Loading...
HomeMy WebLinkAboutB07-0096 Structural CalculationsT1714-The Willows Vail, Colorado Structural Calculations Prepared by KL&A, Inc. April 9, 2007 F ov t~ as SION KL &A, Inc Structural Engineers and Builders 4412 W. Eisenhower Blvd. Loveland, Colorado 80537 Telephone: 970 667 2426 Fax: 970 667 2493 www.klaa.com Table of Contents SECTION TITLE 100 General Building Description .......................................................................................1 200 Design Criteria ..2 300 Columns 22 400 Foundations 40 500 Permanent Soil Retention 46 600 Lateral Systems 57 700 Floor Framing 68 800 Roofs 81 900 Wall Systems 91 KI.&A. n&A,Inc. Structural Engineers and Builders 4412 W. Eisentmfer Bhd Loveland. CoUado 80537 Ph: 970 667-2426 Fax 970 W-2493 T1714 -The Willows 74 Willow Road, Vail, Colorado GENERAL BUILDING DESCRIPTION Architectural Description The project is located in Vail, Colorado. The project consists of a four story building over an underground garage level. The garage level will primarily be used for parking as well as storage and mechanical access, while the four stories above ground will be for residential use. The garage level will be slab on grade over free draining compacted gravel. The four stories will be composite deck on steel beams. The roof will be hip and valley steel framing. Code The project was designed using the 2003 International Building Code. Location and Site Constraints The building site is approximately flat, and has an existing building previously developed as residential/hotel structure. Gravity System The gravity system for the buildings varies as previously mentioned. It consists of concrete slabs over composite deck supported by steel beams, form deck supported by non-composite steel beams, and light gage steel framing. Retaining Systems Foundation walls serve as the permanent retaining system for the building.. Cantilevered retaining walls also serve as a permanent retaining system. Foundations Foundations are spread footings on soil with an allowable bearing pressure of 4,000 psf. C.\W& ws\Caks\100 Gmeral Bw7ding Description\Gawral Budding Dmmptiomda 2 KL&A,Inc. Structural Engineers and Builders 4412 W. Eisenhower Blvd Loveland, C Nado 80537 Ph: 970 667-2426 Fax 970 667-2493 T1714 -The Willows 74 Willow Road, Vail, Colorado Design Criteria Design Criteria The project design is governed by the 2003 International Building Code. The steel gravity frame was designed in accordance with the AISC Manual, 131 edition. The reinforced concrete lateral shear walls were designed per ACI-318-02. Dead Loads Dead loads were calculated for each area type, based on the specific assemblies used. For j gravity loads, the most conservative case is used to insure the adequacy of each member. Live Loads Live loads were determined in accordance with the 2003 IBC, based on occupancy and use. The live loads are summarized as follows: Area Occupancy Live Load (psf) Residential Areas 40 Public Areas 100 Balconies 100 Snow Loads Snow loads were determined based on the 2003 IBC and ASCE 7-02, based on location and exposure. Pg, the ground snow load, is 75 psf; Ce, the Exposure Coefficient, is 1.0, and Is, the importance factor for snow, is 1.0. G:\W>Do-\Catm\200 U-gn Gi-\D-igp Git-A- Structural Design Discussion April 9, 2007 3 Wind Loads Wind speed was determined from the 2003 IBC. Wind loading was determined based on the requirements of ASCE 7-02. The basic wind speed (3-second gust) is 90 miles per hour, the Exposure is C, and Iw, the importance factor for wind, is 1.0. Seismic Loads Seismic loads were determined based on the 2003 IBC, based on location and soil profile. Ss, the short period spectral acceleration is 19%; S1, the 1 second spectral acceleration is 4.8%, the site class is D, and the importance factor for seismic forces is 1.0. Deflections Typical deflection requirements are used for this structure. They are as follows: Framing I✓ Total Load Live Load Floor Framing 240 360 Roof Framing 180 240 i 04/09/07 KL&A, Inc. Page 2 of 2 gEkl 5 ASCE 7-02 SNOW LOAD DESIGN Willows - Vail, Colorado - T1714 Drift Loads on Lower Roofs P9 = 75 psf Basic ground snow load lu = 30.00 ft Length of upper roof I, = 10 ft Length of lower roof H = 10.00 ft Height difference between upper and lower roof Pf = 52.5 psf y = 23.75 pcf hb = 2.21 ft hd leeward = 2.56 ft hd windward = 0.98 ft hd = 1 2.56 ft he in = 0.44 ft he actual = 7.79 ft Pd = 113.23 psf Wd = 10.23 ft i Typical roof snow load (not calculated here) Snow density Height of balanced snow on lower roof Height of drift on leeward side Height of drift on windward side Height of drift to be superimposed on balanced snow load (max. of leeward and windward) Greatest difference in height between upper and lower roof for which drift loads do not need to be accounted for. If greater than he mir„ must account for drift Maximum drift intensity on the lower roof Width of drift ASCE 7-02 SNOW LOAD DESIGN Willows - Vail, Colorado - T1714 Drift Loads on North Roof P9 = 75 psf Basic ground snow load I„ = 66.00 ft Length of upper roof li = 7 ft Length of lower roof H = 12.00 ft Height difference between upper and lower roof Pf = 52.5 psf Typical roof snow load (not calculated here) y = 23.75 pcf Snow density hb = 2.21 ft Height of balanced snow on lower roof hd leeward = 3.78 ft Height of drift on leeward side hd windward = 0.75 ft Height of drift on windward side hd = 3.78 ft Height of drift to be superimposed on balanced snow load (max. of leeward and windward) he min = 0.44 ft Greatest difference in height between upper and lower roof for which drift loads do not need to be accounted for. he actual = 9.79 ft If greater than he min, must account for drift Pd = 142.19 psf Maximum drift intensity on the lower roof Wd = 15.11 ft Width of drift 6 4 ASCE 7-02 SNOW LOAD DESIGN Willows - Vail , Colorad o - T1714 a Drift Loads on West Roof Pg = 75 psf Basic ground snow load 1„ = 17.50 ft Length of upper roof " li = 24.25 ft Length of lower roof H = 5.00 ft Height difference between upper and lower roof Pf = 52.5 psf Typical roof snow load (not calculated here) y = 23.75 pcf Snow density hb = 2.21 ft Height of balanced snow on lower roof hd Wemrd = 1.89 ft Height of drift on leeward side M hd windward = 1.71 ft Height of drift on windward side hd = 1.89 ft Height of drift to be superimposed on balanced snow load (max. of leeward and windward) he min = 0.44 ft Greatest difference in height between upper and lower roof for which drift loads do not need to be accounted for. hc acwA = 2.79 ft If greater than hc mi,, must account for drift Pd = 97.38 psf Maximum drift intensity on the lower roof Wd = i 7.56 ft Width of drift 7 A %At i y to d * Q cc 10 J y °o N 3 N co 2f V tn+f > W [b W F+r E c W N ~ y C O Y N m O N r W r~ W ~ ~ W N 0 W ~ LL N V' J (L 4 6 z o - (1) CO U) U) C O ' C C C C O U O U > lt1 m O 00 00 W 9 9/6 l0 /0 O 00 c o c o m a cy, > c o c o a> m m 2 m m m m c o 6 (3 Cj Go - O C3 CO CO co z t) c c C 0 O O C 0 0 a 0 0 C 0 0 c0 U U V L) C) v v cy3 U ~ ~ 3 3 3 f- F- m m m m ~ c e m~ m Z Z v a v a Z m z z t a cyo ~a Yo E r < iL r IL S r r V to to w t W C W t0 to r M i'o in t0 V •y h h O CO ~ M M M M M N t0 'a1 rL l~ h N U. )m N V v v v N N tab O O } } Z Z Z Z Z Z Z Z Z Z i a m J ~ a m 0 0 0 0 0 0 . ' 0 V a a ` J J 0 0 0 0 0 0 r 0 tO to to < L ~ to a 0 N c N O N U) to LO to n y Q. J EO C 'a m a C W r CD h 04 co 04 Go 04 Go tD N N N N N N N N d Ih N to 7 O ~ `m y c m a L N h N h I 1 h 1 h h N 1. N h O N 0 N a N 0 N N h O O U. (0 j ~ D y ~ N N O O Q 'O N U O .p 'C ~ O O D O c-. 'Q . c tn c u t m a U a 3 n 3 3 m ~ p a W W W m c 0 aUi aUi . U > F ca m 0 0 C~ 0 a1 m m 5 a> a~ N v v ycS a1 U ~ ~ ~ cn ~ ~ p p p p c E E E E E E E ) - Z Z Z E U U U U U U U 2 0 r N CO d to 0 t, r N C"1 et N O m Y J r < r r < r ~ N N N N N ~ ~ N C'i V tt7 (D f` r N N N M N V N tO N 0 J O c co l0 tlJ .O O J J N L F- f 8 M Load Areas Load Key: 1 1 Typ. Residential Composite Steel Live Load 40 9 Self Weight s Gravity Seismic 5 1/2" NWt Concrete on 2VLI Deck 57 57 Steel Beams & Girders 5 4 Concrete Overrun 10 5 Columns 4 3 Total Bm/Grdr Self Weight 72 61 Total Column Self Weight 76 69 Superimposed Dead Loads s Floor Finish MEP 10 5 5 3 Total Superimposed 15 8 Deal Load Total Dead Load 91 77 Load Key: 1 2 Composite Steel Load Areas Lobby Live Load 100 10 Self Weight s Gravity Seismic 51/2" NWt Concrete on 2VLI Deck 57 S7 Steel Beams & Girders 5 4 Concrete Overrun 10 5 Columns 4 3 Total Bm/Grdr Self Weight 72 61 Total Column Self Weight 76 69 Superimposed Dead Loads s Floor Finish MEP 10 5 , 5 3 Total Superimposed 15 8 Deal Load Total Dead Load 91 77 y .a Load Areas Load Key: 1 3 Composite Steel Ext. Conc. Live Load 100 11 Self Weight s Gravity Seismic 51/2" NWt Concrete on 2VLI Deck 57 57 Steel Beams & Girders 10 8 Concrete Overrun 10 5 Columns 5 4 Total Bm/Grdr Self Weight 77 65 Total Column Self Weight 82 74 Superimposed Dead Loads s V NW Conc. MEP, Insul, Drainage 180 20 175 10 Total Superimposed 200 185 Deal Load Total Dead Load 282 259 1 Load Areas Load Key: 1 4 Composite Steel Ext.Dirt Live Load 100 12 Self Weight s Gravity Seismic 51/2" NWt Concrete on 2VLI Deck 57 57 Steel Beams & Girders 10 8 Concrete Overrun 10 5 Columns 5 4 Total Bm/Grdr Self Weight 77 65 Total Column Self Weight 82 74 Superimposed Dead Loads sf 4' Saturated Dirt MEP, Insul, Drainage 660 20 480 10 Total Superimposed 620 490 Deal Load Total Dead Load 702 564 Load Areas Load Key: 1. 