E-04
956.1400
30.7412
88.000
-4.93E-04
-1534.1261
259.1061
6.136E-04
782.6827
8.6804
90.000
6.67E-04
-999.7133
255.7844
5.555E-04
597.1227
-12.0020
92.000
.001729
-513.2103
211.9779
5.167E-04
428.1980
-31.8046
94.000
.002733
-153.8685
128.8000
4.974E-04
303.4265
-51.3733
96.000
.003718
0.0000
0.0000
4.924E-04
250.0000
-71.3529
Output verification:
computed forces and moments are within specified convergence limits.
Output Summary for Load case No. 1:
Pile-head deflection = 1.12053898 in
computed slope at pile head = -.03358969
Maximum bending moment = 128372.938 lbs-in
maximum shear force = -5090.181 lbs
Depth of maximum bending moment = 34.000 in
Page 4
11HEIGHTTEMP.lpo
Depth of maximum shear force = 52.000 in
Number of iterations = 28
Number of zero deflection points = 2
Summary of Pile-head Response
Definition of symbols for pile-head boundary conditions:
y = pile-head displacment, in
m = pile-head moment, lbs-in
v = pile-head shear force, lbs
S = pile-head slope, radians
R = rotational stiffness of pile-head, in-lbs/rad
BC Boundary
Boundary
Axial
Pile Head
maximum
maximum
Type Condition
Condition
Load
Deflection
Moment
Shear
1
2
lbs
in
in-lbs
lbs
1 V= 3200.000
M= 54000.000
1000.0000
1.1205
128372.9378
-5090.1810
Pile-head Deflection vs. Pile Length
Boundary Condition Type 1, Shear and Moment
Shear =
Moment =
Axial Load =
Pile
Length
in
96.000
91.200
86.400
81.600
76.800
72.000
67.200
3200. lbs
54000. in-lbs
1000. lbs
Pile Head
Deflection
in
1.12053898
1.12062486
1.12117505
1.12061041
1.12914705
1.18088975
1.57414888
Maximum
Moment
in-lbs
128372.938
128306.847
128332.869
128320.900
128359.922
128386.532
128612.512
The analysis ended normally.
Maximum
shear
lbs
-5090.181
-5104.021
-5082.229
-5091.872
-5200.847
-5631.041
-6948.958
Page 5
Section:PIPE WITH 6.25 DIA
Section Properties:
Number of Shapes = 2
Total Width
= 6.25
in
Total Height
= 6.25
in
Center, Xo
= 0.00
in
Center, Yo
= 0.00
in
X-bar (Right)
=3.125in
X-bar (Left)
=3.125in
Y-bar (Top)
=3.125in
Y-bar (Bot)
=3.125in
Equivalent Properties:
Area, Ax
= 6.218
in^2
Inertia, Ixx
= 12.335
in^4
Inertia, lyy
= 12.335
in^4
Inertia, Ixy
= 0.00
in^4
Torsional, J
= 24.757
in A4
Modulus, Sx(Top)
= 3.947
in^3
Modulus, Sx(Bot)
= 3.947
in^3
Modulus, Sy(Left)
= 3.947
in^3
Modulus, Sy(Right)
= 3.947
in^3
Plastic Modulus, Zx
= 8.062
in^3
Plastic Modulus, Zy
= 8.062
in^3
Radius, rx
= 1.408
in
Radius, ry
= 1.408
in
Basic Properties of Shapes in Section:
Sh. No. Shape
Factor Width
Height
in
in
1 Circular
0.12 6.25
6.25
2 PIPE
1 3.50
3.50
Additional Properties of Shapes in Section:
Sh. No. Shape
J Sx
Sy
in^4 in^3
in^3
1 Circular
149.80 2.811
2.811
2 PIPE
6.78 1.912
1.912
Y
8.260 --N
2.1 3.125 -AM 3.125 P
I
N
M
I
'1'
I
r
I
I
Y
Section Diagram
Xo
Yo
Ax
Ixx
lyy
in
in
in A2
in^4
in A4
0.00
0.00
30.68
74.901
74.901
0.00
0.00
2.553
3.39
3.39
Zx
Zy
rx
ry
in^3
in^3
in
in
4.80
4.80
1.563
1.563
2.646
2.646
1.152
1.152
,i L.
,x'~
z OD..
r I G
r°
c"
i
C- f""
4.1
-.7 -2.2
Results for LC 1, TRI LOAD
Member Bending Moments (k-ft)
Reaction units are k and k-ft
COGGINS AND SONS, INC
JOHN H. HART, PE
5223
WILLOWS
May 7, 2007 at 2:33 PM
11 FTPERMMICRO.r2d
-l k
5
Loads: BLC 1, TRIANGLE
Results for LC 1, TRI LOAD
COGGINS AND SONS, INC WILLOWS
JOHN H. HART, PE I
5223
May 7, 2007 at 2:32 PM
11 FTPERMMICRO.r2d
C\
cl,
c
N
c
00
0
O
17
0
v
17
0
C
N
C
O o
V
d
d
D
~ o
d
l4
J
O
O
O
O
Cl
O
O
N
O
O
O
(4) m4dea
0 L Z E b 5 9 L
1 f ~k
O
O
LLI
J
_
d.
