Loading...
HomeMy WebLinkAboutB07-0096 Structural Design Calculations Earth RetentionCOGGINS & SO Caisson Drilling, Excavation Shoring, Tieback Anchors STRUCTURAL DESIGN CALCULATIONS EARTH RETENTION for PROJECT NO. - 5223 THE WILLOWS Prepared for cc) CLIENT: RA NELSON _ a7 ADDRESS: 51 EAGLE ROAD #2 PO DRAWER 5400 D 6 CITY: AVON STATE: CO 81620 TEL: 970-949-5152 FAX: 970-949-4379 P~0 REGIS pct-,.•~Y p~.•. T~ o -7 Prepared By: JOHN H. HART, P.E. COGGINS & SONS, INC. DATE: MAY 7, 2007 MAY 14 2007 TOWN OF VAIL 9512 Titan Park Circle • Littleton, Colorado 80125 • (303) 791-9911 • FAX (303) 791-0967 COGGINS & SO +(y Caisson Drilling, Excavation Shoring, Tieback Anchors STRUCTURAL DESIGN CALCULATIONS SUBMITTAL INDEX for PROJECT NO. - 5223 PROJECT: THE WILLOWS ITEM NO. DESCRIPTION PAGES 1 SOIL NAIL S1.0-S1.6 2 CANTILEVER SOLDIER BEAM AND LAGGING S2.0-S2.23 3 MICROPILE WITH CAP BEAM S3.0-S3.19 APPENDIX "A", REFERENCE MATERIAL AND CODES APPENDIX "B". LAGGING DESIGN CRITERIA AND REFERENCES 9512 Titan Park Circle • Littleton, Colorado 80125 • (303) 791-9911 • FAX (303) 791-0967 Date: 05-07-2007 SnailUin 3.18 File: VIILOV4 Minimum Factor of Safety = 1.91 37.0 ft Behind Wall Crest At Wall Toe H= 12.7 ft scale = 10 f t LEGEND: PS= 30.0 hips -FY= 45.0 Hs i- Sh= 0.e ft Sv= Uaries GAM PHI COH SIG pcf deg psf psi 1 125.0 34 0 22.0 S i . v File: WIILOW4 * CALIFORNIA DEPARTMENT OF TRANSPORTATION * ENGINEERING SERVICE CENTER * DIVISION OF MATERIALS AND FOUNDATIONS * Office of Roadway Geotechnical Engineering * Date: 05-07-2007 Time: 10:45:27 Project Identification - WILLOWS - WALL GEOMETRY Vertical Wal l Height = 12.7 ft Wall Batter = 0.0 degree Angle Length (Deg) (Feet) First Slope from Wall crest. = 0.0 4.0 Second Slope from lst slope. = 89.9 3.6 Third Slope from 2nd slope. = 21.8 27.0 Fourth Slope from 3rd slope. = 0.0 50.0 Fifth Slope from 3rd slope. = 0.0 0.0 Sixth Slope from 3rd slope. = 0.0 0.0 Seventh Slop e Angle. = 0.0 SLOPE BELOW THE WALL There is NO SLOPE BELOW THE TOE of the wall SURCHARGE There is NO SURCHARGE imposed on the system. OPTION #1 Factored Punching shear, Bond & Yield Stress are used. SOIL PARAMETERS Page - 1 Unit Friction Cohesion Bond* Coordinates of Boundary Soil Weight Angle Intercept Stress XS1 YS1 XS2 YS2 Layer (Pcf) (Degree) (Psf) (Psi) (ft) (ft) (ft) (ft) 1 125.0 34.0 0.0 22.0 0.0 0.0 0.0 0.0 * Bond Stress also depends on BSF Factor in Option #5 when enabled. ( . -L- File: WIILOW4 ' WATER SURFACE NO Water Table defined for this problem. SEARCH LIMIT The Search Limit is from 10.0 to 40.0 ft You have chosen NOT TO LIMIT the search of failure planes to specific nodes. REINFORCEMENT PARAMETERS Number of Reinforcement Levels = 4 Horizontal Spacing = 8.0 ft Yield Stress of Reinforcement = 45.0 ksi Diameter of Grouted Hole = 5.5 in Punching Shear = 30.0 kips (Varying Reinforcement Parameters) Vertical Bar Level Length Inclination Spacing Diameter Bond Stress (ft) (degrees) (ft) (in) Factor 1 20.0 15.0 -2.8 1.00 1.00 2 20.0 15.0 4.8 1.00 1.00 3 20.0 15.0 3.8 1.00 1.00 4 20.0 15.0 3.8 1.00 1.00 Page - 2 ~l File: WIILOW4 MINIMUM DISTANCE SAFETY BEHIND FACTOR WALL TOE (ft) LOWER FAILURE PLANE ANGLE LENGTH (deg) (ft) UPPER FAILURE PLANE ANGLE LENGTH (deg) (ft) Toe 3.005 13.0 27.0 4.4 63.1 20.1 Reinf. Stress at Level 1 = 45.000 Ksi (Yield Stress controls.) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 2 2.958 16.0 23.7 10.5 69.2 18.1 Reinf. Stress at Level 1 = 40.424 Ksi (Pullout controls...) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 3 2.947 19.0 30.4 8.8 57.4 21.2 Reinf. Stress at Level 1 = 40.938 Ksi (Pullout contr ols...) 2 = 45.000 Ksi (Yield Stress controls.) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PL ANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 4 2.669 22.0 28.1 15.0 61.9 18.7 Reinf. Stress at Level 1 = 22.978 Ksi (Pullou t controls...) 2 = 36.478 Ksi (Pullou t controls...) 3 = 45.000 Ksi (Yield Stress controls.) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER F AILURE UPPER FAILURE SAFETY BEHIND PLA NE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 5 2.484 25.0 0.0 10.0 58.7 28.9 Reinf. Stress at Level 1 = 15.778 Ksi (Pullout controls...) 2 = 30.849 Ksi (Pullout controls...) 3 = 42.780 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield S tress controls.) MINIMUM DISTANCE LOWER F AILURE UPPER FAILURE SAFETY BEHIND PLA NE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) Page - 3 NODE 6 2.178 28.0 10.5 14.2 59.0 27.2. Reinf. Stress at Level 1 = 3.498 Ksi (Pullout controls...) 2 = 18.426 Ksi (Pullout controls...) 3 = 30.244 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 7 2.028 31.0 9.6 15.7 56.8 28.3 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 9.868 Ksi (Pullout controls...) 3 = 22.582 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 8 1.947 34.0 11.0 13.9 49.3 31.3 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 15.789 Ksi (Pullout controls...) 3 = 31.768 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE 9 1.906 37.0 10.1 15.0 46.9 32.5 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 8.709 Ksi (Pullout controls...) 3 = 25.816 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) MINIMUM DISTANCE LOWER FAILURE UPPER FAILURE SAFETY BEHIND PLANE PLANE FACTOR WALL TOE ANGLE LENGTH ANGLE LENGTH (ft) (deg) (ft) (deg) (ft) NODE10 1.934 40.0 12.4 12.3 40.2 36.7 Reinf. Stress at Level 1 = 0.000 Ksi 2 = 17.834 Ksi (Pullout controls...) 3 = 38.336 Ksi (Pullout controls...) 4 = 45.000 Ksi (Yield Stress controls.) * For Factor of Safety = 1.0 * Maximum Average Reinforcement Working Force: * 10.374 Kips/level WILLOWS 5/7/2007 FLEXURE STRENGTH VERTICAL SPACING (ft) 5 HOR. SPACING (ft) 8 MESH 4 WALER BARS (dia-in) (1) 0.63 VERTICAL REIN. (dia-in) ( 1) 0.50 ADDITIONAL VERT. REIN. (dia-in)(1) 0.50 WALL THICK (in) 5 GROUT HOLE (in) 4 BEARING PLATE 8 STEEL GRADE (psi) 60000 SHOTCRETE (psi) 4000 Cf (Table 4.2 p g. 89) 1.50 FACTOR OF SAFETY 1.35 4 4.0 4.0 0.31 0.20 0.20 8 0.5 VERTICAL DIRECTION HORIZONTAL DIRECTION As NEG (s q. in 0.99 As POS (s q. in 2.10 My NEG #-in/in 2337 My POS #-in/in 4601 NOM. HEAD (Kips) 133 DESIGN HEAD (Kips) 36 SER. HEAD (Kips) 27 As NEG . in 1.58 As POS . in 2.17 My NEG #-in/in 2330 My POS #-in/in 3123 NOM. HEAD (Kips) 36 PUNCHING SHEAR Cs (Table 4.2 pg. 89) 2 D'c (in) 13 Dc (in) 18 Ac (sq. in.) 25-4 A c (sq. in.) 13 Vn (Kips) 52 NOM. HEAD (kips) 56 SER. HEAD (Kips) 42, < DEVELOPED LENGTH VERTICAL BARS Lc/20 in 3.0 15Db in 7.5 d in 2.5 % TOTAL REIN. 0.40 Lvb in 25 WALER BARS L in 12 Ld = 1.7 Ldb 20 SPLICE LTH in 20 MESH 1.5 Ldb in 4 Swire + 2 in 6 8 in 8 SPLICE LTH in 8 7.5 ~x Ok/ft ITOP 5 Loads: BLC 1, TRIANGLE Results for LC 1, TRI LOAD E COGGINS AND SONS, INC WILLOWS JOHN H. HART, PE May 7, 2007 at 12:33 PM 5223 16FTHT.r2d 2. t Bearn: M1 Shape: W18X71 Material: A572 Gr.50 Length: 16 ft I Joint: TOP J Joint: BASE LC 1: TRI LOAD Code Check: 0.639 (bending) Report Based On 99 Sections 41.6 at 16 ft fa -.054 at 16 ft 21.015 at 16 ft A L1 fc - 944 ksi -221.867 at 16 ft ft ksi -21.015 at 16 ft A/SC ASD 9th Ed. Code Check Max Bending Check 0.639 Location 16 ft Equation H2-1 Compact Fy 50 ksi -1.132 at 16 ft k v k M k-ft .604 at 0 ft D 7 7 in Max Shear Check 0.228 Location 16 ft Max Defl Ratio L/318 Out Plane In Plane Fa 27.68 ksi Cm Ft 30 ksi Lb Fb 33 ksi KL/r Fv 20 ksi Sway Cb 1.75 L Comp Flange 1ft .85 1 ft 16ft 7.048 25.6 No No Company COGGINS AND S-.4S, INC. May 7, 2007 Designer : JOHN H. HART, PE 12:34 PM Job Number : 5223 WILLOWS Checked By: Hot Rolled Steel Properties Lahel E fksil G fksil Nu Therm (\1 F5 Fl nPnsitvrk/ff^.11 Yielrlrksil 1 A36 Gr.36 29000 11154 .3 .65 .49 36 2 A572 Gr.50 29000 11154 ` .3 .65 .49 S0 3 A992 29000 11154 .3 .65 .49 50 4 A500 Gr.42 29000 11154 .3` .65 :49 42 5 A500 Gr.46 29000 11154 .3 .65 .49 46 Hot Rolled Steel Section Sets Label _ Shape Desi n List Type Material Desi n Rules A in2 1(90,270) i... 1(0,180) in4 1 SOLDIER BE.. W 18X71 Wide Flange Beam A572 Gr.50 Typical 20.8 60.3 1170 Hot Rolled Steel Design Parameters Label Shape Length[ft] Lb-out[ft] Lb-in ft Lcom to ...Lcom bot K-out K-in Cm Cb Out s... Ins way 1 M1 SOLDIER 16 1 Joint Coordinates and Temperatures BASE I Ia, Joint Boundary Conditions Joint Label X k/in Y k/in Rotation k-ft/rad Footing 1 BASE Reaction Reaction Reaction Member Primary Data Label I Joint J Joint Rotated Section/Shape Desi n List Type Material Desi n Rules 1 M1 TOP BASE SOLDIER BEAM Wide Flange Beam A572 Gr.50 Typical Member Distributed Loads (BLC 1 : TRIANGLE) Member Label Direction_ Start Ma nitude k/ft,... End Ma nitude k/ft d... Start Location ft,% End Location ft 1 M1 X 0 5.2 0 0 Joint Loads and Enforced Displacements Joint Label _ L,D,M Direction Ma nitude k k-ft in rad k*s^2/ftNo Data to Print Member Point Loads Member Label Direction Magnitude[k,k-ft] Locationjft F No Data to Print RISA-2D Version 6.5 [C:\...