5 Composite Steel Ext.Pool Live Load 100 1 d 13 Self Weight s Gravity Seismic 5 1/2" NWt Concrete on 2VLI Deck 57 57 Steel Beams & Girders 10 8 Concrete Overrun 10 5 Columns 51 , 4. Total Bm/Grdr Self Weight 77 65 Total Column Self Weight 82 74 Superimposed Dead Loads s 3' Pool + 1' Conc. MEP, Insul, Drainage 330 20 300 10 Total Superimposed 350 310 Deal Load Total Dead Load 432 384 a Load Areas Load Key: 1 6 Composite Steel Balconies Live Load 100 14 Self Weight s Gravity Seismic 51/2" NWt Concrete on 2VLI Deck 57 57 Steel Beams & Girders 5 4 Concrete Overrun 10 5 Columns 4 3 Total Bm/Grdr Self Weight 72 61 Total Column Self Weight 76 69 Superimposed Dead Loads s Finishes 6" Conc. Topping slab 15 75 10 75 Total Superimposed 90 85 Deal Load Total Dead Load 166 154 w Load Areas Load Key: 1 7 Composite Steel Balconies Live Load 100 15 Self Weight s Gravity Seismic 51/2" NWt Concrete on 2VLI Deck 57 ' 57 Steel Beams & Girders 5 4 Concrete Overrun 10 5 Columns 4 3 Total Bm/Grdr Self Weight 72 61 Total Column Self Weight 76 69 Superimposed Dead Loads s Finishes 15 10 Hot Tub 200 200 6" Conc. Topping slab 75 75 Total Superimposed 290 285 Deal Load Total Dead Load 366 354 ,x >q Load Key: 2 1 Metal deck Roof >=4:12 Live Load 80" Gravitv Seismic 16 Self Weight s Roof Pack 15 12 Steel Beams & Girders 5 4 Columns 2 Total Bm/Grdr Self Weight 20 16 Total Column Self Weight 22 18 Superimposed Dead Loads s Snow MEP 5 20 5 Total Superimposed 5 25 Deal Load Total Dead Load 27 43 Load Areas Load Key: 2 2 Metal deck Load Areas 17 Gravitv Seismic Self Weight s Roof Pack 15 12 Steel Beams & Girders 5 4 Columns 2 2 Total Bm/Grdr Self Weight 20 16 Total Column Self Weight 22 18 i Superimposed Dead Loads s Snow MEP 51 20 , 5 Total Superimposed Deal Load Total Dead Load Live Load Roof <4:12 100* 5 25 27 43 18 Live Load Load Key: 2 3 Upper Roof w/Drift 150 = Pd" Wd=15ft Metal deck Gravitv Seismic Self Weight s Roof Pack 15 12 Steel Beams & Girders 5 4 Columns 2 2 Total Bm/Grdr Self Weight 20 16 Total Column Self Weight 22 18 Superimposed Dead Loads sf Snow MEP 5 20 ` 5 Total Superimposed 5 25 Deal Load Total Dead Load 27 43 1 M fl Load Key 2 4 Metal deck Live Load Lower Roof w/Drift 115 Pd" Wd =10.5 ft Gravitv Seismic 19 Self Weight s Roof Pack 15 12 Steel Beams & Girders 5 4 Columns .2 2 Total Bm/Grdr Self Weight 20 16 Total Column Self Weight 22 18 Superimposed Dead Loads sf Snow MEP 5 20 5 Total Superimposed 5 25 Deal Load Total Dead Load 27 43 Load Areas Load Key: 2 Composite Steel 5 Roof Mech. Area Live Load 150* 20 Self Weight s Gravity Seismic 51/2" NWt Concrete on 2VLI Deck 57 57 Steel Beams & Girders 5 4 Concrete Overrun 10 5 Columns 2 2 Total Bm/Grdr Self Weight 72 61 Total Column Self Weight 74 68 Superimposed Dead Loads s Finishes 15 Mechanical Loads 80 ] 6" Conc. Topping slab 75 7 5 Total Superimposed 170 165 Deal Load Total Dead Load 244 233 21 Project Name = T1714.0 - Willows Date = Tue Mar 27 11:18:22 MDT 2007 Conterminous 48 States 2003 International Building Code Latitude = 39.640336 Longitude = -106.376757 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0,Fv = 1.0 Data are based on a 0.1 deg grid spacing Period Sa (sec) (g) 0:2 0.337 Ss, Site Class B 1.0 0.079 S1, Site Class B Conterminous 48 States 2003 International Building Code Latitude = 39.640336 Longitude = -106.376757 Spectral Response Accelerations SMs and SM1 SMs = FaSs and SM1 FvS1 Site Class D - Fa = 1.531 Fv = 2.4 Period Sa (sec) (g) 0.2 0.515 SMs, Site Class D 1.0 0.189 SM1, Site Class D Conterminous 48 States 2003 International Building Code Latitude = 39.640336 Longitude = -106.376757 SDs=2/3xSMs andSD1 =2/3xSM1 Site Class D - Fa = 1.531 Fv = 2.4 Period Sa (sec) -(9) 0.2 0.344 SDs, Site Class D 1.0 0.126 SD1, Site Class D 22 n&A,Inc. Structural Engineers and Builders 4412 W. Eisenhower Blvd Loveland, Colorado 80537 Ph: 970 667-2426 Fax 970 667-2493 THE WILLOWS COLUMN DESIGN DESCRIPTION, ANALYSIS APPROACH, AND RESULTS Design Description and Analysis Approach HSS columns were used to support the roof and floor system created by the steel framing. Steel column design was performed in RAM Steel using the LRFD procedures in the 3'd ED LRFD AISC Manual. Loads are automatically tracked by the program, but hand checks were performed to ensure correct model behavior and load distribution. Eccentricity was checked based on loads being applied 2 %2" from the column face for typical framing connections. Where beams frame over columns, the load was assumed to act concentrically (no eccentricity). Results Tube steel columns of varying sizes are used throughout the project. Column outside dimension is kept to a minimum to minimize architectural impact. Baseplate design Baseplates were designed using the procedure outlined in the RISC 13'b Ed. manual, pg 145, and an Excel spreadsheet. Loads are input directly from RAM Steel into the spreadsheet. 1 G:\Wil1ows\Ca1cs\300 Columns\Column Design Description.doc Gravity Column Design Summary RAM Steel vl 1.1 23 Jake Hohmann RAM DataBase: 070406 Willows 04/09/07 14:38:16 I,NTHNATr- Code: IBC Steel Code: AISC LRFD Column Line 0.00ft - -26.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 36.2 2.6 10.8 1 0.71 Eq H1-la 0.0 46 HSS4X4Xl/2 3rd Floor 50.4 0.6 3.1 1 0.49 Eq H1-la 0.0 46 HSS4X4X1/2 2nd Floor 67.7 0.6 2.9 1 0.60 Eq Hl-la 0.0 46 HSS4X4X1/2 a Column Line A - 5 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 53.0 9.9 12.1 1 0.67 Eq Hl-la 0.0 46 HSS5X5X1/2 3rd Floor 97.4 0.0 0.0 1 0.43 Eq Hl-la 0.0 46 HSS5X5X1/2 2nd Floor 200.7 0.0 0.0 1 0.89 Eq H1-la 0.0 46 HSS5X5Xl/2 Column Line 7.71ft - -102.79ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 2nd Floor 6.3 2.2 0.1 1 0.18 Eq H1-lb 90.0 46 HSS4X4X1/4 Column Line 7.71ft - -82.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 2nd Floor 6.3 2.2 0.1 1 0.18 Eq H1-lb 90.0 46 HSS4X4X1/4 Column Line 8.00ft - -41.58ft Level Pu 4th Floor 43.4 3rd Floor 58.2 2nd Floor .72.0 1 st Floor 145.9 Column Line 8.00ft - -26.08ft Level Pu 4th Floor 61.8 3rd Floor 82.0 2nd Floor 98.0 1 st Floor 141.2 Column Line 10.21ft - -119.75ft Level Pu Roof 8.4 4th Floor 12.4 3rd Floor 21.0 2nd Floor 29.5 Mux Muy LC Interaction Eq. Angle Fy Size 8.3 11.4 1 0.36 Eq H1-lb 0.0 46 HSS6X6Xl/2 1.6. 1.8 1 0.19 Eq H1-lb 0.0 46 HSS6X6X1/2 12.7 5.5 1 0.47 Eq H1-la 0.0 46 HSS6X6X1/2 12.8 5.2 1 0.75 Eq H1-la 0.0 46 HSS6X6X1/2 Mux Muy LC Interaction Eq. Angle Fy Size 4.0 24.2 1 0.71 Eq H1-la 0.0 46 HSS6X6X3/8 0.5 4.2 1 0.41 Eq H1-la 0.0 46 HSS6X6X3/8 0.6 6.8 2 0.52 Eq H1-la 0.0 46 HSS6X6X3/8 0.0 4.9 1 0.72 Eq Hl-la 0.0 46 HSS6X6X3/8 Mux Muy LC Interaction Eq. Angle Fy Size 1.4 1.7 1 0.28 Eq H1-lb 0.0 46 HSS4X4Xl/4 1.5 1.8 1 0.28 Eq H1-lb 90.0 46 HSS4X4X1/4 1.5 0.1 1 0.34 Eq H1-la 90.0 46 HSS4X4X1/4 1.5 0.1 1 0.44 Eq Hl-la 90:0 46 HSS4X4X1/4 Gravity Column Design SummM RAM Steel v11.1 Jake Hohmann DataBase: 070406 Willows Building Code: IBC 24 Page 2/15 04/09/07 14:38:16 Steel Code: AISC LRFD Column Line 10.21ft - -107.78ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 5.6 0.3 1.7 1 0.19 Eq Hl-lb 0.0 46 HSS4X4X1/4 4th Floor 7.4 1.2 0.9 1 0.17 Eq H1-lb 90.0 46 HSS4X4X1/4 3rd Floor 14.0 1.2 0.0 1 0.17 Eq H1-lb 90.0 46 HSS4X4X1/4 2nd Floor 20.7 1.2 0.0 1 0.31 Eq H1-la 90.0 46 HSS4X4X1/4 Column Line 13.04ft - -30.01ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 14.2 1.7 3.6 1 0.60 Eq H1-la 0.0 46 HSS4X4X1/4 Column Line 13.04ft - -12.38ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 14.2 1.7 3.6 1 0.60 Eq H1-la 0.0 46 HSS4X4X1/4 Column Line 13.88ft - -108.46ft Level Pu Roof -4.3 1 4th Floor 19.0 3rd Floor 34.3 2nd Floor 43.3 Mux Muy LC Interaction Eq. Angle Fy Size 0.1 2.2 18 0.12 Eq Hl-lb 0.0 46 HSS4X4X3/8 0.3 2.8 10 0.22 Eq H1-lb 0.0 ° 46 HSS4X4X3/8 0.3 1.4 1 0.36 Eq H1-la 0.0 46 HSS4X4X3/8 0.2 0.5 1 0.41 Eq H1-la 0.0 46 HSS4X4X3/8 Column Line 13.88ft - -102.79ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 2nd Floor 140.9 0.0 0.0 1 0.78 Eq Hl-la 0.0 46 HSS5X5X3/8 Column Line 13.88ft - -101.46ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 63.2 0.0 2.3 4 0.59 Eq H1-la 0.0 46 HSS5X5X3/8 4th Floor 89.0 0.0 3.3 10 0.57 Eq H1-la 0.0 46 HSS5X5X3/8 3rd Floor 115.2 0.0 2.5 1 0.70 Eq H1-la 0.0 46 HSS5X5X3/8 Column Line 13.88ft - -80.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 28.8 8.7 4.1 1 0.21 Eq H1-lb 0.0 46 HSS6X6X5/8 4th Floor 36.0 1.7 4.5 1 0.13 Eq H1-lb 0.0 46 HSS6X6X5/8 3rd Floor 62.0 1.0 5.4 1 0.17 Eq Hl-lb 0.0 46 HSS6X6X5/8 2nd Floor 81.7 2.7 16.8 3 0.44 Eq H1-la 0.0 46 HSS6X6X5/8 lst Floor 172.1 1.5 13.6 1 0.69 Eq H1-la 90.0 46 HSS6X6X5/8 Column Line 17.88ft - -126.75ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 15.7 0.0 5.8 1 0.66 Eq H1-la 0.0 46 HSS4X4X1/4 Gravity Column Design Summary RAM Steel vl 1.1 25 Page 3/15 Jake Hohmann RAM DataBase: 070406 Willows 04/09/07 14:38:16 Building Code: IBC Steel Code: AISC LRFD 4th Floor 37.2 0.0 4.9 1 0.71 Eq H1-la 0.0 46 HSS4X4X1/4 3rd Floor 47.1 0.0 1.8 1 0.66 Eq H1-la 0.0 46, HSS4X4X1/4 Column Line C -15 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 2nd Floor 65.0 0.0 0.0 1 0.77 Eq H1-la 0.0 46 HSS4X4X1/4 Column Line 17.88ft - -115.37ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 9.9 2.6 3.2 7 0.20 Eq H1-lb 0.0 46 HSS5X5X3/8 4th Floor 36.5 5.2 1.3 14 0.36 Eq Hl-la 0.0 46 HSS5X5X3/8 3rd Floor 68.1 3.9 0.9 5 0.50 Eq H1-la 0.0 46 HSS5X5X3/8 2nd Floor 92.6 3.6 0.4 1 0.61 Eq H1-la 0.0 46 HSS5X5X3/8 Column Line 18.91ft - -70.19ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 228.9 0.0 0.0 1 0.69 Eq H1-la 0.0 46 HSS6X6X5/8 Column Line 23.63ft - -33.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 27.0 2.4 7.6 1 0.73 Eq H1-la 0.0 46 HSS4X4X1/2 Column Line 23.63ft - -11.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof . 28.6 2.4 8.2 1 0.77 Eq H1-la 0.0 46 HSS4X4X1/2 Column Line 23.63ft - -8.58ft Lever Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 49.6 7.2 9.3 1 0.47 Eq H1-la 0.0 46 HSS6X6X3/8 3rd Floor 66.9 2.0 0.0 3 0.31 Eq H1-la 0.0 46 HSS6X6X3/8 2nd Floor 83.3 4.1 0.0 3 0.41 Eq Hl-la 0.0 46 HSS6X6X3/8 1st Floor 136.4 3.1 0.0 1 0.67 Eq Hl-la 0.0 46 HSS6X6X3/8 Column Line 26.46ft - -41.58ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 193.8 25.1 23.1 14 0.82 Eq H1-la 0.0 46 HSS7X7X5/8 Column Line 26.46ft - -26.88ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 144.6 1.2 56.1 14 0.78 Eq Hl-la 90.0 46 HSS7X7X5/8 Gravity Column Design Summary RAM Steel v11.1 26 Page 4/15 Jake Hohmann DataBase: 070406 Willows 04/09/07 14:38:16 RAM MEN Building Code: IBC Steel Code: RISC LRFD Column Line 29.46ft - -37.83ft h Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 2.6 0.1 0.4 1 0.15 Eq Hl-lb 0.0 46 HSS3X3Xl/4 Column Line 31.88ft - -37.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 2.6 0.1 0.4 1 0.15 Eq H1-lb 0.0 46 HSS3X3X1/4 Column Line 34.29ft - -125.25ft M Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 32.2 1.7 7.0 1 0.76 Eq Hl-la 0.0 46 HSS4X4Xl/2 Column Line 34.30ft - 41.58ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 53.1 7.3 14.0 12 0.81 Eq H1-la 0.0 46 HSS5X5X3/8 3rd Floor 72.3 1.4 1.4 3 0.47 Eq H1-la 0.0 46 HSS5X5X3/8 2nd Floor 85.5 1.3 1.2 1 0.54 Eq H1-la 0.0 46 HSS5X5X3/8 Column Line 34.30ft - -26.88ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 96.2 16.2 17.0 6 0.74 Eq H1-la 90.0 46 HSS6X6X1/2 3rd Floor 141.4 1.4 2.9 3 0.51 Eq Hl-la 90.0 46 HSS6X6X1/2 2nd Floor 183.2 1.4 2.6 1 0.65 Eq Hl-la 90.0 46 HSS6X6X1/2 Column Line 35.38ft - -4.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 96.5 11.0 33.0 1 0.75 Eq H1-la 0.0 46 HSS6X6X5/8 3rd Floor 129.9 1.6 6.1 1 0.44 Eq H1-la 0.0 46 HSS6X6X5/8 2nd Floor 162.7 1.5 6.0 1 0.53 Eq Hl-la 0.0 46 HSS6X6X5/8 Column Line 35.96ft - -91.25ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 14.5 1.2 5.3 11 0.24 Eq H1-lb 0.0 46 HSS5X5X3/8 4th Floor 36.9 1.8 1.8 12 0.29 Eq H1-la 0.0 46 HSS5X5X3/8 3rd Floor 55.7 2.0 1.8 3 0.40 Eq H1-la 0.0 46 HSS5X5X3/8 2nd Floor w 76.7 1.7 1.7 1 0.51 Eq Hl-la 0.0 46 HS S 5X5X3/8 Column Line 35.96ft - -75.00ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 29.7 8.5 3.7 1 0.55 Eq Hl-la 90.0 46 HSS5X5X3/8 4th Floor 37.9 1.7 0.3 1 0.26 Eq H1-la 90.0 46 HSS5X5X3/8 3rd Floor 46.1 1.4 1.3 2 0.32 Eq H1-la 90.0 46 HSS5X5X3/8 2nd Floor 54.7 0.1 1.0 1 0.33 Eq H1-la 0.0 46 HSS5X5X3/8 Gravity Column Design Summary RAM Steel vl 1.1 27 Page 5/15 Jake Hohmann RAM DataBase: 070406 Willows 04/09/07 14:38:16 a Building Code: IBC Steel Code: AISC LRFD Column Line 35.96ft - -70.19ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 2nd Floor 2.4 0.2 0.8 1 0.03 Eq Hl-lb 0.0 46 HSS5X5X3/8 Column Line 36.63ft - -33.