O
U
_
o
~
rn
~
w
a
D
O
M
O
O
O
C
O
L t
r+
C
d
J
d
'a
0
0
M
O
N
O
r
O
09 9v 0v 9E OE 9Z OZ 9L 0L 9 0
(ui) U01138100 peaH-arid
11HEIGHTPERM.lpo
LPILE Plus for Windows, version 5.0 (5.0.1)
Analysis of Individual Piles and Drilled shafts
subjected to Lateral Loading using the p-y method
(c) Copyright ENSOFT, Inc., 1985-2004
All Rights Reserved
This program is licensed to:
JOHN H. HART
COGGINS
Path
to
file locations:
C:\DOCUments and Settings\COGGINS AND SONS\My
Documents\2007JOBS\WILLOWS\
Name
of
input data file:
11HEIGHTPERM.lpd
Name
of
output file:
11HEIGHTPERM.lpo
Name
of
plot output file:
11HEIGHTPERM.Ipp
Name
of
runtime file:
11HEIGHTPERM.lpr
Time and Date of Analysis
Date: May 7, 2007 Time: 14:48:41
Problem Title
THE WILLOWS
Program Options
units used in Computations - US Customary units, inches, pounds
Basic Program Options:
Analysis Type 1:
- Computation of Lateral Pile Response using user-specified constant EI
Computation options:
- Only internally-generated p-y curves used in analysis
- Analysis does not use p-y multipliers (individual pile or shaft action only)
- Analysis assumes no shear resistance at pile tip
- Analysis includes automatic computation of pile-top deflection vs.
pile embedment length
- No computation of foundation stiffness matrix elements
- output pile response for full length of pile
- Analysis assumes no soil movements acting on pile
- No additional p-y curves to be computed at user-specified depths
Solution Control Parameters:
Page 1
11HEIGHTPERM.lpo
- Number of pile increments = 48
- Maximum number of iterations allowed = 100
- Deflection tolerance for convergence = 1.0000E-05 in
- Maximum allowable deflection = 1.0000E+02 in
Printing Options:
- values of pile-head deflection, bending moment, shear force, and
soil reaction are printed for full length of pile.
- Printing Increment (spacing of output points) = 1
Pile structural Properties and Geometry
Pile
Length
=
96.00 in
Depth
of ground surface below
top of pile =
.00 in
slope
angle of ground surface
=
.00 deg.
Struc
tural properties of pile
defined using
2 points
Point
Depth Pile
Moment of
Pile
Modulus of
X Diameter
Inertia
Area
Elasticity
in in
in**4
Sq.in
lbs/Sq.in
1
0.0000 6.25000000
12.3000
6.2000
29000000.000
2
96.0000 6.25000000
12.3000
6.2000
2900000.000
Soil and Rock Layering Information
The soil profile is modelled using 1 layers
Layer 1 is sand, p-y criteria by API RP-2A, 1987
Distance from top of
pile
to top of layer =
.000
in
Distance from top of
pile
to bottom of layer =
96.000
in
p-y subgrade modulus
k for
top of soil layer =
200.000
lbs/in**3
p-y subgrade modulus
k for
bottom of layer =
200.000
lbs/in**3
(Depth of lowest layer extends .00 in below pile tip)
Effective unit weight of soil vs. Depth
Distribution of effective unit weight of soil with depth
is defined using 2 points
Point Depth x Eff. Unit weight
No. in lbs/in**3
1 .00 .07200
2 96.00 .07200
shear Strength of soils
Page 2
Distribution of shear strength
defined using 2 points
Point Depth x cohesion c
No. in lbs/in**2
1 .000 .00000
2 96.000 .00000
Notes:
11HEIGHTPERM.lpo
parameters with depth
Angle of Friction E50 or RQD
Deg. k_rm %
34.00
34.00
(1) Cohesion = uniaxial compressive strength for rock materials.
(2) values of E50 are repported for clay strata.
(3) Default values will be generated for E50 when input values are 0.
(4) RQD and k_rm are reported only for weak rock strata.
Loading Type
Static loading criteria was used for computation of p-y curves
Pile-head Loading and Pile-head Fixity conditions
Number of loads specified = 1
Load Case Number 1
Pile-head boundary conditions are Shear and Moment (BC Type 1)
shear force at pile head = 2200.000 lbs
Bending moment at pile head = 8400.000 in-lbs
Axial load at pile head = 1000.000 lbs
Non-zero moment at pile head for this load case indicates the pile-head
may rotate under the applied pile-head loading, but is not a free-head
(zero moment) condition.
Computed values of Load Distribution and Deflection
for Lateral Loading for Load Case Number 1
Pile-head boundary conditions are shear and moment (BC Type 1)
Specified shear force at pile head = 2200.000 lbs
Specified bending moment at pile head = 8400.000 in-lbs
specified axial load at pile head = 1000.000 lbs
Non-zero moment for this load case indicates the pile-head may rotate under
the applied pile-head loading, but is not a free-head (zero moment )condition.