\...\My Documents\2007JOBS\WILLOWS\16FTHT.r2d] Page 4 Company COGGINS AND S-JS, INC. May 7, 2007 Designer JOHN H. HART, PE 12:34 PM Job Number : 5223 WILLOWS Checked By: Basic Load Cases BLC _Description__-__ Cat o X Gravit Y Gravit Joint Point Distributed 1 TRIANGLE EPL 1 1 Load Combination Design Description ASIF CD ABIF Service Hot Rolled Cold Formed Wood Concrete Footings 1 TRI LOAD Yes Yes Yes Yes Yes I Load Combinations Description Solve PD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1 TRI LOAD Yes 1 1 Joint Deflections x Joint Reactions LC Joint Label X k Y k MZ k-ft 1 1 BASE -41.6 -1.132 221.867 2 1 Totals: -41.6 -1.132 3 1 COG ft : X: 0 Y: 8 Member Section Deflections LC Member Label Sec x rinl v rinl (n) L/v Ratin 1 1 M 1 1 0 .604 317.83 2 2 , 0 .234 819.63 3 3 0 0 NC Member Section Forces LC Member Label Sec Axial k Shear k Moment k-ft 1 1 M1 1 0 0 0 2 2 -.566 10.4 -27.733 3 3 -1.132 41.6 -221.867 Member Section Stresses LC Member Label Sec Axialrksil Shearrksil Tnn RPnrlinnrkcil Rnt Renriinnrkei1 1 1 M1 1 0 0 0 0 2 2 -.027 , 1.138 2.627 -2,627 3 3 -.054 4.55 21.015 -21.015 RISA-2D Version 6.5 [C:\...\...\My Documents\2007JOBS\WILLOWS\16FTHT.r2d] Page 5 ar Company COGGINS AND INC. Designer JOHN H. HART, PE Job Number : 5223 WILLOWS May 7, 2007 12:34 PM Checked By: Member A/SC ASD Steel Code Checks (By Combination) LC Member Shape UC Max Loc ft Shear UC Loc ft Fa ksi Ft ksi Fb ksi Cb Cm E n 1 1 M1 W1 8X71 .639 16 .228 16 27.68 30 33 1.75 .85 H2-1 RISA-2D Version 6.5 [C:\...\...\My Documents\2007JOBS\WILLOWS\16FTHT.r2d] Page 6 4 Ok/ft TOP E Loads: BLC 1, TRIANGLE Results for LC 1, TRI LOAD COGGINS AND SONS, INC WILLOWS JOHN H. HART, PE 5223 May 7, 2007 at 12:27 PM 13FTHT.r2d Beam: M1 Shape: W16X57 Material: A572 Gr.50 Length: 13 ft I Joint: TOP J Joint: BASE LC 1: TRI LOAD Code Check: 0.512 (bending) Report Based On 99 Sections A k -.743 at 13 ft 29.9 at 13 ft fa -.044 at 13 ft 16.851 at 13 ft fc - gAj ksi 71 M k-ft -129.567 at 13 ft ft - ksi -16.851 at 13 ft RISC ASD 9th Ed. Code Check Max Bending Check 0.512 Location 13 ft Equation H2-1 Compact Fy 50 ~ si .363 at 0 ft D 7 7 in Max Shear Check 0.212 Location 13 ft Max Defl Ratio L/429 Out Plane In Plane Fa 27.95 ksi Cm Ft 30 ksi Lb Fb 33 ksi KUr Fv 20 ksi Sway Cb 1.75 L Comp Flange 1 ft .85 1 ft 13ft 7.492 23.224 No No i Company COGGINS AND S.-.4S, INC. May 7, 2007 Designer JOHN H. HART, PE 12:29 PM Job Number : 5223 WILLOWS Checked By: Hot Rolled Steel Properties I ahel F fkGl G fkSil Nil Tharm mFs Fl .11 Yialrifksl 1 A36 Gr.36 29000 11154 .3 .65 .49 36 2 A572 Gr.50 29000- 11154 .3 .65 .49 50 3 A992 29000 11154 .3 .65 .49 50 4 A500 Gr.42 29000 11154 ' .3 .65 .49 42 5 A500 Gr.46 29000 11154 .3 .65 .49 46 Hot Rolled Steel Section Sets Label Shape Desi n List Type Material Design Rules A in2 1(90,270) i... 1(0,18() iin4 1 SOLDIER BE... W16X57 Wide Flange Beam A572 Gr.50 Typical 16.8 43.1 758 I Hot Rolled Steel Design Parameters Label Shape Length[ft] Lb-out[ft] Lb-in ftLcom to ...Lcom bot K-out K-in Cm Cb Out s... In swa 1 M1 SOLDIER 13 1 Joint Coordinates and Temperatures Label X fftl Y fftl Temn FR 1 BASE 0 0 0 2 TOP 0 13 0 Joint Boundary Conditions Joint Label X k/in Y k/in Rotation k-ft/rad Footing 1 BASE Reaction Reaction Reaction Member Primary Data Label I Joint J Joint Rotate(deg) Section/Shape Design List Type Material Design Rules 1 M1 TOP BASE SOLDIER BEAM Wide Flange Beam A572 Gr.50 Typica~ Member Distributed Loads (BLC 1 : TRIANGLE) Member Label Direction Start Ma nitude k/ft End Ma nitude k/ft d... Start Location ft,% End Location ft 1 M1 X 0 4.6 0 0 Joint Loads and Enforced Displacements Joint Label L,D,M Direction Ma nitude k,k-ft in rad k`s^2/ftNo Data to Print Member Point Loads Member Label Direction Ma nitude k k-ft _ Location ft % No Data to Print RISA-2D Version 6.5 [C:\...\...\My Documents\2007JOBS\WILLOWS\13FTHT.r2d] Page 1 Company COGGINS AND Sk NS, INC. May 7, 2007 Designer JOHN H. HART, PE 12:29 PM Job Number : 5223 WILLOWS Checked By: Basic Load Cases BLC Description Category X Gravity Y Gravity Joint Point Distributed 1 TRIANGLE EPL 1 1 Load Combination Design Description ASIF CD ABIF Service Hot Rolled Cold Formed Wood Concrete Footin s 1 TRI LOAD Yes Yes Yes Yes Yes Load Combinations Description Solve PD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1 TRI LOAD Yes 1 1 Joint Deflections LC Joint Label X finl Y finl Rotation fradl 1 1 BASE 0 0 0 1 2 1 1 1 TOP .363 0 -2758e-3 Joint Reactions LC Joint Label X W Y fkl MZ fk-ftl 1 1 BASE -29.9 -.743 129.567 2 1 Totals: -29.9 -.743 3 1 COG (ft): X: 0 Y: 6.5 Member Section Deflections LC Member Label Sec x finl v rinl (n) L/v Ratio 1 1 M 1 1 0 .363 429.185 2 2- 0 141 1103.278 3 3 0 0 NC Member Section Forces LC Member Label Sec Axialfkl Shearfkl Momentfk-ftl 1 1 M1 1 0 0 0 2 2 -:372 7.475 -16.196 3 3 -.743 29.9 -129.567 Member Section Stresses LC Member Label Sec Axial ksi Shear ksi To Bendin ksi Bot Bendin ksi 1 1 M1 1 0 0 0 0 2 2 -.022 1.058 2.106 -2.106 3 3 -.044 4.232 16.851 -16.851 RISA-2D Version 6.5 [C:\...\...\My Documents\2007JOBS\WILLOWS\13FTHT.r2d] Page 2 Company COGGINS AND SvNS, INC. Designer JOHN H. HART, PE Job Number : 5223 WILLOWS May 7, 2007 12:29 PM Checked By: Member A/SC ASD Steel Code Checks (By Combination) LC Member Shape UC Max Loc ft Shear UC Loc ft Fa ksi Ft ksi Fb ksi Cb Cm E n 1 1 M1 W16X57 .512 13 .212 13 27.95 30 33 1.75T.85 H2-1 RISA-2D Version 6.5 [C:\...\...\My Documents\2007JOBS\WILLOWS\13FTHT.r2d] Page 3 to Cl) O N W O ~ D O N O N O N N O N O O 7 O co r 0 r O N C) v C 0 r O V d d o ~ O O L d J O 0 O N O O 0 N O 9 - 9 - co O O O Q 0 Z b 9 8 OL U bL W) Ladea T LO M W D r J O r r O O r C O O t r+ C d O J OD d CL L'4 6'0 8'0 L'0 9'0 5'0 b'0 £'0 Z"0 6'0 (ui) uoi;oai}aa peaH-arid 0 r` 0 co 0 LO 0 v O co O N O r 1O 0 16HEIGHT. 1po LPILE Plus for Windows, version 5.0 (5.0.1) Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading using the p-y method (c) copyright ENSOFT, Inc., 1985-2004 All Rights Reserved This program is licensed to: JOHN H. HART COGGINS Path to file locations: C:\DOCuments and Settings\COGGINS AND SONS\My Documents\2007JOBS\WILLOWS\ Name of input data file: 16HEIGHT.lpd Name of output file: 16HEIGHT.lpo Name of plot output file: 16HEIGHT.Ipp Name of runtime file: 16HEIGHT.Ipr Time and Date of Analysis Date: May 7, 2007 Time: 13:18:48 Problem Title THE WILLOWS Program Options Units Used in computations - US Customary units, inches, pounds Basic Program Options: Analysis Type 1: - Computation of Lateral Pile Response using user-specified constant EI Computation options: - Only internally-generated p-y curves used in analysis - Analysis does not use p-y multipliers (individual pile or shaft action only) - Analysis assumes no shear resistance at pile tip - Analysis includes automatic computation of pile-top deflection vs. pile embedment length - No computation of foundation stiffness matrix elements - output pile response for full length of pile - Analysis assumes no soil movements acting on pile - No additional p-y curves to be computed at user-specified depths Solution Control Parameters: Page 1 16HEIGHT.lpo - Number of pile increments = 60 - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 1.0000E+02 in Printing options: - values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing increment (spacing of output points) = 1 Pile structural Properties and Geometry Pile Length = 180.00 in Depth of ground surface below top of pile = .00 in slope angle of ground surface = .00 deg. Structural properties of pile defined using 2 points Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Elasticity in in in**4 Sq.in lbs/Sq.in 1 0.0000 24.000 17456.0000 452.0000 32122019.000 2 180.0000 24.000 17456.0000 452.0000 32122019.000 Soil and Rock Layering Information The soil profile is modelled using 1 layers Layer 1 is sand, p-y criteria by API RP-2A, 1987 Distance from top of pile to top of layer = .000 in Distance from top of pile to bottom of layer = p 180.000 in p-y subgrade modulus for top of soil layer = 200.000 lbs/in**3 p-y subgrade modulus k for bottom of layer = 200.000 lbs/in**3 (Depth of lowest layer extends .00 in below pile tip) Effective unit weight of soil vs. Depth Distribution of effective unit weight of soil with depth is defined using 2 points Point Depth X Eff. Unit weight No. in lbs/in**3 1 .00 .07200 2 180.00 .07200 Shear Strength of soils Page 2 16HEIGHT.lpo Distribution of shear strength parameters with depth defined using 2 points Point Depth x cohesion c Angle of Friction E50 or RQD No. in lbs/in *2 Deg. k_rm 1 .000 .00000 34.00 2 180.000 .00000 34.00 Notes: (1) Cohesion = uniaxial compressive strength for rock materials. (2) values of E50 are repported for clay strata. (3) Default