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 28.9 5.9 0.3 1 0.74 Eq H1-la 0.0 46 HSS4X4X3/8 Column Line 37.99ft - -11.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 38.3 2.5 12.3 8 0.68 Eq H1-la 0.0 46 HSS5X5X3/8 Column Line 41.54ft - -33.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 30.8 4.6 0.0 1 0.70 Eq H1-la 0.0 46 HSS4X4X3/8 Column Line 43.01ft - -41.58ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 41.3 5.2 9.6 8 0.79 Eq H1-la 0.0 46 HSS4X4Xl/2 3rd Floor 57.1 0.9 0.9 2 0.47 Eq Hl-la 0.0 46 HSS4X4X1/2 2nd Floor 67.5 0.9 0.9 1 0.54 Eq H1-la 0.0 46 HSS4X4Xl/2 Column Line 43.01ft - -26.88ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 47.6 10.3 0.8 2 0.72 Eq H1-la 90.0 46 HSS4X4X1/2 3rd Floor 66.6 0.9 0.7 3 0.53 Eq H1-la 90.0 46 HSS4X4X1/2 2nd Floor 85.5 0.9 0.6 1 0.66 Eq H1-la 90.0 46 HSS4X4Xl/2 Column Line 44.46ft - 41.58ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 245.5 0.0 0.0 1 0.74 Eq H1-la 0.0 46 HSS6X6X5/8 m Column Line 44.46ft - -26.88ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 200.3 0.0 0.0 1 0.60 Eq H1-la 90.0 46 HSS6X6X5/8 , Column Line 44.54ft - -7.08ft Level 3 Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 2.6 0.1 0.4 1 0.15 Eq H1-lb 0.0 46 HSS3X3X1/4 Column Line 44.79ft - -125.25ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Grayi , Colur RAM Steel v11.1 Jake Hohmann RAM DataBase: 070406 Willows Building Code: 113C Roof 27.3 5.3 10.3 4th Floor 77.7 8.1 5.9 3rd Floor 107.0 2.1 4.9 2nd Floor 137.2 2.1 4.9 Column Line 44.79ft - -103.50ft nn Design Summary 28 Page 6/15 04/09/07 14:38:16 Steel Code: AISC LRFD 1 0.36 Eq H1-lb 0.0 46 HSS6X6X3/8 1 0.55 Eq H1-la 0.0 46 HSS6X6X3/8 1 0.56 Eq H1-la 0.0 46 HSS6X6X3/8 1 0.68 Eq Hl-la 0.0 46 HSS6X6X3/8 Level Pu Mux Muy LC Interaction Eq. Angle -Fy Size Roof 115.0 2.9 2.7 2 0.27 Eq Hl-la 0.0 46 HSS8X8X5/8 4th Floor 180.3 4.1 2.8 2 0.36 Eq H1-la 0.0 46 HSS8X8X5/8 3rd Floor 243.7 3.4 3.4 2 0.47 Eq Hl-la 0.0 46 HSS8X8X5/8 2nd Floor 307.3 9.1 8.5 3 0.64 Eq H1-la 0.0 46 HSS8X8X5/8 1st Floor 431.5 6.5 6.7 1 0.87 Eq H1-la 0.0 46 HSS8X8X5/8 Column Line 44.79ft - -70.19ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 2nd Floor 3.5 27.1 13.6 4 0.36 Eq H1-lb 0.0 46 HSS7X7X5/8 1st Floor 212.3 19.9 10.7 1 0.73 Eq H1-la 0.0 46 HSS7X7X5/8 Column Line 46.96ft - -7.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 2.6 0.1 0.4 1 0.15 Eq H1-lb 0.0 46 HSS3X3X1/4 Column Line 53.13ft - -11.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 16.3 2.7 1.1 1 0.57 Eq H1-la 0.0 46 HSS4X4Xl/4 Column Line 53.13ft - -5.00ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 10.3 2.7 1.1 1 0.44 Eq H1-la 0.0 46 HSS4X4X1/4 Column Line 54.79ft - -70.19ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 2nd Floor 3.1 0.1 1.0 1 0.09 Eq H1-lb 0.0 46 HSS4X4X1/4 Column Line 55.04ft - -37.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 12.9 0.5 0.7 1 0.35 Eq H1-la 0.0 46 HSS4X4Xl/4 Column Line 57.79ft - -70.19ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 167.3 35.1 4.8 8 0.95 Eq H1-la 0.0 46 HSS6X6X5/8 Gravity Column Design Summary, RAM Steel vl 1.1 29 Page 7/15 Jake Hohmann RAM DataBase: 070406 Willows 04/09/07 14:38:16 HNBuilding Code: IBC Steel Code: AISC LRFD Column Line 59.54ft - -142.25ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 2nd Floor 10.4 1.6 2.2 1 0.30 Eq H1-lb 0.0 46 HSS4X4X1/4 Column Line 59.54ft - -129.67ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 2nd Floor 33.9 0.0 9.1 10 0.66 Eq H1-la 0.0 46 HSS4X4X3/8 Column Line 60.04ft - -121.33ft Level Pu Roof 34.1 4th Floor 51.0 3rd Floor 65.0 2nd Floor 88.5 Column Line 62.46ft - -41.58ft Level Pu 4th Floor 46.6 3rd Floor 71.1 2nd Floor 101.2 1 st Floor 298.2 Mux Muy LC Interaction Eq. Angle Fy Size 4.5 9.0 16 0.61 Eq H1-la 0.0 46 HSS5X5X3/8 0.0 0.0 1 0.28 Eq H1-la 0.0 46 HSS5X5X3/8 4.6 0.1 3 0.47 Eq Hl-la 0.0 46 HSS5X5X3/8 5.5 0.2 1 0.63 Eq H1-la 0.0 46 HSS5X5X3/8 Mux Muy LC Interaction Eq. Angle Fy Size 7.5 14.7 12 0.24 Eq H1-lb 0.0 46 HSS7X7X5/8 1.2 4.4 1 0.15 Eq Hl-lb 0.0 46 HSS7X7X5/8 20.2 4.4 2 0.41 Eq H1-la 0.0 46 HSS7X7X5/8 15.8 2.0 1 0.82 Eq Hl-la 0.0 46 HSS7X7X5/8 Column Line 62.46ft - -17.88ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 114.6 9.3 37.4 12 0.86 Eq H1-la 90.0 46 HSS6X6X5/8 Column Line 63.21ft - -71.33ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 2nd Floor 6.6 2.2 0.1 10 0.18 Eq Hl-lb 0.0 46 HSS4X4X1/4 Column Line 63.21ft - -61.47ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 2nd Floor 8.6 2.9 0.0 6 0.23 Eq Hl-lb 0.0 46 HSS4X4X1/4 Column Line 63.21ft - -51.61ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 2nd Floor 8.7 2.9 0.0 10 0.23 Eq H1-lb 0.0 46 HSS4X4X1/4 Column Line 63.96ft - -125.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 3.8 0.5 0.6 8 0.11 Eq H1-lb 0.0 46 HSS4X4X1/4 4th Floor 22.6 0.0 0.0 1 0.27 Eq H1-la 0.0 46 HSS4X4X1/4 Gravity Column Design Summary RAM Steel v11.1 30 Page 8/15 Jake Hohmann RAM DataBase: 070406 Willows 04/09/07 14:38:16 -ERNPdo- Building Code: 113C Steel Code: AISC LRFD 3rd Floor 43.0 0.0 0.0 1 0.51 Eq H1-la 0.0 46 HSS4X4X1/4 Column Line 65.87ft - -17.87ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 12.4 5.2 5.8 9 0.23 Eq H1-lb 90.0 46 HSS6X6X3/8 4th Floor 69.5 6.3 8.6 10 0.53 Eq Hl-la 90.0 46 HSS6X6X3/8 3rd Floor 100.0 2.5 7.0 5 0.57 Eq H1-la 90.0 46 HSS6X6X3/8 2nd Floor 140.8 2.5 6.7 1 0.73 Eq H1-la 90.0 46 HSS6X6X3/8 Column Line 65.87ft - -0.38ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 17.4 0.8 5.6 1 0.55 Eq Hl-la 0.0 46 HSS4X4X3/8 4th Floor 47.0 0.1 6.6 1 0.68 Eq H1-la 0.0 46 HSS4X4X3/8 3rd Floor 59.3 0.1 2.2 1 0.61 Eq Hl-la 0.0 46 HSS4X4X3/8 2nd Floor 71.2 0.1 2.2 1 0.71 Eq H1-la 0.0 46 HSS4X4X3/8 Column Line 70.96ft - -125.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 3.8 0.5 0.6 12 0.11 Eq Hl-lb 0.0 46 HSS4X4Xl/4 4th Floor 22.5 0.0 0.0 1 0.27 Eq H1-la 90.0 46 HSS4X4Xl/4 3rd Floor 416 0.0 0.0 1 0.51 Eq H1-la 90.0 46 HSS4X4Xl/4 Column Line 71.63ft - -71.33ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 12.0 0.0 3.5 2 0.46 Eq Hl-la 0.0 46 HSS4X4X1/4 4th Floor 11.0 1.0 1.1 2 0.19 Eq Hl-lb 90.0 46 HS$4X4X1/4 3rd Floor 24.2 0.5 1.1 5 0.38 Eq Hl-la 90.0 46 HSS4X4X1/4 2nd Floor 37.5 0.4 1.1 1 0.53 Eq H1-la 90.0 46 HSS4X4Xl/4 Column Line 71.63ft - -61.47ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th'Floor 37.6 12.0 1.8 8 0.73 Eq Hl-la 90.0 46 HSS4X4Xl/2 3rd Floor 48.0 0.2 1.4 4 0.40 Eq Hl-la 90.0 46 HSS4X4Xl/2 2nd Floor 65.6 0.0 1.4 1 0.52 Eq Hl-la 90.0 46 HSS4X4Xl/2 . Column Line 71.63ft - -58.25ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 40.6 0.0 15.7 10 0.72 Eq Hl-la 0.0 46 HSS5X5X3/8 Column Line 71.63ft - -51.61ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 23.5 4.9 1.8 12 0.47 Eq Hl-la 90.0 46 HSS4X4X3/8 3rd Floor 43.7 0.2 1.4 5 0.44 Eq Hl-la 90.0 46 HSS4X4X3/8 Gravity Column Design Summary RAM Steel vl1.1 31 Page 9/15 Jake Hohmann RAM DataBase: 070406 Willows 04/09/07 14:38:16 Building Code-113C Steel Code: AISC LRFD 2nd Floor 61.4 0.0 1.4 1 0.59 Eq Hl-la 90.0 46 HSS4X4X3/8 Column Line 71.63ft - -46.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 23.2 0.0 4.7 1 0.77 Eq H1-la 0.0 46 HSS4X4X1/4 Column Line 71.63ft - -41.58ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 28.9 1.3 7.0 17 0.58 Eq Hl-la 0.0 46 HSS4X4X3/8 3rd Floor 49.6 0.3 1.4 4 0.50 Eq Hl-la 90.0 46 HSS4X4X3/8 2nd Floor 66.4 0.2 1.4 1 0.64 Eq H1-la 90.0 46 HSS4X4X3/8 Column Line 71.63ft - -37.08ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 40.6 2.5 13.2 10 0.72 Eq H1-la 0.0 46 HSS5X5X3/8 Column Line 73.87ft - -121.33ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size i 2nd Floor 121.2 46.6 19.0 1 0.59 Eq H1-la 0.0 46 HSS8X8X5/8 1st Floor 320.3 36.9 14.1 1 0.89 Eq H1-1a 0.0 46 HSS8X8X5/8 Column Line 74.04ft - -0.38ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 27.3 1.1 10.1 1 0.50 Eq Hl-la 0.0 46 HSS5X5X3/8 4th Floor 55.9 0.1 7.0 1 0.48 Eq H1-la 0.0 46 HSS5X5X3/8 3rd Floor 71.1 0.1 6.5 1 0.56 Eq H1-la 0.0 46 HSS5X5X3/8 2nd Floor 100.9 0.1 6.3 1 0.72 Eq H1-la 0.0 46 HSS5X5X3/8 Column Line 74.79ft - -121.33ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 20.9 0.6 5.7 1 0.81 Eq H1-la 0.0 46 HSS4X4X1/4 4th Floor 40.0 0.0 0.0 1 0.47 Eq H1-la 0.0 46 HSS4X4X1/4 3rd Floor 60.8 0.0 0.0 1 0.72 Eq H1-la 0.0 46 HSS4X4X1/4 Column Line 74.79ft - -103.50ft ry Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 56.6 2.4 9.9 1 0.35 Eq Hl-la 0.0 46 HSS6X6X5/8 4th Floor 89.6 3.6 1.3 4 0.30 Eq H1-la 0.0 46 HSS6X6X5/8 3rd Floor 122.0 2.9 1.0 1 0.38 Eq H1-la 0.0 46 HSS6X6X5/8 2nd Floor 143.2 15.5 3.9 1 0.60 Eq H1-la 0.0 46 HSS6X6X5/8 1st Floor 216.2 12.4 3.1 1 0.82 Eq H1-la 0.0 46 HSS6X6X5/8 Gravity Column Design Summary RAM Steel v11.1 32Page 10115 Jake Hohmann RAM DataBase: 070406 Willows 04/09/07 14:38:16 - IMF Building Code: IBC Steel Code: AISC LRFD Column Line 75.08ft - -142.25ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 2nd Floor 9.8 1.6 2.0 1 0.28 Eq H1-lb 0.0 46 HSS4X4Xl/4 Column Line 75.08ft - -129.67ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 2nd Floor 34.4 0.0 9.4 10 0.68 Eq H1-la 0.0 46 HSS4X4X3/8 Column Line 79.54ft - -70.19ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 3rd Floor 108.6 10.0 45.8 10 0.46 Eq Hl-lb 0.0 46 HSS8X8X5/8 2nd Floor 190.9 29.9 15.0 3 0.59 Eq H1-la 0.0 46 HSS8X8X5/8 1st Floor 393.4 22.4 4.2 1 0.88 Eq H1-la 0.0 46 HSS8X8X5/8 Column Line 79.54ft - -67.92ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 68.0 13.0 16.2 8 0.60 Eq Hl-la 90.0 46 HSS6X6X1/2 Column Line 79.54ft - 45.54ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 3rd Floor 165.7 0.0 0.0 1 0.74 Eq H1-la 0.0 46 HSS5X5Xl/2 Column Line 79.54ft - 41.58ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 60.7 13.8 1.7 12 0.71 Eq Hl-la 90.0 46 HSS5X5X3/8 2nd Floor 223.7 33.1 10.4 4 0.64 Eq H1-la 0.0 46 HSS8X8X5/8 1st Floor 405.9 27.3 6.8 1 0.95 Eq H1-la 0.0 46 HSS8X8X5/8 Column Line 82.96ft - -117.83ft y Level Pu Roof 19.1 4th Floor 19.5 3rd Floor 26.9 2nd Floor 34.2 Column Line 82.96ft - -103.50ft Level Pu Roof 18.6 4th Floor 19.3 3rd Floor 41.3 2nd Floor 62.6 1 st Floor 149.1 Mux Muy LC Interaction Eq. Angle Fy Size 4.1 4.0 1 0.83 Eq H1-la 0.0 46 HSS5X5X1/4 1.0 4.1 1 0.74 Eq Hl-la 90.0 46 HSS5X5X1/4 1.0 0.7 1 0.27EgH1-la 90.0 46 HSS5X5X1/4 1.0 0.5 1 0.32 Eq Hl-la 90.0 46 HSS5X5X1/4 Mux Muy LC Interaction Eq. Angle 0.0 0.9 1 0.18 Eq H1-lb 0.0 0.0 2.5 1 0.19 Eq H1-lb 0.0 0.0 2.4 1 0.13 Eq Hl-lb 0.0 12.7 8.4 •5 0.48 Eq H1-la 0.0 9.7 5.9 1 0.73 Eq H1-la 0.0 Fy Size 46 HSS6X6X1/2 46 HSS6X6X1/2 46 HSS6X6X1/2 46 HSS6X6X1/2 46 HSS6X6Xl/2 Gravity Column Design Summary RAM Steel v11.1 33Page 11/15 Jake Hohmann M RAM DataBase: 070406 Willows 04/09/07 14:38:16 "M"XW Building Code: 113C Steel Code: AISC LRFD Column Line 82.96ft - -90.92ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 32.5 12.3 2.7 14 0.64 Eq H1-la 90.0 46 HSS5X5X3/8 4th Floor 56.0 4.1 4.1 1 0.51 Eq Hl-la 90.0 46 HSS5X5X3/8 3rd Floor 77.1 4.0 0.4 1 0.53 Eq Hl-la 90.0 46 HSS5X5X3/8 2nd Floor 97.1 3.8 0.4 1 0.64 Eq Hl-1a 90.0 46 HSS5X5X3/8 Column Line 89.13ft - -85.81ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 40.0 0.6 15.6 10 0.73 Eq Hl-la 0.0 46 HSS5X5X3/8 Column Line 92.79ft - -17.79ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 40.3 1.8 12.6 14 0.69 Eq Hl-la 0.0 46 HSS5X5X3/8 Column Line 92.79ft - -2.00ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 34.7 0.0 0.0 1 0.77 Eq H1-la 0.0 46 HSS4X4X1/4 Column Line H -16 Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 16.3 6.0 1.3 1 0.72 Eq Hl-la 0.0 46 HSS5X5Xl/4 4th Floor 16.5 6.0 1.3 1 0.73 Eq Hl-la 90.0 46 HSS5X5X1/4 3rd Floor 19.5 0.1 3.4 1 0.21 Eq Hl-lb 90.0 46 HSS5X5X1/4 2nd Floor 31.4 0.1 2.4 1 0.33 Eq H1-la 90.0 46 HSS5X5Xl/4 Column Line H -14 Level Pa Mux Muy LC Interaction Eq. Angle Fy Size Roof 38.6 2.0 13.7 1 0.50 Eq H1-1a 0.0 46 HSS6X6X5/8 p 4th Floor 39.0 2.0 13.7 1 0.51 Eq Hl-la 0.0 46 HSS6X6X5/8 3rd Floor 52.3 4.8 5.9 10 0.21 Eq Hl-lb 0.0 46 HSS6X6X5/8 2nd Floor 83.0 12.4 4.4 2 0.41 Eq H1-la 0.0 46 HSS6X6X5/8 1st Floor 172.0 9.4 3.4 1 0.66 Eq H1-la 90.0 46 HSS6X6X5/8 Column Line 95.96ft - -22.88ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 79.0 10.8 0.0 12 0.70 Eq Hl-la 0.0 46 HSS5X5X3/8 Column Line 96.50ft - -85.81ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 58.2 3.9 22.2 10 0.74 Eq H1-la 0.0 46 HSS6X6X3/8 Gravity Column Design Summary RAM Steel vl 1.1 34Page 12/15 Jake Hohmann RAM DataBase: 070406 Willows 04/09/07 14:38:16 „Pffm-ak Building Code: IBC Steel Code: AISC LRFD Column Line 98.10ft - -55.