Depth Deflect. Moment shear Slope Total Soil Res
x y M v s Stress p
in in lbs-in lbs Rad. lbs/in**2 1bs/in
Page 3
-
11HEIGHTPERM.lpo
0.000
.239537
8400.0000
2200.0000
-
-.007888
-
2295.4367
0.0000
2.000
.223810
12815.7274
2273.5330
-.007827
3417.3186
-10.1872
4.000
.208229
17190.5594
2157.2532
-.007740
4528.8105
-22.3723
6.000
.192848
21475.7019
2099.5292
-.007627
5617.5154
-35.3517
8.000
.177722
25619.1825
2016.2560
-.007485
6670.2290
-47.9216
10.000
.162907
29570.6662
1909.4560
-.007316
7674.1628
-58.8784
12.000
.148458
33286.2704
1783.5586
-.007119
8618.1680
-67.0190
14.000
.134430
36733.3780
1645.3983
-.006896
9493.9575
-71.1413
16.000
.120876
39895.4462
1504.2145
-.006646
10297.3285
-70.0425
18.000
.107848
42776.8181
1353.3403
-.006370
11029.3843
-80.8316
20.000
.095397
45334.2864
1175.7054
-.006069
11679.1476
-96.8033
22.000
.083572
47503.9159
964.9480
-.005745
12230.3747
-113.9542
24.000
.072418
49217.0575
719.2498
-.005399
12665.6240
-131.7439
26.000
.061976
50402.5112
438.5956
-.005034
12966.8064
-148.9103
28.000
.052281
50991.5763
126.5110
-.004653
13116.4672
-163.1742
30.000
.043362
50927.1690
-208.0984
-.004261
13100.1036
-171.4352
32.000
.035237
50176.2263
-550.3137
-.003861
12909.3153
-170.7800
34.000
.027917
48741.3596
-880.9944
-.003460
12544.7658
-159.9006
36.000
.021398
46666.0882
-1180.7237
-.003062
12017.5119
-139.8288
38.000
.015670
44030.7118
-1433.9248
-.002673
11347.9549
-113.3724
40.000
.010708
40941.0790
-1631.1394
-.002297
10562.9872
-83.8422
42.000
.006481
37515.3428
-1769.0247
-.001940
9692.6274
-54.0431
44.000
.002948
33872.7403
-1848.9729
-.001605
8767.1695
-25.9052
46.000
6.14E-05
30125.8706
-1875.4428
-.001295
7815.2209
-.5647
48.000
-.002231
26376.1483
-1854.6030
-.001012
6862.5475
21.4044
50.000
-.003986
22711.5057
-1793.4214
-7.575E-04
5931.4900
39.7773
52.000
-.005261
19205.4929
-1699.1096
-5.326E-04
5040.7347
54.5345
54.000
-.006116
15917.1978
-1578.7969
-3.372E-04
4205.2938
65.7782
56.000
-.006610
12891.6541
-1439.3287
-1.707E-04
3436.6089
73.6899
58.000
-.006799
10160.5657
-1287.1297
-3.220E-05
2742.7349
78.5091
60.000
-.006739
7743.2643
-1128.0985
7.985E-05
2128.5831
80.5220
62.000
-.006480
5647.8522
-967.5241
1.673E-04
1596.2121
80.0525
64.000
-.006070
3872.4990
-810.0183
2.322E-04
1145.1569
77.4532
66.000
-.005551
2406.8500
-659.4708
2.771E-04
772.7868
73.0943
68.000
-.004961
1233.5076
-519.0254
3.043E-04
474.6815
67.3511
70.000
-.004334
329.5313
-391.0829
3.165E-04
245.0127
60.5914
72.000
-.003695
-332.0901
-277.3281
3.164E-04
245.6628
53.1633
74.000
-.003068
-781.0467
-178.7811
3.063E-04
359.7270
45.3837
76.000
-.002470
-1048.4398
-95.8683
2.890E-04
427.6622
37.5291
78.000
-.001912
-1165.6758
-28.5114
2.666E-04
457.4478
29.8278
80.000
-.001404
-1163.5517
23.7715
2.414E-04
456.9081
22.4551
82.000
-9.47E-04
-1071.5551
61.7556
2.153E-04
433.5350
15.5290
84.000
-5.42E-04
-917.3907
86.3940
1.902E-04
394.3672
9.1094
86.000
-1.86E-04
-726.7403
98.7016
1.676E-04
345.9296
3.1983
88.000
1.28E-04
-523.2547
99.6421
1.487E-04
294.2311
-2.2577
90.000
4.09E-04
-328.7666
90.0229
1.344E-04
244.8184
-7.3615
92.000
6.66E-04
-163.7010
70.4058
1.252E-04
202.8810
-12.2556
94.000
9.10E-04
-47.6444
41.0460
1.208E-04
173.3951
-17.1042
96.000
.001149
0.0000
0.0000
1.196E-04
161.2903
-22.0611
output ve
rification:
Computed
forces and
moments are
within spec
ified converg
ence limits.
output Su
mmary for L
oad Case No.