values will be generated for E50 when input values are 0. (4) RQD and k_rm are reported only for weak rock strata. Loading Type static loading criteria was used for computation of p-y curves Pile-head Loading and Pile-head Fixity conditions Number of loads specified = 1 Load Case Number 1 Pile-head boundary conditions are shear and moment (BC Type 1) shear force at pile head = 41600.000 lbs Bending moment at pile head = 2662404.000 in-lbs Axial load at pile head = 1000.000 lbs Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Computed values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 Pile-head boundary conditions are shear and moment (BC Type 1) specified shear force at pile head = 41600.000 lbs specified bending moment at pile head = 2662404.000 in-lbs specified axial load at pile head = 1000.000 lbs Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment )condition. Depth Deflect. Moment Shear Slope Total Soil Res X y M V S Stress p in in lbs-in lbs Rad. lbs/in**2 lbs/in Page 3 16HEIGHT.Ipo 0.000 .296000 2.662E+06 41600.0000 -.002671 1832.4626 0.0000 3.000 .288007 2.787E+06 41519.2116 -.002657 1918.2610 -53.8589 6.000 .280059 2.912E+06 41268.0394 -.002642 2003.7261 -113.5893 9.000 .272158 3.035E+06 40830.6978 -.002626 2088.4883 -177.9718 12.000 .264305 3.157E+06 40195.0728 -.002609 2172.1495 -245.7782 15.000 .256504 3.276E+06 39352.7156 -.002592 2254.2900 -315.7932 18.000 .248754 3.393E+06 38298.7716 -.002574 2334.4766 -386.8361 21.000 .241059 3.506E+06 37031.8512 -.002556 2412.2698 -457.7775 24.000 .233421 3.615E+06 35553.8559 -.002537 2487.2308 -527.5527 27.000 .225840 3.719E+06 33869.7738 -.002517 2558.9277 -595.1687 30.000 .218319 3.818E+06 31987.4598 -.002497 2626.9423 -659.7073 33.000 .210860 3.911E+06 29917.4139 -.002476 2690.8753 -720.3234 36.000 .203463 3.998E+06 27672.5693 -.002455 2750.3516 -776.2397 39.000 .196130 4.077E+06 25268.1020 -.002433 2805.0253 -826.7385 42.000 .188863 4.149E+06 22721.2703 -.002411 2854.5839 -871.1493 45.000 .181663 4.214E+06 20051.2937 -.002389 2898.7527 -908.8350 48.000 .174530 4.270E+06 17279.2816 -.002366 2937.2984 -939.1730 51.000 .167465 4.317E+06 14428.2221 -.002343 2970.0335 -961.5333 54.000 .160470 4.356E+06 11523.0459 -.002320 2996.8196 -975.2507 57.000 .153545 4.386E+06 8590.7852 -.002297 3017.5717 -979.5897 60.000 .146690 4.408E+06 5660.8513 -.002273 3032.2631 -973.6996 63.000 .139906 4.420E+06 2765.4674 -.002250 3040.9301 -956.5564 66.000 .133193 4.424E+06 -191.6893 -.002226 3043.6789 -1014.8814 69.000 .126551 4.419E+06 -3317.5631 -.002202 3040.1487 -1069.0345 72.000 .119980 4.404E+06 -6597.7630 -.002179 3030.0042 -1117.7654 75.000 .113479 4.380E+06 -10014.1641 -.002155 3012.9441 -1159.8353 78.000 .107049 4.344E+06 -13545.0139 -.002132 2988.7081 -1194.0645 81.000 .100689 4.298E+06 -17165.1801 -.002109 2957.0844 -1219.3796 84.000 .094397 4.241E+06 -20846.5290 -.002086 2917.9164 -1234.8530 87.000 .088174 4.173E+06 -24558.4114 -.002063 2871.1082 -1239.7352 90.000 .082017 4.094E+06 -28268.2249 -.002041 2816.6299 -1233.4739 93.000 .075927 4.004E+06 -31942.0190 -.002020 2754.5199 -1215.7222 96.000 .069900 3.902E+06 -35545.1036 -.001998 2684.8883 -1186.3342 99.000 .063937 3.790E+06 -39042.6307 -.001978 2607.9169 -1145.3505 102.000 .058034 3.668E+06 -42400.1193 -.001958 2523.8591 -1092.9753 105.000 .052190 3.536E+06 -45583.9061 -.001939 2433.0390 -1029.5493 108.000 .046402 3.395E+06 -48561.5090 -.001920 2335.8491 -955.5193 111.000 .040669 3.245E+06 -51301.8997 -.001902 2232.7474 -871.4078 114.000 .034989 3.087E+06 -53775.6895 -.001885 2124.2543 -777.7854 117.000 .029357 2.922E+06 -55955.2349 -.001869 2010.9489 -675.2449 120.000 .023773 2.751E+06 -57814.6736 -.001854 1893.4659 -564.3809 123.000 .018233 2.575E+06 -59329.9043 -.001840 1772.4909 -445.7729 126.000 .012734 2.395E+06 -60478.5218 -.001827 1648.7580 -319.9722 129.000 .007274 2.212E+06 -61239.7207 -.001814 1523.0453 -187.4937 132.000 .001849 2.028E+06 -61594.1766 -.001803 1396.1727 -48.8102 135.000 -.003543 1.843E+06 -61523.9159 -.001793 1268.9980 95.6507 138.000 -.008906 1.659E+06 -61012.1799 -.001783 1142.4151 245.5066 141.000 -.014242 1.477E+06 -60043.2902 -.001775 1017.3511 400.4198 144.000 -.019555 1.298E+06 -58602.5191 -.001767 894.7644 560.0943 147.000 -.024846 1.125E+06 -56675.9676 -.001761 775.6431 724.2733 150.000 -.030120 958320.4786 -54250.4546 -.001755 661.0028 892.7353 153.000 -.035378 799591.6820 -51313.4163 -.001751 551.8859 1065.2902 156.000 -.040623 650450.4842 -47852.8181 -.001747 449.3598 1241.7753 159.000 -.045858 512485.2532 -43857.0781 -.001744 354.5166 1422.0514 162.000 -.051085 387318.4768 -39315.0021 -.001741 268.4717 1605.9993 165.000 -.056305 276605.6879 -34215.7296 -.001739 192.3630 1793.5157 168.000 -.061521 182034.5354 -28548.6910 -.001738 127.3507 1984.5101 171.000 -.066734 105323.9709 -22303.5731 -.001737 74.6166 2178.9018 174.000 -.071945 48223.5211 -15470.2948 -.001737 35.3633 2376.6170 177.000 -.077156 12512.6238 -8038.9903 -.001737 10.8141 2577.5860 180.000 -.082366 0.0000 0.0000 -.001737 2.2124 2781.7409 Page 4 j 16HEIGHT.Ipo Output verification: Computed forces and moments are within specified convergence limits. Output summary for Load Case No. 1: Pile-head deflection = Computed slope at pile head = Maximum bending moment = Maximum shear force = Depth of maximum bending moment = Depth of maximum shear force = Number of iterations = Number of zero deflection points = VJ jc, Lxvi.- .29599995 in -.00267136 - 4424320.013 1 bs-i n -61594.177 lbs 66.000 in 132.000 in t, 17 I 3 summary of Pile-head Response Definition of symbols for pile-head boundary conditions: y = pile-head displacment, in m = pile-head moment, lbs-in v = pile-head shear force, lbs S = pile-head slope, radians R = rotational stiffness of pile-head, in-lbs/rad BC Boundary Boundary Axial Pile Head maximum maximum Type Condition Condition Load Deflection Moment Shear 1 2 lbs in in-lbs lbs 1 v= 41600.000 - M= 2.66E+06 1000.0000 - .2960 4.424E+06 -61594.1766 Pile-head Deflection vs. Pile Length Boundary condition Type 1, shear and moment Shear = Moment = Axial Load = Pile Length in 180.000 171.000 162.000 153.000 41600. lbs 2662404. in-lbs 1000. lbs Pile Head Deflection in .29599995 .37520750 .54148225 1.13711221 Maximum Moment in-lbs 4424320.013 4396089.260 4381902.117 4380615.198 The analysis ended normally. Maximum Shear lbs -61594.177 -66894.247 -74810.481 -89193.653 Page 5 S~ M W U) L M D O Cl? O LO N O N O LO r O C C O v o d d D L In d ~ J 0 LO 0 0 OX 0 in T7 O 0 ~ Z E b 5 9 L 8 6 06 LL Z6 (:1) y;daa O co co W (n O D ~ O M r O N r O r O O r O O O co C :i .C r.+ O C ~ C d J d a O O Z'l V 6 6'0 9'0 L'0 9'0 50 b'0 £'0 Z'0 (ui) uoi;osuea peaH-alld O LO O v O M O N O r O 6'0 0 13HEIGHT.Ipo LPILE Plus for Windows, version 5.0 (5.0.1) Analysis of Individual Piles and Drilled shafts subjected to Lateral Loading using the p-y method (c) Copyright ENSOFT, Inc., 1985-2004 All Rights Reserved This program is licensed to: JOHN H. HART COGGINS Path to file locations: C:\DOCUments and Settings\COGGINS AND SONS\My Documents\2007JOBS\WILLOWS\ Name of input data file: 13HEIGHT.lpd Name of output file: 13HEIGHT.Ipo Name of plot output file: 13HEIGHT.lpp Name of runtime file: 13HEIGHT.Ipr Time and Date of Analysis Date: May 7, 2007 Time: 13:13:19 Problem Title THE WILLOWS Program options units used in Computations - us customary units, inches, pounds Basic Program Options: Analysis Type 1: - Computation of Lateral Pile Response using user-specified constant EI Computation Options: - only internally-generated p-y curves used in analysis - Analysis does not use p-y multipliers (individual pile or shaft action only) - Analysis assumes no shear resistance at pile tip - Analysis includes automatic computation of pile-top deflection vs. pile embedment length - No computation of foundation stiffness matrix elements - output pile response for full length of pile - Analysis assumes no soil movements acting on pile - No additional p-y curves to be computed at user-specified depths Solution Control Parameters: Page 1 ....n Cr` 13HEIGHT.Ipo - Number of pile increments = 48 - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 1.0000E+02 in Printing Options: - values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (spacing of output points) = 1 Pile structural Properties and Geometry Pile length = 144.00 in Depth of ground surfa ce below top of pile = .00 in slope angle of ground surface = .00 deg. Structural properties of pile defined using 2 points Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Elasticity in in in**4 Sq.in lbs/Sq.in 1 0.0000 24.000 17044.0000 452.0000 32122019.000 2 144.0000 24.000 17044.0000 452.0000 32122019.000 Soil and Rock Layering Information The soil profile is modelled using 1 layers Layer 1 is sand, p-y