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 133.0 0.0 0.0 1 0.92 Eq H1-la 0.0 46 HSS5X5X1/2 m Column Line 98.10ft - -41.14ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 76.7 0.0 0.0 1 0.64 Eq H1-la 0.0 46 HSS5X5X3/8 Column Line 99.04ft - -7.63ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 36.1 9.6 4.1 8 0.22 Eq H1-lb 0.0 46 HSS6X6X5/8 3rd Floor 64.5 0.5 3.9 1 0.18 Eq Hl-lb 0.0 46 HSS6X6X5/8 2nd Floor 86.7 32.4 3.8 1 0.64 Eq H1-1a 0.0 46 HSS6X6X5/8 1st Floor 216.0 26.6 0.4 1 0.95 Eq H1-la 0.0 46 HSS6X6X5/8 Column Line 99.04ft - -2.00ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 63.2 26.1 0.1 1 0.80 Eq H1-la 0.0 46 HSS5X5X1/2 3rd Floor 105.8 0.0 0.0 1 0.47 Eq Hl-la 0.0 46 HSS5X5X1/2 2nd Floor 159.9 0.0 0.0 1 0.71 Eq H1-la 0.0 46 HSS5X5Xl/2 Column Line 101.83ft - 42.58ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 159.4 26.6 29.4 15 0.78 Eq H1-la 0.0 46 HSS7X7X5/8 Column Line 101.83ft - -28.13ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 16.0 1.8 1.6 1 0.54 Eq H1-1a 0.0 46 HSS4X4X1/4 Column Line 101.83ft - -17.79ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 9.4 1.7 1.5 1 0.39 Eq H1-la 0.0 46 HSS4X4X1/4 Column Line 107.78ft - -40.17ft * Level Pu Mux Muy LC Interaction Eq. Angle' Fy Size 3rd Floor 146.9 2.1 27.5 6 0.73 Eq Hl-la 0.0 46 HSS6X6X5/8 2nd Floor 230.1 3.5 4.0 3 0.71 Eq H1-la 0.0 46 HSS6X6X5/8 1st Floor 284.5 2.6 2.9 1 0.92 Eq Hl-la 0.0 46 HSS6X6X5/8 Column Line 110.04ft - -22.88ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 48.8 21.2 6.0 3 0.41 Eq H1-lb 0.0 46 HSS6X6X5/8 Gravity Column Design Summary RAM Steel vl 1.1 35Page 13/15 Jake Hohmann RAM DataBase: 070406 Willows 04/09/07 14:38:16 M Building Code: IBC Steel Code: AISC LRFD 3rd Floor 131.7 19.6 0.7 2 0.58 Eq Hl-la 0.0 46 HSS6X6X5/8 2nd Floor 163.9 7.8 4.5 4 0.58 Eq Hl-la 0.0 46 HSS6X6X5/8 1st Floor 233.8 2.2 3.2 1 0.76 Eq H1-la 0.0 46 HSS6X6X5/8 Column Line 110.04ft - -7.63ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 28.8 5.8 4.9 1 0.56 Eq Hl-la 0.0 46 HSS4X4Xl/2 3rd Floor 78.3 0.0 0.0 1 0.56 Eq H1-la 0.0 46 HSS4X4Xl/2 2nd Floor 127.9 0.0 0.0 1 0.92 Eq H1-la 0.0 46 HSS4X4X1/2 Column Line 111.83ft - -128.67ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 16.4 6.0 0.9 1 0.71 Eq H1-la 0.0 46 HSS5X5Xl/4 4th Floor 16.5 6.0 0.9 1 0.72 Eq H1-la 90.0 46 HSS5X5X1/4 3rd Floor 19.5 0.1 3.4 1 0.21 Eq H1-lb 90.0 46 HSS5X5X1/4 2nd Floor 31.4 0.1 2.4 1 0.33 Eq H1-1a 90.0 46 HSS5X5X1/4 Column Line 111.83ft - -121.33ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 42.1 2.0 15.4 1 0.78 Eq H1-la 0.0 46 HSS6X6X3/8 4th Floor 42.4 2.0 15.4 1 0.79 Eq H1-la 0.0 46 HSS6X6X3/8 3rd Floor 57.1 4.9 7.1 10 0.43 Eq HI-la 0.0 46 HSS6X6X3/8 2nd Floor 90.5 3.3 4.6 1 0.50 Eq Hl-la 0.0 46 HSS6X6X3/8 Column Line 111.83ft - -101.25ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 1st Floor 236.9 0.0 0.0 1 0.71 Eq H1-la 0.0 46 HSS6X6X5/8 Column Line 111.83ft - -99.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 3rd Floor 120.3 6.6 33.5 16 0.77 Eq H1-la 0.0 46 HSS6X6X5/8 2nd Floor 177.3 2.7 1.3 1 0.53 Eq H1-la 0.0 46 HSS6X6X5/8 Column Line 111.83ft - -89.54ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 83.9 8.8 17.5 1 0.73 Eq H1-1a 0.0 46 HSS7X7X1/2 ffi 4th Floor 117.4 10.7 10.0 1 0.87 Eq H1-la 0.0 46 HSS7X7X1/2 i Column Line 118.25ft - -41.14ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 27.2 6.0 4.1 1 0.73 Eq Hl-la 0.0 46 HSS4X4Xl/2 Gravity Column Design Summary RAM Steel vl 1.1 36Page 14/15 Jake Hohmann M RA DataBase: 070406 Willows 04/09/07 14:38:16 Building Code: 113C Steel Code: AISC LRFD Column Line 118.25ft - -28.13ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 18.3 2.7 4.0 1 0.78 Eq H1-la 0.0 46 HSS4X4X1/4 Column Line 118.25ft - -22.88ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 1.0 0.4 0.0 1 0.02 Eq H1-lb 0.0 46 HSS4X4X1/2 3rd Floor 3.3 0.4 0.0 1 0.03 Eq H1-lb 0.0 46 HSS4X4X1/2 2nd Floor 5.7 0.4 0.0 1 0.04 Eq H1-lb 0.0 46 HSS4X4X1/2 Column Line 119.40ft - -76.75ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 14.5 0.7 4.7 1 0.62 Eq Hl-la 0.0 46 HSS4X4X1/4 Column Line 121.08ft - -67.92ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 31.3 7.9 3.7 1 0.84 Eq H1-la 0.0 46 HSS4X4Xl/2 Column Line 121.08ft - -55.83ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size Roof 25.2 5.5 3.8 1 0.80 Eq H1-la 0.0 46 HSS4X4X3/8 Column Line 121.08ft - -45.88ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 3rd Floor 78.7 2.8 22.1 10 0.74 Eq Hl-la 0.0 46 HSS8X4X1/2 Column Line 121.08ft - -43.94ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 2nd Floor 92.1 35.9 1.4 12 0.78 Eq Hl-la 90.0 46 HSS6X6X1/2 1st Floor 109.2 2.2 1.2 1 0.43 Eq H1-la 90.0 46 HSS6X6X1/2 Column Line 121.08ft - 42.58ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 63.9 14.1 9.3 6 0.79 Eq Hl-la 0.0 46 HSS6X4X1/2 Column Line 121.08ft - -27.21ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 4th Floor 33.3 7.9 4.5 1 0.79 Eq H1-1 a 0.0 46 HSS4X4X3/8 3rd Floor 57.4 0.7 3.8 1 0.68 Eq H1-la 0.0 46 HSS4X4X3/8 2nd Floor 67.4 0.7 1.2 1 0.66 Eq H1-la 0.0 46 HSS4X4X3/8 Gravity ColuE RAM Steel vl 1.1 Jake Hohmann RAM DataBase: 070406 Willows E Building Code: IBC Column Line L -13 Level Pu Mux Muy Roof 25.4 3.2 7.2 4th Floor 25.7 3.2 7.2 3rd Floor 43.1 1.5 3.7 2nd Floor 59.4 0.9 2.5 Column Line 126.96ft - -87.90ft Level Pu Mux Muy Roof 49.6 0.8 1.2 4th Floor 49.9 0.8 1.2 3rd Floor 71.2 1.9 2.8 2nd Floor 92.4 0.8 1.9 Column Line 126.96ft - -76.75ft Level Pu Roof -9.8 4th Floor -9.6 3rd Floor 7.7 2nd Floor 14.1 in Design Summary LC Interaction Eq. Angle 1 0.80 Eq Hl-la 0.0 1 0.81 Eq H1-la 0.0 1 0.36 Eq H1-la 0.0 1 0.41 Eq H1-la 0.0 LC Interaction Eq. Angle 3 0.62 Eq H1-la 0.0 3 0.63 Eq H1-1a 0.0 6 0.37 Eq Hl-la 0.0 1 0.42Eg111-1 a 0.0 Sty Fy 46 46 46 46 Fy 46 46 46 46 37Page 15/15 04/09/07 14:38:16 ;el Code: AISC LRFD Size HSS5X5X3/8 HSS5X5X3/8 HSS5X5X3/8 HSS5X5X3/8 Size HSS6X6X3/8 HSS6X6X3/8 HSS6X6X3/8 HSS6X6X3/8 Mux Muy LC Interaction Eq. Angle Fy Size 0.1 4.3 18 0.20 Eq H1-lb 0.0 46 HSS5X5Xl/4 0.0 4.3 18 0.19 Eq H1-lb 0.0 46 HSS5X5X1/4 0.1 1.6 1 0.10 Eq Hl-lb 0.0 46 HSS5X5X1/4 0.1 0.6 1 0.11 Eq H1-lb 0.0 46 HSS5X5Xl/4 Criteria, Mass and Exposure Data 38 RAM Frame vl 1.1 Jake Hohmann KL &A, Inc. DataBase: 070327 Willows Lateral 03/30/07 11:12:49 CRITERIA: Rigid End Zones: Ignore Effects Member Force Output: At Face of Joint P-Delta: Yes Scale Factor: 1.00 Ground Level: 1 st Floor Wall Mesh Criteria : Wall Element Type : Shell Element with No Out-o f-Plane Stiffness Max. Allowed Distance between Nodes (ft) : 1.00 Advanced Wall Mesh Criteria: Optimization Level : 3 Shape Quality Level : 0.60 DIAPHRAGM DATA: Story Diaph # Diaph Type Roof 1 Rigid 4th Floor 1 Rigid 3rd Floor 1 Rigid 2nd Floor 1 Rigid l st Floor 1 Rigid Disconnect Internal Nodes of Beams: Yes Disconnect Nodes outside Slab Boundary: Yes STORY MASS DATA: Includes Self Mass of: Walls (Half mass of walls above and below) Calculated Values: Story Diaph # Weight Mass NMI Xm Ym EccX EccY kips k s2/ft ft-k-s2 ft ft ft ft Roof 1 646.7 20.08 41902 72.85 -68.07 6.14 6.71 4th Floor 1 982.3 30.51 69846 67.22 -56.44 6.46 6.55 3rd Floor 1 1129.1 35.06 87558 73.24 -63.79 6.70 6.69 2nd Floor 1 1159.3 36.00 89709 72.73 -64.26 6.70 7.28 1st Floor 1 2806.1 87.15 253982 61.81 -64.92 6.66 7.20 Story Diaph # Combine Roof 1 None 4th Floor 1 None 3rd Floor 1 None 2nd Floor 1 None 1 st Floor 1 None WIND EXPOSURE DATA: Calculated Values: y - ' Story Diaph # Building Extents (ft) Expose Parapet Min X Max X Min Y Max Y ft Roof 1 *7.21 129.96 -131.67 2.63 Full 0.00 4th Floor 1 -3.00 126.13 -130.92 0.13 Full 0.00 3rd Floor 1 -5.00 128.96 -130.92 2.88 Full 0.00 Criteria, Mass and Exposure Data RAM Frame v11.1 Jake Hohmann KL &A. Inc. DataBase: 070327 Willows Lateral 39 Page 2/2 03/30/07. 11:12:49 Min X Max X Min Y Max Y 2nd Floor 1 -5.00 128.96 -142.75 2.88 1st Floor 1 -4.08 129.04 -142.33 1.67 ft Full 0.00 Full 0.00 40 KL&A,Inc. Structural Engineers and Builders 4412 W. Eisenho w Blvd Loveland, Colorado 80537 Ph: 970 667-2426 Fax 970 667-2493 THE WILLOWS FOUNDATION DESIGN DESCRIPTION, ANALYSIS APPROACH, AND RESULTS Design Description and Analysis Approach The footings used in The Willows will be spread footings designed for an allowable bearing pressure of 4,000 psf. Isolated footings are designed per ACI 318-02. Continuous footings were designed by hand. See attached calculations. G:\ WiDo-\Cala\400 Foundation\Foun&- Design Desviptiond- 41 N m N U LO r r r ~ 0 N In n N m C O O O m U O 0 ¢a O D (Np o n n cnp o ~ N Lq r N `o LL a 0 m 7 c N c 0 W L U y Q m C G -o ~ d m c (D ~v 7 N o a N - E N E a) N Y L_ U C o-0 -o m 'O N G ry ~ n ~ N V a ~ v N Q d m m a 0 c m E d 7 C V 7 V 0 U at0i U N C N N N N N n N N N N N N N N t(? ~ n O O O C m 0 O 0 N 0 M N O M N to m O M m m N In m N O) N a0O M M N m N O O n O M O N m N m N V' W (~D to am0 N V O u (D V G O - O - 0 0 O O c) Y d L ~ U 0 ~ rn c p c m o N ~p Y o m M m M n V tA O m m r n to m O m 'DR m O n Of N: O IQ n to W M O n N m m m N: M et 0 ~ c? m m ~ M rn n 'C 6 6 6 0 o c. O O 0 6 0 0 - - a 0 16 0 0 .0 0 0 0 w N a y r < c a Z g Z g Z g Z ¢ Z ¢ Z a Z a Z a Z ¢ Z a Z a Z a Z g Z a Z a Z ¢ Z a Z a Z g Z a a Q Z a Z Q Z Q Z a Z ¢ Z a Z m f i l l 1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 c c 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z 5 Z ~ ~ h a t0 v O v ~ v I ] M N ^ 4 to v to v ^ 4 to v N a N a to v to v to v to v to v ll) v to v v ^ a N v ~ v v t L o 3 c . a v v v v to