1:
Pile-head
deflection
= .23
953701 in
computed
slope at pi
le head
= -.00
788772
Maximum b
ending mome
nt
= 509
91.576 lbs-in
maximum s
hear force
= 22
73.533 lbs
Depth of
maximum bending moment
=
28.000 in
Page
4
11HEIGHTPERM.lpo
Depth of maximum shear force = 2.00000000 in
Number of iterations = 19
Number of zero deflection points = 2
Summary of Pile-head Response
Definition of symbols for pile-head boundary conditions:
y = pile-head displacment, in
m = pile-head moment, lbs-in
v = pile-head shear force, lbs
S = pile-head slope, radians
R = rotational stiffness of pile-head, in-lbs/rad
BC Boundary
Boundary
Axial
Pile Head
maximum
maximum
Type condition
condition
Load
Deflection
Moment
shear
1
2
lbs
in
in-lbs
lbs
1 v= 2200.000
-
M= 8400.000
1000.0000
.2395
50991.5763
2273.5330
Pile-head Deflection vs. Pile Length
Boundary condition Type 1, shear and moment
shear = 2200. lbs
Moment = 8400. in-lbs
Axial Load = 1000. lbs
Pile
Pile Head
maximum
maximum
Length
Deflection
Moment
Shear
in
in
in-lbs
lbs
96.000
-
.23953701
50991.576
2273.533
91.200
.23949038
51014.389
2272.301
86.400
.23977252
51039.848
2271.014
81.600
.23952867
51007.618
2269.671
76.800
.23971363
51006.631
2268.275
72.000
.24162044
51006.819
2266.826
67.200
.24882500
50944.806
2265.327
62.400
.27260209
50963.915
-2349.013
57.600
.35477213
50994.181
-2847.150
52.800
41.643
69513.159
-5045.313
The analysis
ended normally.
Page 5
APPENDIX «A"
REI~~RENCE MATERIAL AND CODES
I SIiOMNG DESIGN REFERENCE DOCUMENTS & BMLIOGRAPIIY
n• IlEERENCE DESIGN CODES AND STANDARDS
COGGINS & SONS, INC., SHORING DESIGN REFERENCE MATERIALS
APRIL 16, 2002, BY STANLEY H. SMITH, PE AND JOHN H. HART, PE
SHORING DESIGN REFERENCE DOCUMENTS & BIBLIOGRAPHY
1) PECK, HANSON & THORNBURN, "FOUNDATION ENGINEERING", SECOND EDITION, 1973.
2) GROUND ANCHORS AND ANCHORED SYSTEMS, GEOTECHNICAL ENGINEERING CIRCULAR
NO. 4, FHWA OFFICE OF BRIDGE TECHNOLOGY, JUNE 1999.
3) JOSEPH E. BOWLES, "FOUNDATION ANALYSIS AND DESIGN', FOURTH AND FIFTH EDITIONS,
1988 & 1996.
4) BRAJA M. DAS, "PRINCIPLES OF FOUNDATION ENGINEERING", SECOND EDITION, 1990.
5) HOLTZ AND KOVACS, "AN INTRODUCTION TO GEOTECHNICAL ENGINEERING", 1981.
6) ROBERT M. KOERNER, "DESIGNING WITH GEOSYNTHETICS", THIRD EDITION, 1994.
7) NAVFAC 7.01, "SOIL MECHANICS", SEPTEMBER, 1986
8) NAVFAC 7.02, "FOUNDATIONS AND EARTH STRUCTURES", SEPTEMBER, 1986
9) HANNA, "FOUNDATIONS IN TENSION - GROUND ANCHORS".
10) FHWA/RD-82/047, "TIEBACKS", JULY 1982.
11) PTI, "POST-TENSIONING MANUAL", FIFTH EDITION, 1997.
12) PTI, "RECOMMENDATIONS FOR PRESTRESSED ROCK AND SOIL ANCHORS", THIRD EDITION,
1996.
13) ASCE, "SERVICEABILITY OF EARTH RETAINING STRUCTURES", GSP #42,1994.
14) FHWA, FHWA-RD-75-128, "LATERAL SUPPORT SYSTEMS AND UNDERPINNING", APRIL 1976,
VOLUMES I, II, III.
15) ASCE, GEOTECHNICAL SPECIAL PUBICATION NO. 74, "GUIDELINES OF ENGINEERING
PRACTICE FOR BRACED AND TIED-BACK EXCAVATIONS".
16) CHEN & ASSOCIATES, "DESIGN OF LATERALLY LOADED PIERS", 1983.
17) ALAN MACNAB,"EARTH RETENTION SYSTEMS HANDBOOK", 2002.
SOIL NAILING REFERENCE DOCUMENTS & BIBLIOGRAPHY
1) ASCE,"SOIL NAILING AND REINFORCED SOIL WALLS", 1992.
2) FHWA/GOLDER PUBLICATION # FHWA-SA-96-069,"MANUAL FOR DESIGN AND
CONSTRUCTION MONITORING OF SOIL NAIL WALLS", NOVEMBER 1996.