criteria by API RP-2A, 1987 Distance from top of pile to top of layer = .000 in Distance from top of ppile to bottom of layer = 144.000 in p-y subgrade modulus k for top of soil layer = 200.000 lbs/in**3 p-y subgrade modulus k for bottom of layer = 200.000 lbs/in**3 (Depth of lowest layer extends .00 in below pile tip) Effective unit weight of soil VS. Depth Distribution of effective unit weight of soil with depth is defined using 2 points Point Depth X Eff. Unit Weight No. in lbs/in**3 1 .00 .07200 2 144.00 .07200 Shear strength of Soils Page 2 l I 13HEIGHT.Ipo Distribution of shear strength parameters with depth defined using 2 points Point Depth X Cohesion c Angle of Friction E50 or RQD No. in lbs/in**2 Deg. k_rm 1 .000 .00000 34.00 2 144.000 .00000 34.00 Notes: (1) Cohesion = uniaxial compressive strength for rock materials. (2) values of E50 are repported for clay strata. (3) Default values will be generated for E50 when input values are 0. (4) RQD and k_rm are reported only for weak rock strata. Loading Type Static loading criteria was used for computation of p-y curves Pile-head Loading and Pile-head Fixity conditions Number of loads specified = 1 Load Case Number 1 Pile-head boundary conditions are shear and moment (BC Type 1) Shear force at pile head = 29900.000 lbs Bending moment at pile head = 1560000.000 in-lbs Axial load at pile head = 1000.000 lbs Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Computed values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 Pile-head boundary conditions are shear and moment (BC Type 1) Specified shear force at pile head = 29900.000 lbs specified bending moment at pile head = 1560000.000 in-lbs specified axial load at pile head = 1000.000 lbs Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment )condition. Depth Deflect. Moment shear slope Total Soil Res X y M V S Stress p in in 1bs-in 1bs Rad. 1bs/in**2 1bs/in Page 3 13HEIGHT.lpo 0.000 .349919 1.560E+06 29900.0000 -.003455 1100.5461 0.0000 3.000 .339567 1.650E+06 29819.0276 -.003446 1163.7076 -53.9816 6.000 .329242 1.739E+06 29567.0595 -.003437 1226.5270 -113.9971 9.000 .318945 1.827E+06 29127.7180 -.003427 1288.6240 -178.8972 12.000 .308678 1.914E+06 28488.1084 -.003417 1349.5875 -247.5093 15.000 .298443 1.998E+06 27638.8715 -.003406 1408.9825 -318.6487 18.000 .288241 2.080E+06 26574.2002 -.003395 1466.3584 -391.1322 21.000 .278073 2.158E+06 25291.8126 -.003383 1521.2558 -463.7929 24.000 .267940 2.231E+06 23792.8821 -.003371 1573.2144 -535.4941 27.000 .257844 2.300E+06 22081.9293 -.003359 1621.7798 -605.1411 30.000 .247786 2.364E+06 20166.6816 -.003346 1666.5106 -671.6907 33.000 .237767 2.421E+06 18057.9091 -.003333 1706.9853 -734.1576 36.000 .227787 2.472E+06 15769.2470 -.003320 1742.8078 -791.6171 39.000 .217848 2.516E+06 13317.0120 -.003306 1773.6143 -843.2062 42.000 .207951 2.552E+06 10720.0220 -.003292 1799.0777 -888.1205 45.000 .198096 2.580E+06 7999.4279 -.003278 1818.9134 -925.6089 48.000 .188282 2.600E+06 5178.5651 -.003264 1832.8840 -954.9662 51.000 .178512 2.611E+06 2282.8341 -.003250 1840.8033 -975.5211 54.000 .168785 2.614E+06 -660.3799 -.003235 1842.5412 -986.6215 57.000 .159100 2.607E+06 -3621.7340 -.003221 1838.0273 -987.6145 60.000 .149459 2.592E+06 -6569.8836 -.003207 1827.2553 -977.8186 63.000 .139860 2.568E+06 -9471.3412 -.003193 1810.2873 -956.4865 66.000 .130303 2.535E+06 -12419.4236 -.003179 1787.2584 -1008.9018 69.000 .120788 2.494E+06 -15512.1238 -.003165 1757.8366 -1052.8983 72.000 .111314 2.442E+06 -18720.1132 -.003151 1721.7430 -1085.7613 75.000 .101880 2.381E+06 -22005.8126 -.003138 1678.7694 -1104.7049 78.000 .092485 2.310E+06 -25323.4506 -.003125 1628.7958 -1107.0537 81.000 .083128 2.229E+06 -28619.6954 -.003113 1571.8072 -1090.4428 84.000 .073808 2.139E+06 -31834.8760 -.003101 1507.9090 -1053.0109 87.000 .064523 2.038E+06 -34904.7276 -.003089 1437.3383 -993.5568 90.000 .055271 1.929E+06 -37762.5102 -.003079 1360.4719 -911.6316 93.000 .046051 1.812E+06 -40341.2899 -.003068 1277.8289 -807.5549 96.000 .036861 1.687E+06 -42576.1528 -.003059 1190.0687 -682.3537 99.000 .027699 1.556E+06 -44406.1386 -.003050 1097.9848 -537.6369 102.000 .018562 1.421E+06 -45775.7421 -.003042 1002.4941 -375.4321 105.000 .009449 1.282E+06 -46635.9023 -.003034 904.6244 -198.0080 108.000 3.57E-04 1.141E+06 -46944.4768 -.003028 805.5000 -7.7083 111.000 -.008717 1.000E+06 -46666.2586 -.003022 706.3268 193.1871 114.000 -.017774 860956.8000 -45772.6299 -.003017 608.3777 402.5654 117.000 -.026817 725459.4973 -44240.9621 -.003012 512.9795 618.5465 120.000 -.035848 595529.1016 -42053.8675 -.003009 421.5007 839.5165 123.000 -.044869 473154.3448 -39198.3917 -.003006 335.3415 1064.1340 126.000 -.053882 360356.7858 -35665.2136 -.003003 255.9252 1291.3182 129.000 -.062890 259181.0843 -31447.8983 -.003002 184.6914 1520.2253 132.000 -.071893 171687.4067 -26542.2322 -.003001 123.0906 1750.2188 135.000 -.080893 99945.6950 -20945.6489 -.003000 72.5802 1980.8368 138.000 -.089892 46031.5127 -14656.7506 -.002999 34.6213 2211.7620 141.000 -.098890 12023.1879 -7674.9181 -.002999 10.6774 2442.7930 144.000 -.107888 0.0000 0.0000 -.002999 2.2124 2673.8191 output ve rification : computed forces and moments are within spec ified convergence limits . output Su mmary for Load case No . l: Pile-head deflectio n = .34 991905 in ' " - - computed slope at p ile head = -.00 345505 Maximum b ending mom ent = 26138 80.386 lbs-in maximum s hear force = -469 44.477 lbs F - Depth of maximum be nding moment = 54.000 in Page 4 `moo ° . IN f 13HEIGHT.Ipo Depth of maximum shear force = 108.000 in Number of iterations = 23 Number of zero deflection points = 1 summary of Pile-head Response Definition of symbols for pile-head boundary conditions: y = pile-head displacment, in m = pile-head moment, lbs-in v = pile-head shear force, lbs s = pile-head slope, radians R = rotational stiffness of pile-head, in-lbs/rad BC Boundary Boundary Axial Pile Head maximum maximum Type condition condition Load Deflection Moment shear 1 2 lbs in in-lbs lbs 1 V= 29900.000 M= 1.56E+06 1000.0000 .3499 2.614E+06 -46944.4768 Pile-head Deflection vs. Pile Length Boundary condition Type 1, shear and moment shear = 29900. lbs Moment = 1560000. in-lbs Axial Load = 1000. lbs Pile Pile Head Length Deflection in in 144.000 .34991905 136.800 .51449928 129.600 1.26811373 Maximum Moment in-lbs 2613880.386 2602516.352 2601077.218 The analysis ended normally. Maximum shear lbs -46944.477 -51953.357 -62459.641 Page 5 Section:#5 WITH 6.25 DIA Section Properties: Number of Shapes = 2 Total Width = 6.25 in Total Height = 6.25 in Center, Xo = 0.00 in Center, Yo = 0.00 in X-bar (Right) =3.125in X-bar (Left) =3.125in Y-bar (Top) =3.125in Y-bar (Bot) =3.125in Equivalent Propertie s: Area, Ax = 3.99 in^2 Inertia, Ixx = 8.996 in^4 Inertia, lyy = 8.996 in^4 Inertia, Ixy = 0.00 in^4 Torsional, J = 17.992 in^4 Modulus, Sx(Top) = 2.879 in^3 Modulus, Sx(Bot) = 2.879 in^3 Modulus, Sy(Left) = 2.879 in^3 Modulus, Sy(Right) = 2.879 in^3 Plastic Modulus, Zx = 5.214 in^3 Plastic Modulus, Zy = 5.214 in^3 Radius, rx = 1.502 in Radius, ry = 1.502 in Basic Properties of Shapes in Section: Sh. No. Shape Factor Width Height in in 1 Circular 0.12 6.25 6.25 2 Solid Bar 1 0.630 0.630 Additional Properties of Shapes in Section: Sh. No. Shape J Sx Sy in^4 in^3 in^3 1 Circular 149.80 2.811 2.811 2 Solid Bar 0.0155 0.024 0.024 Y e. @.2@0 -.i fi 6t 3.125 -pidt- 3.125 -+1 I ~ I I Y I N I m I I Y X Section Diagram Xo Yo Ax Ixx lyy in in in A2 in^4 in A4 0.00 0.00 30.68 74.901 74.901 0.000 0.000 0.3082 0.0076 0.0076 Zx Zy rx ry in^3 in^3 in in 4.80 4.80 1.563 1.563 0.041 0.041 0.1566 0.1566 1k Loads: BLC 1, TRIANGLE Results for LC 1, TRI LOAD COGGINS AND SONS, INS JOHN H. HART, PE 5223 77 WILLOWS May 7, 2007 at 2:23 PM 11 FTTEMPMICRO.r2d 1L.1 - h - 3.6 s Results for LC 1, TRI LOAD Member Bending Moments (k-ft) Reaction units are k and k-ft COGGINS AND SONS, INC JOHN H. HART, PE 5223 -4.5 -3.2 WILLOWS May 7, 2007 at 2:24 PM 11 FTTEMPMICRO.r2d W J 0- 0 U_ a w H D, O O O O O C O i O c O w V d 4- LO d Q O R L N r !4 J v 0 Cl? O N O r O O QL 0 I Z E ti 9 9 L (4) yjdaa 0 0 w J _ d U _ a rn w D O O O ti O (O C 17'L Z'6 L 8'0 9'0 b'0 Z'0 O LO C d J a 0 It 0 Cl) O N O r i O 0 (u!) u0143090a peOH-01!d 1 3 11HEIGHTTEMP.Ipo LPILE Plus for Windows, version 5.0 (5.0.1) Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading using the p-y method (c) Copyright ENSOFT, Inc., 1985-2004 All Rights Reserved This program is licensed to: JOHN H. HART COGGINS Path to file locations: C:\Documents and Settings\COGGINS AND SONS\My Documents\2007JOBS\WILLOWS\ Name of input data file: 11HEIGHTTEMP.lpd Name of output file: 11HEIGHTTEMP.lpo Name of plot output file: 11HEIGHTTEMP.Ipp Name of runtime file: 11HEIGHTTEMP.lpr Time and Date of Analysis Date: May 7, 2007 Time: 