to v v m ta v v tn v m m v v v v v v v N a m N N L rn I ts ~ ~ r r ~ ~ - LL Y N ' m V m V v (p 'V (p T a sT c 7 V 'K v v v t Cp m7 (p C v (p V mV (p ~p V (p V v v v 3 c_ m m m m m n n m m m n m m r m m m m m m m m m m v m m v v L m c m m m m m n n m m m n m m n m m m m m m m m m m v m ao o v v T ! M N ~ sT cD co ~ m n co N M n M n r n a ~o °D O a m N n eD V M m N to N co m N op et 01 M N aT N 'o CO V' O N N m co N O ~ M m N N a d (n S fn In fq (A fn m fq m (n ~ In U fq N (n ~ (A m (n ~ (n m (A ~ (n N (n m (A x (n (A In m fn m fn (A m N U (n (n m (n N V1 m F- 5 2 2 2 2 2 2 2 2 2 2 5 2 2 2 2 2 2 5 2 2 2 2 5 S S S 2 2 > N c0 c0. co m O O co w w co m co b O N co N C o co oD c0 W N N W V' C o ' x (o c`7 -x O Lo x W u1 x O M x O x X P x (D In x CD u-) :x OJ ill x r t[) x (o to ix c0 O x r x w X co X o X (c - to X m t() X m' tt) X m 1n X m to X m 47 X co X V' X (o t0 X o~ X v X v x cD x (D x (O x (D x (o X x (D x O W;x x I x LD x 4? x r X X X X X X X X X X X X X X X u) co U) (n U) (n. (n (Y) (n (n n (/1 u) r U) u) (n W V) . ( f) N' w co to (n u) (o 0 (n m [n co (n w (n O fn (D (n O (A u O co co (D (n U O (7 U (D (1) c V U (D 0 c co N u V (n v W 2 2 5 2 2 3 : 2: 2 2 T = 2 2 S = _ ,3. = 2. ) = 2 ) = ) S o = ) 2 o 2 ) 2 w S u) 2 E r M r c-4 c') M r 11 r (o M tci d' v 04 M m O~ m N .rT V N N M 'OJ M 0' m m o . - v 6 ~ N m m N m ~ 0 m r A r l A n A m ~ r u A ~ r ~ r n N m n v ° r u~ A vl A u N o r ~ r u n 1 r 0 n Vl N N A N N v S ~ o m ° J m m m co ~ 'A m <n m m m o °D. ~ m m m m ~c n m mo m o m m 0 0 N N r ~ O~ r O h m O ~ ~ O h- M ~j m N ~ ~ LL~ O ~ m of O A m m Q U _ .r O r W <p N r r m O N m m cD ! N N N O O ~R N m 0 7 N e- N N N G LL c F N S (7 O cnp O c7 O (pN~ . 0 O N 0 m C7 ~ 0 0 ~[OJ 0 0 l 1q : 0 . . . . . 0 m 6 0 0 0 0 0 p 0 0 p 0 0 0 0 0 I n ~(Q~ ~m S ° S ° g ~ am S ( p N a (D S O Omf ~o ~ ~ R g C CW O c J ~ n n m ~ `w ~ m m ~ ~ n c°n a ro p n ~ m ~i ~ e °a ~ ~i c9i 8_ N u"E O L a 3 - H - m 1 - n ~ - th ~ ~ O N . N t'1 R I 3 < N N N t0 ta0 m S N S ~ S N S ~ ~ N N O~I •f M N O N p S E M pp N S V - T T M N N O ~ V M N C Q E m n ° ~ W s - O n ' M m n lo a m Si A v o F m M _p U a ~ ~ x m m l A TS v O r 1 . 4 O O .m- ~ p t+l W l N y~ S N N LL J O Z I a a a v ' , a I", a a e a v v a a e v a v a a e v v o o E v o o v o c o v a v a a a a a a e v e a a a v v o o ~ m N W C `~m y E ~ J o a v v a a v a v a a ~n n on n e v v a co o ~n n a v v e u-, n v v m c m o a v v a e a a v v v v v v ~ N v a ~o <o o ro m in E W m S m <c cc ' o° n $ n o 0 l6 o m o 0 ~ o 0 A g ac o 0 <c o o r S ~c S ~c o o m o 0 <c o 0 ~e o 0 cc g se o 0 ~c o . ~e o . <o $ v g (ri m m 0 w E ~ a U ; S so S ao S cc °o, ro °o <c °o ~ °o r °o .d o° cc OO ce O r~ O ~ti °o ~c ° r~ S to o° of °o ad °o is ~c S id S cc OO (c °o " °o so S v °o ~o °o ao m o m m _m m m m Cl m m m m m m m X m X m X m X N X m X x m X m X X X X g N X N X m X a m _ s 0 y `Qj U) X o tA X ~ N X o fg X m N m m J( 1~ (q Il~~ fn N X m !n O R ~ V) fg X m fn N X n N N X ~p N tn X ~p V) f/l X r (q fn O X CO O X m (n W X m N w X co N X tO y (D X tD X m (q (O X to fq (D X m N X m a) V X a U) (O X m m X m U! m m C O m m = m m N m m m m S m 2 2 m N = (A _ N m N m N m N m m T o m o m m N m W m W m ° % ~ m x N ~ V N N ^ ~p h 7 ~~pp 0 - S ~ ~ 0 0 N N V th mm 0 V m - pp 0 0~i ONi . 42 11, c c W 3 W C N Q m "y m Y N m m . 3 ~ N. a aWWS ~ o m m a m a m c W ~ ~ LL a C ~ O .~`mmE a m m as m c ~ a g ~ ~ a LLc'i .C m 43 11, 11 KL &A Consulting Structural Engineers Tide c ) T I LO O LQS Date 3 Zgd jo-+ Job no i-1 -+14. Subject EA) L 'D OA L L S By S p3 ~ Sheet I of I I I I I I I Ii 0.0.1 L00.6 = (loso PI{ Y13.5~ /A = _4-a 90 On. ~.a9k K&= q5 As, (d ~ 0. = As - AS (~o v'3' - /,r --RS ~Nln = 0.9Ps (&C',Yu15•'- C,.-+3.5 As) > 15(. A k-IVA (s > 0. a J z ~p I ~Ci W .Ai a/4 D,3t ~ 5 S1j10.Ci,/\.~ ~laZ ',n ~4t} ~•c~ {__.i _rz _ ~ / ~ ~+1 KL &A Consulting Structural Engineers 45 t Title O=LLOQS Date SIaa/D-}Jobno-TI -11 Subject'S-T-RX ~'i'G By t" Sheet of .:4 t\wc w/ti ~vh , u o d Y a`Ow~ _ V W N5 p5~, 3. g,55 ksC Use, • Ch,~.~1L ,o' ,~Y d= 5.I%S kA!~ Lk93 n o- 1 ' 3A-i ~~ne o e$v ra b rya QrstsS, g n,, - 49 Lo I's Ajt 0, 4'a II i KL&A, Inc. Structural Engineers and Builders 4412 W. Eisenhower Blvd Loveland, 00 80537 Ph: 970 667-2426 Fax 970 667-2493 46 THE WILLOWS PERMANENT SOIL RETENTION SYSTEM DESIGN APPROACH Design Description and Analysis Approach Foundation walls are designed as the permanent soil retention system for the building. They are designed to resist an at rest pressure of 50 psf/ft as specified in the soils report (supported top and bottom). There are also cantilever retaining walls that act as permanent soil retention systems. These walls were designed to resist an active pressure of 45 psf/ft as specified in the soils report. G:\Willom\UcsN500 Permanent Soil Retention System\permanentsoil retention systms da 11 I I II 11 1 1 1 1 1 1 0 1 1 KL &A Consulting Structural Engineers G~ 3 C, yc1`D /3 s 11-12 m b 11 x d_ LL 11a y Y W N O m G O N 11 II 11 II 11 J m ° E ~ N 3 ~ E O ~ M N 11 11 o ~ 2 ss U U o mo a II II It MI Yom' m b ~ y _ 3 m y o a C7 ~ U_ C C ¢ C O g 3 6 s~ b b c _ ` O $LL N O N N - - ' L g - - v c < o d o i ; n _wm.............. ® 3':. ® 1 cL 32 t a Q Q~ C I A 0 xr Ol 0 c4 ~ O Oi C 0 v $ N Q W 3 d S G O ± `Y ~ e ~ a7 - M _ . . to t2 G ~2 G N C s .b- O - m M O O ci O M O E n d N N N b m m b { a G 9 qC ~ ~ lZlr ~ N N i , ~ - - - C ~ m d C IL ~ n Y Y N d m ~ m ~ m o O v a i r ~ " C d Y 1 ~ m - U s m ° t0 tOG y t0 a 25 p2 0 o c o o a il N ft O. e ~ f0 M I °i g ' o o h o o ' ~ `I■ ~ m cro o ai X o Y o ~ ~ c 1 N N ` 1 + N 1 N . ¥ b b m b : c d o d d F ~ _ .N . - a S w ice h ~ ~ . Z o p Y: b ~j y X O V Y O d i N . s i , r r Y ~ V « m N m ~ t ..0 - ~ f y, O ~ h. v t " 3 3 ~ 3 3 48 O d C c'f a tV 3 11 JCL &A 49 Title - Date %211;, Job no. %/1?/J Consulting Structural Engineers / Subject LLL,4L4z?l G✓X46 By 173 Sheet % of 11. KL &A 50 TitleZ~Z d z,utc~ 5 Date Job no. T7// Consulting Structural Engineers i~Plti 511 s GyFrLTl,~scr~L~1 e, /~~"~YLrYILv~E /lC.ZwL, .Y[=G p .f.,~ /rit~rs . I[ I[ II II II 11 11 KL &A Consulting Structural Engineers 2~t'~i~v~~ U9uS @ S~~✓s ~D -D 51 Title M G✓fGlOvS Date Job no. jj//~ Subject Z62fZrvl•~G~ Li~1L1 BY /7s Sheet 3 of ti usr / ~Tfiu~ X ' y" 4,,VF t5 /V- _ /6, 31 32 f 29x1 /"d57-) %ls6srlitl, 11 11 1 1 i 1 1 KL &A Consulting Structural Engineers 52 Title T~/ /-l~o~s Date VI-110> Job no. T/~/~ Title :Willows Job # T1714 Dsgnr: TJ Schilling Date: 11:20AM, 3 /&R 07 Description : Scope: Code Ref: AC1318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580000 Page 1 User. KW-0602137.Ver 5.8.0, 1-Dec-2003 Cantilevered Retaining Wall Design f,11 A-9AA04 rN9P( ni r. Fm;-An„ Cn&- site retaining walls.em:Calalations Description Site Retaining Wall above stairs Criteria LLLI Retained Height = 4.17 ft Wall height above soil = 0.00 ft Slope Behind Wall = 0.00:1 Height of Soil over Toe = 36.00 in Soil Density = 110.00 pcf Wind on Stem = 0.0 psf surcharge Loads Design Summary Total Bearing Load = 1,781 Ibs ...resultant ecc. = 8.64 in j Soil Data Allow Soil Bearing = 4,000.0 psf Equivalent Fluid Pressure Method Heel Active Pressure = 45.0 Toe Active Pressure = 0.0 Passive Pressure = 250.0 Water height over heel = 0.0 ft FootingllSoil Friction = 0.500 Soil height to ignore for passive pressure = 0.00 in Surcharge Over Heel = 100.0 psf Used To Resist Sliding & Overturning Stem Construction Top Ste Stem Design height ft= 0 Wall Material Above "Ht" = Con Thickness = 8 Rebar Size = # Rebar Spacing = 18 Rebar Placed at = E Design Data fb/FB + fa/Fa = 0 Total Force @ Section Ibs = 95 Moment.... Actual ft-#= 1,52 Moment..... Allowable = 5,14 Shear..... Actual psi = 1 Shear..... Allowable psi = 10 Bar Develop ABOVE Ht in = 18 Bar Lap/Hook BELOW Ht in = Wall Weight = Rebar Depth 'd' in = Masonry Data rm psi = Fs psi = Solid Grouting = Special Inspection = Modular Ratio'n' _ Short Term Factor = f Equiv. Solid Thick. _ # Masonry Block Type = Normal Weight # Concrete Data fc psi = 4, i Fy psi = 60,0 i Other Acceptable Sizes & Spacings Toe: Not req'd, Mu < S ' Fr Heel: Not req'd, Mu < S • Fr Key: No key defined # Soil Pressure @ Toe = 2,242 psf OK Soil Pressure @ Heel = 0 psf OK Allowable = 4,000 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 3,529 psf ACI Factored @ Heel = 0 psf Footing Shear @ Toe = 0.0 psi OK Footing Shear @ Heel = 13.9 psi OK Allowable = 107.5 psi Wall Stability Ratios Overturning = 1.60 OK Sliding = 3.56 OK Sliding Calcs (Vertical Component Used) Lateral Sliding Force 811.8 Ibs less 100% Passive Force= - 2,000.0 Ibs less 100% Friction Force= - 890.5 Ibs Added Force Req'd = 0.0 Ibs OK ....for 1.5: 1 Stability = 0.0 Ibs OK Footing Design Results Toe Heel Factored Pressure = 3,529 0 ps Mu': Upward = 675 0 ft Mu' : Downward = 149 936 ft Mu: Design = 526 936 ft Actual 1-Way Shear = 0.00 13.88 ps Allow 1-Way Shear = 107.52 107.52 ps Toe Reinforcing = # 4 @ 18.00 in Heel Reinforcing = # 4 @ 18.00 in Key Reinforcing = None Speo'd Footing Strengths & Dimensions fc = 4,000 psi Fy = 60,000 psi Min. As % = 0.0014 Toe Width = 0.67 ft Heel Width = 1.83 Total Footing Width = -6 Footing Thickness = 12.00 in Key Width = 0.00 in Key Depth = 0.00 in Key Distance from Toe = 0.00 ft Cover @ Top = 3.00 in @ Btm.= 3.00 in Surcharge Over Toe 0.0 psf m Used for Sliding & Overturning OK .00 Crete .00 5 .00 dge 296 3.6 5.4 7.2 4.0 7.5 .50 6.00 96.7 5.69 000.0 00.0 Title : Willows Job # T1714 Dsgnr: TJ Schilling Date: 11:20AM, 3 A&4 07 Description Scope: Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580000 Page 2 User.KW-0602137,Ver5.8.0,1-Deo-2003 Cantilevered Retaining Wall Design (c)1983-2003 ENERCALC Engineering Software site retaining walls.ecw:CalWations Description Site Retaining Wall above stairs Summa of overturning & Resisting Forces & Moments Item Ibs ft ft-# Heel Active Pressure = 811.8 1.95 1,579.9 Toe Active Pressure = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = Seismict-oad = Total = 811.8 O.T.M. = 1,579.9 Resisting/Overturning Ratio = 1.60 Vertical Loads used for Soil Pressure = 1,780.9 Ibs Vertical component of active pressure used for soil pressure IDS tt n-* Soil Over Heel = 534.5 1.92 1,024.5 . Sloped Soil Over Heel = Surcharge Over Heel = 116.6 1.92 223.6 Adjacent Footing Load = Apal Dead Load on Stem = 0.00 Soil Over Toe = 220.1 0.33 73.4 Surcharge Over Toe = Stem Weight(s) = 402.7 1.00 402.8 Earth @ Stem Transitions= Footing Weight = 375.0 1.25 468.7 Key Weight = Vert. Component = 132.0 2.50 330.0 Total . 1.780.9 Ibs R_M = 2.523.1 Title : Willows Job # T1714 Dsgnr. TJ Schilling Date: 11:20AM, 3 P&S 07 Description : Scope : Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 5000 I Rev: wuuuu Page 1 User.KW-0602137,Ver. 5.8.0,1-0eo-2003 Cantilevered Retaining Wall Design i..