3) ASCE,"GROUND IMPROVEMENT / GROUND REINFORCEMENT / GROUND TREATMENT"
SPECIAL PUBLICATION #69, JULY 1997.
4) XANTHAKOS, ABRAMSON & BRUCE,"GROUND CONTROL AND IMPROVEMENT", 1994.
SOFTWARE
1) CALIFORNIA DOT,"SNAIL PROGRAM", VERSION 2.11-PC VERSION.
2) RISA TECHNOLOGIES, "RISA-2D VERSION 4.0, RAPID INTERACTIVE STRUCTURAL ANALYSIS-
2D, FRAME ANALYSIS.
3) GEO-SLOPE International Ltd., "SLOPE/W", VERSION 5
REFERENCE DOCUMENTS
1) AMERICAN INSTITUTE OF STEEL CONSTRUCTION, "MANUAL OF STEEL CONSTRUCTION -
ALLOWABLE STRESS DESIGN", NINTH EDITION, 1989
2) AMERICAN INSTITUTE OF STEEL CONSTRUCTION, "MANUAL OF STEEL CONSTRUCTION -
LOAD AND RESISTANCE FACTOR DESIGN", THIRD EDITION, 2001
3) ACI 381-99/318R-99, "BUILDING CODE AND COMMENTARY", 1999.
4) ANSUASCE 7-95,"MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES".
5) ACI,"BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318-99) AND
COMMENTARY (ACI 31811-99).
6) ANSI/AF&PA NDS-1997,"NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION'.
7) ASCE,"STANDARD FOR LOAD AND RESISTANCE FACTOR DESIGN (LRFD) FOR ENGINEERED
WOOD CONSTRUCTION'.
APPENDIX "B"
LAGGING DESIGN CRITERIA & REFERENCES
COGGINS & SO
Caisson Drilling, Excavation Shoring, Tieback Anchors
TIMBER LAGGING DESIGN CRITERIA AND REFERENCES
Updated July 21, 2003
The design of lagging is primarily based upon experience and semi-empirical
relationships rather than by any rigorous analysis. Coggins & Sons, Inc. have been
utilizing thick rough sawn #2 Douglas fir lumber for many years as lagging. The '/z"
diameter SAE Grade 2 lagging anchor bolts have been in use since 1994. This design has
been implemented successfully for numerous projects. From our experience, we have
determined the #2 Douglas fir can easily span 9'-0" in most soil conditions. On occasion,
the #2 Douglas fir can span 10'-0" in appropriate soils without any failure problems. We
have used 9'-0" typical spacing for numerous projects ranging from 10%0" to 45'-0"
deep without any problems. Please see figures I through 3 for examples of our 9'-0"
spacing at various depths.
The criteria followed for lagging design is from three sources: "Earth Retention Systems
Handbook", FHWA Publication No. IF-99-016, "Ground Anchors and Anchored
Systems", June 1999 and FHWA-RD-75-128, "Lateral Support Systems and
Underpinning", April 1976, Volumes I, II, & III). All of these documents indicate the
timber lagging should not be designed, but rather based on experience and semi-empirical
rules. Goldberg has assembled a table in his report to the FHWA 1976 suggesting
lagging thicknesses for various types of soils (a copy can be seen in Table 1).
If a design analysis is attempted, it is suggested from the three references listed
previously to design the lagging for a soil pressure equal to 50 percent of the apparent
earth pressure. Coggins & Sons, Inc. experience indicates this is conservative in many
cases because of the "hard to estimate" arching affect behind the shoring wall. In
addition, we believe that most lagging will deflect to the point where the retained soils
will arch between the soldier piles and relieve the pressure on the lagging. Once a point
of equilibrium is reached, the deflection will stop.
The following two pages show results for estimated lagging design. In addition, excerpts
from the above-mentioned references and steel stud / #2 Douglas Fir strengths are shown.
9512 Titan Park Circle • Littleton, Colorado 80125 • (303) 791-9911 • FAX (303) 791-0967
hftp://cogginsandsons.uswestdex.com
THE WILLOWS
LAGGING DESIGN
GIVEN:
SOIL TYPE:
SwvDWITH GRAVELS
DESIGN PRESSURE (X)(h) (psf):
35
EXCAVATION DEPTH (ft):
15
SOLDIER BEAM SPACING (ft):
9.25
CLEAR SPAN (ft)
7.25
BOARD HEIGHT (in):
12
BOARD THICK (in):
3
FLEX. STRESS OF #2
DOUGLAS FIR (psi):
1200
FIND:
BENDING STRESS
1) COMPUTE MOMENT M = (W(I"2 / 8
w sf) =
175
1 (ft) =
7.25
M (ft - # =
1150
2) COMPUTE SECTION MODULUS S = (b*(h^2)),/,6
b (in) _
12
h (in) _
3
S (in^3) =
18
_ 3) COMPUTE BENDING STRESS fb = M/S
fb (psi) = 767
c~
z
U
J w
Ix z
W z
ca o<
~O
1~ . F-
0
w
0
~J1
.S
z
0
c~
Q
0
z
Q
c~
z
0
Q
U
LL
O
W
z
Q
n
W
M
W
mZ
M O
x=
w C
k Q
LL)
p U
rj ~
O N
00
in
a ~
3
01
.-r
C5
M
h
AN~
Q
cl
1-1
bD
`bo
r
O
ar
w
O
N
H
U
b
a~
b
C
O
C)
a
tV
H
E
E
E
,
M
S
h
C14
^
i
O
N
LNy
E
N
V
N
S
S
E
S
~
i
i
~
W
7
C
G
E
E
G
,
7
er
fV
n
S
S
h
;
C4
p0
C
X
'
00
}q
p}
N
n
n
~
S
S
kn
N
~
v
V'
I
~
~
~
h
h
h
S
h
a
3
ti
"0 h
N
00
cc
W'j
00
Q v
O
pp
O
h
00
d
ham
c
0.0
.a
Via:
c8~
p
w
3
~
h
y
V
V
. a
H
H
a .40)
O
h
C7.