14:43:14 Problem Title THE WILLOWS Program Options units used in Computations - US Customary units, inches, pounds Basic Program Options: Analysis Type 1: - Computation of Lateral Pile Response using user-specified constant EI Computation options: - only internally-generated p-y curves used in analysis - Analysis does not use p-y multipliers (individual pile or shaft action only) - Analysis assumes no shear resistance at pile tip - Analysis includes automatic computation of pile-top deflection vs. pile embedment length - No computation of foundation stiffness matrix elements - Output pile response for full length of pile - Analysis assumes no soil movements acting on pile - No additional p-y curves to be computed at user-specified depths solution control Parameters: Page 1 11HEIGHTTEMP.lpo - Number of pile increments = 48 - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 1.0000E+02 in Printing Options: - values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing increment (spacing of output points) = 1 Pile structural Properties and Geometry Pile Length = 96.00 in Depth of ground surface below top of pile = .00 in slope angle of ground surface = .00 deg. Structural properties of pile defined using 2 points Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Elasticity in in in**4 Sq.in lbs/Sq.in 1 0.0000 6.25000000 9.0000 4.0000 29000000.000 2 96.0000 6.25000000 9.0000 4.0000 2900000.000 soil and Rock Layering Information The soil profile is modelled using 1 layers Layer 1 is sand, p-y criteria by API RP-2A, 1987 Distance from top of pile to top of layer = .000 in Distance from top of ppile to bottom of layer = 96.000 in p-y subgrade modulus k for top of soil layer = 200.000 lbs/in**3 p-y subgrade modulus k for bottom of layer = 200.000 lbs/in**3 (Depth of lowest layer extends .00 in below pile tip) Effective unit weight of soil vs. Depth Distribution of effective unit weight of soil with depth is defined using 2 points Point Depth x Eff. Unit weight No. in l bs/i n**3 1 .00 .07200 2 96.00 .07200 Shear strength of soils Page 2 Distribution of shear strength defined using 2 points Point Depth X Cohesion c No. in lbs/in**2 1 .000 .00000 2 96.000 .00000 Notes: 11HEIGHTTEMP.Ipo jarameters with depth Angle of Friction E50 or RQD Deg. k_rm 34.00 34.00 (1) Cohesion = uniaxial compressive strength for rock materials. (2) values of E50 are reported for clay strata. (3) Default values will be generated for E50 when input values are 0. (4) RQD and k_rm are reported only for weak rock strata. Loading Type Static loading criteria was used for computation of p-y curves Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 1 Load Case Number 1 Pile-head boundary conditions are shear and moment (BC Type 1) shear force at pile head = 3200.000 lbs Bending moment at pile head = 54000.000 in-lbs Axial load at pile head = 1000.000 lbs Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Computed values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 Pile-head boundary conditions are shear and moment (BC T e 1) specified shear force at pile head = 3200.000 lbs specified bending moment at pile head = 54000.000 in-lbs specified axial load at pile head = 1000.000 lbs Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment )condition. Depth Deflect. Moment shear Slope Total Soil Res X y M v S Stress p in in lbs-in lbs Rad. lbs/in**2 lbs/in Page 3 11HEIGHTTEMP.Ipo 0.000 1.121 54000.0000 3200.0000 -.033590 19000.0000 0.0000 2.000 1.054 60466.7577 3515.5848 -.033143 21245.4020 -10.1870 4.000 .987968 66891.8228 3157.2541 -.032640 23476.3274 -22.3718 6.000 .923220 73226.3356 3099.5313 -.032077 25675.8110 -35.3510 8.000 .859661 79418.2552 3016.2592 -.031451 27825.7831 -47.9211 10.000 .797418 85417.1745 2909.4593 -.030760 29908.7412 -58.8788 12.000 .736619 91179.1342 2783.5599 -.030006 31909.4216 -67.0206 14.000 .677395 96671.4370 2645.3963 -.029186 33816.4712 -71.1431 16.000 .619876 101877.4622 2504.2104 -.028300 35624.1188 -70.0428 18.000 .564194 106801.4792 2353.3273 -.027349 37333.8469 -80.8403 20.000 .510481 111400.1660 2175.6132 -.026331 38930.6132 -96.8738 22.000 .458870 115609.2562 1964.4217 -.025248 40392.1029 -114.3177 24.000 .409490 119358.8436 1716.9322 -.024100 41694.0429 -133.1718 26.000 .362471 122573.3834 1430.3242 -.022889 42810.2026 -153.4362 28.000 .317936 125171.6945 1101.7770 -.021617 43712.3939 -175.1109 30.000 .276002 127066.9606 728.4702 -.020290 44370.4724 -198.1959 32.000 .236777 128166.7337 307.5835 -.018911 44752.3381 -222.6907 34.000 .200359 128372.9378 -163.6956 -.017487 44823.9367 -248.5884 36.000 .166828 127581.9004 -688.1057 -.016027 44549.2710 -275.8218 38.000 .136249 125684.6246 -1267.8880 -.014542 43890.4947 -303.9605 40.000 .108662 122568.5147 -1902.9271 -.013042 42808.5121 -331.0786 42.000 .084081 118125.0848 -2585.1540 -.011544 41265.6544 -351.1483 44.000 .062485 112274.0756 -3287.7951 -.010065 39234.0540 -351.4928 46.000 .043819 105014.1665 -3956.0350 -.008626 36713.2523 -316.7471 48.000 .027982 96484.4392 -4515.4787 -.007246 33751.5414 -242.6966 50.000 .014834 86981.2369 -4902.4130 -.005947 30451.8184 -144.2377 52.000 .004195 76898.5746 -5090.1810 -.004745 26950.8940 -43.5303 54.000 -.004145 66639.4915 -5089.0329 -.003653 23388.7123 44.6784 56.000 -.010416 56557.0536 -4929.0246 -.002679 19887.8658 115.3298 58.000 -.014862 46934.1102 -4645.0054 -.001829 16546.5660 168.6894 60.000 -.017732 37984.3479 -4269.6207 -.001102 13439.0097 206.6953 62.000 -.019271 29860.0362 -3831.5517 -4.964E-04 10618.0681 231.3737 64.000 -.019717 22660.1265 -3355.7253 -6.093E-06 8118.0995 244.4527 66.000 -.019295 16437.1593 -2863.8504 3.761E-04 5957.3470 247.4222 68.000 -.018213 11203.2204 -2374.7420 6.597E-04 4140.0071 241.6861 70.000 -.016657 6935.5522 -1904.3818 8.555E-04 2658.1779 228.6741 72.000 -.014791 3582.2713 -1465.8273 9.750E-04 1493.8442 209.8804 74.000 -.012757 1068.3431 -1069.1112 .001031 620.9525 186.8357 76.000 -.010669 -698.2957 -721.2394 .001035 492.4638 161.0360 78.000 -.008618 -1820.7532 -426.3470 9.994E-04 882.2060 133.8564 80.000 -.006671 -2407.6813 -186.0190 9.365E-04 1086.0005 106.4716 82.000 -.004872 -2568.5755 .2487 8.571E-04 1141.8665 79.7962 84.000 -.003243 -2410.1147 134.4941 7.711E-04 1086.8454 54.4492 86.000 -.001788 -2033.6832 219.6845 6.874E-04 956.1400 30.7412 88.000 -4.93E-04 -1534.1261 259.1061 6.136E-04 782.6827 8.6804 90.000 6.67E-04 -999.7133 255.7844 5.555E-04 597.1227 -12.0020 92.000 .001729 -513.2103 211.9779 5.167E-04 428.1980 -31.8046 94.000 .002733 -153.8685 128.8000 4.974E-04 303.4265 -51.3733 96.000 .003718 0.0000 0.0000 4.924E-04 250.0000 -71.3529 Output verification: computed forces and moments are within specified convergence limits. Output Summary for Load case No. 1: Pile-head deflection = 1.12053898 in computed slope at pile head = -.03358969 Maximum bending moment = 128372.938 lbs-in maximum shear force = -5090.181 lbs Depth of maximum bending moment = 34.000 in Page 4 11HEIGHTTEMP.lpo Depth of maximum shear force = 52.000 in Number of iterations = 28 Number of zero deflection points = 2 Summary of Pile-head Response Definition of symbols for pile-head boundary conditions: y = pile-head displacment, in m = pile-head moment, lbs-in v = pile-head shear force, lbs S = pile-head slope, radians R = rotational stiffness of pile-head, in-lbs/rad BC Boundary Boundary Axial Pile Head maximum maximum Type Condition Condition Load Deflection Moment Shear 1 2 lbs in in-lbs lbs 1 V= 3200.000 M= 54000.000 1000.0000 1.1205 128372.9378 -5090.1810 Pile-head Deflection vs. Pile Length Boundary Condition Type 1, Shear and Moment Shear = Moment = Axial Load = Pile Length in 96.000 91.200 86.400 81.600 76.800 72.000 67.200 3200. lbs 54000. in-lbs 1000. lbs Pile Head Deflection in 1.12053898 1.12062486 1.12117505 1.12061041 1.12914705 1.18088975 1.57414888 Maximum Moment in-lbs 128372.938 128306.847 128332.869 128320.900 128359.922 128386.532 128612.512 The analysis ended normally. Maximum shear lbs -5090.181 -5104.021 -5082.229 -5091.872 -5200.847 -5631.041 -6948.958 Page 5 Section:PIPE WITH 6.25 DIA Section Properties: Number of Shapes = 2 Total Width = 6.25 in Total Height = 6.25 in Center, Xo = 0.00 in Center, Yo = 0.00 in X-bar (Right) =3.125in X-bar (Left) =3.125in Y-bar (Top) =3.125in Y-bar (Bot) =3.125in Equivalent Properties: Area, Ax = 6.218 in^2 Inertia, Ixx = 12.335 in^4 Inertia, lyy = 12.335 in^4 Inertia, Ixy = 0.00 in^4 Torsional, J = 24.757 in A4 Modulus, Sx(Top) = 3.947 in^3 Modulus, Sx(Bot) = 3.947 in^3 Modulus, Sy(Left) = 3.947 in^3 Modulus, Sy(Right) = 3.947 in^3 Plastic Modulus, Zx = 8.062 in^3 Plastic Modulus, Zy = 8.062 in^3 Radius, rx = 1.408 in Radius, ry = 1.408 in Basic Properties of Shapes in Section: Sh. No. Shape Factor Width Height in in 1 Circular 0.12 6.25 6.25 2 PIPE 1 3.50 3.50 