~~oa~_~mv cucocei c c,.,.c"mod"„ s~rw~re site retainina walls.eemCala6ations Description Site Retaining Wall @ Walkway Criteria Retained Height = 5.50 it Wall height above soil = 1.50 ft Slope Behind Wall = 2.00:1 Height of Soil over Toe = 16.00 in Soil Density = 110.00 pcf Wind on Stem = 0.0 psf Surcharge Loads Design Summa Total Bearing Load = 3,426 Ibs ...resultant ecc. = 7.34 in Soil Pressure @ Toe = 1,808 psf OK Soil Pressure @ Heel = 19 psf OK Allowable = 4,000 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,518 psf ACI Factored @ Heel = 27 psf Footing Shear @ Toe = 10.2 psi OK Footing Shear @ Heel = 33.6 psi OK Allowable = 107.5 psi Wall Stability Ratios Overturning = 2.03 OK Sliding = 1.55 OK Sliding Calcs (Vertical Component Used) Lateral Sliding Force = 1,541.1 Ibs less 100% Passive Force= - 680.6 Ibs less 100% Friction Force= - 1,713.1 Ibs Added Force Req'd = 0.0 Ibs OK ....for 1.5: 1 Stability = 0.0 Ibs OK Footing Design Results Toe Heel Factored Pressure = 2,518 27 psf Mu': Upward = 1,751 0 ft-# Mu': Downward = 324 0 ft-# Mu: Design = 1,427 3,173 ft-# Actual 1-Way Shear = 10.21 33.64 psi Allow 1-Way Shear = 107.52 107.52 psi Toe Reinforcing = # 5 @ 24.00 in Heel Reinforcing = # 5 @ 18.00 in Key Reinforcing = None Spec'd ~ Soil Data Allow Soil Bearing = 4,000.0 psf Equivalent Fluid Pressure Method Heel Active Pressure = 45.0 Toe Active Pressure = 0.0 Passive Pressure = 250.0 Water height over heel = _ 0.0 ft FootingllSoil Friction = 0.500 Soil height to ignore for passive pressure = 0.00 in Surcharge Over Heel = 100.0 psf Used To Resist Sliding & Overturning Stem construction T Design height ft= Wall Material Above "Ht" _ Thickness = Rebar Size = Rebar Spacing = Rebar Placed at = Design Data fb/FB + fa/Fa = Total Force @ Section Ibs = Moment.... Actual ft-# = Moment..... Allowable = Shear..... Actual psi = Shear..... Allowable psi = 0.616 1,539.6 3,173.2 5,147.2 22.6 107.5 Bar Develop ABOVE Ht. in = 18.50 Bar Lap/Hook BELOW Ht. in = 6.00 Wall Weight = 96.7 Rebar Depth 'd' in = 5.69 Masonry Data fm psi = Fs psi = Solid Grouting = Special Inspection = Modular Ratio 'n' _ Short Tenn Factor = Equiv. Solid Thick. _ Masonry Block Type = Normal Weight Concrete Data fc psi = 4,000.0 Fy psi = 60,000.0 Other Acceptable Sizes & Spacings Toe: Not req'd, Mu < S ' Fr Heel: Not req'd, Mu < S ' Fr Key: No key defined Footing Strengths & Dimensions fc = 4,000 psi Fy = 60,000 psi Min. As % = 0.0014 Toe Width = 1.25 ft Heel Width = 2.50 Total Footing Width = X75- Footing Thickness = 12.00 in Key Width = 0.00 in Key Depth = 0.00 in Key Distance from Toe = 0.00 ft Cover @ Top = 3.00 in @ Btm.= 3.00 in Surcharge Over Toe = 0.0 psf op Stem Stem OK 0.00 Concrete 8.00 # 5 18.00 Edge Used for Sliding & Overturning Title : Willows Job # T1714 Dsgnr: TJ Schilling Date: 11:20AM, 3 )ft 07 Description Scope Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev. 580000 Page 2 User:KW-0602137,Ver5.8.0.1~2003 Cantilevered Retaining Wall Design (c)1983-2003 ENERCALC Engineering Software site retaining walls.emCalwlations Description Site Retaining Wall @ Walkway Summa of Overturning & Resistin Forces & Moments .....OVERTURNING..... .....RESISTING..... Force Distance Moment Force Distance Moment Item Ibs it ft-# Ibs ft ft-# Flee) Active Pressure = 1,041.1 Z.1Z 4,1154.1! Toe Active Pressure = Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil SeismicLoad = Total = 1,541.1 O.T.M. = 4,184.9 Resisting/Overturning Ratio = 2.03 Vertical Loads used for Soil Pressure = 3,426.2 Ibs Vertical component of active pressure used for soil pressure son uver rieel = 1, I Va.Z Z.aa a, Iwc.v Sloped Soil Over Heel = 92.4 3.14 290.1 Surcharge Over Heel = 183.3 2.83 519.4 Adjacent Footing Load = A)oal Dead Load on Stem = 0.00 Soil Over Toe = 183.3 0.63 114.6 Surcharge Over Toe = Stem Weight(s) = 676.7 1.58 1,071.4 Earth @ Stem Transitions= Footing Weight = 562.5 1.88 1,054.7 Key Weight = Vert. Component = 618.8 3.75 2,320.5 Tntai = 'A d9A 9 the R_M_= R_513.3 KL&A, Inc. Structural Engineers and Builders 4412 W. Eisenhower Blvd Loveland, CO 80537 Ph: 970 667-2426 Fax 970 667-2493 57 WILLOWS LATERAL SYSTEM DESIGN APPROACH Design Description and Analysis Approach Cast-in-place concrete elevator and stair cores serve as the lateral force resisting system for this project. The cores are designed to cantilever off mat foundations. An "R" value of 5 (special reinforced concrete shear walls) was used for seismic analysis. RAM Frame was used for the lateral analysis. In-house spreadsheets were used to design the rebar in the walls. Connections between the floor diaphragms and the cores are typically by an angle welded to embeds in the cores and with headed shear studs field welded to the angle. Where the floor does not abut the core, drag reinforcing is spliced into the core to make the connection. At the roof, angles and steel beams are used to drag the forces into the cores. Q\Wi➢o-\Cala\600 Uberal SySeems\latesW Vs"-doc RAM Frame V11.1 - Analysis Mode Jake Hohmann 58 DataBase: 070327 Willows Lateral 03/30/07 11:12:49 59 KL&A Structural Engineers and Builders Project: T1714 -Willows Engineer: JCH Date: 4/9/2007 Core # ,E[ev 1 Wall 2 Level 1 Phi Factors = 0.75 = 0.9 = 0.65 Material Data fc [psi] = 4000 fy [ksi] = 60 (31 = 0.85 ACI [10.2.7.31 Wall Geometery tw [in] = 10 hw [in] = 132 Lw [in] = 105 Concrete Wall Design - ACI-02 Reinforcing Data # mats = 2 Horizontal: bar spacing [in] = 18, bar size = #5 Vert. distributed: bar spacing [in] = 18 bar size = 45 Added verts (each end): bar size = #8 number of bars/mat = 0 spacing = 12 Calculated Values d [in] = 84 ACI [11.10.41 Ag [in2] = 1050 pb = 0.0285 0.75pb = 0.0214 pV = 0.0015 ACI [14.3.11 ph = 0.0025 ACI [14.3.11 Shear Bar size Area [in?] #3 0.11 #4 0.2 #5 0.31 #6 0.44 #7 0.6 #8 0.79 #9 1 #10 1.27 #11 1.56 #14 2.25 #18 4 Vu [k] = 65 (Note: Max. shear applied to wall) Nu [k] = 270.37 (Note: Max. Axial Compressive force associated with the shear force) Mu [k-ft] = 849.64 (Note: Max. Moment associated with the shear force) Vc [k] = 229.39 OVc/2 [k] = 86.02 Min T&S Steel Req'd ACI [11.10.61 ACI [11.5.5.11 Tu [k] = -9.57 (Note: Max. Axial Tension force applied to wall) Vu [k] = 5.78 (Note: Max. shear associted with the tension force) Mu [k-ft] = 57.67 (Note: Max. moment associted with the tension force) Vc [k] = 173.40 OVc/2 [k] = 65.03 Min. T&S Steel Req'd ACI [11.10.61 ACI [11.5.5.11 Av/S2 = Min. Reinf. Required [in`/ft] = 0.3 Asmin [in2/ft] = 0.3 As [in2/ft] = 0.41 OK max Spac [in] = 18 OK ACI [14.3.51 1 pvn tK1= 302.2 1 60 ph = 0 pv = 0.0025 As [in2/ft] = 0.41 OK Asmin [in2/ft] = 0.30 max Spac [in] = 18 OK ACI [14.3.5] Bending Strength Maximum Moment Loading Mu [k-ft] = 849.64 Asd [in2] = 0.41 Pu [k] = 270.37 Asa [in2] = 0.79 OK n [k-ft] = 1667.1 Compression Loadin Mu [k-ft] = 849.64 (Note: Max. moment associted with the compression force) Tu [k] = 270.37 (Note: Max. Axial Compression force applied to wall) OK J~MnLk-ftl = 1667.1 Tension Loading Mu [k-ft] = 57.67 (Note: Max. moment associted with the tension force) Tu [k] = -9.57 (Note: Max. Axial Tension force applied to wall) OK n JK-ttj = 771.1 p = 0.00344444 OK Ariz reinforcing p = 0.00344444 OK 61 KL&A Structural Engineers and Builders Project: T1714 -Willows Engineer: JCH Date: 41912007 Core # Elev3 Wall 10 Level 1 Phi Factors = 0.75 = 0.9 0.65 Material Data fc [psi] _ . 4000 fy [ksi] = 60 [31 = 0.85 ACI [10.2.7.3] Wall Geometery tw [in] = 10 hw [[n] = 132 Lw [in] = 95, Concrete Wall Design - ACI-02 Reinforcing Data # mats = 2 Horizontal: bar spacing [in] _ 18 bar size = #5 Vert. distributed: bar spacing [in] = 18 bar size = #5 Added verts (each end): bar size = #8 number of barstmat = 0 spacing = 12 Calculated Values d [in] = 76 ACI 111.10.41 Ag [in21= 950 pb = 0.0285 0.75pb = 0.0214 pv = 0.0015 ACI [14.3.1] ph = 0.0025 ACI [14.3.1] Shear Bar size #3 #4 r #5 #6 #7 0.6 #8 0.79 #9 1 #10 1.27 #11 1.56 #14 2.25 #18 4 Vu [k] = 24.09 (Note: Max. shear applied to wall) Nu [k] = 239.51 (Note: Max. Axial Compressive force associated with the shear force) Mu [k-ft] = 149.3 (Note: Max. Moment associated with the shear force) Vc [k] = 206.52 +Vc/2 [k] = 77.45 Min T&S Steel Req'd ACI [11.10.6] ACI [11.5.5.1] Tu [k] _ -19.67 (Note: Max. Axial Tension force applied to wall) Vu [k] = 7.71 (Note: Max. shear associted with the tension force) Mu [k-ft] = 39.43 (Note: Max. moment associted with the tension force) Vc [k] = 154.69 +Vc/2 [k] = 58.01 Min. T&S Steel Req'd ACI [11.10.6] ACI [11.5.5.11 AV/S2 = Min. Reinf. Required [in`/ft] = 0.3 Asmin [in2/ft] = 0.3 As [inZ/ft] = 0.41 OK max Spac [in] = 18 OK ACI [14.3.51 1 ~vn IKJ = 272.7 1 62 ph = 0 pv = 0.0025 As [in2/ft] = 0.41 OK [in2/ft] = 0.30 max Spac [in] = 18 OK ACI [14.3.5] Bending Strength Maximum Moment Loadin Mu [k-ft] = 205.69 Asd [in2] = 0.41 Pu [k] = 207.25 Asa [in2] = 0.79 OK n [k-ftj = 1265.0 Compression Loading Mu [k-ft] = 71.29 (Note: Max. moment associted with the compression force) Tu [k] = 246.64 (Note: Max. Axial Compression force applied to wall) OK n - = 1370.0 Tension Loading Mu [k-ft] = 39.43 (Note: Max. moment associted with the tension force) Tu [k] = -19.67 (Note: Ma)L Axial Tension force applied to wall) OK n [k-ft] = 596.3 Overall Reinforcing Ratio Checks p = 0.00344444 OK Ariz reinforcing p = 0.00344444 OK 63 KL&A Structural Engineers and Builders Project: T1714 -Willows Engineer: JCH Date: 4/912007 Core # Elev 3 Wall 9 Level tie' beam 2wS Phi Factors 0.75 = 0.9 ~c = 0.65 Material Data fc [psi] 4000 fy [ksi] 60 [31 = 0.85 ACI 110.2.7.31 Wall Geometery . . . tw [in] = 10 hw [in] = 62 Lw [in] = 30 Concrete Wall Design - ACI-02 Reinforcing Data # mats = 2 Horizontal: bar spacing [in] = 6 bar size = #4 Vert. distributed: bar spacing [in] = 18 bar size = #5 Added verts (each end): bar size = #6 number of bars/mat = 1 spacing = 4 Calculated Values d [in] = 24 ACI [11.10.4] Ag [in2] = 300 pb = 0.0285 0.75pb = 0.0214 pv = 0.0015 ACI [14.3.1] ph = 0.0025 ACI [14.3.1] Shear Bar size Area [in z] #3 0.11 #4 0.2 #5 0.31 #6 0.44 #7 0.6 #8 0.79 #9 1 #10 1.27 #11 1.56 #14 2.25 #18 4 Vu [k] = 26.16 (Note: Max. shear applied to wall) Nu [k] = 0.04 (Note: Max. Axial Compressive force associated with the shear force) Mu [k-ft] = 143.32 (Note: Max. Moment associated with the shear force) Vc [k] = 50.10 ~Vc/2 [k] = 18.79 phiVc/2 < Vu, Shear Reinf. Req'd ACI [11.10.6] ACI [71.5.5.11 Tu [k] _ -5.12 (Note: Max. Axial Tension force applied to wall) Vu [k] = 4.41 (Note: Max. shear associted with the tension force) Mu [k-ft] = 7.2 (Note: Max. moment associted with the tension force) Vc [k] = 49.07 ~Vc/2 [k] = 18.40 Min. T&S Steel Req'd ACI [11.10.6] ACI [11.5.5.1] AV/S2 = Min. Reinf. Required [in`/ft] = 0.3 Asmin [in2/ft] = 0.3 As [in2/ft] = 0.80 OK max Spac [in] = 18 OK ACI [14.3.5] 109.6 64 ph = 0 pv = 0.0025 Asn,;n [in2/ft] = 0.30 As [in2/ft] = 0.41 OK max Spac [in] = 18 OK ACI [14.3.5] Bending Strength Maximum Moment Loading Mu [k-ft] = 143.32 Asd [in2] = 0.41 Pu [k] = 0.04 Asa [in2] = 0,44 OK n Lk-ftj = 158.6 Compression Loading Mu [k-ft] = 1.91 (Note: Max. moment associted with the compression force) Tu [k] = 1.45 (Note: Max. Axial Compression force applied to wall) OK n [k-ft] = 159.9 Tension Loadin4 Mu [k-ft] = 7.2 (Note: Max. moment associted with the tension force) Tu [k] _ -5.12 (Note: Max. Axial Tension force applied to wall) OK p = 0.00344444 OK Ariz reinforcing p = 0.00666667 OK KL &A Consulting Structural Engineers 65 Title ~it~~• ~c~ C ~.r- Dated 30 Job no. TI-71 tl SubjectDmzP'Q",a6*^ cvt-ti- ByZ C, (A- Sheet ( of KL&A / ss Tdle Y`~~ ~ Dafe3/6Job na.1 711 Consulting Structural Engineers Subject C~rAOIRAt- Co-,e, By---k_&4- Sheet Z- of i : CI S- fia ' iA jL y VYA ; i A'A Zg ~ Q~e: e~r1 t - s3 a , i KL &A Consulting Structurat Engineers 67 Title ~uowc~ Date3/?,gla-1 Job no l'11~-{• 68 KL&A,Inc. Structural Engineers and Builders 4412 W. Eis~ Blvd Loveland, Cobras o 80537 Ph: 970 667-2426 Fax 970 667-2493 WILLOWS FLOOR DESIGN DESCRIPTION AND RESULTS Design Description and Analysis Approach Floor Framing Floor framing (above grade) for this project consists of composite deck on composite steel beams. A 51/2" composite slab, 3 1/2" normal weight concrete over 2" 18ga composite deck, was chosen based on span and fire separation requirements. Floor framing was designed in RAM Steel. Floor plans and example calculations are attached. Connections Connections between steel beams are typically standard clip angle connections. Where moment connections were required they were specifically designed for the loads and framing conditions. G:\Wi11ows\Calcs\800 Floors\Above grade framing descripiton.doc - - 3.