cn
-
U
i
•
U
v
S
~
to
3
H
.
i
y
in
U
U
'
o U
V
O
p
p
c
p
'v, ~
~
N
oy
O
E
~
V
c io
v
pup O V
~
'4
a
~
qo
y
~
3
'sue
03
~
o
v a
>+o~
•V
U
~ > U
>
TI
5
~
G ~
Q
~ O
h
•y
~ U
~ ~ U
N
W
a
y
y
~
•
~
y A C
d
Q
y W U
.O 'L7
W
'S
T
U
al
C U
~
«
O •q
:F4
a0 v
~
L• O
~
Off
u
'
C.
O
W~
W C
V °
V
G
S
w
~Q V
V
w
O .0
Q'•
eo S
O
t, .a U
°
c
v 3
U O
VI
H 3
U~
o
o
v
~ u
CA
U >
u v
a
SAS
S 0 CA
a0
0
"O
ZOO
0
Nn
~
^
U
0A
v
0
z
' N
co
M
00
o o yU vw w u v.~.
U 0 Z: O° pq 0Gn > b O q Q N b b V.
4. o
U r~ i,
V 't7 h ~ .L' Q cc! d d bo 4) C7 L1, v~
~ C. tg o y O d 'ti n fn
7-4 O 4 N U U
4.
0 .0 C ~ ~ cV O u Q y .d N. w y W ~ ~
cc G 0. 'd cd •Y O .C O O CL
CJ 0 .1 oo O cl V p .0 C3. d ca cy H N oo
w a> b b v W cd , c- m
y
0 1-4
.O H d R w o 3 0 t* A. b o v a
o w q U ° w a> pp h a~ o 'Q. C
04
a> " r a> ego a°'i rn 0
ZV a W w o o° cts H 3 3 o ti h ° w :c
(ON
00
01
b v w :r c,+ y y y A > oo O ~v b y G w
_
CZ cd Cc*
71 0 * 9
oo O C,3 U 'K v c~c a~ c " "s . cc x
I
° o .o id ce y >
v v s E ~ w a
> OD ca
4) 4)
Ow cd 0 'd
,o n n ti n a 'Y 'oo o o 0
7 y N 0 d > C, O gyp. O O~ cpG c O, vpi
0 qt O O 'O V = O h N vi ti C v O `i' p 1.. pO
as o to. 60
y
,O U ar E by t4 v~ 'L7 t.'
tw v 0' q C N vii v1 N R - j • tom, 'N 0 0.
o v Z o P4 Az N as t* 0 > 0 o b 3 a~i b y C o
° ,c
►`J V p d ►Qi Q •Q w pq'~b0 3 U .Lp" 3 .~i, cC on =
° o ado o c W r~i F, Y ° > °
S., 3 3 w 7 W V- Q•S 6" 0.10 -00, v. 2 ~N cvw
a ao 0 0 .0
i
A b 0 >
w° b
\
cl 0
\
~ "0
it)
o v c°
~
v
d
c
4)
o >
t,O
0
•cd o o
U
i/
c> cd
/
U y 00 U h N
~
~ .
C
'
c~
O q ~ v ~ x
L1... . cn O
0 ch i 00
.
'
` ♦ ` ♦
♦ ' `
o
o
-0
U
N U
p
p
A cd cy0 W x
♦
• ♦ • -
G
ca
0U 0 N 0 O .O
♦
. .
>
.n
W 0
m o0
0 ! y c0 d r~
s
04 O
0
\
.
a i
v
•
~
~ ~Q N
i-I ~ h Y
R,o h~
y
0
a
w
X
n
M
0
0
ov
Oc
0
V
x
N W
N tJ1 O O O
O
N
O
A
O
mil
.A.
O A
=O
P
CI
0
v
o
m
CD
N
11
O
CO
O
TABLE 11.1 Goldberg Zoino Chart (Courtesy of the Federal Highway Administration)
O
7
A N
~ O
7 p
O
CL
CD O
c0
m
CD
CO O
Values of Ncq
N A rn
Recommended Thicknesses of
Unified
Laggtn# (roughcat)lot Clear Spans of:
Sail Dsecrlptiou
Classification
Depth
5'
6'
7' .