Additional Properties of Shapes in Section: Sh. No. Shape J Sx Sy in^4 in^3 in^3 1 Circular 149.80 2.811 2.811 2 PIPE 6.78 1.912 1.912 Y 8.260 --N 2.1 3.125 -AM 3.125 P I N M I '1' I r I I Y Section Diagram Xo Yo Ax Ixx lyy in in in A2 in^4 in A4 0.00 0.00 30.68 74.901 74.901 0.00 0.00 2.553 3.39 3.39 Zx Zy rx ry in^3 in^3 in in 4.80 4.80 1.563 1.563 2.646 2.646 1.152 1.152 ,i L. ,x'~ z OD.. r I G r° c" i C- f"" 4.1 -.7 -2.2 Results for LC 1, TRI LOAD Member Bending Moments (k-ft) Reaction units are k and k-ft COGGINS AND SONS, INC JOHN H. HART, PE 5223 WILLOWS May 7, 2007 at 2:33 PM 11 FTPERMMICRO.r2d -l k 5 Loads: BLC 1, TRIANGLE Results for LC 1, TRI LOAD COGGINS AND SONS, INC WILLOWS JOHN H. HART, PE I 5223 May 7, 2007 at 2:32 PM 11 FTPERMMICRO.r2d C\ cl, c N c 00 0 O 17 0 v 17 0 C N C O o V d d D ~ o d l4 J O O O O Cl O O N O O O (4) m4dea 0 L Z E b 5 9 L 1 f ~k O O LLI J _ d. O U _ o ~ rn ~ w a D O M O O O C O L t r+ C d J d 'a 0 0 M O N O r O 09 9v 0v 9E OE 9Z OZ 9L 0L 9 0 (ui) U01138100 peaH-arid 11HEIGHTPERM.lpo LPILE Plus for Windows, version 5.0 (5.0.1) Analysis of Individual Piles and Drilled shafts subjected to Lateral Loading using the p-y method (c) Copyright ENSOFT, Inc., 1985-2004 All Rights Reserved This program is licensed to: JOHN H. HART COGGINS Path to file locations: C:\DOCUments and Settings\COGGINS AND SONS\My Documents\2007JOBS\WILLOWS\ Name of input data file: 11HEIGHTPERM.lpd Name of output file: 11HEIGHTPERM.lpo Name of plot output file: 11HEIGHTPERM.Ipp Name of runtime file: 11HEIGHTPERM.lpr Time and Date of Analysis Date: May 7, 2007 Time: 14:48:41 Problem Title THE WILLOWS Program Options units used in Computations - US Customary units, inches, pounds Basic Program Options: Analysis Type 1: - Computation of Lateral Pile Response using user-specified constant EI Computation options: - Only internally-generated p-y curves used in analysis - Analysis does not use p-y multipliers (individual pile or shaft action only) - Analysis assumes no shear resistance at pile tip - Analysis includes automatic computation of pile-top deflection vs. pile embedment length - No computation of foundation stiffness matrix elements - output pile response for full length of pile - Analysis assumes no soil movements acting on pile - No additional p-y curves to be computed at user-specified depths Solution Control Parameters: Page 1 11HEIGHTPERM.lpo - Number of pile increments = 48 - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 1.0000E+02 in Printing Options: - values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (spacing of output points) = 1 Pile structural Properties and Geometry Pile Length = 96.00 in Depth of ground surface below top of pile = .00 in slope angle of ground surface = .00 deg. Struc tural properties of pile defined using 2 points Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Elasticity in in in**4 Sq.in lbs/Sq.in 1 0.0000 6.25000000 12.3000 6.2000 29000000.000 2 96.0000 6.25000000 12.3000 6.2000 2900000.000 Soil and Rock Layering Information The soil profile is modelled using 1 layers Layer 1 is sand, p-y criteria by API RP-2A, 1987 Distance from top of pile to top of layer = .000 in Distance from top of pile to bottom of layer = 96.000 in p-y subgrade modulus k for top of soil layer = 200.000 lbs/in**3 p-y subgrade modulus k for bottom of layer = 200.000 lbs/in**3 (Depth of lowest layer extends .00 in below pile tip) Effective unit weight of soil vs. Depth Distribution of effective unit weight of soil with depth is defined using 2 points Point Depth x Eff. Unit weight No. in lbs/in**3 1 .00 .07200 2 96.00 .07200 shear Strength of soils Page 2 Distribution of shear strength defined using 2 points Point Depth x cohesion c No. in lbs/in**2 1 .000 .00000 2 96.000 .00000 Notes: 11HEIGHTPERM.lpo parameters with depth Angle of Friction E50 or RQD Deg. k_rm % 34.00 34.00 (1) Cohesion = uniaxial compressive strength for rock materials. (2) values of E50 are repported for clay strata. (3) Default values will be generated for E50 when input values are 0. (4) RQD and k_rm are reported only for weak rock strata. Loading Type Static loading criteria was used for computation of p-y curves Pile-head Loading and Pile-head Fixity conditions Number of loads specified = 1 Load Case Number 1 Pile-head boundary conditions are Shear and Moment (BC Type 1) shear force at pile head = 2200.000 lbs Bending moment at pile head = 8400.000 in-lbs Axial load at pile head = 1000.000 lbs Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Computed values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 Pile-head boundary conditions are shear and moment (BC Type 1) Specified shear force at pile head = 2200.000 lbs Specified bending moment at pile head = 8400.000 in-lbs specified axial load at pile head = 1000.000 lbs Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment )condition. Depth Deflect. Moment shear Slope Total Soil Res x y M v s Stress p in in lbs-in lbs Rad. lbs/in**2 1bs/in Page 3 - 11HEIGHTPERM.lpo 0.000 .239537 8400.0000 2200.0000 - -.007888 - 2295.4367 0.0000 2.000 .223810 12815.7274 2273.5330 -.007827 3417.3186 -10.1872 4.000 .208229 17190.5594 2157.2532 -.007740 4528.8105 -22.3723 6.000 .192848 21475.7019 2099.5292 -.007627 5617.5154 -35.3517 8.000 .177722 25619.1825 2016.2560 -.007485 6670.2290 -47.9216 10.000 .162907 29570.6662 1909.4560 -.007316 7674.1628 -58.8784 12.000 .148458 33286.2704 1783.5586 -.007119 8618.1680 -67.0190 14.000 .134430 36733.3780 1645.3983 -.006896 9493.9575 -71.1413 16.000 .120876 39895.4462 1504.2145 -.006646 10297.3285 -70.0425 18.000 .107848 42776.8181 1353.3403 -.006370 11029.3843 -80.8316 20.000 .095397 45334.2864 1175.7054 -.006069 11679.1476 -96.8033 22.000 .083572 47503.9159 964.9480 -.005745 12230.3747 -113.9542 24.000 .072418 49217.0575 719.2498 -.005399 12665.6240 -131.7439 26.000 .061976 50402.5112 438.5956 -.005034 12966.8064 -148.9103 28.000 .052281 50991.5763 126.5110 -.004653 13116.4672 -163.1742 30.000 .043362 50927.1690 -208.0984 -.004261 13100.1036 -171.4352 32.000 .035237 50176.2263 -550.3137 -.003861 12909.3153 -170.7800 34.000 .027917 48741.3596 -880.9944 -.003460 12544.7658 -159.9006 36.000 .021398 46666.0882 -1180.7237 -.003062 12017.5119 -139.8288 38.000 .015670 44030.7118 -1433.9248 -.002673 11347.9549 -113.3724 40.000 .010708 40941.0790 -1631.1394 -.002297 10562.9872 -83.8422 42.000 .006481 37515.3428 -1769.0247 -.001940 9692.6274 -54.0431 44.000 .002948 33872.7403 -1848.9729 -.001605 8767.1695 -25.9052 46.000 6.14E-05 30125.8706 -1875.4428 -.001295 7815.2209 -.5647 48.000 -.002231 26376.1483 -1854.6030 -.001012 6862.5475 21.4044 50.000 -.003986 22711.5057 -1793.4214 -7.575E-04 5931.4900 39.7773 52.000 -.005261 19205.4929 -1699.1096 -5.326E-04 5040.7347 54.5345 54.000 -.006116 15917.1978 -1578.7969 -3.372E-04 4205.2938 65.7782 56.000 -.006610 12891.6541 -1439.3287 -1.707E-04 3436.6089 73.6899 58.000 -.006799 10160.5657 -1287.1297 -3.220E-05 2742.7349 78.5091 60.000 -.006739 7743.2643 -1128.0985 7.985E-05 2128.5831 80.5220 62.000 -.006480 5647.8522 -967.5241 1.673E-04 1596.2121 80.0525 64.000 -.006070 3872.4990 -810.0183 2.322E-04 1145.1569 77.4532 66.000 -.005551 2406.8500 -659.4708 2.771E-04 772.7868 73.0943 68.000 -.004961 1233.5076 -519.0254 3.043E-04 474.6815 67.3511 70.000 -.004334 329.5313 -391.0829 3.165E-04 245.0127 60.5914 72.000 -.003695 -332.0901 -277.3281 3.164E-04 245.6628 53.1633 74.000 -.003068 -781.0467 -178.7811 3.063E-04 359.7270 45.3837 76.000 -.002470 -1048.4398 -95.8683 2.890E-04 427.6622 37.5291 78.000 -.001912 -1165.6758 -28.5114 2.666E-04 457.4478 29.8278 80.000 -.001404 -1163.5517 23.7715 2.414E-04 456.9081 22.4551 82.000 -9.47E-04 -1071.5551 61.7556 2.153E-04 433.5350 15.5290 84.000 -5.42E-04 -917.3907 86.3940 1.902E-04 394.3672 9.1094 86.000 -1.86E-04 -726.7403 98.7016 1.676E-04 345.9296 3.1983 88.000 1.28E-04 -523.2547 99.6421 1.487E-04 294.2311 -2.2577 90.000 4.09E-04 -328.7666 90.0229 1.344E-04 244.8184 -7.3615 92.000 6.66E-04 -163.7010 70.4058 1.252E-04 202.8810 -12.2556 94.000 9.10E-04 -47.6444 41.0460 1.208E-04 173.3951 -17.1042 96.000 .001149 0.0000 0.0000 1.196E-04 161.2903 -22.0611 output ve rification: Computed forces and moments are within spec ified converg ence limits. output Su mmary for L oad Case No. 1: Pile-head deflection = .23 953701 in computed slope at pi le head = -.00 788772 Maximum b ending mome nt = 509 91.576 lbs-in maximum s hear force = 22 73.533 lbs Depth of maximum bending moment = 28.000 in Page 4 11HEIGHTPERM.lpo Depth of maximum shear force = 2.00000000 in Number of iterations = 19 Number of zero deflection points = 2 Summary of Pile-head Response Definition of symbols for pile-head boundary conditions: y = pile-head displacment, in m = pile-head moment, lbs-in v = pile-head shear force, lbs S = pile-head slope, radians R = rotational stiffness of pile-head, in-lbs/rad BC Boundary Boundary Axial Pile Head maximum maximum Type condition condition Load Deflection Moment shear 1 2 lbs in in-lbs lbs 1 v= 2200.000 - M= 8400.000 1000.0000 .2395 50991.5763 2273.5330 Pile-head Deflection vs. Pile Length Boundary condition Type 1, shear and moment shear = 2200. lbs Moment = 8400. in-lbs Axial Load = 1000. lbs Pile Pile Head maximum maximum Length Deflection Moment Shear in in in-lbs lbs 96.000 - .23953701 50991.576 2273.533 91.200 .23949038 51014.389 2272.301 86.400 .23977252 51039.848 2271.014 81.600 .23952867 51007.618 2269.671 76.800 .23971363 51006.631 2268.275 72.000 .24162044 51006.819 2266.826 67.200 .24882500 50944.806 2265.327 62.400 .27260209 50963.915 -2349.013 57.600 .35477213 50994.181 -2847.150 52.800 41.643 69513.159 -5045.313 The analysis ended normally. Page 5 APPENDIX «A" REI~~RENCE MATERIAL AND CODES I SIiOMNG DESIGN REFERENCE DOCUMENTS & BMLIOGRAPIIY n• IlEERENCE DESIGN CODES AND STANDARDS COGGINS & SONS, INC., SHORING DESIGN REFERENCE MATERIALS APRIL 16, 2002, BY STANLEY H. SMITH, PE AND JOHN H. HART, PE SHORING DESIGN REFERENCE DOCUMENTS & BIBLIOGRAPHY 1) PECK, HANSON & THORNBURN, "FOUNDATION ENGINEERING", SECOND EDITION, 1973. 