~..ti,4 _ _J_ _ _ •~•.~.a - ~t'.:_~ l I 1 ' k : ,kMtl) mmn » t i l - - I i : 1- t t i l l 1 3 1 1 ! ! x I ~ naatF~.taW t 1 i t I ! i l ` i I I - ! ! i t Vim' e. eni mo.n(a j I I I 1 ! - - - - - - - - - - - - - ! : i i I I ! Ott ? I I I r I E E I I i l l 1 k t I ao: aat>m ]kk 4, 11 I I ~t ( I r ! , i! I i i F ! ! t =~3 f 3 3 i 1 I { i / ~ _ _ - _ - - - - - _ _ _ M M,a» 1. _ _ _ e„ umin I I LJ I 1 t~n~.j Xr----__ I I 1 1 1 ! I 1 I 1 1 k I 1 1 tno.s 1 1 1 1 I , I I 1 1 1 I 11 ~ : I I 1 sxi I I ! I ! i 3 I I It 1 ! { ! 9 . 1 (q ~ to w,em t' I OJByy : I 1 1 1 i 1 1 t ' ! i 1 I n~oo,m , 3 1 ! I ti"~ I ! I t ! t : I I! ! 1 W WAta,M ,~'1- - ~M~M6Mrrr LJ ~ x ~ O,k N':b» ,kO» k 1F , ~ I I 1 i , 3 I I 1 ! I i 1 i ! y - 1 I i f : ! I M 1 t I i F -IMML I 1 i ~ 1»I ~ WI~ ~ (%OSek rtlai kMaa(a a~ l9 RG t i 1 I ' I 1 ! I ! I I I ~--'f'--__...-`._.1--'-~~------.i.----- --'_-f - - 14t WlanYn9 „F 44-4 Q l p p -'~i I ! 1 1 1! 1 { ! 1 190[' „k F i 1 1 L L I A J y I I ~ 1 --_-i I I I I F-~ i 1 E : i i , 1 1 I I 0 0 K H A 1'+ K ~r 69 N IML a CID, c~`°• (D O F F yMy ~ Hk ^^W ON ~ Q III O 3.~ ' l A7 w K. CD lD ~-k n O O N O ao c~ C~ dW Gravity Beam Design RAM Steel vl 1.1 70 . Jake Hohmann DataBase: 070406 Willows 04/09/07 14:59:30 KL&A, Inc. Building Code: IBC- Steel Code: AISC LRFD Floor Type: 4th Floor Beam Number = 37 SPAN INFORMATION (ft): I-End (35.38,-17.88) J-End (65.87,-17.88) Beam Size (User Selected) = W14X30 Fy = 50.0 ksi Total Beam Length (ft) = 30.50 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 3.50 3.50 Unit weight concrete (pcf) 145.00 145.00 f c (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VULCRAFT 2.OVL VULCRAFT 2.OVL beff (in) = 86.50 Y bar(in) = 15.54 Mnf (kip-ft) = 429.51 Mn (kip-ft) = 351.71 C (kips) = 234.96 PNA (in) = 13.49 Ieff (in4) = 912.71 Itr (in4) = 1144.18 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 19.6 # of studs: Full = 47 Partial = 30 Actual = 30 Number of Stud Rows = 1 Percent of Full Composite Acti on = 50.44 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% Roof 1, Red% CLL 27.083 9.94 6.26 3.94 17.1 0.00 0.00 0.0 4.36 Snow 2.66 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.278 0.194 0.136 17.1% Red 0.092 30.500 0.278 0.194 0.136 0.092 2 0.000 0.369 0.257 0.180 17.1% Red 0.122 27.083 0.369 0.257 0.180 0.122 3 27.084 0.290 0.202 0.142 17.1% Red 0.096 30.500 0.290 0.202 0.142 0.096 4 0.000 0.030 0.030 0.000 NonR 0.000 30.500 0.030 0.030 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 39.74 kips 0.90Vn =100.60 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 127.4 16.7 0.0 1.00 0.90 177.38 Init DL I ADL 93.6 16.7 Max + 1.2DL+1.6LL 186.9 17.4 0.85 298.96 Controlling 1.2DL+1.6LL 127.4 16.7 0.0 1.00 0.90 177.37 REACTIONS (kips): Gravity Beam Design RAM Steel vl 1.1 71 Page 2/2 Jake Hohmann DataBase: 070406 Willows 04/09/07 14:59:30 KL & A, Inc. Building Code: IBC Steel Code: AISC LRFD Left Right Initial reaction 11.56 18.23 DL reaction 11.43 18.90 Max +LL reaction 4.84 10.66 Max +total reaction (factored) 21.46 39.74 DEFLECTIONS: (Camber =1-1/4) Initial load (in) at Live load (in) at Post Comp load (in) at Net Total load (in) at 15.71 ft = -1.355 L/D = 270 15.71 ft = -0.290 LID = 1263 15.71 ft = -0.482 L/D = 760 15.71 ft = -0.587 L/D = 624 Gravity Beam Design RAM Steel vl 1.1 72 r Jake Hohmann DataBase: 070406 Willows 04/09/07 14:59:30 KL ACA, Inc. Building Code: IBC Steel Code: AISC LRFD Floor Type: 4th Floor Beam Number =118 SPAN INFORMATION (ft): I-End (101.83r67.92) J-End (101.83, 42.58) Beam Size (User Selected) = W 16X67 Fy = 50.0 ksi Total Beam Length (ft) = 25.33 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 3.50 3.50 Unit weight concrete (pcf) 145.00 145.00 Pc (ksi) 4.00 4.00 Decking Orientation parallel parallel Decking type VULCRAFT 2.0VL VULCRAFT 2.OVL beff (in) = 60.41 Y bar(in) = 14.94 Mnf (kip-ft) = 900.69 Mn (kip-ft) = 821.88 C (kips) = 417.71 PNA (in) = 15.73 Ieff (i,4) = 2222.40 Itr (in4) = 2612.94 Stud length (in) = 4.00 Stud diam (in) = 0.75 Stud Capacity (kips) Qn = 26.1 # of studs per stud segment: Full = 22,3,4,28 Partial = 12,2,8,16 Actual = 12,2,8,16 Number of Stud Rows = 1 Percent of Full Composite Action = 56.74 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 7.583 24.41 5.86 3.75 17.8 0.86 0.00 0.0 22.98 Snow 2.53 8.444 6.74 4.72 3.20 17.8 0.00 0.00 0.0 0.14 Snow 2.16 16.833 23.93 6.10 3.96 17.8 0.82 0.00 0.0 21.77 Snow 2.67 16.836 6.24 4.26 2.87 17.8 0.00 0.00 0.0 1.06 Snow 1.94 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.068 0.068 0.000 NonR 0.000 25.333 0.068 0.068 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 87.94 kips 0.90Vn =173 .84 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 171.7 16.2 8.4 1.00 0.90 495.00 Init DL 1 ADL 128.5 14.9 Max + 1.2DL+1.6LL 694.4 16.8 0.85 698.60 Controlling 1.2DL+1.6LL 694.4 16.8 0.85 698.60 REACTIONS (kips): Left Right Initial reaction 1 6.35 15.61 DL reaction 3 2.58 30.47 73 Page 2/2 04/09/07 14:59:30 Steel Code: AISC LRFD Left Right Max +LL reaction 30.53 28.43 Max +total reaction (factored) 87.94 82.04 DEFLECTIONS: Initial load (in) at 12.67 ft = -0.387 LID = 786 Live load (in) at 12.67 ft = -0.442 LAD = 688 Post Comp load (in) at 12.67 ft = -0.745 LAD = 408 Net Total load (in) at 12.67 ft = -1.132 LAD = 269 VULCRAFT\- 2 VLI Maximum Sheet Length 42'-0 Extra Charge for Lengths Under 6'-0 ICBO Approved (No. 3415) Total t Slab „ ~ Depth p' o .o o. 6 . Q s!p'. o'v _oo;'oc q.0 Ao o:. V 12- 12" 5" 24" or 36" (KI-el Klf%D IA A 1 WCU-214IT tf MI--MPTIF 11 d5 P(`M CTFFI SF(:TIAN PRAPFRTIFS Fv_ 40 KSI Deck Design Weight Ip in Sp Sri T e Thick. PSF m4/ft k14/ft in3/ft in3lft 2VL122 0.0295 1.62 0.332 0.329 0.274 0.277 2VL121 0.0329 1.1 0.378 0.375 0.317 0.321 2VL120 0.0358 1.97 0.418 0.415 0.355 0.360 2VL119 0.0418 2.30 0.493 0.492 0.435 0.443 2VL118 0.0474 2.61 0.557 0.557 0.512 0.518 2VU17 0.0538 2.96 0.633 0.633 0.589 0.589 2VL116 0.0598 3.29 0.704 0.704 0.653 0.653 Total . - SDI Max. Unshored - - - Superimpose d Live Lo ad PSF Slab Deck Clear S Dan Clear S )an (It-in . - De T 1 S an 2 n 5'-6 6'- T-0 T-6 8' -6 9' 101-6 111-0 1' 12'-0 12.6 2VL122 6'-6 V-9 8'-10 274 239 211 164 145 129 115 104 94 85 78 71 65 59 54 4' 2VL121 7'-2 9'-5 9'-8 294 255 22 200 155 138 123 111 100 91 83 76 69 64 58 2VL120 T-8 9'-11 10'-3 310 269 236 210 188 146 130 117 106 96 87 80 73 67 62• (t=21 2VL119 8'-8 11'-0 11'-4 344 298 261 231 207 186 169 130 117 106 97 88 81 74 68 2VL118 9'-0 11'-10 12'-3 373 324 285 253. 228 206 188 172 159 122 112 103 95 87 81 39 PSF 2VL117 10'-4 12'-7 13'-0 400 351 308 273 245 221 201 184 170 157 120 111 102 94 87 2VL116 10'- -2 13'-5 400 3 7 330 292 261 214 195 1 166 154 1 118 1 109 100 93 2VLI22 6'-2 8'-4 T-5 319 278 217 190 168 150 134 121 109 99 90 83 76 69 63 41/2' 2VL121 6'-9 81-11 91-3 341 297 261 204 180 160 144 129 117 106 97 88 81 74 68 2VL120 T-3 9'-5 91-9 361 313 275 244 190 ' 169 152 136 123 112 102 93 85 78 72 (tom 112' 2VU19 T-2 10'-5 10'-10 400 346 303 268 240 216 168 151 136 124 113 103 94 86 79 2VL118 91-0 11'-3 111-8 400 376 331 295 264 239 218 200 156 142 130 119 110 102 94 45 PSF 2VL117 91-9 12'-0 12'-5 400 40D 358 318 284 257 234 214 197 153 140 129 118 109 101 2VL116 10'-4 12'-7 13'-0 400 400 383 339 303 274 248 227 2D9 193 150 137 126 117 108 2VL122 51-11 T-9 8'-0 364 265 247 217 192 171 153 138 125 113 103 94 86 79 72 5" 2VL121 V-5 8'-6 8'-10 389 338 266 233 206 183 164 147 133 121 110 101 92 84 78 2VU20 V-11 91-0 9'-4 400 356 313 246 217 193 173 156 141 128 116 106 97 89 82 (t=3') 2VU19 T-9 10'-0 10'-4 400 394 345 306 273 214 192 172 156 141 128 117 .107 99 91 2VU18 8'-7 10'-9 11'-2 400 400 377 336 301 273 249 195 178 162 148 136 126 116 107 51 PSF 2VU17 9'-3 11'4; 11'-10 400 400 400 362 324 293 266 244 192 175 160 147 135 125 116 2VU16 9'-10 12'-1 12'-5 400 400 400 386 346 12 283 259 238 187 171 157 144 133 123 2VU22 V-8 T-2 7'-4 400 320 278 244 216 192 172 155 140 127 116 106 97 89 81 51/2' 2VU21 6'-2 6'-2 8'-5 400 379 298 261 231 205 184 166 150 136 124 113 104 95 87 2VU20 V-7 8'-8 8'-11 400 400 351 276 244 217 194 175 158 143 131 119 109 100 92 (1=3112') 2VU19 T-5 9'-7 9'-11 400 400 388 343 271 241 215 193 175 159 144 132 121 111 102 2VU18 8'-2 10'-4 10'-8 400 400 400 377 338 306 243 219 199 182 167 153 141 130 121 57 PSF 2VU17 8'-10 111-0 11'-5' 400 400 400 400 364 329 299 237 215 196 180 165 152 140 130 2VL116 9'-4 11'-7 2'-0 400 400 400 400 388 350 1 210 192 176 162 150 138 2VU22 5'-5 6'-8 V-10 400 355 308 270 239 213 191 172 156 141 129 118 108 99 90 6" 2VL121. 51-11 T-11 8'-1 400 381 331 290 256 228 204 184 166 151 137 126 115 105 97 2VL120 6'-4 8'-4 8'-7 400 400 350 306 271 241 215 194 175 159 145 132 121 111 102 (t=4") 2VL119 T-2 91-3 9'-7 406 400 400 381 301 267 239 215 194 176 160 146 134 123 113 2VL118 7'-10 10'-0 10'-4 400 400 400 400 375 299 269 243 221 202 185 170 157 145 134 63 PSF 2VL117 8'-0 10'-7 11'-0 400 400 400 400 400 364 331 263 239 218 199 183 169 156 144 2VL116 9'-0 11'-2 11'-6 400 400 400 400 388 352 322 255 21 1 180 166 154 2VL122 5'-1 6'-2 6'-4 400 390 339 297 263 234 210 189 171 155 141 129 118 108 99 6112° 2VL121 6-9 7'-6 T-6 400 400 363 318 281 250 224 202 183 166 151 138 126 116 106 2VL120 V-1 81-1 8'-4 400 400 365 337 297 264 237 213 193 175 . 159 145 133 122 112 (t=4112') 2VU19 V-10 81-11 9'-3 400 400 400 375 330 293 262 236 213 193 176 161 147 135 124 2VL118 7'-7 91-8 9'-11 400 400 400 400 400 329 296 268 243 222 203 187 172 159 147 69 PSF 2VLI17 8' 2 10'-3 10'-7 4D0 400 400 400 400 400 320 289 262 239 219 201 185 171 158 2VLI16 8'-8 101-9 11'-2 400 400 400 400 400 400 387 309 280 256 234 215 198 183 169 NOTES: 1. Minimum exterior bearing length required is 2.0 inches. Minimum interior bearing length required is 4.0 irches. If these minimum lengths are not provided, web crippling must be checked. 