4:
10'
Silts or fine sand and silt
ML
above water table
SM-ML
Sands and gravels (medium
GW. GP. CM.
0' to 25'
1"
3"
3"
3"
41.
4"
dense to dense).
.
GC. SW. SP. SM
-
Clays (stiff to very stiff):
CL. CH
25' to 60'
3-
3"
3"'
4"
4"
5"
non-fissured.
Clays. medium consis-
CL. CH
"
tency and XH < S.
-
Sands and silty sands.
SW. SP. SM
(loose).
Clayey sands (medium
SC
0' to. 2S'
3"
3" -
3..
4"
4"
Sn
dense to dense) below
water table. -
"
Clays. headly'over-
CL. CH
2S' to 60'
3e
3"
4"
4"
S"
S"
consolidated fissured.
.
Cobesionleas slit or fine
M14SM-ML
sand and silt below water
table.
Soft Clays W HH > S.-
So
CL. CH
0' to 15'
3"
3"
4"
511
Slightly plastic silts
ML -
is, to 25'
3"
4"
S••
6"
below water table.
-
Clayey sands (loose),
SC
25' to 35'
4"
5"
6"
below water table.
K
5
E
ca
a
U
W
N
.a
0
F
a
a
Q
O
9
W
O oOj
Note:
e
In the category of "potentially dangerous soils".
use of lagging is questionable. -
z
O
F
a
W
N
M
x
W
[
V 0
w
cct
v
O
w~
Q
N
0
z
o
v
n,
A
O
~
d
0
O O
i;
' 7 U
`
a
v
n
ccV
N
w
ti
C* "O
0 O N
o
w
` v
oq
O
4.0 0
Jj
04
:3
O
U
~
>
,
El
-
O ~
+
aS .
Q cG
W L.,"
N U N •OQ
Q,
O
cl
w
w
Oq
p
u
~
q
(U
C-1)
o •c
a~
i
v
> as
0
.N
"
v
v
v
o
w
d
w
d
4
b
i
°
4
j
]
O
oo
Vj cd b
O
0
rc:)
v'
N
Q
E
0
b
w
7
a
ba
a
N
w
p .C a> o ~ .o
n
a °
O
U
Cd
aq N
o .14
cri
10
0 a
0
0
(L)
7s = 0 o
y U 0 D
VJ bo
o
o a~ a
w
o O
0-
w
.0
0 o ai
c's .C
0
-0
0 w
O
3
ccd
°
~
h
bip .0
d a
'ba
y bq to 0
-
C
0
t.
u
q
U cC
woz~
0 q
N .0
b
cl b q)
o
>
w .O •0 0 ~ .U
N
U U U U N
c0 to
og
El '
U 0 N
c.~.fl -
ZZ M.
Z
CI
N-1
O
y
0
Q
W
1t]
a
O
Cl)
P
W
O
a
a
yW
F
V
6
N
V
C
W
.y
W
O
C
0
N
v u
3 °
W
a o
v u
a oa
o
R
u 'd
d
'~O u
Q C
OO V
C C
O.
N
V V
u ~
v
h U
00 ~
wi 4
V ~
N
0
o~
a
w
N
cc
y
W
a
Q
0
N
06
cl U 0 ~0y
a Q ~ a7
s, a o 3 be
'O-' N ~ N
3 ~O o
D tw O
v o
o 0 -0
vi OA V W
a V
>
~ h N 0
o . !2 o
d n cs
~-o 0
00
(U Ei
al ° v 3
tV. pp wj ti 00 CIS
w p p 0
V a> o
U 3 O
02
_H
as 4) a~
00
v
n
Y ~ 000b
. .O
0 -.X
"d O O
i 0 3
o m
o
oo
'y 0
W
y
3 v'0 y
o 3 A ra
on rA
~ bo a N
.
9 .0
o
3
.
y
a~
o .14 b
o > o
3 boo o
411
,.0 ao 0~
"
O
~
V
w
c." o
~ 3 w b
~
1-4
04 O
°
°O o
3 a
i
N
'0
0
0r.jb
y O N U
C a
0
04
Q
>
b4 ca 3 V V
Q
w 0 V
O
o co c0 w
rn
c
U
Q
c
o~
LL Q
.Q
-0
m co
~0
m
cE
0 a
0
0 CD
00
m
7
a~
m
A
tf
m
w
c
ca
75
v
PUblicatiOli No. Ft-IWA-(r-99-t)15
JUNE 1999
US-Department
of irOmporfption OfTICit. Qr BRIDGC T1 CHNOLOGY
@derqj High Way 400.EVENI'H STREET, W
Adminisfration
WASHINGTON, DC 20590
G-.u(:)MCWCALEiVGMEI?&G GllZCClI t].1t No. 4
For permanent walls a.nl temporary walls that are considered criucal, an allowable bending stress in
the soldier beam, Ka of 0.55 Fr, where Fr is the yield stress of the steel, is recommended. Steel
sheet-pile and soldier beams are commonly either Grade 35 (Fy = 248 MPa) or Grade 50
(Fr = 345
MPa). For temporary SOB walls, a 20 percent increase in the allowable stress may be allowed for
positive wall bending moments between anchor locations; no allowable stress increase is
recommended for negative wall bending movements at the anchor locations. The required section
modulus Sy, is calculated as:
S'q _ MMU
(Equation 22)
Standard SI units are S(mm3), Maw (kN-m), and K (MPa). In most cases, several available steel
sdctions will typically meet this requirement. The actual wall section selected will be based on
contractor/owner preference, cost, constructability, and details of the anchor/wall connection.