2) GROUND ANCHORS AND ANCHORED SYSTEMS, GEOTECHNICAL ENGINEERING CIRCULAR NO. 4, FHWA OFFICE OF BRIDGE TECHNOLOGY, JUNE 1999. 3) JOSEPH E. BOWLES, "FOUNDATION ANALYSIS AND DESIGN', FOURTH AND FIFTH EDITIONS, 1988 & 1996. 4) BRAJA M. DAS, "PRINCIPLES OF FOUNDATION ENGINEERING", SECOND EDITION, 1990. 5) HOLTZ AND KOVACS, "AN INTRODUCTION TO GEOTECHNICAL ENGINEERING", 1981. 6) ROBERT M. KOERNER, "DESIGNING WITH GEOSYNTHETICS", THIRD EDITION, 1994. 7) NAVFAC 7.01, "SOIL MECHANICS", SEPTEMBER, 1986 8) NAVFAC 7.02, "FOUNDATIONS AND EARTH STRUCTURES", SEPTEMBER, 1986 9) HANNA, "FOUNDATIONS IN TENSION - GROUND ANCHORS". 10) FHWA/RD-82/047, "TIEBACKS", JULY 1982. 11) PTI, "POST-TENSIONING MANUAL", FIFTH EDITION, 1997. 12) PTI, "RECOMMENDATIONS FOR PRESTRESSED ROCK AND SOIL ANCHORS", THIRD EDITION, 1996. 13) ASCE, "SERVICEABILITY OF EARTH RETAINING STRUCTURES", GSP #42,1994. 14) FHWA, FHWA-RD-75-128, "LATERAL SUPPORT SYSTEMS AND UNDERPINNING", APRIL 1976, VOLUMES I, II, III. 15) ASCE, GEOTECHNICAL SPECIAL PUBICATION NO. 74, "GUIDELINES OF ENGINEERING PRACTICE FOR BRACED AND TIED-BACK EXCAVATIONS". 16) CHEN & ASSOCIATES, "DESIGN OF LATERALLY LOADED PIERS", 1983. 17) ALAN MACNAB,"EARTH RETENTION SYSTEMS HANDBOOK", 2002. SOIL NAILING REFERENCE DOCUMENTS & BIBLIOGRAPHY 1) ASCE,"SOIL NAILING AND REINFORCED SOIL WALLS", 1992. 2) FHWA/GOLDER PUBLICATION # FHWA-SA-96-069,"MANUAL FOR DESIGN AND CONSTRUCTION MONITORING OF SOIL NAIL WALLS", NOVEMBER 1996. 3) ASCE,"GROUND IMPROVEMENT / GROUND REINFORCEMENT / GROUND TREATMENT" SPECIAL PUBLICATION #69, JULY 1997. 4) XANTHAKOS, ABRAMSON & BRUCE,"GROUND CONTROL AND IMPROVEMENT", 1994. SOFTWARE 1) CALIFORNIA DOT,"SNAIL PROGRAM", VERSION 2.11-PC VERSION. 2) RISA TECHNOLOGIES, "RISA-2D VERSION 4.0, RAPID INTERACTIVE STRUCTURAL ANALYSIS- 2D, FRAME ANALYSIS. 3) GEO-SLOPE International Ltd., "SLOPE/W", VERSION 5 REFERENCE DOCUMENTS 1) AMERICAN INSTITUTE OF STEEL CONSTRUCTION, "MANUAL OF STEEL CONSTRUCTION - ALLOWABLE STRESS DESIGN", NINTH EDITION, 1989 2) AMERICAN INSTITUTE OF STEEL CONSTRUCTION, "MANUAL OF STEEL CONSTRUCTION - LOAD AND RESISTANCE FACTOR DESIGN", THIRD EDITION, 2001 3) ACI 381-99/318R-99, "BUILDING CODE AND COMMENTARY", 1999. 4) ANSUASCE 7-95,"MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES". 5) ACI,"BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318-99) AND COMMENTARY (ACI 31811-99). 6) ANSI/AF&PA NDS-1997,"NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION'. 7) ASCE,"STANDARD FOR LOAD AND RESISTANCE FACTOR DESIGN (LRFD) FOR ENGINEERED WOOD CONSTRUCTION'. APPENDIX "B" LAGGING DESIGN CRITERIA & REFERENCES COGGINS & SO Caisson Drilling, Excavation Shoring, Tieback Anchors TIMBER LAGGING DESIGN CRITERIA AND REFERENCES Updated July 21, 2003 The design of lagging is primarily based upon experience and semi-empirical relationships rather than by any rigorous analysis. Coggins & Sons, Inc. have been utilizing thick rough sawn #2 Douglas fir lumber for many years as lagging. The '/z" diameter SAE Grade 2 lagging anchor bolts have been in use since 1994. This design has been implemented successfully for numerous projects. From our experience, we have determined the #2 Douglas fir can easily span 9'-0" in most soil conditions. On occasion, the #2 Douglas fir can span 10'-0" in appropriate soils without any failure problems. We have used 9'-0" typical spacing for numerous projects ranging from 10%0" to 45'-0" deep without any problems. Please see figures I through 3 for examples of our 9'-0" spacing at various depths. The criteria followed for lagging design is from three sources: "Earth Retention Systems Handbook", FHWA Publication No. IF-99-016, "Ground Anchors and Anchored Systems", June 1999 and FHWA-RD-75-128, "Lateral Support Systems and Underpinning", April 1976, Volumes I, II, & III). All of these documents indicate the timber lagging should not be designed, but rather based on experience and semi-empirical rules. Goldberg has assembled a table in his report to the FHWA 1976 suggesting lagging thicknesses for various types of soils (a copy can be seen in Table 1). If a design analysis is attempted, it is suggested from the three references listed previously to design the lagging for a soil pressure equal to 50 percent of the apparent earth pressure. Coggins & Sons, Inc. experience indicates this is conservative in many cases because of the "hard to estimate" arching affect behind the shoring wall. In addition, we believe that most lagging will deflect to the point where the retained soils will arch between the soldier piles and relieve the pressure on the lagging. Once a point of equilibrium is reached, the deflection will stop. The following two pages show results for estimated lagging design. In addition, excerpts from the above-mentioned references and steel stud / #2 Douglas Fir strengths are shown. 9512 Titan Park Circle • Littleton, Colorado 80125 • (303) 791-9911 • FAX (303) 791-0967 hftp://cogginsandsons.uswestdex.com THE WILLOWS LAGGING DESIGN GIVEN: SOIL TYPE: SwvDWITH GRAVELS DESIGN PRESSURE (X)(h) (psf): 35 EXCAVATION DEPTH (ft): 15 SOLDIER BEAM SPACING (ft): 9.25 CLEAR SPAN (ft) 7.25 BOARD HEIGHT (in): 12 BOARD THICK (in): 3 FLEX. STRESS OF #2 DOUGLAS FIR (psi): 1200 FIND: BENDING STRESS 1) COMPUTE MOMENT M = (W(I"2 / 8 w sf) = 175 1 (ft) = 7.25 M (ft - # = 1150 2) COMPUTE SECTION MODULUS S = (b*(h^2)),/,6 b (in) _ 12 h (in) _ 3 S (in^3) = 18 _ 3) COMPUTE BENDING STRESS fb = M/S fb (psi) = 767 c~ z U J w Ix z W z ca o< ~O 1~ . F- 0 w 0 ~J1 .S z 0 c~ Q 0 z Q c~ z 0 Q U LL O W z Q n W M W mZ M O x= w C k Q LL) p U rj ~ O N 00 in a ~ 3 01 .-r C5 M h AN~ Q cl 1-1 bD `bo r O ar w O N H U b a~ b C O C) a tV H E E E , M S h C14 ^ i O N LNy E N V N S S E S ~ i i ~ W 7 C G E E G , 7 er fV n S S h ; C4 p0 C X ' 00 }q p} N n n ~ S S kn N ~ v V' I ~ ~ ~ h h h S h a 3 ti "0 h N 00 cc W'j 00 Q v O pp O h 00 d ham c 0.0 .a Via: c8~ p w 3 ~ h y V V . a H H a .40) O h C7. cn - U i • U v S ~ to 3 H . i y in U U ' o U V O p p c p 'v, ~ ~ N oy O E ~ V c io v pup O V ~ '4 a ~ qo y ~ 3 'sue 03 ~ o v a >+o~ •V U ~ > U > TI 5 ~ G ~ Q ~ O h •y ~ U ~ ~ U N W a y y ~ • ~ y A C d Q y W U .O 'L7 W 'S T U al C U ~ « O •q :F4 a0 v ~ L• O ~ Off u ' C. O W~ W C V ° V G S w ~Q V V w O .0 Q'• eo S O t, .a U ° c v 3 U O VI H 3 U~ o o v ~ u CA U > u v a SAS S 0 CA a0 0 "O ZOO 0 Nn ~ ^ U 0A v 0 z ' N co M 00 o o yU vw w u v.~. U 0 Z: O° pq 0Gn > b O q Q N b b V. 4. o U r~ i, V 't7 h ~ .L' Q cc! d d bo 4) C7 L1, v~ ~ C. tg o y O d 'ti n fn 7-4 O 4 N U U 4. 0 .0 C ~ ~ cV O u Q y .d N. w y W ~ ~ cc G 0. 'd cd •Y O .C O O CL CJ 0 .1 oo O cl V p .0 C3. d ca cy H N oo w a> b b v W cd , c- m y 0 1-4 .O H d R w o 3 0 t* A. b o v a o w q U ° w a> pp h a~ o 'Q. C 04 a> " r a> ego a°'i rn 0 ZV a W w o o° cts H 3 3 o ti h ° w :c (ON 00 01 b v w :r c,+ y y y A > oo O ~v b y G w _ CZ cd Cc* 71 0 * 9 oo O C,3 U 'K v c~c a~ c " "s . cc x I ° o .o id ce y > v v s E ~ w a > OD ca 4) 4) Ow cd 0 'd ,o n n ti n a 'Y 'oo o o 0 7 y N 0 d > C, O gyp. O O~ cpG c O, vpi 0 qt O O 'O V = O h N vi ti C v O `i' p 1.. pO as o to. 60 y ,O U ar E by t4 v~ 'L7 t.' tw v 0' q C N vii v1 N R - j • tom, 'N 0 0. o v Z o P4 Az N as t* 0 > 0 o b 3 a~i b y C o ° ,c ►`J V p d ►Qi Q •Q w pq'~b0 3 U .Lp" 3 .