2. Always contact Vulcraft when using loads in excess of 200 psL Such loads often result from concentrated, dynamic, or long term load cases for which reductions due to bond breakage, concrete creep, etc. should be evaluated. 3. Ail fire rated assemblies are subject to an upper live load limit of 250 psf. 4. Inquire about material availability of 17,19 8.21 gage. 46 h 7 In c in d c Of c W 3 2 W cn 4za I LAM O V 6a 9 0 U d a 0 -Y w M a~ A r d p A o H U z ~ Wr" O ti A J J 5 j J O d w O N a L O z ~ N O Q ~ t w° 'z Q w R l ~ ~ II II 11 II 11 11 li II II II II II P' w k: w w' w r=; Q N d ~ ,a, o a > > y x b O N ~ a m w x v 0 2 x ~ H :a d m a d ~ 3 w o. A O O ~ o ,a a d 1 a d rJ a d a d 1 a d a d a d a d a d a d * » » * » At 4t » m w ~0 ~O a C N N ~ M 'r D 7 ~ E E E U~ t; ° N d ~ ~ ~ r ~ d r d d d d 5 +p' t- M CD V1 d co ^0 n n M M ' as .5 d v h O a ~ v O O A a R7 OR OR O C VI ~ h h Yl N ° a n m ~ M M N ` U m co a 3 3 75 w 0 d m a a io 0 0 N O It w R z z 0 U m F- Q W S a U d co KL &A Consulting Structural Engineers 76 t Trle O r ot,JS Date Va -416-4 Job no.T Subject Co,,4 lab 0.e BY c~ n7 Sheet / of w (1,9 ~ a.a3 k-~4 = -+23 k- n g .2~ 0, IN 3 KL &A 77 Title LkDS L L o LOS Date A 110 jo 4 Job no. Ti t' Consulting Structural Engineers Subject Co, . . ~3g-g k Dr,rzn.By S1J~ Sheet of aE -0" SQ. ~r Rqu,~ a~Px D AD E ~s - orL 0 #aFfx~ toSt~D LoR~ ppsi -yi L= 1/0 Pst Sol -rDTAL r A w"rZa,Eb LoPD i. a($d +r.l.(lo~ s Ito a. ~E CNEC, V, Zr (i~ *,5 --CS SL)FF-rC-T-E.M-r {4n = S'- (o~~yi .n~ x~¢ CE ~p {nw.~ • [.Jo(r S} MS e, ~ r; b. 0,(4 talk= a,fp~, k-~-E = 31,4{L ~ (LL C~M.n_= ~ Rs~~~d - `(0,9)(o,3f) (1ro)t;d.$35- .yam CNECIt -T RRE SuFrzGrE^)T •,!.'cr5~ CO*52 is o~R L dL @ GQ.A~'Q..r . Tr;b ~Ia - 3 7, r 5r ~D t!\~ x.59 L - fit k a As _ (.u~(t~u~ 1. 1 I t p d . ~ s" 3, " F )V H , a y gS e.4 s , C N~.~ = 9~(d)L tQ~Ct~ o) 3 to 5 - ) =at.3 k -;n > M,,.=91.0 kr,ri ✓DK KL &A 78 Me tj x I.Lo')s Date3/dc)jp Job no.T I +I Consulting Structural Engineers Subject K b f\E OJT Co ,a Q. BY S JJP Sheet of M - a 3i__ -fit= all, -+ak ,a,~a1 0 a ,;3 0y ' • C~nQC1z WQ n ~ na~ LA QLb x . •Tr WIo1 d nA ~w Use c+~ = h /d 2 C!'"~ = 1 fl" t1.t = 0, q ~ 5-0 \Ls~) All --4a 4, 'o,asg" - 0/a X a~ f n. IUD" o Y-- a Qa.~~~~~ Shy- -r~~ ~ ~►a x ~ a Aoop (,3d d = a~i.~a fro" = a9, a k KL A 79 ride (ti.ir.-uoc.JS Date3/.I 10 Job no.-r f~( Consulting Structural Engineers Subject Raa Sheet of ~d ~~ek c-¢:, ors I' ill u ¢.r~~r art. ~Y~ *nq- / s+ L9-V(L~ ~ fix. v,1\o~,.~ab\a lvo`r~ c~~! o~ af 1.~~8 = ~/!~0 ; ~s~ ,,,il.,ho.,c. s dart = Co'- (n t~oc• °~'j'tr~~ {uad « d;rt arvsa~ Tam psi (A5.0 be Ps~ L L _ PL # o, 6or wn \odhlvm ate - L, 2 sF' = /a" o.c.. % d ,30Y~,c. ov?r- ddick ea - ~ =G9>~Rs (x'0)(5" _ r. /3y s, OK, = 5q As ( 5 0.-35As~ cJ v I-to (OD,) - 1.40 p Q~ @ to'- to tau. , v. -3 ~1 Rs~ S-0.fi35R:~) ? D.5b k-„n (a s ? 0.15 5 KL&A $o Title W t tfAWS Dategl~Ib,7 Job no.T Consulting Structural Engineers Subject 56% 6 S p By V VI SheetZ of 2 81 n&A,Inc. Structural Engineers and Builders 4412W. Eiswhower Blvd Laveland, Colorado 80537 Ph: 970 667-2426 Fmc 970667 2493 WILLOWS ROOF DESIGN DESCRIPTION AND RESULTS Design Description and Analysis Approach Roof Framing The typical steel framed roofs for this project consists of 3" roof deck over steel beams spanning to girders and tube steel columns. There are also some areas which will consist of lightgage metal stud over framing on top ofthe composite floor slabs. See the load keys in the `Design Criteria' section for loads applied to each roof The deflection criteria used for the roof framing was L/240 under total load and L/360 for live load. Load tracking and some design was performed using RAM Steel with LRFD 3rd Edition. Gable unbalanced and drift loads were considered for design - see the load key legend for a graphic description of these loads. Results Steel Deck - Roof- 3" l8ga roof deck. Beams - See Attached Note: For conservation of space, only representative beams and girders have been included in the calculation binder. G:\Willows\Ca1cs\900 Roofs\Roof flaming descripiton.doc Floor Man RAM Steel vl 1.1 82 ! Jake Hohmann DataBase: 070406 Willows 04/09/07 14:59:30 KL &',A, In c. Building Code: IBC Steel Code: AISC LRFD Floor Type: Roof 1 r----------------- r -r 2kV12xIQj --r-------- -r--- 1 _ - _ - _ _ _ I_ _ _ _ _ _ - k W12AS 15k I 1 I I ° i I _ _ _ _ _ _ _ _ _ _ _ _ 4 - L ---------L--- b I I I m I g 1 r-I x S I I Sk I -_3k M2)0 10kii - r 5k YM22 WIxl I 1 3k W14+02 3k I 1 W m tlfi hs I I I ~ -31~----~/rJ~~ 31tN12A93N zz~ I o I i m i~ ~ ly I ~ ~ I I ~ I x 3k x10 3k 1 I I I 'I 1 e 3k x19 3cm 15k 3 91k 2k W12s xS 2k 6 - ~ ~ - ' _ t__p'>- 3WIZx1931 I x 3k n3_,~9} 3k m .m- ° I I I a ILE I i} ~'Yx 'S 1n I x x I I I 1~ 2~2k$ ,Q2 3k 31 W12x193k I I sI ~ 1~ I ~ 3 I I I I I I I ~ 'I ~ I I 1 ~ 1 1 ~ I W12Y19 f ~ d4 dS o ~ rF I I I `7k 11k ~~~-Q 4x78 1 10k~5 13k 1 A4X10 13k !y,l/: N I ~93F 4k 11 L.: I I I I I' I I I I I 1 I I I 7 3WI22i91o Tc WI2x19 Sk , 1-15 _ -I_____________1___ 1 1 I I I I 1 I 1 I I I I 1 ~ i 1 1 I I I I I ~ i ~ I 1 I I I i I I o I I I I I I I 4klY12x11s11c' 3k12113cx I I I f I I ~ I i ~ I I I i I I 1 p 1 I I 1 I i I I i ~ 1 I I 1 I I I 1 I 1 Iai 16 1 I I 1 I I 1 31k I W1W 39u I I i I I I I I 1 I 1 I 1 1 I I ~ ' I i I i I I ~ i+ 1 1 1 I I I i TI~.1 ! 4.1. 1 1 1 1 I I i I ~ 1 ~ 1 Cp I I I I_ _ _ _ _ _ _ _ _ _ _ _ _ _ r _ I _ _ _ _ _ _ _ _ _ _ _ _ _ 1 _ _ - _ 3 _ _ _ _ _ a I I I I t ~ 4kM2x194111 4kNI2x1G4k I I I I I I I 1 o Y I I I 1 1 1 3 I I I BMy,2 I 1 I ~ 1 ~ I I -1 13k W14122 :S 12k2a2k 1 -9 I----- r ---r q ' 781 i 4X10- 3k' I ili if I I>•` - - _ i Syr } 1-9 --n--- -------I- - 1 y ' 0 ° I I I 1292 I I IJ - --1---- - --I - I--- - ---~-o I S - - I I i ~ ~ I 3 1~ ' 1 28t 221 2 I 1 ~ I i , Tc , 3tlc 2 972 I i I I I 1k c ~ ~ I ~ ~ I I I I t I I 17j 1K O i f N ~ ` ~ I ' ~ i I ~ o 3k W1 x19 3tf 3 I I I 1 L_______ L__-I_ I 1 I I I I 1 I 1 I I 1 I I I 1 I I 1 I I 1 I I I I I 1 I 1 Sk WI2xl9 Sk I is 1!`` I I W12A9 5k x 7g d~ ' \ a[ I iIP+ I ~ I 1 1 I I i p m 4< W7249 4k K I I 1 ; I I 1 I I 1 1 I d1 ~i1i.'ils 1 I 1 , Zy1~ I I I XiI ~ I 1 f 'S W12 x19 5ko & 1 1 ~ 111999 I ~ ~ I i 1 1 i I 1 I 1 L i A I m ~ I I ~ ~ I I I R I ' , tOk WI #2 10k LJ C7 - I I ~ cI o /~I ~ I Y m I ~ ~ _ WV1k114W1k< f I I ~ 1 I - 1 - - I 1 i x19 & 1 I I I i I i i Rig Sk 11 £ 3 4 12kNkl 1A221J I I d~ 3 \ If/ "2 9' J 5k 21 Ht 13 -x-"x - -1-------------I-----~ - r 41751< 4< WI 9 4.k 1 1 dS i I r i . - _ _ _ . _ _ L _ _ L _ _ _ 3kV12X1M W12X[Ok7k 2x79 ek31 VR k _ _ _ 2c12x2k_ _ } _ _ _ J _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ L _ _ _ idl W x19 101 L---- I I ~ l l i I I I I i I I i t I I I I I 1 I I I I I i I I I I I 1 I I 1 I I 1 I I I I I I 1 I I I I 1 I I I i I 1 1 1 I I I I 1 I I 1 I I I I t 1 I I I i I I I I I I I I i I I 1 'I.~ I 1 (KD.~ l J F G CH ~ ~J K L Gravily RAM Steel vl 1. 1 Jake Hohmann DataBase: 070406 Willows KL&A, Inc. Building Code: IBC Beam Design 83 04/09/07 14:59:30 Steel Code: AISC LRFD Floor Type: Roof Beam Number = 64 SPAN INFORMATION (ft): I-End (44.79,-96-33) J-End (74.79,-96.33) Minimum Depth specified = 12.10 in Beam Size (User Selected) = W21X55 Fy = 50.0 ksi Total Beam Length (ft) = 30.00 Mp (kip-ft) = 525.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 4.917 0.70 0.00 0.0 0.00 0.00 0.0 2.95 Snow 7.625 2.23 0.00 0.0 0.00 0.00 0.0 7.62 Snow 9.833 0.81 0.00 0.0 0.00 0.00 0.0 4.29 Snow 15.250 2.74 0.00 0.0 0.00 0.00 0.0 8.94 Snow 16.555 1.56 0.00 0.0 0.00 0.00 0.0 7.94 Snow 22.625 1.27 0.00 0.0 0.00 0.00 0.0 4.50 Snow 23.277 1.50 0.00 0.0 0.00 0.00 0.0 5.89 Snow LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.055 0.000 NonR 30.000 0.055 0.000 SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 41.85 kips 0.90Vn = 210.60 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max + 1.2DL+1.6LL 417.1 15.2 5.4 1.07 0.90 472.50 Controlling 1.2DL+1.6LL 417.1 15.2 5.4 1.07 0.90 472.50 REACTIONS (kips): Left Right DL reaction 6.32 6.15 Max +LL reaction 21.41 20.71 Max +total reaction (factored) 41.85 40.53 DEFLECTIONS: Dead load (in) at 15.00 ft = -0.285 L/D = 1264 Live load (in) at 15.00 ft = -0.994 L/D = 362 Net Total load (in) at 15.00 ft = -1.279 L/D = 281 Gravity Beam Design RAM Steel vl 1.1 Jake Hohmann DataBase: 070406 Willows KL&A, Inc. Building Code: IBC 84 04/09/07 14:59:30 Steel Code: AISC LRFD Floor Type: Roof Beam Number = 82 SPAN INFORMATION (ft): I-End (59.75,-21.83) J-End (59.75,-5.00) Minimum Depth specified = 12.10 in Beam Size (User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 16.83 Mp (kip-ft) = 102.92 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.066 0.000 Snow 16.833 0.066 0.000 2 0.000 0.000 0.510 Snow 16.833 0.000 0.510 3 0.000 0.061 0.000 Snow 16.833 0.061 0.000 4 0.000 0.019 0.000 NonR 16.833 0.019 0.000 SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 8.35 kips 0.90Vn = 77.41 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max + 1.2DL+1.6LL 35.1 8.4 0.0 1.00 0.90 92.62 Controlling 1.2DL+1.6LL 35.1 8.4 0.0 1.00 0.90 92.62 REACTIONS (kips): Left Right DL reaction 1.23 1.23 Max +LL reaction 4.29 4.29 Max +total reaction (factored) 8.35 8.35 DEFLECTIONS: Dead load (in) at 8.42 ft = -0.070 L/D = 2878 Live load (in) at 8.42 ft = -0.244 L/D = 827 Net Total load (in) at 8.42 ft = -0.315 L/D = 642 KL &A 85 Title Date §,L,~ Job no. 72. Consulting Structural Engineers ' Subject By %7j Sheet/ of i s/vuv OL G~ USC ~ , Z5 _ ci~ifutJ poi: rte: t : KL &A 87 True " 1 G CCU~S Date 11j Job no. r12/ Consulting Structural Engineers Subject, /2G~6 r~otrcv~t2' By P~ Sheet 3 of m Z a a w 0 y Z CL O Z j h N 41- U Z W W 8E Z© L '5 1 m m Z W N W LIZ ca W M ~ c CS Z ~p O 6'' \ x U M may. [~.i " io W ~m LL- O O O ~.u Cti W Z U Q 88 .s KL &A~~~~ Job no$ Title \M1uAV~- r Date Consulting Structural Engineers Subject By C-4~4 Sheet ( of a KL &A ~r,/ / 90 Title ~!"I st-C e ~r~l Datel O "7 Job noT1"71~ Consulting Structural Engineers Subject By~L Sheet 1 of J - - > r2~ / ~ Q ~-d 6114 r'' -tit <l5 k Mcr y Lb r-Lq n&A,Inc. Structural Engineers and Builders 4412 W. EisenlxmwBW Loveland, Colorado 80537 Ph: 970 657-2426 Fax. 970 667-2493 91 WILLOWS WALL SYSTEMS DESIGN DESCRIPTION AND RESULTS Design Description and Analysis Approach Below Grade Concrete Walls The below grade concrete walls were designed as part of the permanent soil retention system Calculations are shown for point loads on walls. Light Gage Curtain Walls The light gage curtain walls will be designed by others based on a performance specification written by KL&A, Inc. Walls will span from floor-to-floor (platform framed). Deflection shall be limited to H/360 for walls supporting shingles or siding, and W600 for walls supported masonry veneer. G:\Willows\Calcs\1000 Wall Systems\Walls System Design Approach.doc i KL &A Consulting Structural Engineers We _ ~11 a5+. y- QQ,~I gY. Date 1 l5 Ind 1 9 7 lob no. 1 71 y Subject- FAA DA Ve,,I By J M PI Sheet) of 141