When designing permanent anchored walls in relatively uniform competent materials, it is usually
only necessary to check the final stage of construction provided that: (1) the ground can develop
adequate passive resistance below the excavation to support the wall; (2) apparent earth pressure
diagrams are used to assess the loading on the wall; and (3) there is minimal over excavation below
each anchor level (FHWA-RD-97-130, 1998). For cases where there are large concentrated
surcharges or berms at the ground surface, it is prudent to check wall beading moments for the initial
cantilever stage (i.e., stage just prior to installation and lock-off of uppermost anchor).
Where the final excavation height is not the most critical condition, designers commonly use a
staged construction analysis where the maximum wail bending moment, wall deflections, and wall
embedment depth are evaluated for several stages of construction. An analysis is required for this
case since the maximum bending moment may occur at an intermediate stage of construction (i.e.,
before the final excavation depth is reached). Intermediate construction stages may be critical when:
(1) triangular earth pressure diagrams are used to design the wall; (2) the excavation extends
significantly below an anchor level prior to stressing that anchor, (3) a cutoff wall is used to maintain
the water level behind the wall; (4) the soil below the bottom of the excavation is weals resulting in
active earth pressures that are greater than available resistance provided by the toe of the wall; and
(5) structures are located near the wall.
5.4.2 Design of Lagging for Temporary Support
The thickness of temporary timber lagging for soldier beam and lagging walls is based primarily on
experience or semi-empirical rules. Table 12 presents recommended thicknesses of construction
grade lumber for temporary timber lagging. For temporary SOB walls, contractors may use other
lagging thicknesses provided they can demonstrate good performance of the lagging thickness for
walls constructed in similar ground.
Permanent timber lagging has been used in lieu of a concrete face to carry permanent wall loads. For
permanent applications, the timber grade and dimensions should be designed according to structural
guidelines. Several problems may exist for permanent timber lagging including: (1) need to provide
fire protection for the lagging; (2) limited service life for timber, and (3) difficulty in providing
81
Report No. FHWA;RD- 75-128
PB 257 .21-0
LATERAL SUPPORT SYSTEMS AND UNDERPINNING
Vol. I. Design and Construction
0. T. Goldberg, W. E. laworski, aad M. D. Gordon
April 1976
Final Report
This document is available to the public
through the National Technical Information
Service, Springfield, Virginia 22161
NATIONAL YKIJI~!IC'AL
Prepared for INFORMATION SERVICE
t. WARiMMEIIf or Of CORNICE
SPRRICf1E11 ►A 21161
FEDERAL HIGHWAY
ADMINISTRATION -
Offices of Research & Development,
Washington, D.C. 20590
9* 32 Woof.
9, 3Z, 1 Wood Materials
United States is construct
The most ion grade lumber, usua used for lagging in uc the
tural
fora]. stress-graded lumber uY rough-cut. Struc-
may- be specified though seldom used.
are Douglas Fir or Southern Yellow Pine, both of
which provide a desirable balance between flexural strength
formation modulus.
may be used for and de-
Table 3 lists the properties of some :woods that in wood lagging. The allowable flexural stress s the table is fcr normal or repetitive use construction. tated
9. 32.2 Archig
the conventional Experience has shown that lagging installed in
not manner in most reasonably competent soils does
receive the total earth pressure acting
pressure concentrates on the relativels on the wall. The lateral
sure is a relatively tiff soldier piles; Tess pres-
PPRed to the more flexible lagging between the soldier piles.
This redistribution of pressure, known as arch-
ing, is inherently rested to the usual
lagging is su manner of construction. The
behind the PPorted on the front flange; a slight over-cut is made
lagging to facilitate placement of the boards; and the inter-
vening space behind the boards is filled with soil.
lagging is A related phenomenon is that the pressure on
relatively unaffected b depth.
the greater forces associated with deper eit therefore follows hat
xcavations must bettrans-
mitted through soldier piles.
32.3
- •.•a l~.ctcness
Upon experience Lagging thickness design is based primarily
and/ox empirical rules. One procedure is to vary the
amplitude of the pressure diagram with
1e r pile and maximum pressure at the sold-
minimum pressure midway between the soldier pile (see
Lacroix and Jackson 197Z)
pressure dia ram ' . Another procedure is to reduce the basic
g used in the design of bracing
applying a reduction factor. For example, mento (1972) a in design-
ing lagging for the BARTD system, applied a 50 percent reduction
factor to the basic trapezoidal earth pressure diagram used for strut
design. The New York Transit Authority uses the basic pressure Y
-118-