~i, cC on = ° o ado o c W r~i F, Y ° > ° S., 3 3 w 7 W V- Q•S 6" 0.10 -00, v. 2 ~N cvw a ao 0 0 .0 i A b 0 > w° b \ cl 0 \ ~ "0 it) o v c° ~ v d c 4) o > t,O 0 •cd o o U i/ c> cd / U y 00 U h N ~ ~ . C ' c~ O q ~ v ~ x L1... . cn O 0 ch i 00 . ' ` ♦ ` ♦ ♦ ' ` o o -0 U N U p p A cd cy0 W x ♦ • ♦ • - G ca 0U 0 N 0 O .O ♦ . . > .n W 0 m o0 0 ! y c0 d r~ s 04 O 0 \ . a i v • ~ ~ ~Q N i-I ~ h Y R,o h~ y 0 a w X n M 0 0 ov Oc 0 V x N W N tJ1 O O O O N O A O mil .A. O A =O P CI 0 v o m CD N 11 O CO O TABLE 11.1 Goldberg Zoino Chart (Courtesy of the Federal Highway Administration) O 7 A N ~ O 7 p O CL CD O c0 m CD CO O Values of Ncq N A rn Recommended Thicknesses of Unified Laggtn# (roughcat)lot Clear Spans of: Sail Dsecrlptiou Classification Depth 5' 6' 7' . 4: 10' Silts or fine sand and silt ML above water table SM-ML Sands and gravels (medium GW. GP. CM. 0' to 25' 1" 3" 3" 3" 41. 4" dense to dense). . GC. SW. SP. SM - Clays (stiff to very stiff): CL. CH 25' to 60' 3- 3" 3"' 4" 4" 5" non-fissured. Clays. medium consis- CL. CH " tency and XH < S. - Sands and silty sands. SW. SP. SM (loose). Clayey sands (medium SC 0' to. 2S' 3" 3" - 3.. 4" 4" Sn dense to dense) below water table. - " Clays. headly'over- CL. CH 2S' to 60' 3e 3" 4" 4" S" S" consolidated fissured. . Cobesionleas slit or fine M14SM-ML sand and silt below water table. Soft Clays W HH > S.- So CL. CH 0' to 15' 3" 3" 4" 511 Slightly plastic silts ML - is, to 25' 3" 4" S•• 6" below water table. - Clayey sands (loose), SC 25' to 35' 4" 5" 6" below water table. K 5 E ca a U W N .a 0 F a a Q O 9 W O oOj Note: e In the category of "potentially dangerous soils". use of lagging is questionable. - z O F a W N M x W [ V 0 w cct v O w~ Q N 0 z o v n, A O ~ d 0 O O i; ' 7 U ` a v n ccV N w ti C* "O 0 O N o w ` v oq O 4.0 0 Jj 04 :3 O U ~ > , El - O ~ + aS . Q cG W L.," N U N •OQ Q, O cl w w Oq p u ~ q (U C-1) o •c a~ i v > as 0 .N " v v v o w d w d 4 b i ° 4 j ] O oo Vj cd b O 0 rc:) v' N Q E 0 b w 7 a ba a N w p .C a> o ~ .o n a ° O U Cd aq N o .14 cri 10 0 a 0 0 (L) 7s = 0 o y U 0 D VJ bo o o a~ a w o O 0- w .0 0 o ai c's .C 0 -0 0 w O 3 ccd ° ~ h bip .0 d a 'ba y bq to 0 - C 0 t. u q U cC woz~ 0 q N .0 b cl b q) o > w .O •0 0 ~ .U N U U U U N c0 to og El ' U 0 N c.~.fl - ZZ M. Z CI N-1 O y 0 Q W 1t] a O Cl) P W O a a yW F V 6 N V C W .y W O C 0 N v u 3 ° W a o v u a oa o R u 'd d '~O u Q C OO V C C O. N V V u ~ v h U 00 ~ wi 4 V ~ N 0 o~ a w N cc y W a Q 0 N 06 cl U 0 ~0y a Q ~ a7 s, a o 3 be 'O-' N ~ N 3 ~O o D tw O v o o 0 -0 vi OA V W a V > ~ h N 0 o . !2 o d n cs ~-o 0 00 (U Ei al ° v 3 tV. pp wj ti 00 CIS w p p 0 V a> o U 3 O 02 _H as 4) a~ 00 v n Y ~ 000b . .O 0 -.X "d O O i 0 3 o m o oo 'y 0 W y 3 v'0 y o 3 A ra on rA ~ bo a N . 9 .0 o 3 . y a~ o .14 b o > o 3 boo o 411 ,.0 ao 0~ " O ~ V w c." o ~ 3 w b ~ 1-4 04 O ° °O o 3 a i N '0 0 0r.jb y O N U C a 0 04 Q > b4 ca 3 V V Q w 0 V O o co c0 w rn c U Q c o~ LL Q .Q -0 m co ~0 m cE 0 a 0 0 CD 00 m 7 a~ m A tf m w c ca 75 v PUblicatiOli No. Ft-IWA-(r-99-t)15 JUNE 1999 US-Department of irOmporfption OfTICit. Qr BRIDGC T1 CHNOLOGY @derqj High Way 400.EVENI'H STREET, W Adminisfration WASHINGTON, DC 20590 G-.u(:)MCWCALEiVGMEI?&G GllZCClI t].1t No. 4 For permanent walls a.nl temporary walls that are considered criucal, an allowable bending stress in the soldier beam, Ka of 0.55 Fr, where Fr is the yield stress of the steel, is recommended. Steel sheet-pile and soldier beams are commonly either Grade 35 (Fy = 248 MPa) or Grade 50 (Fr = 345 MPa). For temporary SOB walls, a 20 percent increase in the allowable stress may be allowed for positive wall bending moments between anchor locations; no allowable stress increase is recommended for negative wall bending movements at the anchor locations. The required section modulus Sy, is calculated as: S'q _ MMU (Equation 22) Standard SI units are S(mm3), Maw (kN-m), and K (MPa). In most cases, several available steel sdctions will typically meet this requirement. The actual wall section selected will be based on contractor/owner preference, cost, constructability, and details of the anchor/wall connection. When designing permanent anchored walls in relatively uniform competent materials, it is usually only necessary to check the final stage of construction provided that: (1) the ground can develop adequate passive resistance below the excavation to support the wall; (2) apparent earth pressure diagrams are used to assess the loading on the wall; and (3) there is minimal over excavation below each anchor level (FHWA-RD-97-130, 1998). For cases where there are large concentrated surcharges or berms at the ground surface, it is prudent to check wall beading moments for the initial cantilever stage (i.e., stage just prior to installation and lock-off of uppermost anchor). Where the final excavation height is not the most critical condition, designers commonly use a staged construction analysis where the maximum wail bending moment, wall deflections, and wall embedment depth are evaluated for several stages of construction. An analysis is required for this case since the maximum bending moment may occur at an intermediate stage of construction (i.e., before the final excavation depth is reached). Intermediate construction stages may be critical when: (1) triangular earth pressure diagrams are used to design the wall; (2) the excavation extends significantly below an anchor level prior to stressing that anchor, (3) a cutoff wall is used to maintain the water level behind the wall; (4) the soil below the bottom of the excavation is weals resulting in active earth pressures that are greater than available resistance provided by the toe of the wall; and (5) structures are located near the wall. 5.4.2 Design of Lagging for Temporary Support The thickness of temporary timber lagging for soldier beam and lagging walls is based primarily on experience or semi-empirical rules. Table 12 presents recommended thicknesses of construction grade lumber for temporary timber lagging. For temporary SOB walls, contractors may use other lagging thicknesses provided they can demonstrate good performance of the lagging thickness for walls constructed in similar ground. Permanent timber lagging has been used in lieu of a concrete face to carry permanent wall loads. For permanent applications, the timber grade and dimensions should be designed according to structural guidelines. Several problems may exist for permanent timber lagging including: (1) need to provide fire protection for the lagging; (2) limited service life for timber, and (3) difficulty in providing 81 Report No. FHWA;RD- 75-128 PB 257 .21-0 LATERAL SUPPORT SYSTEMS AND UNDERPINNING Vol. I. Design and Construction 0. T. Goldberg, W. E. laworski, aad M. D. Gordon April 1976 Final Report This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161 NATIONAL YKIJI~!IC'AL Prepared for INFORMATION SERVICE t. WARiMMEIIf or Of CORNICE SPRRICf1E11 ►A 21161 FEDERAL HIGHWAY ADMINISTRATION - Offices of Research & Development, Washington, D.C. 20590 9* 32 Woof. 9, 3Z, 1 Wood Materials United States is construct The most ion grade lumber, usua used for lagging in uc the tural fora]. stress-graded lumber uY rough-cut. Struc- may- be specified though seldom used. are Douglas Fir or Southern Yellow Pine, both of which provide a desirable balance between flexural strength formation modulus. may be used for and de- Table 3 lists the properties of some :woods that in wood lagging. The allowable flexural stress s the table is fcr normal or repetitive use construction. tated 9. 32.2 Archig the conventional Experience has shown that lagging installed in not manner in most reasonably competent soils does receive the total earth pressure acting pressure concentrates on the relativels on the wall. The lateral sure is a relatively tiff soldier piles; Tess pres- PPRed to the more flexible lagging between the soldier piles. This redistribution of pressure, known as arch- ing, is inherently rested to the usual lagging is su manner of construction. The behind the PPorted on the front flange; a slight over-cut is made lagging to facilitate placement of the boards; and the inter- vening space behind the boards is filled with soil. lagging is A related phenomenon is that the pressure on relatively unaffected b depth. the greater forces associated with deper eit therefore follows hat xcavations must bettrans- mitted through soldier piles. 32.3 - •.•a l~.ctcness Upon experience Lagging thickness design is based primarily and/ox empirical rules. One procedure is to vary the amplitude of the pressure diagram with 1e r pile and maximum pressure at the sold- minimum pressure midway between the soldier pile (see Lacroix and Jackson 197Z) pressure dia ram ' . Another procedure is to reduce the basic g used in the design of bracing applying a reduction factor. For example, mento (1972) a in design- ing lagging for the BARTD system, applied a 50 percent reduction factor to the basic trapezoidal earth pressure diagram used for strut design. The New York Transit Authority uses the basic pressure Y -118-